Linux Audio

Check our new training course

Loading...
v6.8
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2008 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#ifndef BTRFS_DELAYED_REF_H
  7#define BTRFS_DELAYED_REF_H
  8
  9#include <linux/refcount.h>
 10
 11/* these are the possible values of struct btrfs_delayed_ref_node->action */
 12enum btrfs_delayed_ref_action {
 13	/* Add one backref to the tree */
 14	BTRFS_ADD_DELAYED_REF = 1,
 15	/* Delete one backref from the tree */
 16	BTRFS_DROP_DELAYED_REF,
 17	/* Record a full extent allocation */
 18	BTRFS_ADD_DELAYED_EXTENT,
 19	/* Not changing ref count on head ref */
 20	BTRFS_UPDATE_DELAYED_HEAD,
 21} __packed;
 22
 23struct btrfs_delayed_ref_node {
 24	struct rb_node ref_node;
 25	/*
 26	 * If action is BTRFS_ADD_DELAYED_REF, also link this node to
 27	 * ref_head->ref_add_list, then we do not need to iterate the
 28	 * whole ref_head->ref_list to find BTRFS_ADD_DELAYED_REF nodes.
 29	 */
 30	struct list_head add_list;
 31
 32	/* the starting bytenr of the extent */
 33	u64 bytenr;
 34
 35	/* the size of the extent */
 36	u64 num_bytes;
 37
 38	/* seq number to keep track of insertion order */
 39	u64 seq;
 40
 41	/* ref count on this data structure */
 42	refcount_t refs;
 43
 44	/*
 45	 * how many refs is this entry adding or deleting.  For
 46	 * head refs, this may be a negative number because it is keeping
 47	 * track of the total mods done to the reference count.
 48	 * For individual refs, this will always be a positive number
 49	 *
 50	 * It may be more than one, since it is possible for a single
 51	 * parent to have more than one ref on an extent
 52	 */
 53	int ref_mod;
 54
 55	unsigned int action:8;
 56	unsigned int type:8;
 
 
 
 57};
 58
 59struct btrfs_delayed_extent_op {
 60	struct btrfs_disk_key key;
 61	u8 level;
 62	bool update_key;
 63	bool update_flags;
 64	u64 flags_to_set;
 
 
 
 
 65};
 66
 67/*
 68 * the head refs are used to hold a lock on a given extent, which allows us
 69 * to make sure that only one process is running the delayed refs
 70 * at a time for a single extent.  They also store the sum of all the
 71 * reference count modifications we've queued up.
 72 */
 73struct btrfs_delayed_ref_head {
 74	u64 bytenr;
 75	u64 num_bytes;
 76	/*
 77	 * For insertion into struct btrfs_delayed_ref_root::href_root.
 78	 * Keep it in the same cache line as 'bytenr' for more efficient
 79	 * searches in the rbtree.
 80	 */
 81	struct rb_node href_node;
 82	/*
 83	 * the mutex is held while running the refs, and it is also
 84	 * held when checking the sum of reference modifications.
 85	 */
 86	struct mutex mutex;
 87
 88	refcount_t refs;
 89
 90	/* Protects 'ref_tree' and 'ref_add_list'. */
 91	spinlock_t lock;
 92	struct rb_root_cached ref_tree;
 93	/* accumulate add BTRFS_ADD_DELAYED_REF nodes to this ref_add_list. */
 94	struct list_head ref_add_list;
 95
 96	struct btrfs_delayed_extent_op *extent_op;
 97
 98	/*
 99	 * This is used to track the final ref_mod from all the refs associated
100	 * with this head ref, this is not adjusted as delayed refs are run,
101	 * this is meant to track if we need to do the csum accounting or not.
102	 */
103	int total_ref_mod;
104
105	/*
106	 * This is the current outstanding mod references for this bytenr.  This
107	 * is used with lookup_extent_info to get an accurate reference count
108	 * for a bytenr, so it is adjusted as delayed refs are run so that any
109	 * on disk reference count + ref_mod is accurate.
110	 */
111	int ref_mod;
112
113	/*
114	 * The root that triggered the allocation when must_insert_reserved is
115	 * set to true.
116	 */
117	u64 owning_root;
118
119	/*
120	 * Track reserved bytes when setting must_insert_reserved.  On success
121	 * or cleanup, we will need to free the reservation.
122	 */
123	u64 reserved_bytes;
124
 
125	/*
126	 * when a new extent is allocated, it is just reserved in memory
127	 * The actual extent isn't inserted into the extent allocation tree
128	 * until the delayed ref is processed.  must_insert_reserved is
129	 * used to flag a delayed ref so the accounting can be updated
130	 * when a full insert is done.
131	 *
132	 * It is possible the extent will be freed before it is ever
133	 * inserted into the extent allocation tree.  In this case
134	 * we need to update the in ram accounting to properly reflect
135	 * the free has happened.
136	 */
137	bool must_insert_reserved;
138
139	bool is_data;
140	bool is_system;
141	bool processing;
142};
143
144struct btrfs_delayed_tree_ref {
145	struct btrfs_delayed_ref_node node;
146	u64 root;
147	u64 parent;
148	int level;
149};
150
151struct btrfs_delayed_data_ref {
152	struct btrfs_delayed_ref_node node;
153	u64 root;
154	u64 parent;
155	u64 objectid;
156	u64 offset;
157};
158
159enum btrfs_delayed_ref_flags {
160	/* Indicate that we are flushing delayed refs for the commit */
161	BTRFS_DELAYED_REFS_FLUSHING,
162};
163
164struct btrfs_delayed_ref_root {
165	/* head ref rbtree */
166	struct rb_root_cached href_root;
167
168	/* dirty extent records */
169	struct rb_root dirty_extent_root;
170
171	/* this spin lock protects the rbtree and the entries inside */
172	spinlock_t lock;
173
174	/* how many delayed ref updates we've queued, used by the
175	 * throttling code
176	 */
177	atomic_t num_entries;
178
179	/* total number of head nodes in tree */
180	unsigned long num_heads;
181
182	/* total number of head nodes ready for processing */
183	unsigned long num_heads_ready;
184
185	u64 pending_csums;
186
187	unsigned long flags;
188
189	u64 run_delayed_start;
190
191	/*
192	 * To make qgroup to skip given root.
193	 * This is for snapshot, as btrfs_qgroup_inherit() will manually
194	 * modify counters for snapshot and its source, so we should skip
195	 * the snapshot in new_root/old_roots or it will get calculated twice
196	 */
197	u64 qgroup_to_skip;
198};
199
200enum btrfs_ref_type {
201	BTRFS_REF_NOT_SET,
202	BTRFS_REF_DATA,
203	BTRFS_REF_METADATA,
204	BTRFS_REF_LAST,
205} __packed;
206
207struct btrfs_data_ref {
208	/* For EXTENT_DATA_REF */
209
210	/* Root which owns this data reference. */
211	u64 ref_root;
212
213	/* Inode which refers to this data extent */
214	u64 ino;
215
216	/*
217	 * file_offset - extent_offset
218	 *
219	 * file_offset is the key.offset of the EXTENT_DATA key.
220	 * extent_offset is btrfs_file_extent_offset() of the EXTENT_DATA data.
221	 */
222	u64 offset;
223};
224
225struct btrfs_tree_ref {
226	/*
227	 * Level of this tree block
228	 *
229	 * Shared for skinny (TREE_BLOCK_REF) and normal tree ref.
230	 */
231	int level;
232
233	/*
234	 * Root which owns this tree block reference.
235	 *
236	 * For TREE_BLOCK_REF (skinny metadata, either inline or keyed)
237	 */
238	u64 ref_root;
239
240	/* For non-skinny metadata, no special member needed */
241};
242
243struct btrfs_ref {
244	enum btrfs_ref_type type;
245	enum btrfs_delayed_ref_action action;
246
247	/*
248	 * Whether this extent should go through qgroup record.
249	 *
250	 * Normally false, but for certain cases like delayed subtree scan,
251	 * setting this flag can hugely reduce qgroup overhead.
252	 */
253	bool skip_qgroup;
254
255#ifdef CONFIG_BTRFS_FS_REF_VERIFY
256	/* Through which root is this modification. */
257	u64 real_root;
258#endif
259	u64 bytenr;
260	u64 len;
261	u64 owning_root;
262
263	/* Bytenr of the parent tree block */
264	u64 parent;
265	union {
266		struct btrfs_data_ref data_ref;
267		struct btrfs_tree_ref tree_ref;
268	};
269};
270
271extern struct kmem_cache *btrfs_delayed_ref_head_cachep;
272extern struct kmem_cache *btrfs_delayed_tree_ref_cachep;
273extern struct kmem_cache *btrfs_delayed_data_ref_cachep;
274extern struct kmem_cache *btrfs_delayed_extent_op_cachep;
275
276int __init btrfs_delayed_ref_init(void);
277void __cold btrfs_delayed_ref_exit(void);
278
279static inline u64 btrfs_calc_delayed_ref_bytes(const struct btrfs_fs_info *fs_info,
280					       int num_delayed_refs)
281{
282	u64 num_bytes;
283
284	num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_delayed_refs);
285
286	/*
287	 * We have to check the mount option here because we could be enabling
288	 * the free space tree for the first time and don't have the compat_ro
289	 * option set yet.
290	 *
291	 * We need extra reservations if we have the free space tree because
292	 * we'll have to modify that tree as well.
293	 */
294	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
295		num_bytes *= 2;
296
297	return num_bytes;
298}
299
300static inline u64 btrfs_calc_delayed_ref_csum_bytes(const struct btrfs_fs_info *fs_info,
301						    int num_csum_items)
302{
303	/*
304	 * Deleting csum items does not result in new nodes/leaves and does not
305	 * require changing the free space tree, only the csum tree, so this is
306	 * all we need.
307	 */
308	return btrfs_calc_metadata_size(fs_info, num_csum_items);
309}
310
311static inline void btrfs_init_generic_ref(struct btrfs_ref *generic_ref,
312					  int action, u64 bytenr, u64 len,
313					  u64 parent, u64 owning_root)
314{
315	generic_ref->action = action;
316	generic_ref->bytenr = bytenr;
317	generic_ref->len = len;
318	generic_ref->parent = parent;
319	generic_ref->owning_root = owning_root;
320}
321
322static inline void btrfs_init_tree_ref(struct btrfs_ref *generic_ref, int level,
323				       u64 root, u64 mod_root, bool skip_qgroup)
324{
325#ifdef CONFIG_BTRFS_FS_REF_VERIFY
326	/* If @real_root not set, use @root as fallback */
327	generic_ref->real_root = mod_root ?: root;
328#endif
329	generic_ref->tree_ref.level = level;
330	generic_ref->tree_ref.ref_root = root;
331	generic_ref->type = BTRFS_REF_METADATA;
332	if (skip_qgroup || !(is_fstree(root) &&
333			     (!mod_root || is_fstree(mod_root))))
334		generic_ref->skip_qgroup = true;
335	else
336		generic_ref->skip_qgroup = false;
337
338}
339
340static inline void btrfs_init_data_ref(struct btrfs_ref *generic_ref,
341				u64 ref_root, u64 ino, u64 offset, u64 mod_root,
342				bool skip_qgroup)
343{
344#ifdef CONFIG_BTRFS_FS_REF_VERIFY
345	/* If @real_root not set, use @root as fallback */
346	generic_ref->real_root = mod_root ?: ref_root;
347#endif
348	generic_ref->data_ref.ref_root = ref_root;
349	generic_ref->data_ref.ino = ino;
350	generic_ref->data_ref.offset = offset;
351	generic_ref->type = BTRFS_REF_DATA;
352	if (skip_qgroup || !(is_fstree(ref_root) &&
353			     (!mod_root || is_fstree(mod_root))))
354		generic_ref->skip_qgroup = true;
355	else
356		generic_ref->skip_qgroup = false;
357}
358
359static inline struct btrfs_delayed_extent_op *
360btrfs_alloc_delayed_extent_op(void)
361{
362	return kmem_cache_alloc(btrfs_delayed_extent_op_cachep, GFP_NOFS);
363}
364
365static inline void
366btrfs_free_delayed_extent_op(struct btrfs_delayed_extent_op *op)
367{
368	if (op)
369		kmem_cache_free(btrfs_delayed_extent_op_cachep, op);
370}
371
372static inline void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref)
373{
374	if (refcount_dec_and_test(&ref->refs)) {
375		WARN_ON(!RB_EMPTY_NODE(&ref->ref_node));
 
376		switch (ref->type) {
377		case BTRFS_TREE_BLOCK_REF_KEY:
378		case BTRFS_SHARED_BLOCK_REF_KEY:
379			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
380			break;
381		case BTRFS_EXTENT_DATA_REF_KEY:
382		case BTRFS_SHARED_DATA_REF_KEY:
383			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
384			break;
 
 
 
385		default:
386			BUG();
387		}
388	}
389}
390
391static inline u64 btrfs_ref_head_to_space_flags(
392				struct btrfs_delayed_ref_head *head_ref)
393{
394	if (head_ref->is_data)
395		return BTRFS_BLOCK_GROUP_DATA;
396	else if (head_ref->is_system)
397		return BTRFS_BLOCK_GROUP_SYSTEM;
398	return BTRFS_BLOCK_GROUP_METADATA;
399}
400
401static inline void btrfs_put_delayed_ref_head(struct btrfs_delayed_ref_head *head)
402{
403	if (refcount_dec_and_test(&head->refs))
404		kmem_cache_free(btrfs_delayed_ref_head_cachep, head);
405}
406
407int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
408			       struct btrfs_ref *generic_ref,
409			       struct btrfs_delayed_extent_op *extent_op);
410int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
411			       struct btrfs_ref *generic_ref,
412			       u64 reserved);
413int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
414				u64 bytenr, u64 num_bytes,
415				struct btrfs_delayed_extent_op *extent_op);
416void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
 
417			      struct btrfs_delayed_ref_root *delayed_refs,
418			      struct btrfs_delayed_ref_head *head);
419
420struct btrfs_delayed_ref_head *
421btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
422			    u64 bytenr);
423int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
424			   struct btrfs_delayed_ref_head *head);
425static inline void btrfs_delayed_ref_unlock(struct btrfs_delayed_ref_head *head)
426{
427	mutex_unlock(&head->mutex);
428}
429void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
430			   struct btrfs_delayed_ref_head *head);
431
432struct btrfs_delayed_ref_head *btrfs_select_ref_head(
433		struct btrfs_delayed_ref_root *delayed_refs);
434
435int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq);
 
436
437void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums);
438void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans);
439void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info);
440void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info);
441void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info);
442void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info);
443int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
444				  enum btrfs_reserve_flush_enum flush);
445void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
446				       u64 num_bytes);
447bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
448
449/*
450 * helper functions to cast a node into its container
451 */
452static inline struct btrfs_delayed_tree_ref *
453btrfs_delayed_node_to_tree_ref(struct btrfs_delayed_ref_node *node)
454{
 
455	return container_of(node, struct btrfs_delayed_tree_ref, node);
456}
457
458static inline struct btrfs_delayed_data_ref *
459btrfs_delayed_node_to_data_ref(struct btrfs_delayed_ref_node *node)
460{
 
461	return container_of(node, struct btrfs_delayed_data_ref, node);
462}
463
 
 
 
 
 
 
464#endif
v3.15
 
  1/*
  2 * Copyright (C) 2008 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18#ifndef __DELAYED_REF__
 19#define __DELAYED_REF__
 
 
 
 20
 21/* these are the possible values of struct btrfs_delayed_ref_node->action */
 22#define BTRFS_ADD_DELAYED_REF    1 /* add one backref to the tree */
 23#define BTRFS_DROP_DELAYED_REF   2 /* delete one backref from the tree */
 24#define BTRFS_ADD_DELAYED_EXTENT 3 /* record a full extent allocation */
 25#define BTRFS_UPDATE_DELAYED_HEAD 4 /* not changing ref count on head ref */
 
 
 
 
 
 
 26
 27struct btrfs_delayed_ref_node {
 28	struct rb_node rb_node;
 
 
 
 
 
 
 29
 30	/* the starting bytenr of the extent */
 31	u64 bytenr;
 32
 33	/* the size of the extent */
 34	u64 num_bytes;
 35
 36	/* seq number to keep track of insertion order */
 37	u64 seq;
 38
 39	/* ref count on this data structure */
 40	atomic_t refs;
 41
 42	/*
 43	 * how many refs is this entry adding or deleting.  For
 44	 * head refs, this may be a negative number because it is keeping
 45	 * track of the total mods done to the reference count.
 46	 * For individual refs, this will always be a positive number
 47	 *
 48	 * It may be more than one, since it is possible for a single
 49	 * parent to have more than one ref on an extent
 50	 */
 51	int ref_mod;
 52
 53	unsigned int action:8;
 54	unsigned int type:8;
 55	/* is this node still in the rbtree? */
 56	unsigned int is_head:1;
 57	unsigned int in_tree:1;
 58};
 59
 60struct btrfs_delayed_extent_op {
 61	struct btrfs_disk_key key;
 
 
 
 62	u64 flags_to_set;
 63	int level;
 64	unsigned int update_key:1;
 65	unsigned int update_flags:1;
 66	unsigned int is_data:1;
 67};
 68
 69/*
 70 * the head refs are used to hold a lock on a given extent, which allows us
 71 * to make sure that only one process is running the delayed refs
 72 * at a time for a single extent.  They also store the sum of all the
 73 * reference count modifications we've queued up.
 74 */
 75struct btrfs_delayed_ref_head {
 76	struct btrfs_delayed_ref_node node;
 77
 
 
 
 
 
 
 78	/*
 79	 * the mutex is held while running the refs, and it is also
 80	 * held when checking the sum of reference modifications.
 81	 */
 82	struct mutex mutex;
 83
 
 
 
 84	spinlock_t lock;
 85	struct rb_root ref_root;
 
 
 
 
 86
 87	struct rb_node href_node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 88
 89	struct btrfs_delayed_extent_op *extent_op;
 90	/*
 91	 * when a new extent is allocated, it is just reserved in memory
 92	 * The actual extent isn't inserted into the extent allocation tree
 93	 * until the delayed ref is processed.  must_insert_reserved is
 94	 * used to flag a delayed ref so the accounting can be updated
 95	 * when a full insert is done.
 96	 *
 97	 * It is possible the extent will be freed before it is ever
 98	 * inserted into the extent allocation tree.  In this case
 99	 * we need to update the in ram accounting to properly reflect
100	 * the free has happened.
101	 */
102	unsigned int must_insert_reserved:1;
103	unsigned int is_data:1;
104	unsigned int processing:1;
 
 
105};
106
107struct btrfs_delayed_tree_ref {
108	struct btrfs_delayed_ref_node node;
109	u64 root;
110	u64 parent;
111	int level;
112};
113
114struct btrfs_delayed_data_ref {
115	struct btrfs_delayed_ref_node node;
116	u64 root;
117	u64 parent;
118	u64 objectid;
119	u64 offset;
120};
121
 
 
 
 
 
122struct btrfs_delayed_ref_root {
123	/* head ref rbtree */
124	struct rb_root href_root;
 
 
 
125
126	/* this spin lock protects the rbtree and the entries inside */
127	spinlock_t lock;
128
129	/* how many delayed ref updates we've queued, used by the
130	 * throttling code
131	 */
132	atomic_t num_entries;
133
134	/* total number of head nodes in tree */
135	unsigned long num_heads;
136
137	/* total number of head nodes ready for processing */
138	unsigned long num_heads_ready;
139
 
 
 
 
 
 
140	/*
141	 * set when the tree is flushing before a transaction commit,
142	 * used by the throttling code to decide if new updates need
143	 * to be run right away
 
144	 */
145	int flushing;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
147	u64 run_delayed_start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148};
149
150extern struct kmem_cache *btrfs_delayed_ref_head_cachep;
151extern struct kmem_cache *btrfs_delayed_tree_ref_cachep;
152extern struct kmem_cache *btrfs_delayed_data_ref_cachep;
153extern struct kmem_cache *btrfs_delayed_extent_op_cachep;
154
155int btrfs_delayed_ref_init(void);
156void btrfs_delayed_ref_exit(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157
158static inline struct btrfs_delayed_extent_op *
159btrfs_alloc_delayed_extent_op(void)
160{
161	return kmem_cache_alloc(btrfs_delayed_extent_op_cachep, GFP_NOFS);
162}
163
164static inline void
165btrfs_free_delayed_extent_op(struct btrfs_delayed_extent_op *op)
166{
167	if (op)
168		kmem_cache_free(btrfs_delayed_extent_op_cachep, op);
169}
170
171static inline void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref)
172{
173	WARN_ON(atomic_read(&ref->refs) == 0);
174	if (atomic_dec_and_test(&ref->refs)) {
175		WARN_ON(ref->in_tree);
176		switch (ref->type) {
177		case BTRFS_TREE_BLOCK_REF_KEY:
178		case BTRFS_SHARED_BLOCK_REF_KEY:
179			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
180			break;
181		case BTRFS_EXTENT_DATA_REF_KEY:
182		case BTRFS_SHARED_DATA_REF_KEY:
183			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
184			break;
185		case 0:
186			kmem_cache_free(btrfs_delayed_ref_head_cachep, ref);
187			break;
188		default:
189			BUG();
190		}
191	}
192}
193
194int btrfs_add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
195			       struct btrfs_trans_handle *trans,
196			       u64 bytenr, u64 num_bytes, u64 parent,
197			       u64 ref_root, int level, int action,
198			       struct btrfs_delayed_extent_op *extent_op,
199			       int for_cow);
200int btrfs_add_delayed_data_ref(struct btrfs_fs_info *fs_info,
201			       struct btrfs_trans_handle *trans,
202			       u64 bytenr, u64 num_bytes,
203			       u64 parent, u64 ref_root,
204			       u64 owner, u64 offset, int action,
205			       struct btrfs_delayed_extent_op *extent_op,
206			       int for_cow);
207int btrfs_add_delayed_extent_op(struct btrfs_fs_info *fs_info,
208				struct btrfs_trans_handle *trans,
 
 
 
 
 
 
 
 
209				u64 bytenr, u64 num_bytes,
210				struct btrfs_delayed_extent_op *extent_op);
211void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
212			      struct btrfs_fs_info *fs_info,
213			      struct btrfs_delayed_ref_root *delayed_refs,
214			      struct btrfs_delayed_ref_head *head);
215
216struct btrfs_delayed_ref_head *
217btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr);
218int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
 
219			   struct btrfs_delayed_ref_head *head);
220static inline void btrfs_delayed_ref_unlock(struct btrfs_delayed_ref_head *head)
221{
222	mutex_unlock(&head->mutex);
223}
 
 
224
 
 
225
226struct btrfs_delayed_ref_head *
227btrfs_select_ref_head(struct btrfs_trans_handle *trans);
228
229int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info,
230			    struct btrfs_delayed_ref_root *delayed_refs,
231			    u64 seq);
232
233/*
234 * delayed refs with a ref_seq > 0 must be held back during backref walking.
235 * this only applies to items in one of the fs-trees. for_cow items never need
236 * to be held back, so they won't get a ref_seq number.
237 */
238static inline int need_ref_seq(int for_cow, u64 rootid)
239{
240	if (for_cow)
241		return 0;
242
243	if (rootid == BTRFS_FS_TREE_OBJECTID)
244		return 1;
245
246	if ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID)
247		return 1;
248
249	return 0;
250}
251
252/*
253 * a node might live in a head or a regular ref, this lets you
254 * test for the proper type to use.
255 */
256static int btrfs_delayed_ref_is_head(struct btrfs_delayed_ref_node *node)
257{
258	return node->is_head;
259}
260
261/*
262 * helper functions to cast a node into its container
263 */
264static inline struct btrfs_delayed_tree_ref *
265btrfs_delayed_node_to_tree_ref(struct btrfs_delayed_ref_node *node)
266{
267	WARN_ON(btrfs_delayed_ref_is_head(node));
268	return container_of(node, struct btrfs_delayed_tree_ref, node);
269}
270
271static inline struct btrfs_delayed_data_ref *
272btrfs_delayed_node_to_data_ref(struct btrfs_delayed_ref_node *node)
273{
274	WARN_ON(btrfs_delayed_ref_is_head(node));
275	return container_of(node, struct btrfs_delayed_data_ref, node);
276}
277
278static inline struct btrfs_delayed_ref_head *
279btrfs_delayed_node_to_head(struct btrfs_delayed_ref_node *node)
280{
281	WARN_ON(!btrfs_delayed_ref_is_head(node));
282	return container_of(node, struct btrfs_delayed_ref_head, node);
283}
284#endif