Loading...
Note: File does not exist in v3.15.
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) Qu Wenruo 2017. All rights reserved.
4 */
5
6/*
7 * The module is used to catch unexpected/corrupted tree block data.
8 * Such behavior can be caused either by a fuzzed image or bugs.
9 *
10 * The objective is to do leaf/node validation checks when tree block is read
11 * from disk, and check *every* possible member, so other code won't
12 * need to checking them again.
13 *
14 * Due to the potential and unwanted damage, every checker needs to be
15 * carefully reviewed otherwise so it does not prevent mount of valid images.
16 */
17
18#include <linux/types.h>
19#include <linux/stddef.h>
20#include <linux/error-injection.h>
21#include "messages.h"
22#include "ctree.h"
23#include "tree-checker.h"
24#include "disk-io.h"
25#include "compression.h"
26#include "volumes.h"
27#include "misc.h"
28#include "fs.h"
29#include "accessors.h"
30#include "file-item.h"
31#include "inode-item.h"
32#include "dir-item.h"
33#include "raid-stripe-tree.h"
34#include "extent-tree.h"
35
36/*
37 * Error message should follow the following format:
38 * corrupt <type>: <identifier>, <reason>[, <bad_value>]
39 *
40 * @type: leaf or node
41 * @identifier: the necessary info to locate the leaf/node.
42 * It's recommended to decode key.objecitd/offset if it's
43 * meaningful.
44 * @reason: describe the error
45 * @bad_value: optional, it's recommended to output bad value and its
46 * expected value (range).
47 *
48 * Since comma is used to separate the components, only space is allowed
49 * inside each component.
50 */
51
52/*
53 * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt.
54 * Allows callers to customize the output.
55 */
56__printf(3, 4)
57__cold
58static void generic_err(const struct extent_buffer *eb, int slot,
59 const char *fmt, ...)
60{
61 const struct btrfs_fs_info *fs_info = eb->fs_info;
62 struct va_format vaf;
63 va_list args;
64
65 va_start(args, fmt);
66
67 vaf.fmt = fmt;
68 vaf.va = &args;
69
70 btrfs_crit(fs_info,
71 "corrupt %s: root=%llu block=%llu slot=%d, %pV",
72 btrfs_header_level(eb) == 0 ? "leaf" : "node",
73 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf);
74 va_end(args);
75}
76
77/*
78 * Customized reporter for extent data item, since its key objectid and
79 * offset has its own meaning.
80 */
81__printf(3, 4)
82__cold
83static void file_extent_err(const struct extent_buffer *eb, int slot,
84 const char *fmt, ...)
85{
86 const struct btrfs_fs_info *fs_info = eb->fs_info;
87 struct btrfs_key key;
88 struct va_format vaf;
89 va_list args;
90
91 btrfs_item_key_to_cpu(eb, &key, slot);
92 va_start(args, fmt);
93
94 vaf.fmt = fmt;
95 vaf.va = &args;
96
97 btrfs_crit(fs_info,
98 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV",
99 btrfs_header_level(eb) == 0 ? "leaf" : "node",
100 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
101 key.objectid, key.offset, &vaf);
102 va_end(args);
103}
104
105/*
106 * Return 0 if the btrfs_file_extent_##name is aligned to @alignment
107 * Else return 1
108 */
109#define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment) \
110({ \
111 if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), \
112 (alignment)))) \
113 file_extent_err((leaf), (slot), \
114 "invalid %s for file extent, have %llu, should be aligned to %u", \
115 (#name), btrfs_file_extent_##name((leaf), (fi)), \
116 (alignment)); \
117 (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \
118})
119
120static u64 file_extent_end(struct extent_buffer *leaf,
121 struct btrfs_key *key,
122 struct btrfs_file_extent_item *extent)
123{
124 u64 end;
125 u64 len;
126
127 if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) {
128 len = btrfs_file_extent_ram_bytes(leaf, extent);
129 end = ALIGN(key->offset + len, leaf->fs_info->sectorsize);
130 } else {
131 len = btrfs_file_extent_num_bytes(leaf, extent);
132 end = key->offset + len;
133 }
134 return end;
135}
136
137/*
138 * Customized report for dir_item, the only new important information is
139 * key->objectid, which represents inode number
140 */
141__printf(3, 4)
142__cold
143static void dir_item_err(const struct extent_buffer *eb, int slot,
144 const char *fmt, ...)
145{
146 const struct btrfs_fs_info *fs_info = eb->fs_info;
147 struct btrfs_key key;
148 struct va_format vaf;
149 va_list args;
150
151 btrfs_item_key_to_cpu(eb, &key, slot);
152 va_start(args, fmt);
153
154 vaf.fmt = fmt;
155 vaf.va = &args;
156
157 btrfs_crit(fs_info,
158 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV",
159 btrfs_header_level(eb) == 0 ? "leaf" : "node",
160 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
161 key.objectid, &vaf);
162 va_end(args);
163}
164
165/*
166 * This functions checks prev_key->objectid, to ensure current key and prev_key
167 * share the same objectid as inode number.
168 *
169 * This is to detect missing INODE_ITEM in subvolume trees.
170 *
171 * Return true if everything is OK or we don't need to check.
172 * Return false if anything is wrong.
173 */
174static bool check_prev_ino(struct extent_buffer *leaf,
175 struct btrfs_key *key, int slot,
176 struct btrfs_key *prev_key)
177{
178 /* No prev key, skip check */
179 if (slot == 0)
180 return true;
181
182 /* Only these key->types needs to be checked */
183 ASSERT(key->type == BTRFS_XATTR_ITEM_KEY ||
184 key->type == BTRFS_INODE_REF_KEY ||
185 key->type == BTRFS_DIR_INDEX_KEY ||
186 key->type == BTRFS_DIR_ITEM_KEY ||
187 key->type == BTRFS_EXTENT_DATA_KEY);
188
189 /*
190 * Only subvolume trees along with their reloc trees need this check.
191 * Things like log tree doesn't follow this ino requirement.
192 */
193 if (!is_fstree(btrfs_header_owner(leaf)))
194 return true;
195
196 if (key->objectid == prev_key->objectid)
197 return true;
198
199 /* Error found */
200 dir_item_err(leaf, slot,
201 "invalid previous key objectid, have %llu expect %llu",
202 prev_key->objectid, key->objectid);
203 return false;
204}
205static int check_extent_data_item(struct extent_buffer *leaf,
206 struct btrfs_key *key, int slot,
207 struct btrfs_key *prev_key)
208{
209 struct btrfs_fs_info *fs_info = leaf->fs_info;
210 struct btrfs_file_extent_item *fi;
211 u32 sectorsize = fs_info->sectorsize;
212 u32 item_size = btrfs_item_size(leaf, slot);
213 u64 extent_end;
214
215 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
216 file_extent_err(leaf, slot,
217"unaligned file_offset for file extent, have %llu should be aligned to %u",
218 key->offset, sectorsize);
219 return -EUCLEAN;
220 }
221
222 /*
223 * Previous key must have the same key->objectid (ino).
224 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA.
225 * But if objectids mismatch, it means we have a missing
226 * INODE_ITEM.
227 */
228 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
229 return -EUCLEAN;
230
231 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
232
233 /*
234 * Make sure the item contains at least inline header, so the file
235 * extent type is not some garbage.
236 */
237 if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) {
238 file_extent_err(leaf, slot,
239 "invalid item size, have %u expect [%zu, %u)",
240 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START,
241 SZ_4K);
242 return -EUCLEAN;
243 }
244 if (unlikely(btrfs_file_extent_type(leaf, fi) >=
245 BTRFS_NR_FILE_EXTENT_TYPES)) {
246 file_extent_err(leaf, slot,
247 "invalid type for file extent, have %u expect range [0, %u]",
248 btrfs_file_extent_type(leaf, fi),
249 BTRFS_NR_FILE_EXTENT_TYPES - 1);
250 return -EUCLEAN;
251 }
252
253 /*
254 * Support for new compression/encryption must introduce incompat flag,
255 * and must be caught in open_ctree().
256 */
257 if (unlikely(btrfs_file_extent_compression(leaf, fi) >=
258 BTRFS_NR_COMPRESS_TYPES)) {
259 file_extent_err(leaf, slot,
260 "invalid compression for file extent, have %u expect range [0, %u]",
261 btrfs_file_extent_compression(leaf, fi),
262 BTRFS_NR_COMPRESS_TYPES - 1);
263 return -EUCLEAN;
264 }
265 if (unlikely(btrfs_file_extent_encryption(leaf, fi))) {
266 file_extent_err(leaf, slot,
267 "invalid encryption for file extent, have %u expect 0",
268 btrfs_file_extent_encryption(leaf, fi));
269 return -EUCLEAN;
270 }
271 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
272 /* Inline extent must have 0 as key offset */
273 if (unlikely(key->offset)) {
274 file_extent_err(leaf, slot,
275 "invalid file_offset for inline file extent, have %llu expect 0",
276 key->offset);
277 return -EUCLEAN;
278 }
279
280 /* Compressed inline extent has no on-disk size, skip it */
281 if (btrfs_file_extent_compression(leaf, fi) !=
282 BTRFS_COMPRESS_NONE)
283 return 0;
284
285 /* Uncompressed inline extent size must match item size */
286 if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START +
287 btrfs_file_extent_ram_bytes(leaf, fi))) {
288 file_extent_err(leaf, slot,
289 "invalid ram_bytes for uncompressed inline extent, have %u expect %llu",
290 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START +
291 btrfs_file_extent_ram_bytes(leaf, fi));
292 return -EUCLEAN;
293 }
294 return 0;
295 }
296
297 /* Regular or preallocated extent has fixed item size */
298 if (unlikely(item_size != sizeof(*fi))) {
299 file_extent_err(leaf, slot,
300 "invalid item size for reg/prealloc file extent, have %u expect %zu",
301 item_size, sizeof(*fi));
302 return -EUCLEAN;
303 }
304 if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) ||
305 CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) ||
306 CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) ||
307 CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) ||
308 CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize)))
309 return -EUCLEAN;
310
311 /* Catch extent end overflow */
312 if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi),
313 key->offset, &extent_end))) {
314 file_extent_err(leaf, slot,
315 "extent end overflow, have file offset %llu extent num bytes %llu",
316 key->offset,
317 btrfs_file_extent_num_bytes(leaf, fi));
318 return -EUCLEAN;
319 }
320
321 /*
322 * Check that no two consecutive file extent items, in the same leaf,
323 * present ranges that overlap each other.
324 */
325 if (slot > 0 &&
326 prev_key->objectid == key->objectid &&
327 prev_key->type == BTRFS_EXTENT_DATA_KEY) {
328 struct btrfs_file_extent_item *prev_fi;
329 u64 prev_end;
330
331 prev_fi = btrfs_item_ptr(leaf, slot - 1,
332 struct btrfs_file_extent_item);
333 prev_end = file_extent_end(leaf, prev_key, prev_fi);
334 if (unlikely(prev_end > key->offset)) {
335 file_extent_err(leaf, slot - 1,
336"file extent end range (%llu) goes beyond start offset (%llu) of the next file extent",
337 prev_end, key->offset);
338 return -EUCLEAN;
339 }
340 }
341
342 return 0;
343}
344
345static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key,
346 int slot, struct btrfs_key *prev_key)
347{
348 struct btrfs_fs_info *fs_info = leaf->fs_info;
349 u32 sectorsize = fs_info->sectorsize;
350 const u32 csumsize = fs_info->csum_size;
351
352 if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) {
353 generic_err(leaf, slot,
354 "invalid key objectid for csum item, have %llu expect %llu",
355 key->objectid, BTRFS_EXTENT_CSUM_OBJECTID);
356 return -EUCLEAN;
357 }
358 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
359 generic_err(leaf, slot,
360 "unaligned key offset for csum item, have %llu should be aligned to %u",
361 key->offset, sectorsize);
362 return -EUCLEAN;
363 }
364 if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) {
365 generic_err(leaf, slot,
366 "unaligned item size for csum item, have %u should be aligned to %u",
367 btrfs_item_size(leaf, slot), csumsize);
368 return -EUCLEAN;
369 }
370 if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) {
371 u64 prev_csum_end;
372 u32 prev_item_size;
373
374 prev_item_size = btrfs_item_size(leaf, slot - 1);
375 prev_csum_end = (prev_item_size / csumsize) * sectorsize;
376 prev_csum_end += prev_key->offset;
377 if (unlikely(prev_csum_end > key->offset)) {
378 generic_err(leaf, slot - 1,
379"csum end range (%llu) goes beyond the start range (%llu) of the next csum item",
380 prev_csum_end, key->offset);
381 return -EUCLEAN;
382 }
383 }
384 return 0;
385}
386
387/* Inode item error output has the same format as dir_item_err() */
388#define inode_item_err(eb, slot, fmt, ...) \
389 dir_item_err(eb, slot, fmt, __VA_ARGS__)
390
391static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key,
392 int slot)
393{
394 struct btrfs_key item_key;
395 bool is_inode_item;
396
397 btrfs_item_key_to_cpu(leaf, &item_key, slot);
398 is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY);
399
400 /* For XATTR_ITEM, location key should be all 0 */
401 if (item_key.type == BTRFS_XATTR_ITEM_KEY) {
402 if (unlikely(key->objectid != 0 || key->type != 0 ||
403 key->offset != 0))
404 return -EUCLEAN;
405 return 0;
406 }
407
408 if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID ||
409 key->objectid > BTRFS_LAST_FREE_OBJECTID) &&
410 key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID &&
411 key->objectid != BTRFS_FREE_INO_OBJECTID)) {
412 if (is_inode_item) {
413 generic_err(leaf, slot,
414 "invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
415 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
416 BTRFS_FIRST_FREE_OBJECTID,
417 BTRFS_LAST_FREE_OBJECTID,
418 BTRFS_FREE_INO_OBJECTID);
419 } else {
420 dir_item_err(leaf, slot,
421"invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
422 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
423 BTRFS_FIRST_FREE_OBJECTID,
424 BTRFS_LAST_FREE_OBJECTID,
425 BTRFS_FREE_INO_OBJECTID);
426 }
427 return -EUCLEAN;
428 }
429 if (unlikely(key->offset != 0)) {
430 if (is_inode_item)
431 inode_item_err(leaf, slot,
432 "invalid key offset: has %llu expect 0",
433 key->offset);
434 else
435 dir_item_err(leaf, slot,
436 "invalid location key offset:has %llu expect 0",
437 key->offset);
438 return -EUCLEAN;
439 }
440 return 0;
441}
442
443static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key,
444 int slot)
445{
446 struct btrfs_key item_key;
447 bool is_root_item;
448
449 btrfs_item_key_to_cpu(leaf, &item_key, slot);
450 is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY);
451
452 /*
453 * Bad rootid for reloc trees.
454 *
455 * Reloc trees are only for subvolume trees, other trees only need
456 * to be COWed to be relocated.
457 */
458 if (unlikely(is_root_item && key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
459 !is_fstree(key->offset))) {
460 generic_err(leaf, slot,
461 "invalid reloc tree for root %lld, root id is not a subvolume tree",
462 key->offset);
463 return -EUCLEAN;
464 }
465
466 /* No such tree id */
467 if (unlikely(key->objectid == 0)) {
468 if (is_root_item)
469 generic_err(leaf, slot, "invalid root id 0");
470 else
471 dir_item_err(leaf, slot,
472 "invalid location key root id 0");
473 return -EUCLEAN;
474 }
475
476 /* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */
477 if (unlikely(!is_fstree(key->objectid) && !is_root_item)) {
478 dir_item_err(leaf, slot,
479 "invalid location key objectid, have %llu expect [%llu, %llu]",
480 key->objectid, BTRFS_FIRST_FREE_OBJECTID,
481 BTRFS_LAST_FREE_OBJECTID);
482 return -EUCLEAN;
483 }
484
485 /*
486 * ROOT_ITEM with non-zero offset means this is a snapshot, created at
487 * @offset transid.
488 * Furthermore, for location key in DIR_ITEM, its offset is always -1.
489 *
490 * So here we only check offset for reloc tree whose key->offset must
491 * be a valid tree.
492 */
493 if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
494 key->offset == 0)) {
495 generic_err(leaf, slot, "invalid root id 0 for reloc tree");
496 return -EUCLEAN;
497 }
498 return 0;
499}
500
501static int check_dir_item(struct extent_buffer *leaf,
502 struct btrfs_key *key, struct btrfs_key *prev_key,
503 int slot)
504{
505 struct btrfs_fs_info *fs_info = leaf->fs_info;
506 struct btrfs_dir_item *di;
507 u32 item_size = btrfs_item_size(leaf, slot);
508 u32 cur = 0;
509
510 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
511 return -EUCLEAN;
512
513 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
514 while (cur < item_size) {
515 struct btrfs_key location_key;
516 u32 name_len;
517 u32 data_len;
518 u32 max_name_len;
519 u32 total_size;
520 u32 name_hash;
521 u8 dir_type;
522 int ret;
523
524 /* header itself should not cross item boundary */
525 if (unlikely(cur + sizeof(*di) > item_size)) {
526 dir_item_err(leaf, slot,
527 "dir item header crosses item boundary, have %zu boundary %u",
528 cur + sizeof(*di), item_size);
529 return -EUCLEAN;
530 }
531
532 /* Location key check */
533 btrfs_dir_item_key_to_cpu(leaf, di, &location_key);
534 if (location_key.type == BTRFS_ROOT_ITEM_KEY) {
535 ret = check_root_key(leaf, &location_key, slot);
536 if (unlikely(ret < 0))
537 return ret;
538 } else if (location_key.type == BTRFS_INODE_ITEM_KEY ||
539 location_key.type == 0) {
540 ret = check_inode_key(leaf, &location_key, slot);
541 if (unlikely(ret < 0))
542 return ret;
543 } else {
544 dir_item_err(leaf, slot,
545 "invalid location key type, have %u, expect %u or %u",
546 location_key.type, BTRFS_ROOT_ITEM_KEY,
547 BTRFS_INODE_ITEM_KEY);
548 return -EUCLEAN;
549 }
550
551 /* dir type check */
552 dir_type = btrfs_dir_ftype(leaf, di);
553 if (unlikely(dir_type >= BTRFS_FT_MAX)) {
554 dir_item_err(leaf, slot,
555 "invalid dir item type, have %u expect [0, %u)",
556 dir_type, BTRFS_FT_MAX);
557 return -EUCLEAN;
558 }
559
560 if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY &&
561 dir_type != BTRFS_FT_XATTR)) {
562 dir_item_err(leaf, slot,
563 "invalid dir item type for XATTR key, have %u expect %u",
564 dir_type, BTRFS_FT_XATTR);
565 return -EUCLEAN;
566 }
567 if (unlikely(dir_type == BTRFS_FT_XATTR &&
568 key->type != BTRFS_XATTR_ITEM_KEY)) {
569 dir_item_err(leaf, slot,
570 "xattr dir type found for non-XATTR key");
571 return -EUCLEAN;
572 }
573 if (dir_type == BTRFS_FT_XATTR)
574 max_name_len = XATTR_NAME_MAX;
575 else
576 max_name_len = BTRFS_NAME_LEN;
577
578 /* Name/data length check */
579 name_len = btrfs_dir_name_len(leaf, di);
580 data_len = btrfs_dir_data_len(leaf, di);
581 if (unlikely(name_len > max_name_len)) {
582 dir_item_err(leaf, slot,
583 "dir item name len too long, have %u max %u",
584 name_len, max_name_len);
585 return -EUCLEAN;
586 }
587 if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) {
588 dir_item_err(leaf, slot,
589 "dir item name and data len too long, have %u max %u",
590 name_len + data_len,
591 BTRFS_MAX_XATTR_SIZE(fs_info));
592 return -EUCLEAN;
593 }
594
595 if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) {
596 dir_item_err(leaf, slot,
597 "dir item with invalid data len, have %u expect 0",
598 data_len);
599 return -EUCLEAN;
600 }
601
602 total_size = sizeof(*di) + name_len + data_len;
603
604 /* header and name/data should not cross item boundary */
605 if (unlikely(cur + total_size > item_size)) {
606 dir_item_err(leaf, slot,
607 "dir item data crosses item boundary, have %u boundary %u",
608 cur + total_size, item_size);
609 return -EUCLEAN;
610 }
611
612 /*
613 * Special check for XATTR/DIR_ITEM, as key->offset is name
614 * hash, should match its name
615 */
616 if (key->type == BTRFS_DIR_ITEM_KEY ||
617 key->type == BTRFS_XATTR_ITEM_KEY) {
618 char namebuf[max(BTRFS_NAME_LEN, XATTR_NAME_MAX)];
619
620 read_extent_buffer(leaf, namebuf,
621 (unsigned long)(di + 1), name_len);
622 name_hash = btrfs_name_hash(namebuf, name_len);
623 if (unlikely(key->offset != name_hash)) {
624 dir_item_err(leaf, slot,
625 "name hash mismatch with key, have 0x%016x expect 0x%016llx",
626 name_hash, key->offset);
627 return -EUCLEAN;
628 }
629 }
630 cur += total_size;
631 di = (struct btrfs_dir_item *)((void *)di + total_size);
632 }
633 return 0;
634}
635
636__printf(3, 4)
637__cold
638static void block_group_err(const struct extent_buffer *eb, int slot,
639 const char *fmt, ...)
640{
641 const struct btrfs_fs_info *fs_info = eb->fs_info;
642 struct btrfs_key key;
643 struct va_format vaf;
644 va_list args;
645
646 btrfs_item_key_to_cpu(eb, &key, slot);
647 va_start(args, fmt);
648
649 vaf.fmt = fmt;
650 vaf.va = &args;
651
652 btrfs_crit(fs_info,
653 "corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV",
654 btrfs_header_level(eb) == 0 ? "leaf" : "node",
655 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
656 key.objectid, key.offset, &vaf);
657 va_end(args);
658}
659
660static int check_block_group_item(struct extent_buffer *leaf,
661 struct btrfs_key *key, int slot)
662{
663 struct btrfs_fs_info *fs_info = leaf->fs_info;
664 struct btrfs_block_group_item bgi;
665 u32 item_size = btrfs_item_size(leaf, slot);
666 u64 chunk_objectid;
667 u64 flags;
668 u64 type;
669
670 /*
671 * Here we don't really care about alignment since extent allocator can
672 * handle it. We care more about the size.
673 */
674 if (unlikely(key->offset == 0)) {
675 block_group_err(leaf, slot,
676 "invalid block group size 0");
677 return -EUCLEAN;
678 }
679
680 if (unlikely(item_size != sizeof(bgi))) {
681 block_group_err(leaf, slot,
682 "invalid item size, have %u expect %zu",
683 item_size, sizeof(bgi));
684 return -EUCLEAN;
685 }
686
687 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
688 sizeof(bgi));
689 chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi);
690 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
691 /*
692 * We don't init the nr_global_roots until we load the global
693 * roots, so this could be 0 at mount time. If it's 0 we'll
694 * just assume we're fine, and later we'll check against our
695 * actual value.
696 */
697 if (unlikely(fs_info->nr_global_roots &&
698 chunk_objectid >= fs_info->nr_global_roots)) {
699 block_group_err(leaf, slot,
700 "invalid block group global root id, have %llu, needs to be <= %llu",
701 chunk_objectid,
702 fs_info->nr_global_roots);
703 return -EUCLEAN;
704 }
705 } else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) {
706 block_group_err(leaf, slot,
707 "invalid block group chunk objectid, have %llu expect %llu",
708 btrfs_stack_block_group_chunk_objectid(&bgi),
709 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
710 return -EUCLEAN;
711 }
712
713 if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) {
714 block_group_err(leaf, slot,
715 "invalid block group used, have %llu expect [0, %llu)",
716 btrfs_stack_block_group_used(&bgi), key->offset);
717 return -EUCLEAN;
718 }
719
720 flags = btrfs_stack_block_group_flags(&bgi);
721 if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) {
722 block_group_err(leaf, slot,
723"invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set",
724 flags & BTRFS_BLOCK_GROUP_PROFILE_MASK,
725 hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK));
726 return -EUCLEAN;
727 }
728
729 type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
730 if (unlikely(type != BTRFS_BLOCK_GROUP_DATA &&
731 type != BTRFS_BLOCK_GROUP_METADATA &&
732 type != BTRFS_BLOCK_GROUP_SYSTEM &&
733 type != (BTRFS_BLOCK_GROUP_METADATA |
734 BTRFS_BLOCK_GROUP_DATA))) {
735 block_group_err(leaf, slot,
736"invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx",
737 type, hweight64(type),
738 BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA,
739 BTRFS_BLOCK_GROUP_SYSTEM,
740 BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA);
741 return -EUCLEAN;
742 }
743 return 0;
744}
745
746__printf(4, 5)
747__cold
748static void chunk_err(const struct extent_buffer *leaf,
749 const struct btrfs_chunk *chunk, u64 logical,
750 const char *fmt, ...)
751{
752 const struct btrfs_fs_info *fs_info = leaf->fs_info;
753 bool is_sb;
754 struct va_format vaf;
755 va_list args;
756 int i;
757 int slot = -1;
758
759 /* Only superblock eb is able to have such small offset */
760 is_sb = (leaf->start == BTRFS_SUPER_INFO_OFFSET);
761
762 if (!is_sb) {
763 /*
764 * Get the slot number by iterating through all slots, this
765 * would provide better readability.
766 */
767 for (i = 0; i < btrfs_header_nritems(leaf); i++) {
768 if (btrfs_item_ptr_offset(leaf, i) ==
769 (unsigned long)chunk) {
770 slot = i;
771 break;
772 }
773 }
774 }
775 va_start(args, fmt);
776 vaf.fmt = fmt;
777 vaf.va = &args;
778
779 if (is_sb)
780 btrfs_crit(fs_info,
781 "corrupt superblock syschunk array: chunk_start=%llu, %pV",
782 logical, &vaf);
783 else
784 btrfs_crit(fs_info,
785 "corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV",
786 BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot,
787 logical, &vaf);
788 va_end(args);
789}
790
791/*
792 * The common chunk check which could also work on super block sys chunk array.
793 *
794 * Return -EUCLEAN if anything is corrupted.
795 * Return 0 if everything is OK.
796 */
797int btrfs_check_chunk_valid(struct extent_buffer *leaf,
798 struct btrfs_chunk *chunk, u64 logical)
799{
800 struct btrfs_fs_info *fs_info = leaf->fs_info;
801 u64 length;
802 u64 chunk_end;
803 u64 stripe_len;
804 u16 num_stripes;
805 u16 sub_stripes;
806 u64 type;
807 u64 features;
808 bool mixed = false;
809 int raid_index;
810 int nparity;
811 int ncopies;
812
813 length = btrfs_chunk_length(leaf, chunk);
814 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
815 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
816 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
817 type = btrfs_chunk_type(leaf, chunk);
818 raid_index = btrfs_bg_flags_to_raid_index(type);
819 ncopies = btrfs_raid_array[raid_index].ncopies;
820 nparity = btrfs_raid_array[raid_index].nparity;
821
822 if (unlikely(!num_stripes)) {
823 chunk_err(leaf, chunk, logical,
824 "invalid chunk num_stripes, have %u", num_stripes);
825 return -EUCLEAN;
826 }
827 if (unlikely(num_stripes < ncopies)) {
828 chunk_err(leaf, chunk, logical,
829 "invalid chunk num_stripes < ncopies, have %u < %d",
830 num_stripes, ncopies);
831 return -EUCLEAN;
832 }
833 if (unlikely(nparity && num_stripes == nparity)) {
834 chunk_err(leaf, chunk, logical,
835 "invalid chunk num_stripes == nparity, have %u == %d",
836 num_stripes, nparity);
837 return -EUCLEAN;
838 }
839 if (unlikely(!IS_ALIGNED(logical, fs_info->sectorsize))) {
840 chunk_err(leaf, chunk, logical,
841 "invalid chunk logical, have %llu should aligned to %u",
842 logical, fs_info->sectorsize);
843 return -EUCLEAN;
844 }
845 if (unlikely(btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize)) {
846 chunk_err(leaf, chunk, logical,
847 "invalid chunk sectorsize, have %u expect %u",
848 btrfs_chunk_sector_size(leaf, chunk),
849 fs_info->sectorsize);
850 return -EUCLEAN;
851 }
852 if (unlikely(!length || !IS_ALIGNED(length, fs_info->sectorsize))) {
853 chunk_err(leaf, chunk, logical,
854 "invalid chunk length, have %llu", length);
855 return -EUCLEAN;
856 }
857 if (unlikely(check_add_overflow(logical, length, &chunk_end))) {
858 chunk_err(leaf, chunk, logical,
859"invalid chunk logical start and length, have logical start %llu length %llu",
860 logical, length);
861 return -EUCLEAN;
862 }
863 if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) {
864 chunk_err(leaf, chunk, logical,
865 "invalid chunk stripe length: %llu",
866 stripe_len);
867 return -EUCLEAN;
868 }
869 /*
870 * We artificially limit the chunk size, so that the number of stripes
871 * inside a chunk can be fit into a U32. The current limit (256G) is
872 * way too large for real world usage anyway, and it's also much larger
873 * than our existing limit (10G).
874 *
875 * Thus it should be a good way to catch obvious bitflips.
876 */
877 if (unlikely(length >= btrfs_stripe_nr_to_offset(U32_MAX))) {
878 chunk_err(leaf, chunk, logical,
879 "chunk length too large: have %llu limit %llu",
880 length, btrfs_stripe_nr_to_offset(U32_MAX));
881 return -EUCLEAN;
882 }
883 if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
884 BTRFS_BLOCK_GROUP_PROFILE_MASK))) {
885 chunk_err(leaf, chunk, logical,
886 "unrecognized chunk type: 0x%llx",
887 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
888 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
889 btrfs_chunk_type(leaf, chunk));
890 return -EUCLEAN;
891 }
892
893 if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
894 (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) {
895 chunk_err(leaf, chunk, logical,
896 "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set",
897 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
898 return -EUCLEAN;
899 }
900 if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) {
901 chunk_err(leaf, chunk, logical,
902 "missing chunk type flag, have 0x%llx one bit must be set in 0x%llx",
903 type, BTRFS_BLOCK_GROUP_TYPE_MASK);
904 return -EUCLEAN;
905 }
906
907 if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
908 (type & (BTRFS_BLOCK_GROUP_METADATA |
909 BTRFS_BLOCK_GROUP_DATA)))) {
910 chunk_err(leaf, chunk, logical,
911 "system chunk with data or metadata type: 0x%llx",
912 type);
913 return -EUCLEAN;
914 }
915
916 features = btrfs_super_incompat_flags(fs_info->super_copy);
917 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
918 mixed = true;
919
920 if (!mixed) {
921 if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) &&
922 (type & BTRFS_BLOCK_GROUP_DATA))) {
923 chunk_err(leaf, chunk, logical,
924 "mixed chunk type in non-mixed mode: 0x%llx", type);
925 return -EUCLEAN;
926 }
927 }
928
929 if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 &&
930 sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) ||
931 (type & BTRFS_BLOCK_GROUP_RAID1 &&
932 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) ||
933 (type & BTRFS_BLOCK_GROUP_RAID1C3 &&
934 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) ||
935 (type & BTRFS_BLOCK_GROUP_RAID1C4 &&
936 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) ||
937 (type & BTRFS_BLOCK_GROUP_RAID5 &&
938 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) ||
939 (type & BTRFS_BLOCK_GROUP_RAID6 &&
940 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) ||
941 (type & BTRFS_BLOCK_GROUP_DUP &&
942 num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) ||
943 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
944 num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) {
945 chunk_err(leaf, chunk, logical,
946 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
947 num_stripes, sub_stripes,
948 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
949 return -EUCLEAN;
950 }
951
952 return 0;
953}
954
955/*
956 * Enhanced version of chunk item checker.
957 *
958 * The common btrfs_check_chunk_valid() doesn't check item size since it needs
959 * to work on super block sys_chunk_array which doesn't have full item ptr.
960 */
961static int check_leaf_chunk_item(struct extent_buffer *leaf,
962 struct btrfs_chunk *chunk,
963 struct btrfs_key *key, int slot)
964{
965 int num_stripes;
966
967 if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) {
968 chunk_err(leaf, chunk, key->offset,
969 "invalid chunk item size: have %u expect [%zu, %u)",
970 btrfs_item_size(leaf, slot),
971 sizeof(struct btrfs_chunk),
972 BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
973 return -EUCLEAN;
974 }
975
976 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
977 /* Let btrfs_check_chunk_valid() handle this error type */
978 if (num_stripes == 0)
979 goto out;
980
981 if (unlikely(btrfs_chunk_item_size(num_stripes) !=
982 btrfs_item_size(leaf, slot))) {
983 chunk_err(leaf, chunk, key->offset,
984 "invalid chunk item size: have %u expect %lu",
985 btrfs_item_size(leaf, slot),
986 btrfs_chunk_item_size(num_stripes));
987 return -EUCLEAN;
988 }
989out:
990 return btrfs_check_chunk_valid(leaf, chunk, key->offset);
991}
992
993__printf(3, 4)
994__cold
995static void dev_item_err(const struct extent_buffer *eb, int slot,
996 const char *fmt, ...)
997{
998 struct btrfs_key key;
999 struct va_format vaf;
1000 va_list args;
1001
1002 btrfs_item_key_to_cpu(eb, &key, slot);
1003 va_start(args, fmt);
1004
1005 vaf.fmt = fmt;
1006 vaf.va = &args;
1007
1008 btrfs_crit(eb->fs_info,
1009 "corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV",
1010 btrfs_header_level(eb) == 0 ? "leaf" : "node",
1011 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
1012 key.objectid, &vaf);
1013 va_end(args);
1014}
1015
1016static int check_dev_item(struct extent_buffer *leaf,
1017 struct btrfs_key *key, int slot)
1018{
1019 struct btrfs_dev_item *ditem;
1020 const u32 item_size = btrfs_item_size(leaf, slot);
1021
1022 if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) {
1023 dev_item_err(leaf, slot,
1024 "invalid objectid: has=%llu expect=%llu",
1025 key->objectid, BTRFS_DEV_ITEMS_OBJECTID);
1026 return -EUCLEAN;
1027 }
1028
1029 if (unlikely(item_size != sizeof(*ditem))) {
1030 dev_item_err(leaf, slot, "invalid item size: has %u expect %zu",
1031 item_size, sizeof(*ditem));
1032 return -EUCLEAN;
1033 }
1034
1035 ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item);
1036 if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) {
1037 dev_item_err(leaf, slot,
1038 "devid mismatch: key has=%llu item has=%llu",
1039 key->offset, btrfs_device_id(leaf, ditem));
1040 return -EUCLEAN;
1041 }
1042
1043 /*
1044 * For device total_bytes, we don't have reliable way to check it, as
1045 * it can be 0 for device removal. Device size check can only be done
1046 * by dev extents check.
1047 */
1048 if (unlikely(btrfs_device_bytes_used(leaf, ditem) >
1049 btrfs_device_total_bytes(leaf, ditem))) {
1050 dev_item_err(leaf, slot,
1051 "invalid bytes used: have %llu expect [0, %llu]",
1052 btrfs_device_bytes_used(leaf, ditem),
1053 btrfs_device_total_bytes(leaf, ditem));
1054 return -EUCLEAN;
1055 }
1056 /*
1057 * Remaining members like io_align/type/gen/dev_group aren't really
1058 * utilized. Skip them to make later usage of them easier.
1059 */
1060 return 0;
1061}
1062
1063static int check_inode_item(struct extent_buffer *leaf,
1064 struct btrfs_key *key, int slot)
1065{
1066 struct btrfs_fs_info *fs_info = leaf->fs_info;
1067 struct btrfs_inode_item *iitem;
1068 u64 super_gen = btrfs_super_generation(fs_info->super_copy);
1069 u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777);
1070 const u32 item_size = btrfs_item_size(leaf, slot);
1071 u32 mode;
1072 int ret;
1073 u32 flags;
1074 u32 ro_flags;
1075
1076 ret = check_inode_key(leaf, key, slot);
1077 if (unlikely(ret < 0))
1078 return ret;
1079
1080 if (unlikely(item_size != sizeof(*iitem))) {
1081 generic_err(leaf, slot, "invalid item size: has %u expect %zu",
1082 item_size, sizeof(*iitem));
1083 return -EUCLEAN;
1084 }
1085
1086 iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item);
1087
1088 /* Here we use super block generation + 1 to handle log tree */
1089 if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) {
1090 inode_item_err(leaf, slot,
1091 "invalid inode generation: has %llu expect (0, %llu]",
1092 btrfs_inode_generation(leaf, iitem),
1093 super_gen + 1);
1094 return -EUCLEAN;
1095 }
1096 /* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */
1097 if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) {
1098 inode_item_err(leaf, slot,
1099 "invalid inode transid: has %llu expect [0, %llu]",
1100 btrfs_inode_transid(leaf, iitem), super_gen + 1);
1101 return -EUCLEAN;
1102 }
1103
1104 /*
1105 * For size and nbytes it's better not to be too strict, as for dir
1106 * item its size/nbytes can easily get wrong, but doesn't affect
1107 * anything in the fs. So here we skip the check.
1108 */
1109 mode = btrfs_inode_mode(leaf, iitem);
1110 if (unlikely(mode & ~valid_mask)) {
1111 inode_item_err(leaf, slot,
1112 "unknown mode bit detected: 0x%x",
1113 mode & ~valid_mask);
1114 return -EUCLEAN;
1115 }
1116
1117 /*
1118 * S_IFMT is not bit mapped so we can't completely rely on
1119 * is_power_of_2/has_single_bit_set, but it can save us from checking
1120 * FIFO/CHR/DIR/REG. Only needs to check BLK, LNK and SOCKS
1121 */
1122 if (!has_single_bit_set(mode & S_IFMT)) {
1123 if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) {
1124 inode_item_err(leaf, slot,
1125 "invalid mode: has 0%o expect valid S_IF* bit(s)",
1126 mode & S_IFMT);
1127 return -EUCLEAN;
1128 }
1129 }
1130 if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) {
1131 inode_item_err(leaf, slot,
1132 "invalid nlink: has %u expect no more than 1 for dir",
1133 btrfs_inode_nlink(leaf, iitem));
1134 return -EUCLEAN;
1135 }
1136 btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags);
1137 if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) {
1138 inode_item_err(leaf, slot,
1139 "unknown incompat flags detected: 0x%x", flags);
1140 return -EUCLEAN;
1141 }
1142 if (unlikely(!sb_rdonly(fs_info->sb) &&
1143 (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) {
1144 inode_item_err(leaf, slot,
1145 "unknown ro-compat flags detected on writeable mount: 0x%x",
1146 ro_flags);
1147 return -EUCLEAN;
1148 }
1149 return 0;
1150}
1151
1152static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key,
1153 int slot)
1154{
1155 struct btrfs_fs_info *fs_info = leaf->fs_info;
1156 struct btrfs_root_item ri = { 0 };
1157 const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY |
1158 BTRFS_ROOT_SUBVOL_DEAD;
1159 int ret;
1160
1161 ret = check_root_key(leaf, key, slot);
1162 if (unlikely(ret < 0))
1163 return ret;
1164
1165 if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) &&
1166 btrfs_item_size(leaf, slot) !=
1167 btrfs_legacy_root_item_size())) {
1168 generic_err(leaf, slot,
1169 "invalid root item size, have %u expect %zu or %u",
1170 btrfs_item_size(leaf, slot), sizeof(ri),
1171 btrfs_legacy_root_item_size());
1172 return -EUCLEAN;
1173 }
1174
1175 /*
1176 * For legacy root item, the members starting at generation_v2 will be
1177 * all filled with 0.
1178 * And since we allow geneartion_v2 as 0, it will still pass the check.
1179 */
1180 read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot),
1181 btrfs_item_size(leaf, slot));
1182
1183 /* Generation related */
1184 if (unlikely(btrfs_root_generation(&ri) >
1185 btrfs_super_generation(fs_info->super_copy) + 1)) {
1186 generic_err(leaf, slot,
1187 "invalid root generation, have %llu expect (0, %llu]",
1188 btrfs_root_generation(&ri),
1189 btrfs_super_generation(fs_info->super_copy) + 1);
1190 return -EUCLEAN;
1191 }
1192 if (unlikely(btrfs_root_generation_v2(&ri) >
1193 btrfs_super_generation(fs_info->super_copy) + 1)) {
1194 generic_err(leaf, slot,
1195 "invalid root v2 generation, have %llu expect (0, %llu]",
1196 btrfs_root_generation_v2(&ri),
1197 btrfs_super_generation(fs_info->super_copy) + 1);
1198 return -EUCLEAN;
1199 }
1200 if (unlikely(btrfs_root_last_snapshot(&ri) >
1201 btrfs_super_generation(fs_info->super_copy) + 1)) {
1202 generic_err(leaf, slot,
1203 "invalid root last_snapshot, have %llu expect (0, %llu]",
1204 btrfs_root_last_snapshot(&ri),
1205 btrfs_super_generation(fs_info->super_copy) + 1);
1206 return -EUCLEAN;
1207 }
1208
1209 /* Alignment and level check */
1210 if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) {
1211 generic_err(leaf, slot,
1212 "invalid root bytenr, have %llu expect to be aligned to %u",
1213 btrfs_root_bytenr(&ri), fs_info->sectorsize);
1214 return -EUCLEAN;
1215 }
1216 if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) {
1217 generic_err(leaf, slot,
1218 "invalid root level, have %u expect [0, %u]",
1219 btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1);
1220 return -EUCLEAN;
1221 }
1222 if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) {
1223 generic_err(leaf, slot,
1224 "invalid root level, have %u expect [0, %u]",
1225 btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1);
1226 return -EUCLEAN;
1227 }
1228
1229 /* Flags check */
1230 if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) {
1231 generic_err(leaf, slot,
1232 "invalid root flags, have 0x%llx expect mask 0x%llx",
1233 btrfs_root_flags(&ri), valid_root_flags);
1234 return -EUCLEAN;
1235 }
1236 return 0;
1237}
1238
1239__printf(3,4)
1240__cold
1241static void extent_err(const struct extent_buffer *eb, int slot,
1242 const char *fmt, ...)
1243{
1244 struct btrfs_key key;
1245 struct va_format vaf;
1246 va_list args;
1247 u64 bytenr;
1248 u64 len;
1249
1250 btrfs_item_key_to_cpu(eb, &key, slot);
1251 bytenr = key.objectid;
1252 if (key.type == BTRFS_METADATA_ITEM_KEY ||
1253 key.type == BTRFS_TREE_BLOCK_REF_KEY ||
1254 key.type == BTRFS_SHARED_BLOCK_REF_KEY)
1255 len = eb->fs_info->nodesize;
1256 else
1257 len = key.offset;
1258 va_start(args, fmt);
1259
1260 vaf.fmt = fmt;
1261 vaf.va = &args;
1262
1263 btrfs_crit(eb->fs_info,
1264 "corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV",
1265 btrfs_header_level(eb) == 0 ? "leaf" : "node",
1266 eb->start, slot, bytenr, len, &vaf);
1267 va_end(args);
1268}
1269
1270static int check_extent_item(struct extent_buffer *leaf,
1271 struct btrfs_key *key, int slot,
1272 struct btrfs_key *prev_key)
1273{
1274 struct btrfs_fs_info *fs_info = leaf->fs_info;
1275 struct btrfs_extent_item *ei;
1276 bool is_tree_block = false;
1277 unsigned long ptr; /* Current pointer inside inline refs */
1278 unsigned long end; /* Extent item end */
1279 const u32 item_size = btrfs_item_size(leaf, slot);
1280 u8 last_type = 0;
1281 u64 last_seq = U64_MAX;
1282 u64 flags;
1283 u64 generation;
1284 u64 total_refs; /* Total refs in btrfs_extent_item */
1285 u64 inline_refs = 0; /* found total inline refs */
1286
1287 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1288 !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) {
1289 generic_err(leaf, slot,
1290"invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled");
1291 return -EUCLEAN;
1292 }
1293 /* key->objectid is the bytenr for both key types */
1294 if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) {
1295 generic_err(leaf, slot,
1296 "invalid key objectid, have %llu expect to be aligned to %u",
1297 key->objectid, fs_info->sectorsize);
1298 return -EUCLEAN;
1299 }
1300
1301 /* key->offset is tree level for METADATA_ITEM_KEY */
1302 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1303 key->offset >= BTRFS_MAX_LEVEL)) {
1304 extent_err(leaf, slot,
1305 "invalid tree level, have %llu expect [0, %u]",
1306 key->offset, BTRFS_MAX_LEVEL - 1);
1307 return -EUCLEAN;
1308 }
1309
1310 /*
1311 * EXTENT/METADATA_ITEM consists of:
1312 * 1) One btrfs_extent_item
1313 * Records the total refs, type and generation of the extent.
1314 *
1315 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only)
1316 * Records the first key and level of the tree block.
1317 *
1318 * 2) Zero or more btrfs_extent_inline_ref(s)
1319 * Each inline ref has one btrfs_extent_inline_ref shows:
1320 * 2.1) The ref type, one of the 4
1321 * TREE_BLOCK_REF Tree block only
1322 * SHARED_BLOCK_REF Tree block only
1323 * EXTENT_DATA_REF Data only
1324 * SHARED_DATA_REF Data only
1325 * 2.2) Ref type specific data
1326 * Either using btrfs_extent_inline_ref::offset, or specific
1327 * data structure.
1328 *
1329 * All above inline items should follow the order:
1330 *
1331 * - All btrfs_extent_inline_ref::type should be in an ascending
1332 * order
1333 *
1334 * - Within the same type, the items should follow a descending
1335 * order by their sequence number. The sequence number is
1336 * determined by:
1337 * * btrfs_extent_inline_ref::offset for all types other than
1338 * EXTENT_DATA_REF
1339 * * hash_extent_data_ref() for EXTENT_DATA_REF
1340 */
1341 if (unlikely(item_size < sizeof(*ei))) {
1342 extent_err(leaf, slot,
1343 "invalid item size, have %u expect [%zu, %u)",
1344 item_size, sizeof(*ei),
1345 BTRFS_LEAF_DATA_SIZE(fs_info));
1346 return -EUCLEAN;
1347 }
1348 end = item_size + btrfs_item_ptr_offset(leaf, slot);
1349
1350 /* Checks against extent_item */
1351 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1352 flags = btrfs_extent_flags(leaf, ei);
1353 total_refs = btrfs_extent_refs(leaf, ei);
1354 generation = btrfs_extent_generation(leaf, ei);
1355 if (unlikely(generation >
1356 btrfs_super_generation(fs_info->super_copy) + 1)) {
1357 extent_err(leaf, slot,
1358 "invalid generation, have %llu expect (0, %llu]",
1359 generation,
1360 btrfs_super_generation(fs_info->super_copy) + 1);
1361 return -EUCLEAN;
1362 }
1363 if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA |
1364 BTRFS_EXTENT_FLAG_TREE_BLOCK)))) {
1365 extent_err(leaf, slot,
1366 "invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx",
1367 flags, BTRFS_EXTENT_FLAG_DATA |
1368 BTRFS_EXTENT_FLAG_TREE_BLOCK);
1369 return -EUCLEAN;
1370 }
1371 is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK);
1372 if (is_tree_block) {
1373 if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY &&
1374 key->offset != fs_info->nodesize)) {
1375 extent_err(leaf, slot,
1376 "invalid extent length, have %llu expect %u",
1377 key->offset, fs_info->nodesize);
1378 return -EUCLEAN;
1379 }
1380 } else {
1381 if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) {
1382 extent_err(leaf, slot,
1383 "invalid key type, have %u expect %u for data backref",
1384 key->type, BTRFS_EXTENT_ITEM_KEY);
1385 return -EUCLEAN;
1386 }
1387 if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) {
1388 extent_err(leaf, slot,
1389 "invalid extent length, have %llu expect aligned to %u",
1390 key->offset, fs_info->sectorsize);
1391 return -EUCLEAN;
1392 }
1393 if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1394 extent_err(leaf, slot,
1395 "invalid extent flag, data has full backref set");
1396 return -EUCLEAN;
1397 }
1398 }
1399 ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1);
1400
1401 /* Check the special case of btrfs_tree_block_info */
1402 if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) {
1403 struct btrfs_tree_block_info *info;
1404
1405 info = (struct btrfs_tree_block_info *)ptr;
1406 if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) {
1407 extent_err(leaf, slot,
1408 "invalid tree block info level, have %u expect [0, %u]",
1409 btrfs_tree_block_level(leaf, info),
1410 BTRFS_MAX_LEVEL - 1);
1411 return -EUCLEAN;
1412 }
1413 ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1);
1414 }
1415
1416 /* Check inline refs */
1417 while (ptr < end) {
1418 struct btrfs_extent_inline_ref *iref;
1419 struct btrfs_extent_data_ref *dref;
1420 struct btrfs_shared_data_ref *sref;
1421 u64 seq;
1422 u64 dref_offset;
1423 u64 inline_offset;
1424 u8 inline_type;
1425
1426 if (unlikely(ptr + sizeof(*iref) > end)) {
1427 extent_err(leaf, slot,
1428"inline ref item overflows extent item, ptr %lu iref size %zu end %lu",
1429 ptr, sizeof(*iref), end);
1430 return -EUCLEAN;
1431 }
1432 iref = (struct btrfs_extent_inline_ref *)ptr;
1433 inline_type = btrfs_extent_inline_ref_type(leaf, iref);
1434 inline_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1435 seq = inline_offset;
1436 if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) {
1437 extent_err(leaf, slot,
1438"inline ref item overflows extent item, ptr %lu iref size %u end %lu",
1439 ptr, btrfs_extent_inline_ref_size(inline_type), end);
1440 return -EUCLEAN;
1441 }
1442
1443 switch (inline_type) {
1444 /* inline_offset is subvolid of the owner, no need to check */
1445 case BTRFS_TREE_BLOCK_REF_KEY:
1446 inline_refs++;
1447 break;
1448 /* Contains parent bytenr */
1449 case BTRFS_SHARED_BLOCK_REF_KEY:
1450 if (unlikely(!IS_ALIGNED(inline_offset,
1451 fs_info->sectorsize))) {
1452 extent_err(leaf, slot,
1453 "invalid tree parent bytenr, have %llu expect aligned to %u",
1454 inline_offset, fs_info->sectorsize);
1455 return -EUCLEAN;
1456 }
1457 inline_refs++;
1458 break;
1459 /*
1460 * Contains owner subvolid, owner key objectid, adjusted offset.
1461 * The only obvious corruption can happen in that offset.
1462 */
1463 case BTRFS_EXTENT_DATA_REF_KEY:
1464 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1465 dref_offset = btrfs_extent_data_ref_offset(leaf, dref);
1466 seq = hash_extent_data_ref(
1467 btrfs_extent_data_ref_root(leaf, dref),
1468 btrfs_extent_data_ref_objectid(leaf, dref),
1469 btrfs_extent_data_ref_offset(leaf, dref));
1470 if (unlikely(!IS_ALIGNED(dref_offset,
1471 fs_info->sectorsize))) {
1472 extent_err(leaf, slot,
1473 "invalid data ref offset, have %llu expect aligned to %u",
1474 dref_offset, fs_info->sectorsize);
1475 return -EUCLEAN;
1476 }
1477 inline_refs += btrfs_extent_data_ref_count(leaf, dref);
1478 break;
1479 /* Contains parent bytenr and ref count */
1480 case BTRFS_SHARED_DATA_REF_KEY:
1481 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1482 if (unlikely(!IS_ALIGNED(inline_offset,
1483 fs_info->sectorsize))) {
1484 extent_err(leaf, slot,
1485 "invalid data parent bytenr, have %llu expect aligned to %u",
1486 inline_offset, fs_info->sectorsize);
1487 return -EUCLEAN;
1488 }
1489 inline_refs += btrfs_shared_data_ref_count(leaf, sref);
1490 break;
1491 case BTRFS_EXTENT_OWNER_REF_KEY:
1492 WARN_ON(!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
1493 break;
1494 default:
1495 extent_err(leaf, slot, "unknown inline ref type: %u",
1496 inline_type);
1497 return -EUCLEAN;
1498 }
1499 if (inline_type < last_type) {
1500 extent_err(leaf, slot,
1501 "inline ref out-of-order: has type %u, prev type %u",
1502 inline_type, last_type);
1503 return -EUCLEAN;
1504 }
1505 /* Type changed, allow the sequence starts from U64_MAX again. */
1506 if (inline_type > last_type)
1507 last_seq = U64_MAX;
1508 if (seq > last_seq) {
1509 extent_err(leaf, slot,
1510"inline ref out-of-order: has type %u offset %llu seq 0x%llx, prev type %u seq 0x%llx",
1511 inline_type, inline_offset, seq,
1512 last_type, last_seq);
1513 return -EUCLEAN;
1514 }
1515 last_type = inline_type;
1516 last_seq = seq;
1517 ptr += btrfs_extent_inline_ref_size(inline_type);
1518 }
1519 /* No padding is allowed */
1520 if (unlikely(ptr != end)) {
1521 extent_err(leaf, slot,
1522 "invalid extent item size, padding bytes found");
1523 return -EUCLEAN;
1524 }
1525
1526 /* Finally, check the inline refs against total refs */
1527 if (unlikely(inline_refs > total_refs)) {
1528 extent_err(leaf, slot,
1529 "invalid extent refs, have %llu expect >= inline %llu",
1530 total_refs, inline_refs);
1531 return -EUCLEAN;
1532 }
1533
1534 if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) ||
1535 (prev_key->type == BTRFS_METADATA_ITEM_KEY)) {
1536 u64 prev_end = prev_key->objectid;
1537
1538 if (prev_key->type == BTRFS_METADATA_ITEM_KEY)
1539 prev_end += fs_info->nodesize;
1540 else
1541 prev_end += prev_key->offset;
1542
1543 if (unlikely(prev_end > key->objectid)) {
1544 extent_err(leaf, slot,
1545 "previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]",
1546 prev_key->objectid, prev_key->type,
1547 prev_key->offset, key->objectid, key->type,
1548 key->offset);
1549 return -EUCLEAN;
1550 }
1551 }
1552
1553 return 0;
1554}
1555
1556static int check_simple_keyed_refs(struct extent_buffer *leaf,
1557 struct btrfs_key *key, int slot)
1558{
1559 u32 expect_item_size = 0;
1560
1561 if (key->type == BTRFS_SHARED_DATA_REF_KEY)
1562 expect_item_size = sizeof(struct btrfs_shared_data_ref);
1563
1564 if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) {
1565 generic_err(leaf, slot,
1566 "invalid item size, have %u expect %u for key type %u",
1567 btrfs_item_size(leaf, slot),
1568 expect_item_size, key->type);
1569 return -EUCLEAN;
1570 }
1571 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1572 generic_err(leaf, slot,
1573"invalid key objectid for shared block ref, have %llu expect aligned to %u",
1574 key->objectid, leaf->fs_info->sectorsize);
1575 return -EUCLEAN;
1576 }
1577 if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY &&
1578 !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) {
1579 extent_err(leaf, slot,
1580 "invalid tree parent bytenr, have %llu expect aligned to %u",
1581 key->offset, leaf->fs_info->sectorsize);
1582 return -EUCLEAN;
1583 }
1584 return 0;
1585}
1586
1587static int check_extent_data_ref(struct extent_buffer *leaf,
1588 struct btrfs_key *key, int slot)
1589{
1590 struct btrfs_extent_data_ref *dref;
1591 unsigned long ptr = btrfs_item_ptr_offset(leaf, slot);
1592 const unsigned long end = ptr + btrfs_item_size(leaf, slot);
1593
1594 if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) {
1595 generic_err(leaf, slot,
1596 "invalid item size, have %u expect aligned to %zu for key type %u",
1597 btrfs_item_size(leaf, slot),
1598 sizeof(*dref), key->type);
1599 return -EUCLEAN;
1600 }
1601 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1602 generic_err(leaf, slot,
1603"invalid key objectid for shared block ref, have %llu expect aligned to %u",
1604 key->objectid, leaf->fs_info->sectorsize);
1605 return -EUCLEAN;
1606 }
1607 for (; ptr < end; ptr += sizeof(*dref)) {
1608 u64 offset;
1609
1610 /*
1611 * We cannot check the extent_data_ref hash due to possible
1612 * overflow from the leaf due to hash collisions.
1613 */
1614 dref = (struct btrfs_extent_data_ref *)ptr;
1615 offset = btrfs_extent_data_ref_offset(leaf, dref);
1616 if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) {
1617 extent_err(leaf, slot,
1618 "invalid extent data backref offset, have %llu expect aligned to %u",
1619 offset, leaf->fs_info->sectorsize);
1620 return -EUCLEAN;
1621 }
1622 }
1623 return 0;
1624}
1625
1626#define inode_ref_err(eb, slot, fmt, args...) \
1627 inode_item_err(eb, slot, fmt, ##args)
1628static int check_inode_ref(struct extent_buffer *leaf,
1629 struct btrfs_key *key, struct btrfs_key *prev_key,
1630 int slot)
1631{
1632 struct btrfs_inode_ref *iref;
1633 unsigned long ptr;
1634 unsigned long end;
1635
1636 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
1637 return -EUCLEAN;
1638 /* namelen can't be 0, so item_size == sizeof() is also invalid */
1639 if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) {
1640 inode_ref_err(leaf, slot,
1641 "invalid item size, have %u expect (%zu, %u)",
1642 btrfs_item_size(leaf, slot),
1643 sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
1644 return -EUCLEAN;
1645 }
1646
1647 ptr = btrfs_item_ptr_offset(leaf, slot);
1648 end = ptr + btrfs_item_size(leaf, slot);
1649 while (ptr < end) {
1650 u16 namelen;
1651
1652 if (unlikely(ptr + sizeof(iref) > end)) {
1653 inode_ref_err(leaf, slot,
1654 "inode ref overflow, ptr %lu end %lu inode_ref_size %zu",
1655 ptr, end, sizeof(iref));
1656 return -EUCLEAN;
1657 }
1658
1659 iref = (struct btrfs_inode_ref *)ptr;
1660 namelen = btrfs_inode_ref_name_len(leaf, iref);
1661 if (unlikely(ptr + sizeof(*iref) + namelen > end)) {
1662 inode_ref_err(leaf, slot,
1663 "inode ref overflow, ptr %lu end %lu namelen %u",
1664 ptr, end, namelen);
1665 return -EUCLEAN;
1666 }
1667
1668 /*
1669 * NOTE: In theory we should record all found index numbers
1670 * to find any duplicated indexes, but that will be too time
1671 * consuming for inodes with too many hard links.
1672 */
1673 ptr += sizeof(*iref) + namelen;
1674 }
1675 return 0;
1676}
1677
1678static int check_raid_stripe_extent(const struct extent_buffer *leaf,
1679 const struct btrfs_key *key, int slot)
1680{
1681 struct btrfs_stripe_extent *stripe_extent =
1682 btrfs_item_ptr(leaf, slot, struct btrfs_stripe_extent);
1683
1684 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1685 generic_err(leaf, slot,
1686"invalid key objectid for raid stripe extent, have %llu expect aligned to %u",
1687 key->objectid, leaf->fs_info->sectorsize);
1688 return -EUCLEAN;
1689 }
1690
1691 if (unlikely(!btrfs_fs_incompat(leaf->fs_info, RAID_STRIPE_TREE))) {
1692 generic_err(leaf, slot,
1693 "RAID_STRIPE_EXTENT present but RAID_STRIPE_TREE incompat bit unset");
1694 return -EUCLEAN;
1695 }
1696
1697 switch (btrfs_stripe_extent_encoding(leaf, stripe_extent)) {
1698 case BTRFS_STRIPE_RAID0:
1699 case BTRFS_STRIPE_RAID1:
1700 case BTRFS_STRIPE_DUP:
1701 case BTRFS_STRIPE_RAID10:
1702 case BTRFS_STRIPE_RAID5:
1703 case BTRFS_STRIPE_RAID6:
1704 case BTRFS_STRIPE_RAID1C3:
1705 case BTRFS_STRIPE_RAID1C4:
1706 break;
1707 default:
1708 generic_err(leaf, slot, "invalid raid stripe encoding %u",
1709 btrfs_stripe_extent_encoding(leaf, stripe_extent));
1710 return -EUCLEAN;
1711 }
1712
1713 return 0;
1714}
1715
1716/*
1717 * Common point to switch the item-specific validation.
1718 */
1719static enum btrfs_tree_block_status check_leaf_item(struct extent_buffer *leaf,
1720 struct btrfs_key *key,
1721 int slot,
1722 struct btrfs_key *prev_key)
1723{
1724 int ret = 0;
1725 struct btrfs_chunk *chunk;
1726
1727 switch (key->type) {
1728 case BTRFS_EXTENT_DATA_KEY:
1729 ret = check_extent_data_item(leaf, key, slot, prev_key);
1730 break;
1731 case BTRFS_EXTENT_CSUM_KEY:
1732 ret = check_csum_item(leaf, key, slot, prev_key);
1733 break;
1734 case BTRFS_DIR_ITEM_KEY:
1735 case BTRFS_DIR_INDEX_KEY:
1736 case BTRFS_XATTR_ITEM_KEY:
1737 ret = check_dir_item(leaf, key, prev_key, slot);
1738 break;
1739 case BTRFS_INODE_REF_KEY:
1740 ret = check_inode_ref(leaf, key, prev_key, slot);
1741 break;
1742 case BTRFS_BLOCK_GROUP_ITEM_KEY:
1743 ret = check_block_group_item(leaf, key, slot);
1744 break;
1745 case BTRFS_CHUNK_ITEM_KEY:
1746 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1747 ret = check_leaf_chunk_item(leaf, chunk, key, slot);
1748 break;
1749 case BTRFS_DEV_ITEM_KEY:
1750 ret = check_dev_item(leaf, key, slot);
1751 break;
1752 case BTRFS_INODE_ITEM_KEY:
1753 ret = check_inode_item(leaf, key, slot);
1754 break;
1755 case BTRFS_ROOT_ITEM_KEY:
1756 ret = check_root_item(leaf, key, slot);
1757 break;
1758 case BTRFS_EXTENT_ITEM_KEY:
1759 case BTRFS_METADATA_ITEM_KEY:
1760 ret = check_extent_item(leaf, key, slot, prev_key);
1761 break;
1762 case BTRFS_TREE_BLOCK_REF_KEY:
1763 case BTRFS_SHARED_DATA_REF_KEY:
1764 case BTRFS_SHARED_BLOCK_REF_KEY:
1765 ret = check_simple_keyed_refs(leaf, key, slot);
1766 break;
1767 case BTRFS_EXTENT_DATA_REF_KEY:
1768 ret = check_extent_data_ref(leaf, key, slot);
1769 break;
1770 case BTRFS_RAID_STRIPE_KEY:
1771 ret = check_raid_stripe_extent(leaf, key, slot);
1772 break;
1773 }
1774
1775 if (ret)
1776 return BTRFS_TREE_BLOCK_INVALID_ITEM;
1777 return BTRFS_TREE_BLOCK_CLEAN;
1778}
1779
1780enum btrfs_tree_block_status __btrfs_check_leaf(struct extent_buffer *leaf)
1781{
1782 struct btrfs_fs_info *fs_info = leaf->fs_info;
1783 /* No valid key type is 0, so all key should be larger than this key */
1784 struct btrfs_key prev_key = {0, 0, 0};
1785 struct btrfs_key key;
1786 u32 nritems = btrfs_header_nritems(leaf);
1787 int slot;
1788
1789 if (unlikely(btrfs_header_level(leaf) != 0)) {
1790 generic_err(leaf, 0,
1791 "invalid level for leaf, have %d expect 0",
1792 btrfs_header_level(leaf));
1793 return BTRFS_TREE_BLOCK_INVALID_LEVEL;
1794 }
1795
1796 /*
1797 * Extent buffers from a relocation tree have a owner field that
1798 * corresponds to the subvolume tree they are based on. So just from an
1799 * extent buffer alone we can not find out what is the id of the
1800 * corresponding subvolume tree, so we can not figure out if the extent
1801 * buffer corresponds to the root of the relocation tree or not. So
1802 * skip this check for relocation trees.
1803 */
1804 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
1805 u64 owner = btrfs_header_owner(leaf);
1806
1807 /* These trees must never be empty */
1808 if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID ||
1809 owner == BTRFS_CHUNK_TREE_OBJECTID ||
1810 owner == BTRFS_DEV_TREE_OBJECTID ||
1811 owner == BTRFS_FS_TREE_OBJECTID ||
1812 owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
1813 generic_err(leaf, 0,
1814 "invalid root, root %llu must never be empty",
1815 owner);
1816 return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1817 }
1818
1819 /* Unknown tree */
1820 if (unlikely(owner == 0)) {
1821 generic_err(leaf, 0,
1822 "invalid owner, root 0 is not defined");
1823 return BTRFS_TREE_BLOCK_INVALID_OWNER;
1824 }
1825
1826 /* EXTENT_TREE_V2 can have empty extent trees. */
1827 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1828 return BTRFS_TREE_BLOCK_CLEAN;
1829
1830 if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) {
1831 generic_err(leaf, 0,
1832 "invalid root, root %llu must never be empty",
1833 owner);
1834 return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1835 }
1836
1837 return BTRFS_TREE_BLOCK_CLEAN;
1838 }
1839
1840 if (unlikely(nritems == 0))
1841 return BTRFS_TREE_BLOCK_CLEAN;
1842
1843 /*
1844 * Check the following things to make sure this is a good leaf, and
1845 * leaf users won't need to bother with similar sanity checks:
1846 *
1847 * 1) key ordering
1848 * 2) item offset and size
1849 * No overlap, no hole, all inside the leaf.
1850 * 3) item content
1851 * If possible, do comprehensive sanity check.
1852 * NOTE: All checks must only rely on the item data itself.
1853 */
1854 for (slot = 0; slot < nritems; slot++) {
1855 u32 item_end_expected;
1856 u64 item_data_end;
1857
1858 btrfs_item_key_to_cpu(leaf, &key, slot);
1859
1860 /* Make sure the keys are in the right order */
1861 if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) {
1862 generic_err(leaf, slot,
1863 "bad key order, prev (%llu %u %llu) current (%llu %u %llu)",
1864 prev_key.objectid, prev_key.type,
1865 prev_key.offset, key.objectid, key.type,
1866 key.offset);
1867 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
1868 }
1869
1870 item_data_end = (u64)btrfs_item_offset(leaf, slot) +
1871 btrfs_item_size(leaf, slot);
1872 /*
1873 * Make sure the offset and ends are right, remember that the
1874 * item data starts at the end of the leaf and grows towards the
1875 * front.
1876 */
1877 if (slot == 0)
1878 item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info);
1879 else
1880 item_end_expected = btrfs_item_offset(leaf,
1881 slot - 1);
1882 if (unlikely(item_data_end != item_end_expected)) {
1883 generic_err(leaf, slot,
1884 "unexpected item end, have %llu expect %u",
1885 item_data_end, item_end_expected);
1886 return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
1887 }
1888
1889 /*
1890 * Check to make sure that we don't point outside of the leaf,
1891 * just in case all the items are consistent to each other, but
1892 * all point outside of the leaf.
1893 */
1894 if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) {
1895 generic_err(leaf, slot,
1896 "slot end outside of leaf, have %llu expect range [0, %u]",
1897 item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info));
1898 return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
1899 }
1900
1901 /* Also check if the item pointer overlaps with btrfs item. */
1902 if (unlikely(btrfs_item_ptr_offset(leaf, slot) <
1903 btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) {
1904 generic_err(leaf, slot,
1905 "slot overlaps with its data, item end %lu data start %lu",
1906 btrfs_item_nr_offset(leaf, slot) +
1907 sizeof(struct btrfs_item),
1908 btrfs_item_ptr_offset(leaf, slot));
1909 return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
1910 }
1911
1912 /*
1913 * We only want to do this if WRITTEN is set, otherwise the leaf
1914 * may be in some intermediate state and won't appear valid.
1915 */
1916 if (btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_WRITTEN)) {
1917 enum btrfs_tree_block_status ret;
1918
1919 /*
1920 * Check if the item size and content meet other
1921 * criteria
1922 */
1923 ret = check_leaf_item(leaf, &key, slot, &prev_key);
1924 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
1925 return ret;
1926 }
1927
1928 prev_key.objectid = key.objectid;
1929 prev_key.type = key.type;
1930 prev_key.offset = key.offset;
1931 }
1932
1933 return BTRFS_TREE_BLOCK_CLEAN;
1934}
1935
1936int btrfs_check_leaf(struct extent_buffer *leaf)
1937{
1938 enum btrfs_tree_block_status ret;
1939
1940 ret = __btrfs_check_leaf(leaf);
1941 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
1942 return -EUCLEAN;
1943 return 0;
1944}
1945ALLOW_ERROR_INJECTION(btrfs_check_leaf, ERRNO);
1946
1947enum btrfs_tree_block_status __btrfs_check_node(struct extent_buffer *node)
1948{
1949 struct btrfs_fs_info *fs_info = node->fs_info;
1950 unsigned long nr = btrfs_header_nritems(node);
1951 struct btrfs_key key, next_key;
1952 int slot;
1953 int level = btrfs_header_level(node);
1954 u64 bytenr;
1955
1956 if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) {
1957 generic_err(node, 0,
1958 "invalid level for node, have %d expect [1, %d]",
1959 level, BTRFS_MAX_LEVEL - 1);
1960 return BTRFS_TREE_BLOCK_INVALID_LEVEL;
1961 }
1962 if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) {
1963 btrfs_crit(fs_info,
1964"corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]",
1965 btrfs_header_owner(node), node->start,
1966 nr == 0 ? "small" : "large", nr,
1967 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1968 return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1969 }
1970
1971 for (slot = 0; slot < nr - 1; slot++) {
1972 bytenr = btrfs_node_blockptr(node, slot);
1973 btrfs_node_key_to_cpu(node, &key, slot);
1974 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
1975
1976 if (unlikely(!bytenr)) {
1977 generic_err(node, slot,
1978 "invalid NULL node pointer");
1979 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
1980 }
1981 if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) {
1982 generic_err(node, slot,
1983 "unaligned pointer, have %llu should be aligned to %u",
1984 bytenr, fs_info->sectorsize);
1985 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
1986 }
1987
1988 if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) {
1989 generic_err(node, slot,
1990 "bad key order, current (%llu %u %llu) next (%llu %u %llu)",
1991 key.objectid, key.type, key.offset,
1992 next_key.objectid, next_key.type,
1993 next_key.offset);
1994 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
1995 }
1996 }
1997 return BTRFS_TREE_BLOCK_CLEAN;
1998}
1999
2000int btrfs_check_node(struct extent_buffer *node)
2001{
2002 enum btrfs_tree_block_status ret;
2003
2004 ret = __btrfs_check_node(node);
2005 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
2006 return -EUCLEAN;
2007 return 0;
2008}
2009ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO);
2010
2011int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner)
2012{
2013 const bool is_subvol = is_fstree(root_owner);
2014 const u64 eb_owner = btrfs_header_owner(eb);
2015
2016 /*
2017 * Skip dummy fs, as selftests don't create unique ebs for each dummy
2018 * root.
2019 */
2020 if (test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &eb->fs_info->fs_state))
2021 return 0;
2022 /*
2023 * There are several call sites (backref walking, qgroup, and data
2024 * reloc) passing 0 as @root_owner, as they are not holding the
2025 * tree root. In that case, we can not do a reliable ownership check,
2026 * so just exit.
2027 */
2028 if (root_owner == 0)
2029 return 0;
2030 /*
2031 * These trees use key.offset as their owner, our callers don't have
2032 * the extra capacity to pass key.offset here. So we just skip them.
2033 */
2034 if (root_owner == BTRFS_TREE_LOG_OBJECTID ||
2035 root_owner == BTRFS_TREE_RELOC_OBJECTID)
2036 return 0;
2037
2038 if (!is_subvol) {
2039 /* For non-subvolume trees, the eb owner should match root owner */
2040 if (unlikely(root_owner != eb_owner)) {
2041 btrfs_crit(eb->fs_info,
2042"corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu",
2043 btrfs_header_level(eb) == 0 ? "leaf" : "node",
2044 root_owner, btrfs_header_bytenr(eb), eb_owner,
2045 root_owner);
2046 return -EUCLEAN;
2047 }
2048 return 0;
2049 }
2050
2051 /*
2052 * For subvolume trees, owners can mismatch, but they should all belong
2053 * to subvolume trees.
2054 */
2055 if (unlikely(is_subvol != is_fstree(eb_owner))) {
2056 btrfs_crit(eb->fs_info,
2057"corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]",
2058 btrfs_header_level(eb) == 0 ? "leaf" : "node",
2059 root_owner, btrfs_header_bytenr(eb), eb_owner,
2060 BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID);
2061 return -EUCLEAN;
2062 }
2063 return 0;
2064}
2065
2066int btrfs_verify_level_key(struct extent_buffer *eb, int level,
2067 struct btrfs_key *first_key, u64 parent_transid)
2068{
2069 struct btrfs_fs_info *fs_info = eb->fs_info;
2070 int found_level;
2071 struct btrfs_key found_key;
2072 int ret;
2073
2074 found_level = btrfs_header_level(eb);
2075 if (found_level != level) {
2076 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
2077 KERN_ERR "BTRFS: tree level check failed\n");
2078 btrfs_err(fs_info,
2079"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
2080 eb->start, level, found_level);
2081 return -EIO;
2082 }
2083
2084 if (!first_key)
2085 return 0;
2086
2087 /*
2088 * For live tree block (new tree blocks in current transaction),
2089 * we need proper lock context to avoid race, which is impossible here.
2090 * So we only checks tree blocks which is read from disk, whose
2091 * generation <= fs_info->last_trans_committed.
2092 */
2093 if (btrfs_header_generation(eb) > btrfs_get_last_trans_committed(fs_info))
2094 return 0;
2095
2096 /* We have @first_key, so this @eb must have at least one item */
2097 if (btrfs_header_nritems(eb) == 0) {
2098 btrfs_err(fs_info,
2099 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
2100 eb->start);
2101 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2102 return -EUCLEAN;
2103 }
2104
2105 if (found_level)
2106 btrfs_node_key_to_cpu(eb, &found_key, 0);
2107 else
2108 btrfs_item_key_to_cpu(eb, &found_key, 0);
2109 ret = btrfs_comp_cpu_keys(first_key, &found_key);
2110
2111 if (ret) {
2112 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
2113 KERN_ERR "BTRFS: tree first key check failed\n");
2114 btrfs_err(fs_info,
2115"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
2116 eb->start, parent_transid, first_key->objectid,
2117 first_key->type, first_key->offset,
2118 found_key.objectid, found_key.type,
2119 found_key.offset);
2120 }
2121 return ret;
2122}