Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * SPI bus driver for the Topcliff PCH used by Intel SoCs
   4 *
   5 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/delay.h>
   9#include <linux/pci.h>
  10#include <linux/wait.h>
  11#include <linux/spi/spi.h>
  12#include <linux/interrupt.h>
  13#include <linux/sched.h>
  14#include <linux/spi/spidev.h>
  15#include <linux/module.h>
  16#include <linux/device.h>
  17#include <linux/platform_device.h>
  18
  19#include <linux/dmaengine.h>
  20#include <linux/pch_dma.h>
  21
  22/* Register offsets */
  23#define PCH_SPCR		0x00	/* SPI control register */
  24#define PCH_SPBRR		0x04	/* SPI baud rate register */
  25#define PCH_SPSR		0x08	/* SPI status register */
  26#define PCH_SPDWR		0x0C	/* SPI write data register */
  27#define PCH_SPDRR		0x10	/* SPI read data register */
  28#define PCH_SSNXCR		0x18	/* SSN Expand Control Register */
  29#define PCH_SRST		0x1C	/* SPI reset register */
  30#define PCH_ADDRESS_SIZE	0x20
  31
  32#define PCH_SPSR_TFD		0x000007C0
  33#define PCH_SPSR_RFD		0x0000F800
  34
  35#define PCH_READABLE(x)		(((x) & PCH_SPSR_RFD)>>11)
  36#define PCH_WRITABLE(x)		(((x) & PCH_SPSR_TFD)>>6)
  37
  38#define PCH_RX_THOLD		7
  39#define PCH_RX_THOLD_MAX	15
  40
  41#define PCH_TX_THOLD		2
  42
  43#define PCH_MAX_BAUDRATE	5000000
  44#define PCH_MAX_FIFO_DEPTH	16
  45
  46#define STATUS_RUNNING		1
  47#define STATUS_EXITING		2
  48#define PCH_SLEEP_TIME		10
  49
  50#define SSN_LOW			0x02U
  51#define SSN_HIGH		0x03U
  52#define SSN_NO_CONTROL		0x00U
  53#define PCH_MAX_CS		0xFF
  54#define PCI_DEVICE_ID_GE_SPI	0x8816
  55
  56#define SPCR_SPE_BIT		(1 << 0)
  57#define SPCR_MSTR_BIT		(1 << 1)
  58#define SPCR_LSBF_BIT		(1 << 4)
  59#define SPCR_CPHA_BIT		(1 << 5)
  60#define SPCR_CPOL_BIT		(1 << 6)
  61#define SPCR_TFIE_BIT		(1 << 8)
  62#define SPCR_RFIE_BIT		(1 << 9)
  63#define SPCR_FIE_BIT		(1 << 10)
  64#define SPCR_ORIE_BIT		(1 << 11)
  65#define SPCR_MDFIE_BIT		(1 << 12)
  66#define SPCR_FICLR_BIT		(1 << 24)
  67#define SPSR_TFI_BIT		(1 << 0)
  68#define SPSR_RFI_BIT		(1 << 1)
  69#define SPSR_FI_BIT		(1 << 2)
  70#define SPSR_ORF_BIT		(1 << 3)
  71#define SPBRR_SIZE_BIT		(1 << 10)
  72
  73#define PCH_ALL			(SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  74				SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  75
  76#define SPCR_RFIC_FIELD		20
  77#define SPCR_TFIC_FIELD		16
  78
  79#define MASK_SPBRR_SPBR_BITS	((1 << 10) - 1)
  80#define MASK_RFIC_SPCR_BITS	(0xf << SPCR_RFIC_FIELD)
  81#define MASK_TFIC_SPCR_BITS	(0xf << SPCR_TFIC_FIELD)
  82
  83#define PCH_CLOCK_HZ		50000000
  84#define PCH_MAX_SPBR		1023
  85
  86/* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
 
  87#define PCI_DEVICE_ID_ML7213_SPI	0x802c
  88#define PCI_DEVICE_ID_ML7223_SPI	0x800F
  89#define PCI_DEVICE_ID_ML7831_SPI	0x8816
  90
  91/*
  92 * Set the number of SPI instance max
  93 * Intel EG20T PCH :		1ch
  94 * LAPIS Semiconductor ML7213 IOH :	2ch
  95 * LAPIS Semiconductor ML7223 IOH :	1ch
  96 * LAPIS Semiconductor ML7831 IOH :	1ch
  97*/
  98#define PCH_SPI_MAX_DEV			2
  99
 100#define PCH_BUF_SIZE		4096
 101#define PCH_DMA_TRANS_SIZE	12
 102
 103static int use_dma = 1;
 104
 105struct pch_spi_dma_ctrl {
 106	struct pci_dev		*dma_dev;
 107	struct dma_async_tx_descriptor	*desc_tx;
 108	struct dma_async_tx_descriptor	*desc_rx;
 109	struct pch_dma_slave		param_tx;
 110	struct pch_dma_slave		param_rx;
 111	struct dma_chan		*chan_tx;
 112	struct dma_chan		*chan_rx;
 113	struct scatterlist		*sg_tx_p;
 114	struct scatterlist		*sg_rx_p;
 115	struct scatterlist		sg_tx;
 116	struct scatterlist		sg_rx;
 117	int				nent;
 118	void				*tx_buf_virt;
 119	void				*rx_buf_virt;
 120	dma_addr_t			tx_buf_dma;
 121	dma_addr_t			rx_buf_dma;
 122};
 123/**
 124 * struct pch_spi_data - Holds the SPI channel specific details
 125 * @io_remap_addr:		The remapped PCI base address
 126 * @io_base_addr:		Base address
 127 * @host:			Pointer to the SPI controller structure
 128 * @work:			Reference to work queue handler
 
 
 129 * @wait:			Wait queue for waking up upon receiving an
 130 *				interrupt.
 131 * @transfer_complete:		Status of SPI Transfer
 132 * @bcurrent_msg_processing:	Status flag for message processing
 133 * @lock:			Lock for protecting this structure
 134 * @queue:			SPI Message queue
 135 * @status:			Status of the SPI driver
 136 * @bpw_len:			Length of data to be transferred in bits per
 137 *				word
 138 * @transfer_active:		Flag showing active transfer
 139 * @tx_index:			Transmit data count; for bookkeeping during
 140 *				transfer
 141 * @rx_index:			Receive data count; for bookkeeping during
 142 *				transfer
 143 * @pkt_tx_buff:		Buffer for data to be transmitted
 144 * @pkt_rx_buff:		Buffer for received data
 145 * @n_curnt_chip:		The chip number that this SPI driver currently
 146 *				operates on
 147 * @current_chip:		Reference to the current chip that this SPI
 148 *				driver currently operates on
 149 * @current_msg:		The current message that this SPI driver is
 150 *				handling
 151 * @cur_trans:			The current transfer that this SPI driver is
 152 *				handling
 153 * @board_dat:			Reference to the SPI device data structure
 154 * @plat_dev:			platform_device structure
 155 * @ch:				SPI channel number
 156 * @dma:			Local DMA information
 157 * @use_dma:			True if DMA is to be used
 158 * @irq_reg_sts:		Status of IRQ registration
 159 * @save_total_len:		Save length while data is being transferred
 160 */
 161struct pch_spi_data {
 162	void __iomem *io_remap_addr;
 163	unsigned long io_base_addr;
 164	struct spi_controller *host;
 165	struct work_struct work;
 
 166	wait_queue_head_t wait;
 167	u8 transfer_complete;
 168	u8 bcurrent_msg_processing;
 169	spinlock_t lock;
 170	struct list_head queue;
 171	u8 status;
 172	u32 bpw_len;
 173	u8 transfer_active;
 174	u32 tx_index;
 175	u32 rx_index;
 176	u16 *pkt_tx_buff;
 177	u16 *pkt_rx_buff;
 178	u8 n_curnt_chip;
 179	struct spi_device *current_chip;
 180	struct spi_message *current_msg;
 181	struct spi_transfer *cur_trans;
 182	struct pch_spi_board_data *board_dat;
 183	struct platform_device	*plat_dev;
 184	int ch;
 185	struct pch_spi_dma_ctrl dma;
 186	int use_dma;
 187	u8 irq_reg_sts;
 188	int save_total_len;
 189};
 190
 191/**
 192 * struct pch_spi_board_data - Holds the SPI device specific details
 193 * @pdev:		Pointer to the PCI device
 194 * @suspend_sts:	Status of suspend
 195 * @num:		The number of SPI device instance
 196 */
 197struct pch_spi_board_data {
 198	struct pci_dev *pdev;
 199	u8 suspend_sts;
 200	int num;
 201};
 202
 203struct pch_pd_dev_save {
 204	int num;
 205	struct platform_device *pd_save[PCH_SPI_MAX_DEV];
 206	struct pch_spi_board_data *board_dat;
 207};
 208
 209static const struct pci_device_id pch_spi_pcidev_id[] = {
 210	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
 211	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
 212	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
 213	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
 214	{ }
 215};
 216
 217/**
 218 * pch_spi_writereg() - Performs  register writes
 219 * @host:	Pointer to struct spi_controller.
 220 * @idx:	Register offset.
 221 * @val:	Value to be written to register.
 222 */
 223static inline void pch_spi_writereg(struct spi_controller *host, int idx, u32 val)
 224{
 225	struct pch_spi_data *data = spi_controller_get_devdata(host);
 226	iowrite32(val, (data->io_remap_addr + idx));
 227}
 228
 229/**
 230 * pch_spi_readreg() - Performs register reads
 231 * @host:	Pointer to struct spi_controller.
 232 * @idx:	Register offset.
 233 */
 234static inline u32 pch_spi_readreg(struct spi_controller *host, int idx)
 235{
 236	struct pch_spi_data *data = spi_controller_get_devdata(host);
 237	return ioread32(data->io_remap_addr + idx);
 238}
 239
 240static inline void pch_spi_setclr_reg(struct spi_controller *host, int idx,
 241				      u32 set, u32 clr)
 242{
 243	u32 tmp = pch_spi_readreg(host, idx);
 244	tmp = (tmp & ~clr) | set;
 245	pch_spi_writereg(host, idx, tmp);
 246}
 247
 248static void pch_spi_set_host_mode(struct spi_controller *host)
 249{
 250	pch_spi_setclr_reg(host, PCH_SPCR, SPCR_MSTR_BIT, 0);
 251}
 252
 253/**
 254 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
 255 * @host:	Pointer to struct spi_controller.
 256 */
 257static void pch_spi_clear_fifo(struct spi_controller *host)
 258{
 259	pch_spi_setclr_reg(host, PCH_SPCR, SPCR_FICLR_BIT, 0);
 260	pch_spi_setclr_reg(host, PCH_SPCR, 0, SPCR_FICLR_BIT);
 261}
 262
 263static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
 264				void __iomem *io_remap_addr)
 265{
 266	u32 n_read, tx_index, rx_index, bpw_len;
 267	u16 *pkt_rx_buffer, *pkt_tx_buff;
 268	int read_cnt;
 269	u32 reg_spcr_val;
 270	void __iomem *spsr;
 271	void __iomem *spdrr;
 272	void __iomem *spdwr;
 273
 274	spsr = io_remap_addr + PCH_SPSR;
 275	iowrite32(reg_spsr_val, spsr);
 276
 277	if (data->transfer_active) {
 278		rx_index = data->rx_index;
 279		tx_index = data->tx_index;
 280		bpw_len = data->bpw_len;
 281		pkt_rx_buffer = data->pkt_rx_buff;
 282		pkt_tx_buff = data->pkt_tx_buff;
 283
 284		spdrr = io_remap_addr + PCH_SPDRR;
 285		spdwr = io_remap_addr + PCH_SPDWR;
 286
 287		n_read = PCH_READABLE(reg_spsr_val);
 288
 289		for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
 290			pkt_rx_buffer[rx_index++] = ioread32(spdrr);
 291			if (tx_index < bpw_len)
 292				iowrite32(pkt_tx_buff[tx_index++], spdwr);
 293		}
 294
 295		/* disable RFI if not needed */
 296		if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
 297			reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
 298			reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
 299
 300			/* reset rx threshold */
 301			reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
 302			reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
 303
 304			iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
 305		}
 306
 307		/* update counts */
 308		data->tx_index = tx_index;
 309		data->rx_index = rx_index;
 310
 311		/* if transfer complete interrupt */
 312		if (reg_spsr_val & SPSR_FI_BIT) {
 313			if ((tx_index == bpw_len) && (rx_index == tx_index)) {
 314				/* disable interrupts */
 315				pch_spi_setclr_reg(data->host, PCH_SPCR, 0,
 316						   PCH_ALL);
 317
 318				/* transfer is completed;
 319				   inform pch_spi_process_messages */
 320				data->transfer_complete = true;
 321				data->transfer_active = false;
 322				wake_up(&data->wait);
 323			} else {
 324				dev_vdbg(&data->host->dev,
 325					"%s : Transfer is not completed",
 326					__func__);
 327			}
 328		}
 329	}
 330}
 331
 332/**
 333 * pch_spi_handler() - Interrupt handler
 334 * @irq:	The interrupt number.
 335 * @dev_id:	Pointer to struct pch_spi_board_data.
 336 */
 337static irqreturn_t pch_spi_handler(int irq, void *dev_id)
 338{
 339	u32 reg_spsr_val;
 340	void __iomem *spsr;
 341	void __iomem *io_remap_addr;
 342	irqreturn_t ret = IRQ_NONE;
 343	struct pch_spi_data *data = dev_id;
 344	struct pch_spi_board_data *board_dat = data->board_dat;
 345
 346	if (board_dat->suspend_sts) {
 347		dev_dbg(&board_dat->pdev->dev,
 348			"%s returning due to suspend\n", __func__);
 349		return IRQ_NONE;
 350	}
 351
 352	io_remap_addr = data->io_remap_addr;
 353	spsr = io_remap_addr + PCH_SPSR;
 354
 355	reg_spsr_val = ioread32(spsr);
 356
 357	if (reg_spsr_val & SPSR_ORF_BIT) {
 358		dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
 359		if (data->current_msg->complete) {
 360			data->transfer_complete = true;
 361			data->current_msg->status = -EIO;
 362			data->current_msg->complete(data->current_msg->context);
 363			data->bcurrent_msg_processing = false;
 364			data->current_msg = NULL;
 365			data->cur_trans = NULL;
 366		}
 367	}
 368
 369	if (data->use_dma)
 370		return IRQ_NONE;
 371
 372	/* Check if the interrupt is for SPI device */
 373	if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
 374		pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
 375		ret = IRQ_HANDLED;
 376	}
 377
 378	dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
 379		__func__, ret);
 380
 381	return ret;
 382}
 383
 384/**
 385 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
 386 * @host:	Pointer to struct spi_controller.
 387 * @speed_hz:	Baud rate.
 388 */
 389static void pch_spi_set_baud_rate(struct spi_controller *host, u32 speed_hz)
 390{
 391	u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
 392
 393	/* if baud rate is less than we can support limit it */
 394	if (n_spbr > PCH_MAX_SPBR)
 395		n_spbr = PCH_MAX_SPBR;
 396
 397	pch_spi_setclr_reg(host, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
 398}
 399
 400/**
 401 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
 402 * @host:		Pointer to struct spi_controller.
 403 * @bits_per_word:	Bits per word for SPI transfer.
 404 */
 405static void pch_spi_set_bits_per_word(struct spi_controller *host,
 406				      u8 bits_per_word)
 407{
 408	if (bits_per_word == 8)
 409		pch_spi_setclr_reg(host, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
 410	else
 411		pch_spi_setclr_reg(host, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
 412}
 413
 414/**
 415 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
 416 * @spi:	Pointer to struct spi_device.
 417 */
 418static void pch_spi_setup_transfer(struct spi_device *spi)
 419{
 420	u32 flags = 0;
 421
 422	dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
 423		__func__, pch_spi_readreg(spi->controller, PCH_SPBRR),
 424		spi->max_speed_hz);
 425	pch_spi_set_baud_rate(spi->controller, spi->max_speed_hz);
 426
 427	/* set bits per word */
 428	pch_spi_set_bits_per_word(spi->controller, spi->bits_per_word);
 429
 430	if (!(spi->mode & SPI_LSB_FIRST))
 431		flags |= SPCR_LSBF_BIT;
 432	if (spi->mode & SPI_CPOL)
 433		flags |= SPCR_CPOL_BIT;
 434	if (spi->mode & SPI_CPHA)
 435		flags |= SPCR_CPHA_BIT;
 436	pch_spi_setclr_reg(spi->controller, PCH_SPCR, flags,
 437			   (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
 438
 439	/* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
 440	pch_spi_clear_fifo(spi->controller);
 441}
 442
 443/**
 444 * pch_spi_reset() - Clears SPI registers
 445 * @host:	Pointer to struct spi_controller.
 446 */
 447static void pch_spi_reset(struct spi_controller *host)
 448{
 449	/* write 1 to reset SPI */
 450	pch_spi_writereg(host, PCH_SRST, 0x1);
 451
 452	/* clear reset */
 453	pch_spi_writereg(host, PCH_SRST, 0x0);
 454}
 455
 456static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
 457{
 458	struct pch_spi_data *data = spi_controller_get_devdata(pspi->controller);
 
 
 459	int retval;
 460	unsigned long flags;
 461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 462	/* We won't process any messages if we have been asked to terminate */
 463	if (data->status == STATUS_EXITING) {
 464		dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
 465		retval = -ESHUTDOWN;
 466		goto err_out;
 467	}
 468
 469	/* If suspended ,return -EINVAL */
 470	if (data->board_dat->suspend_sts) {
 471		dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
 472		retval = -EINVAL;
 473		goto err_out;
 474	}
 475
 476	/* set status of message */
 477	pmsg->actual_length = 0;
 478	dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
 479
 480	pmsg->status = -EINPROGRESS;
 481	spin_lock_irqsave(&data->lock, flags);
 482	/* add message to queue */
 483	list_add_tail(&pmsg->queue, &data->queue);
 484	spin_unlock_irqrestore(&data->lock, flags);
 485
 486	dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
 487
 488	schedule_work(&data->work);
 
 489	dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
 490
 491	retval = 0;
 492
 493err_out:
 494	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
 495	return retval;
 
 
 
 
 496}
 497
 498static inline void pch_spi_select_chip(struct pch_spi_data *data,
 499				       struct spi_device *pspi)
 500{
 501	if (data->current_chip != NULL) {
 502		if (spi_get_chipselect(pspi, 0) != data->n_curnt_chip) {
 503			dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
 504			data->current_chip = NULL;
 505		}
 506	}
 507
 508	data->current_chip = pspi;
 509
 510	data->n_curnt_chip = spi_get_chipselect(data->current_chip, 0);
 511
 512	dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
 513	pch_spi_setup_transfer(pspi);
 514}
 515
 516static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
 517{
 518	int size;
 519	u32 n_writes;
 520	int j;
 521	struct spi_message *pmsg, *tmp;
 522	const u8 *tx_buf;
 523	const u16 *tx_sbuf;
 524
 525	/* set baud rate if needed */
 526	if (data->cur_trans->speed_hz) {
 527		dev_dbg(&data->host->dev, "%s:setting baud rate\n", __func__);
 528		pch_spi_set_baud_rate(data->host, data->cur_trans->speed_hz);
 529	}
 530
 531	/* set bits per word if needed */
 532	if (data->cur_trans->bits_per_word &&
 533	    (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
 534		dev_dbg(&data->host->dev, "%s:set bits per word\n", __func__);
 535		pch_spi_set_bits_per_word(data->host,
 536					  data->cur_trans->bits_per_word);
 537		*bpw = data->cur_trans->bits_per_word;
 538	} else {
 539		*bpw = data->current_msg->spi->bits_per_word;
 540	}
 541
 542	/* reset Tx/Rx index */
 543	data->tx_index = 0;
 544	data->rx_index = 0;
 545
 546	data->bpw_len = data->cur_trans->len / (*bpw / 8);
 547
 548	/* find alloc size */
 549	size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
 550
 551	/* allocate memory for pkt_tx_buff & pkt_rx_buffer */
 552	data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
 553	if (data->pkt_tx_buff != NULL) {
 554		data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
 555		if (!data->pkt_rx_buff) {
 556			kfree(data->pkt_tx_buff);
 557			data->pkt_tx_buff = NULL;
 558		}
 559	}
 560
 561	if (!data->pkt_rx_buff) {
 562		/* flush queue and set status of all transfers to -ENOMEM */
 
 563		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
 564			pmsg->status = -ENOMEM;
 565
 566			if (pmsg->complete)
 567				pmsg->complete(pmsg->context);
 568
 569			/* delete from queue */
 570			list_del_init(&pmsg->queue);
 571		}
 572		return;
 573	}
 574
 575	/* copy Tx Data */
 576	if (data->cur_trans->tx_buf != NULL) {
 577		if (*bpw == 8) {
 578			tx_buf = data->cur_trans->tx_buf;
 579			for (j = 0; j < data->bpw_len; j++)
 580				data->pkt_tx_buff[j] = *tx_buf++;
 581		} else {
 582			tx_sbuf = data->cur_trans->tx_buf;
 583			for (j = 0; j < data->bpw_len; j++)
 584				data->pkt_tx_buff[j] = *tx_sbuf++;
 585		}
 586	}
 587
 588	/* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
 589	n_writes = data->bpw_len;
 590	if (n_writes > PCH_MAX_FIFO_DEPTH)
 591		n_writes = PCH_MAX_FIFO_DEPTH;
 592
 593	dev_dbg(&data->host->dev,
 594		"\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
 595		__func__);
 596	pch_spi_writereg(data->host, PCH_SSNXCR, SSN_LOW);
 597
 598	for (j = 0; j < n_writes; j++)
 599		pch_spi_writereg(data->host, PCH_SPDWR, data->pkt_tx_buff[j]);
 600
 601	/* update tx_index */
 602	data->tx_index = j;
 603
 604	/* reset transfer complete flag */
 605	data->transfer_complete = false;
 606	data->transfer_active = true;
 607}
 608
 609static void pch_spi_nomore_transfer(struct pch_spi_data *data)
 610{
 611	struct spi_message *pmsg, *tmp;
 612	dev_dbg(&data->host->dev, "%s called\n", __func__);
 613	/* Invoke complete callback
 614	 * [To the spi core..indicating end of transfer] */
 615	data->current_msg->status = 0;
 616
 617	if (data->current_msg->complete) {
 618		dev_dbg(&data->host->dev,
 619			"%s:Invoking callback of SPI core\n", __func__);
 620		data->current_msg->complete(data->current_msg->context);
 621	}
 622
 623	/* update status in global variable */
 624	data->bcurrent_msg_processing = false;
 625
 626	dev_dbg(&data->host->dev,
 627		"%s:data->bcurrent_msg_processing = false\n", __func__);
 628
 629	data->current_msg = NULL;
 630	data->cur_trans = NULL;
 631
 632	/* check if we have items in list and not suspending
 633	 * return 1 if list empty */
 634	if ((list_empty(&data->queue) == 0) &&
 635	    (!data->board_dat->suspend_sts) &&
 636	    (data->status != STATUS_EXITING)) {
 637		/* We have some more work to do (either there is more tranint
 638		 * bpw;sfer requests in the current message or there are
 639		 *more messages)
 640		 */
 641		dev_dbg(&data->host->dev, "%s:Invoke queue_work\n", __func__);
 642		schedule_work(&data->work);
 643	} else if (data->board_dat->suspend_sts ||
 644		   data->status == STATUS_EXITING) {
 645		dev_dbg(&data->host->dev,
 646			"%s suspend/remove initiated, flushing queue\n",
 647			__func__);
 648		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
 649			pmsg->status = -EIO;
 650
 651			if (pmsg->complete)
 652				pmsg->complete(pmsg->context);
 653
 654			/* delete from queue */
 655			list_del_init(&pmsg->queue);
 656		}
 657	}
 658}
 659
 660static void pch_spi_set_ir(struct pch_spi_data *data)
 661{
 662	/* enable interrupts, set threshold, enable SPI */
 663	if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
 664		/* set receive threshold to PCH_RX_THOLD */
 665		pch_spi_setclr_reg(data->host, PCH_SPCR,
 666				   PCH_RX_THOLD << SPCR_RFIC_FIELD |
 667				   SPCR_FIE_BIT | SPCR_RFIE_BIT |
 668				   SPCR_ORIE_BIT | SPCR_SPE_BIT,
 669				   MASK_RFIC_SPCR_BITS | PCH_ALL);
 670	else
 671		/* set receive threshold to maximum */
 672		pch_spi_setclr_reg(data->host, PCH_SPCR,
 673				   PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
 674				   SPCR_FIE_BIT | SPCR_ORIE_BIT |
 675				   SPCR_SPE_BIT,
 676				   MASK_RFIC_SPCR_BITS | PCH_ALL);
 677
 678	/* Wait until the transfer completes; go to sleep after
 679				 initiating the transfer. */
 680	dev_dbg(&data->host->dev,
 681		"%s:waiting for transfer to get over\n", __func__);
 682
 683	wait_event_interruptible(data->wait, data->transfer_complete);
 684
 685	/* clear all interrupts */
 686	pch_spi_writereg(data->host, PCH_SPSR,
 687			 pch_spi_readreg(data->host, PCH_SPSR));
 688	/* Disable interrupts and SPI transfer */
 689	pch_spi_setclr_reg(data->host, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
 690	/* clear FIFO */
 691	pch_spi_clear_fifo(data->host);
 692}
 693
 694static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
 695{
 696	int j;
 697	u8 *rx_buf;
 698	u16 *rx_sbuf;
 699
 700	/* copy Rx Data */
 701	if (!data->cur_trans->rx_buf)
 702		return;
 703
 704	if (bpw == 8) {
 705		rx_buf = data->cur_trans->rx_buf;
 706		for (j = 0; j < data->bpw_len; j++)
 707			*rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
 708	} else {
 709		rx_sbuf = data->cur_trans->rx_buf;
 710		for (j = 0; j < data->bpw_len; j++)
 711			*rx_sbuf++ = data->pkt_rx_buff[j];
 712	}
 713}
 714
 715static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
 716{
 717	int j;
 718	u8 *rx_buf;
 719	u16 *rx_sbuf;
 720	const u8 *rx_dma_buf;
 721	const u16 *rx_dma_sbuf;
 722
 723	/* copy Rx Data */
 724	if (!data->cur_trans->rx_buf)
 725		return;
 726
 727	if (bpw == 8) {
 728		rx_buf = data->cur_trans->rx_buf;
 729		rx_dma_buf = data->dma.rx_buf_virt;
 730		for (j = 0; j < data->bpw_len; j++)
 731			*rx_buf++ = *rx_dma_buf++ & 0xFF;
 732		data->cur_trans->rx_buf = rx_buf;
 733	} else {
 734		rx_sbuf = data->cur_trans->rx_buf;
 735		rx_dma_sbuf = data->dma.rx_buf_virt;
 736		for (j = 0; j < data->bpw_len; j++)
 737			*rx_sbuf++ = *rx_dma_sbuf++;
 738		data->cur_trans->rx_buf = rx_sbuf;
 739	}
 740}
 741
 742static int pch_spi_start_transfer(struct pch_spi_data *data)
 743{
 744	struct pch_spi_dma_ctrl *dma;
 745	unsigned long flags;
 746	int rtn;
 747
 748	dma = &data->dma;
 749
 750	spin_lock_irqsave(&data->lock, flags);
 751
 752	/* disable interrupts, SPI set enable */
 753	pch_spi_setclr_reg(data->host, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
 754
 755	spin_unlock_irqrestore(&data->lock, flags);
 756
 757	/* Wait until the transfer completes; go to sleep after
 758				 initiating the transfer. */
 759	dev_dbg(&data->host->dev,
 760		"%s:waiting for transfer to get over\n", __func__);
 761	rtn = wait_event_interruptible_timeout(data->wait,
 762					       data->transfer_complete,
 763					       msecs_to_jiffies(2 * HZ));
 764	if (!rtn)
 765		dev_err(&data->host->dev,
 766			"%s wait-event timeout\n", __func__);
 767
 768	dma_sync_sg_for_cpu(&data->host->dev, dma->sg_rx_p, dma->nent,
 769			    DMA_FROM_DEVICE);
 770
 771	dma_sync_sg_for_cpu(&data->host->dev, dma->sg_tx_p, dma->nent,
 772			    DMA_FROM_DEVICE);
 773	memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
 774
 775	async_tx_ack(dma->desc_rx);
 776	async_tx_ack(dma->desc_tx);
 777	kfree(dma->sg_tx_p);
 778	kfree(dma->sg_rx_p);
 779
 780	spin_lock_irqsave(&data->lock, flags);
 781
 782	/* clear fifo threshold, disable interrupts, disable SPI transfer */
 783	pch_spi_setclr_reg(data->host, PCH_SPCR, 0,
 784			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
 785			   SPCR_SPE_BIT);
 786	/* clear all interrupts */
 787	pch_spi_writereg(data->host, PCH_SPSR,
 788			 pch_spi_readreg(data->host, PCH_SPSR));
 789	/* clear FIFO */
 790	pch_spi_clear_fifo(data->host);
 791
 792	spin_unlock_irqrestore(&data->lock, flags);
 793
 794	return rtn;
 795}
 796
 797static void pch_dma_rx_complete(void *arg)
 798{
 799	struct pch_spi_data *data = arg;
 800
 801	/* transfer is completed;inform pch_spi_process_messages_dma */
 802	data->transfer_complete = true;
 803	wake_up_interruptible(&data->wait);
 804}
 805
 806static bool pch_spi_filter(struct dma_chan *chan, void *slave)
 807{
 808	struct pch_dma_slave *param = slave;
 809
 810	if ((chan->chan_id == param->chan_id) &&
 811	    (param->dma_dev == chan->device->dev)) {
 812		chan->private = param;
 813		return true;
 814	} else {
 815		return false;
 816	}
 817}
 818
 819static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
 820{
 821	dma_cap_mask_t mask;
 822	struct dma_chan *chan;
 823	struct pci_dev *dma_dev;
 824	struct pch_dma_slave *param;
 825	struct pch_spi_dma_ctrl *dma;
 826	unsigned int width;
 827
 828	if (bpw == 8)
 829		width = PCH_DMA_WIDTH_1_BYTE;
 830	else
 831		width = PCH_DMA_WIDTH_2_BYTES;
 832
 833	dma = &data->dma;
 834	dma_cap_zero(mask);
 835	dma_cap_set(DMA_SLAVE, mask);
 836
 837	/* Get DMA's dev information */
 838	dma_dev = pci_get_slot(data->board_dat->pdev->bus,
 839			PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
 840
 841	/* Set Tx DMA */
 842	param = &dma->param_tx;
 843	param->dma_dev = &dma_dev->dev;
 844	param->chan_id = data->ch * 2; /* Tx = 0, 2 */
 845	param->tx_reg = data->io_base_addr + PCH_SPDWR;
 846	param->width = width;
 847	chan = dma_request_channel(mask, pch_spi_filter, param);
 848	if (!chan) {
 849		dev_err(&data->host->dev,
 850			"ERROR: dma_request_channel FAILS(Tx)\n");
 851		goto out;
 
 852	}
 853	dma->chan_tx = chan;
 854
 855	/* Set Rx DMA */
 856	param = &dma->param_rx;
 857	param->dma_dev = &dma_dev->dev;
 858	param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */
 859	param->rx_reg = data->io_base_addr + PCH_SPDRR;
 860	param->width = width;
 861	chan = dma_request_channel(mask, pch_spi_filter, param);
 862	if (!chan) {
 863		dev_err(&data->host->dev,
 864			"ERROR: dma_request_channel FAILS(Rx)\n");
 865		dma_release_channel(dma->chan_tx);
 866		dma->chan_tx = NULL;
 867		goto out;
 
 868	}
 869	dma->chan_rx = chan;
 870
 871	dma->dma_dev = dma_dev;
 872	return;
 873out:
 874	pci_dev_put(dma_dev);
 875	data->use_dma = 0;
 876}
 877
 878static void pch_spi_release_dma(struct pch_spi_data *data)
 879{
 880	struct pch_spi_dma_ctrl *dma;
 881
 882	dma = &data->dma;
 883	if (dma->chan_tx) {
 884		dma_release_channel(dma->chan_tx);
 885		dma->chan_tx = NULL;
 886	}
 887	if (dma->chan_rx) {
 888		dma_release_channel(dma->chan_rx);
 889		dma->chan_rx = NULL;
 890	}
 891
 892	pci_dev_put(dma->dma_dev);
 893}
 894
 895static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
 896{
 897	const u8 *tx_buf;
 898	const u16 *tx_sbuf;
 899	u8 *tx_dma_buf;
 900	u16 *tx_dma_sbuf;
 901	struct scatterlist *sg;
 902	struct dma_async_tx_descriptor *desc_tx;
 903	struct dma_async_tx_descriptor *desc_rx;
 904	int num;
 905	int i;
 906	int size;
 907	int rem;
 908	int head;
 909	unsigned long flags;
 910	struct pch_spi_dma_ctrl *dma;
 911
 912	dma = &data->dma;
 913
 914	/* set baud rate if needed */
 915	if (data->cur_trans->speed_hz) {
 916		dev_dbg(&data->host->dev, "%s:setting baud rate\n", __func__);
 917		spin_lock_irqsave(&data->lock, flags);
 918		pch_spi_set_baud_rate(data->host, data->cur_trans->speed_hz);
 919		spin_unlock_irqrestore(&data->lock, flags);
 920	}
 921
 922	/* set bits per word if needed */
 923	if (data->cur_trans->bits_per_word &&
 924	    (data->current_msg->spi->bits_per_word !=
 925	     data->cur_trans->bits_per_word)) {
 926		dev_dbg(&data->host->dev, "%s:set bits per word\n", __func__);
 927		spin_lock_irqsave(&data->lock, flags);
 928		pch_spi_set_bits_per_word(data->host,
 929					  data->cur_trans->bits_per_word);
 930		spin_unlock_irqrestore(&data->lock, flags);
 931		*bpw = data->cur_trans->bits_per_word;
 932	} else {
 933		*bpw = data->current_msg->spi->bits_per_word;
 934	}
 935	data->bpw_len = data->cur_trans->len / (*bpw / 8);
 936
 937	if (data->bpw_len > PCH_BUF_SIZE) {
 938		data->bpw_len = PCH_BUF_SIZE;
 939		data->cur_trans->len -= PCH_BUF_SIZE;
 940	}
 941
 942	/* copy Tx Data */
 943	if (data->cur_trans->tx_buf != NULL) {
 944		if (*bpw == 8) {
 945			tx_buf = data->cur_trans->tx_buf;
 946			tx_dma_buf = dma->tx_buf_virt;
 947			for (i = 0; i < data->bpw_len; i++)
 948				*tx_dma_buf++ = *tx_buf++;
 949		} else {
 950			tx_sbuf = data->cur_trans->tx_buf;
 951			tx_dma_sbuf = dma->tx_buf_virt;
 952			for (i = 0; i < data->bpw_len; i++)
 953				*tx_dma_sbuf++ = *tx_sbuf++;
 954		}
 955	}
 956
 957	/* Calculate Rx parameter for DMA transmitting */
 958	if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
 959		if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
 960			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
 961			rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
 962		} else {
 963			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
 964			rem = PCH_DMA_TRANS_SIZE;
 965		}
 966		size = PCH_DMA_TRANS_SIZE;
 967	} else {
 968		num = 1;
 969		size = data->bpw_len;
 970		rem = data->bpw_len;
 971	}
 972	dev_dbg(&data->host->dev, "%s num=%d size=%d rem=%d\n",
 973		__func__, num, size, rem);
 974	spin_lock_irqsave(&data->lock, flags);
 975
 976	/* set receive fifo threshold and transmit fifo threshold */
 977	pch_spi_setclr_reg(data->host, PCH_SPCR,
 978			   ((size - 1) << SPCR_RFIC_FIELD) |
 979			   (PCH_TX_THOLD << SPCR_TFIC_FIELD),
 980			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
 981
 982	spin_unlock_irqrestore(&data->lock, flags);
 983
 984	/* RX */
 985	dma->sg_rx_p = kmalloc_array(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
 986	if (!dma->sg_rx_p)
 987		return;
 988
 989	sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
 990	/* offset, length setting */
 991	sg = dma->sg_rx_p;
 992	for (i = 0; i < num; i++, sg++) {
 993		if (i == (num - 2)) {
 994			sg->offset = size * i;
 995			sg->offset = sg->offset * (*bpw / 8);
 996			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
 997				    sg->offset);
 998			sg_dma_len(sg) = rem;
 999		} else if (i == (num - 1)) {
1000			sg->offset = size * (i - 1) + rem;
1001			sg->offset = sg->offset * (*bpw / 8);
1002			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1003				    sg->offset);
1004			sg_dma_len(sg) = size;
1005		} else {
1006			sg->offset = size * i;
1007			sg->offset = sg->offset * (*bpw / 8);
1008			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1009				    sg->offset);
1010			sg_dma_len(sg) = size;
1011		}
1012		sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1013	}
1014	sg = dma->sg_rx_p;
1015	desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1016					num, DMA_DEV_TO_MEM,
1017					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1018	if (!desc_rx) {
1019		dev_err(&data->host->dev,
1020			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1021		return;
1022	}
1023	dma_sync_sg_for_device(&data->host->dev, sg, num, DMA_FROM_DEVICE);
1024	desc_rx->callback = pch_dma_rx_complete;
1025	desc_rx->callback_param = data;
1026	dma->nent = num;
1027	dma->desc_rx = desc_rx;
1028
1029	/* Calculate Tx parameter for DMA transmitting */
1030	if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1031		head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1032		if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1033			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1034			rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1035		} else {
1036			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1037			rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1038			      PCH_DMA_TRANS_SIZE - head;
1039		}
1040		size = PCH_DMA_TRANS_SIZE;
1041	} else {
1042		num = 1;
1043		size = data->bpw_len;
1044		rem = data->bpw_len;
1045		head = 0;
1046	}
1047
1048	dma->sg_tx_p = kmalloc_array(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
1049	if (!dma->sg_tx_p)
1050		return;
1051
1052	sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1053	/* offset, length setting */
1054	sg = dma->sg_tx_p;
1055	for (i = 0; i < num; i++, sg++) {
1056		if (i == 0) {
1057			sg->offset = 0;
1058			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1059				    sg->offset);
1060			sg_dma_len(sg) = size + head;
1061		} else if (i == (num - 1)) {
1062			sg->offset = head + size * i;
1063			sg->offset = sg->offset * (*bpw / 8);
1064			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1065				    sg->offset);
1066			sg_dma_len(sg) = rem;
1067		} else {
1068			sg->offset = head + size * i;
1069			sg->offset = sg->offset * (*bpw / 8);
1070			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1071				    sg->offset);
1072			sg_dma_len(sg) = size;
1073		}
1074		sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1075	}
1076	sg = dma->sg_tx_p;
1077	desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1078					sg, num, DMA_MEM_TO_DEV,
1079					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1080	if (!desc_tx) {
1081		dev_err(&data->host->dev,
1082			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1083		return;
1084	}
1085	dma_sync_sg_for_device(&data->host->dev, sg, num, DMA_TO_DEVICE);
1086	desc_tx->callback = NULL;
1087	desc_tx->callback_param = data;
1088	dma->nent = num;
1089	dma->desc_tx = desc_tx;
1090
1091	dev_dbg(&data->host->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1092
1093	spin_lock_irqsave(&data->lock, flags);
1094	pch_spi_writereg(data->host, PCH_SSNXCR, SSN_LOW);
1095	desc_rx->tx_submit(desc_rx);
1096	desc_tx->tx_submit(desc_tx);
1097	spin_unlock_irqrestore(&data->lock, flags);
1098
1099	/* reset transfer complete flag */
1100	data->transfer_complete = false;
1101}
1102
1103static void pch_spi_process_messages(struct work_struct *pwork)
1104{
1105	struct spi_message *pmsg, *tmp;
1106	struct pch_spi_data *data;
1107	int bpw;
1108
1109	data = container_of(pwork, struct pch_spi_data, work);
1110	dev_dbg(&data->host->dev, "%s data initialized\n", __func__);
1111
1112	spin_lock(&data->lock);
1113	/* check if suspend has been initiated;if yes flush queue */
1114	if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1115		dev_dbg(&data->host->dev,
1116			"%s suspend/remove initiated, flushing queue\n", __func__);
1117		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1118			pmsg->status = -EIO;
1119
1120			if (pmsg->complete) {
1121				spin_unlock(&data->lock);
1122				pmsg->complete(pmsg->context);
1123				spin_lock(&data->lock);
1124			}
1125
1126			/* delete from queue */
1127			list_del_init(&pmsg->queue);
1128		}
1129
1130		spin_unlock(&data->lock);
1131		return;
1132	}
1133
1134	data->bcurrent_msg_processing = true;
1135	dev_dbg(&data->host->dev,
1136		"%s Set data->bcurrent_msg_processing= true\n", __func__);
1137
1138	/* Get the message from the queue and delete it from there. */
1139	data->current_msg = list_entry(data->queue.next, struct spi_message,
1140					queue);
1141
1142	list_del_init(&data->current_msg->queue);
1143
1144	data->current_msg->status = 0;
1145
1146	pch_spi_select_chip(data, data->current_msg->spi);
1147
1148	spin_unlock(&data->lock);
1149
1150	if (data->use_dma)
1151		pch_spi_request_dma(data,
1152				    data->current_msg->spi->bits_per_word);
1153	pch_spi_writereg(data->host, PCH_SSNXCR, SSN_NO_CONTROL);
1154	do {
1155		int cnt;
1156		/* If we are already processing a message get the next
1157		transfer structure from the message otherwise retrieve
1158		the 1st transfer request from the message. */
1159		spin_lock(&data->lock);
1160		if (data->cur_trans == NULL) {
1161			data->cur_trans =
1162				list_entry(data->current_msg->transfers.next,
1163					   struct spi_transfer, transfer_list);
1164			dev_dbg(&data->host->dev,
1165				"%s :Getting 1st transfer message\n",
1166				__func__);
1167		} else {
1168			data->cur_trans =
1169				list_entry(data->cur_trans->transfer_list.next,
1170					   struct spi_transfer, transfer_list);
1171			dev_dbg(&data->host->dev,
1172				"%s :Getting next transfer message\n",
1173				__func__);
1174		}
1175		spin_unlock(&data->lock);
1176
1177		if (!data->cur_trans->len)
1178			goto out;
1179		cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1180		data->save_total_len = data->cur_trans->len;
1181		if (data->use_dma) {
1182			int i;
1183			char *save_rx_buf = data->cur_trans->rx_buf;
1184
1185			for (i = 0; i < cnt; i++) {
1186				pch_spi_handle_dma(data, &bpw);
1187				if (!pch_spi_start_transfer(data)) {
1188					data->transfer_complete = true;
1189					data->current_msg->status = -EIO;
1190					data->current_msg->complete
1191						   (data->current_msg->context);
1192					data->bcurrent_msg_processing = false;
1193					data->current_msg = NULL;
1194					data->cur_trans = NULL;
1195					goto out;
1196				}
1197				pch_spi_copy_rx_data_for_dma(data, bpw);
1198			}
1199			data->cur_trans->rx_buf = save_rx_buf;
1200		} else {
1201			pch_spi_set_tx(data, &bpw);
1202			pch_spi_set_ir(data);
1203			pch_spi_copy_rx_data(data, bpw);
1204			kfree(data->pkt_rx_buff);
1205			data->pkt_rx_buff = NULL;
1206			kfree(data->pkt_tx_buff);
1207			data->pkt_tx_buff = NULL;
1208		}
1209		/* increment message count */
1210		data->cur_trans->len = data->save_total_len;
1211		data->current_msg->actual_length += data->cur_trans->len;
1212
1213		dev_dbg(&data->host->dev,
1214			"%s:data->current_msg->actual_length=%d\n",
1215			__func__, data->current_msg->actual_length);
1216
1217		spi_transfer_delay_exec(data->cur_trans);
 
 
 
 
 
 
1218
1219		spin_lock(&data->lock);
1220
1221		/* No more transfer in this message. */
1222		if ((data->cur_trans->transfer_list.next) ==
1223		    &(data->current_msg->transfers)) {
1224			pch_spi_nomore_transfer(data);
1225		}
1226
1227		spin_unlock(&data->lock);
1228
1229	} while (data->cur_trans != NULL);
1230
1231out:
1232	pch_spi_writereg(data->host, PCH_SSNXCR, SSN_HIGH);
1233	if (data->use_dma)
1234		pch_spi_release_dma(data);
1235}
1236
1237static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1238				   struct pch_spi_data *data)
1239{
1240	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1241
1242	flush_work(&data->work);
 
 
 
 
 
 
 
1243}
1244
1245static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1246				 struct pch_spi_data *data)
1247{
 
 
1248	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1249
 
 
 
 
 
 
 
 
 
1250	/* reset PCH SPI h/w */
1251	pch_spi_reset(data->host);
1252	dev_dbg(&board_dat->pdev->dev,
1253		"%s pch_spi_reset invoked successfully\n", __func__);
1254
1255	dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1256
1257	return 0;
 
 
 
 
 
 
 
 
 
1258}
1259
1260static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1261			     struct pch_spi_data *data)
1262{
1263	struct pch_spi_dma_ctrl *dma;
1264
1265	dma = &data->dma;
1266	if (dma->tx_buf_dma)
1267		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1268				  dma->tx_buf_virt, dma->tx_buf_dma);
1269	if (dma->rx_buf_dma)
1270		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1271				  dma->rx_buf_virt, dma->rx_buf_dma);
 
1272}
1273
1274static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1275			      struct pch_spi_data *data)
1276{
1277	struct pch_spi_dma_ctrl *dma;
1278	int ret;
1279
1280	dma = &data->dma;
1281	ret = 0;
1282	/* Get Consistent memory for Tx DMA */
1283	dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1284				PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1285	if (!dma->tx_buf_virt)
1286		ret = -ENOMEM;
1287
1288	/* Get Consistent memory for Rx DMA */
1289	dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1290				PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1291	if (!dma->rx_buf_virt)
1292		ret = -ENOMEM;
1293
1294	return ret;
1295}
1296
1297static int pch_spi_pd_probe(struct platform_device *plat_dev)
1298{
1299	int ret;
1300	struct spi_controller *host;
1301	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1302	struct pch_spi_data *data;
1303
1304	dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1305
1306	host = spi_alloc_host(&board_dat->pdev->dev,
1307				  sizeof(struct pch_spi_data));
1308	if (!host) {
1309		dev_err(&plat_dev->dev, "spi_alloc_host[%d] failed.\n",
1310			plat_dev->id);
1311		return -ENOMEM;
1312	}
1313
1314	data = spi_controller_get_devdata(host);
1315	data->host = host;
1316
1317	platform_set_drvdata(plat_dev, data);
1318
1319	/* baseaddress + address offset) */
1320	data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1321					 PCH_ADDRESS_SIZE * plat_dev->id;
1322	data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1323	if (!data->io_remap_addr) {
1324		dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1325		ret = -ENOMEM;
1326		goto err_pci_iomap;
1327	}
1328	data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1329
1330	dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1331		plat_dev->id, data->io_remap_addr);
1332
1333	/* initialize members of SPI host */
1334	host->num_chipselect = PCH_MAX_CS;
1335	host->transfer = pch_spi_transfer;
1336	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1337	host->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1338	host->max_speed_hz = PCH_MAX_BAUDRATE;
1339	host->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1340
1341	data->board_dat = board_dat;
1342	data->plat_dev = plat_dev;
1343	data->n_curnt_chip = 255;
1344	data->status = STATUS_RUNNING;
1345	data->ch = plat_dev->id;
1346	data->use_dma = use_dma;
1347
1348	INIT_LIST_HEAD(&data->queue);
1349	spin_lock_init(&data->lock);
1350	INIT_WORK(&data->work, pch_spi_process_messages);
1351	init_waitqueue_head(&data->wait);
1352
1353	ret = pch_spi_get_resources(board_dat, data);
1354	if (ret) {
1355		dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1356		goto err_spi_get_resources;
1357	}
1358
1359	ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1360			  IRQF_SHARED, KBUILD_MODNAME, data);
1361	if (ret) {
1362		dev_err(&plat_dev->dev,
1363			"%s request_irq failed\n", __func__);
1364		goto err_request_irq;
1365	}
1366	data->irq_reg_sts = true;
1367
1368	pch_spi_set_host_mode(host);
1369
1370	if (use_dma) {
1371		dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1372		ret = pch_alloc_dma_buf(board_dat, data);
1373		if (ret)
1374			goto err_spi_register_controller;
1375	}
1376
1377	ret = spi_register_controller(host);
1378	if (ret != 0) {
1379		dev_err(&plat_dev->dev,
1380			"%s spi_register_controller FAILED\n", __func__);
1381		goto err_spi_register_controller;
1382	}
1383
1384	return 0;
1385
1386err_spi_register_controller:
1387	pch_free_dma_buf(board_dat, data);
1388	free_irq(board_dat->pdev->irq, data);
1389err_request_irq:
1390	pch_spi_free_resources(board_dat, data);
1391err_spi_get_resources:
1392	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1393err_pci_iomap:
1394	spi_controller_put(host);
1395
1396	return ret;
1397}
1398
1399static void pch_spi_pd_remove(struct platform_device *plat_dev)
1400{
1401	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1402	struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1403	int count;
1404	unsigned long flags;
1405
1406	dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1407		__func__, plat_dev->id, board_dat->pdev->irq);
1408
1409	if (use_dma)
1410		pch_free_dma_buf(board_dat, data);
1411
1412	/* check for any pending messages; no action is taken if the queue
1413	 * is still full; but at least we tried.  Unload anyway */
1414	count = 500;
1415	spin_lock_irqsave(&data->lock, flags);
1416	data->status = STATUS_EXITING;
1417	while ((list_empty(&data->queue) == 0) && --count) {
1418		dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1419			__func__);
1420		spin_unlock_irqrestore(&data->lock, flags);
1421		msleep(PCH_SLEEP_TIME);
1422		spin_lock_irqsave(&data->lock, flags);
1423	}
1424	spin_unlock_irqrestore(&data->lock, flags);
1425
1426	pch_spi_free_resources(board_dat, data);
1427	/* disable interrupts & free IRQ */
1428	if (data->irq_reg_sts) {
1429		/* disable interrupts */
1430		pch_spi_setclr_reg(data->host, PCH_SPCR, 0, PCH_ALL);
1431		data->irq_reg_sts = false;
1432		free_irq(board_dat->pdev->irq, data);
1433	}
1434
1435	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1436	spi_unregister_controller(data->host);
 
 
1437}
1438#ifdef CONFIG_PM
1439static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1440			      pm_message_t state)
1441{
1442	u8 count;
1443	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1444	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1445
1446	dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1447
1448	if (!board_dat) {
1449		dev_err(&pd_dev->dev,
1450			"%s pci_get_drvdata returned NULL\n", __func__);
1451		return -EFAULT;
1452	}
1453
1454	/* check if the current message is processed:
1455	   Only after thats done the transfer will be suspended */
1456	count = 255;
1457	while ((--count) > 0) {
1458		if (!(data->bcurrent_msg_processing))
1459			break;
1460		msleep(PCH_SLEEP_TIME);
1461	}
1462
1463	/* Free IRQ */
1464	if (data->irq_reg_sts) {
1465		/* disable all interrupts */
1466		pch_spi_setclr_reg(data->host, PCH_SPCR, 0, PCH_ALL);
1467		pch_spi_reset(data->host);
1468		free_irq(board_dat->pdev->irq, data);
1469
1470		data->irq_reg_sts = false;
1471		dev_dbg(&pd_dev->dev,
1472			"%s free_irq invoked successfully.\n", __func__);
1473	}
1474
1475	return 0;
1476}
1477
1478static int pch_spi_pd_resume(struct platform_device *pd_dev)
1479{
1480	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1481	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1482	int retval;
1483
1484	if (!board_dat) {
1485		dev_err(&pd_dev->dev,
1486			"%s pci_get_drvdata returned NULL\n", __func__);
1487		return -EFAULT;
1488	}
1489
1490	if (!data->irq_reg_sts) {
1491		/* register IRQ */
1492		retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1493				     IRQF_SHARED, KBUILD_MODNAME, data);
1494		if (retval < 0) {
1495			dev_err(&pd_dev->dev,
1496				"%s request_irq failed\n", __func__);
1497			return retval;
1498		}
1499
1500		/* reset PCH SPI h/w */
1501		pch_spi_reset(data->host);
1502		pch_spi_set_host_mode(data->host);
1503		data->irq_reg_sts = true;
1504	}
1505	return 0;
1506}
1507#else
1508#define pch_spi_pd_suspend NULL
1509#define pch_spi_pd_resume NULL
1510#endif
1511
1512static struct platform_driver pch_spi_pd_driver = {
1513	.driver = {
1514		.name = "pch-spi",
 
1515	},
1516	.probe = pch_spi_pd_probe,
1517	.remove_new = pch_spi_pd_remove,
1518	.suspend = pch_spi_pd_suspend,
1519	.resume = pch_spi_pd_resume
1520};
1521
1522static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1523{
1524	struct pch_spi_board_data *board_dat;
1525	struct platform_device *pd_dev = NULL;
1526	int retval;
1527	int i;
1528	struct pch_pd_dev_save *pd_dev_save;
1529
1530	pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
1531	if (!pd_dev_save)
 
1532		return -ENOMEM;
 
1533
1534	board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
1535	if (!board_dat) {
 
1536		retval = -ENOMEM;
1537		goto err_no_mem;
1538	}
1539
1540	retval = pci_request_regions(pdev, KBUILD_MODNAME);
1541	if (retval) {
1542		dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1543		goto pci_request_regions;
1544	}
1545
1546	board_dat->pdev = pdev;
1547	board_dat->num = id->driver_data;
1548	pd_dev_save->num = id->driver_data;
1549	pd_dev_save->board_dat = board_dat;
1550
1551	retval = pci_enable_device(pdev);
1552	if (retval) {
1553		dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1554		goto pci_enable_device;
1555	}
1556
1557	for (i = 0; i < board_dat->num; i++) {
1558		pd_dev = platform_device_alloc("pch-spi", i);
1559		if (!pd_dev) {
1560			dev_err(&pdev->dev, "platform_device_alloc failed\n");
1561			retval = -ENOMEM;
1562			goto err_platform_device;
1563		}
1564		pd_dev_save->pd_save[i] = pd_dev;
1565		pd_dev->dev.parent = &pdev->dev;
1566
1567		retval = platform_device_add_data(pd_dev, board_dat,
1568						  sizeof(*board_dat));
1569		if (retval) {
1570			dev_err(&pdev->dev,
1571				"platform_device_add_data failed\n");
1572			platform_device_put(pd_dev);
1573			goto err_platform_device;
1574		}
1575
1576		retval = platform_device_add(pd_dev);
1577		if (retval) {
1578			dev_err(&pdev->dev, "platform_device_add failed\n");
1579			platform_device_put(pd_dev);
1580			goto err_platform_device;
1581		}
1582	}
1583
1584	pci_set_drvdata(pdev, pd_dev_save);
1585
1586	return 0;
1587
1588err_platform_device:
1589	while (--i >= 0)
1590		platform_device_unregister(pd_dev_save->pd_save[i]);
1591	pci_disable_device(pdev);
1592pci_enable_device:
1593	pci_release_regions(pdev);
1594pci_request_regions:
1595	kfree(board_dat);
1596err_no_mem:
1597	kfree(pd_dev_save);
1598
1599	return retval;
1600}
1601
1602static void pch_spi_remove(struct pci_dev *pdev)
1603{
1604	int i;
1605	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1606
1607	dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1608
1609	for (i = 0; i < pd_dev_save->num; i++)
1610		platform_device_unregister(pd_dev_save->pd_save[i]);
1611
1612	pci_disable_device(pdev);
1613	pci_release_regions(pdev);
1614	kfree(pd_dev_save->board_dat);
1615	kfree(pd_dev_save);
1616}
1617
1618static int __maybe_unused pch_spi_suspend(struct device *dev)
 
1619{
1620	struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
 
1621
1622	dev_dbg(dev, "%s ENTRY\n", __func__);
1623
1624	pd_dev_save->board_dat->suspend_sts = true;
1625
1626	return 0;
 
 
 
 
 
 
 
 
 
 
1627}
1628
1629static int __maybe_unused pch_spi_resume(struct device *dev)
1630{
1631	struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
 
 
1632
1633	dev_dbg(dev, "%s ENTRY\n", __func__);
 
1634
1635	/* set suspend status to false */
1636	pd_dev_save->board_dat->suspend_sts = false;
 
 
 
 
1637
1638	return 0;
 
 
 
 
1639}
 
 
 
1640
1641static SIMPLE_DEV_PM_OPS(pch_spi_pm_ops, pch_spi_suspend, pch_spi_resume);
1642
1643static struct pci_driver pch_spi_pcidev_driver = {
1644	.name = "pch_spi",
1645	.id_table = pch_spi_pcidev_id,
1646	.probe = pch_spi_probe,
1647	.remove = pch_spi_remove,
1648	.driver.pm = &pch_spi_pm_ops,
 
1649};
1650
1651static int __init pch_spi_init(void)
1652{
1653	int ret;
1654	ret = platform_driver_register(&pch_spi_pd_driver);
1655	if (ret)
1656		return ret;
1657
1658	ret = pci_register_driver(&pch_spi_pcidev_driver);
1659	if (ret) {
1660		platform_driver_unregister(&pch_spi_pd_driver);
1661		return ret;
1662	}
1663
1664	return 0;
1665}
1666module_init(pch_spi_init);
1667
1668static void __exit pch_spi_exit(void)
1669{
1670	pci_unregister_driver(&pch_spi_pcidev_driver);
1671	platform_driver_unregister(&pch_spi_pd_driver);
1672}
1673module_exit(pch_spi_exit);
1674
1675module_param(use_dma, int, 0644);
1676MODULE_PARM_DESC(use_dma,
1677		 "to use DMA for data transfers pass 1 else 0; default 1");
1678
1679MODULE_LICENSE("GPL");
1680MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1681MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1682
v3.15
 
   1/*
   2 * SPI bus driver for the Topcliff PCH used by Intel SoCs
   3 *
   4 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; version 2 of the License.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA.
  18 */
  19
  20#include <linux/delay.h>
  21#include <linux/pci.h>
  22#include <linux/wait.h>
  23#include <linux/spi/spi.h>
  24#include <linux/interrupt.h>
  25#include <linux/sched.h>
  26#include <linux/spi/spidev.h>
  27#include <linux/module.h>
  28#include <linux/device.h>
  29#include <linux/platform_device.h>
  30
  31#include <linux/dmaengine.h>
  32#include <linux/pch_dma.h>
  33
  34/* Register offsets */
  35#define PCH_SPCR		0x00	/* SPI control register */
  36#define PCH_SPBRR		0x04	/* SPI baud rate register */
  37#define PCH_SPSR		0x08	/* SPI status register */
  38#define PCH_SPDWR		0x0C	/* SPI write data register */
  39#define PCH_SPDRR		0x10	/* SPI read data register */
  40#define PCH_SSNXCR		0x18	/* SSN Expand Control Register */
  41#define PCH_SRST		0x1C	/* SPI reset register */
  42#define PCH_ADDRESS_SIZE	0x20
  43
  44#define PCH_SPSR_TFD		0x000007C0
  45#define PCH_SPSR_RFD		0x0000F800
  46
  47#define PCH_READABLE(x)		(((x) & PCH_SPSR_RFD)>>11)
  48#define PCH_WRITABLE(x)		(((x) & PCH_SPSR_TFD)>>6)
  49
  50#define PCH_RX_THOLD		7
  51#define PCH_RX_THOLD_MAX	15
  52
  53#define PCH_TX_THOLD		2
  54
  55#define PCH_MAX_BAUDRATE	5000000
  56#define PCH_MAX_FIFO_DEPTH	16
  57
  58#define STATUS_RUNNING		1
  59#define STATUS_EXITING		2
  60#define PCH_SLEEP_TIME		10
  61
  62#define SSN_LOW			0x02U
  63#define SSN_HIGH		0x03U
  64#define SSN_NO_CONTROL		0x00U
  65#define PCH_MAX_CS		0xFF
  66#define PCI_DEVICE_ID_GE_SPI	0x8816
  67
  68#define SPCR_SPE_BIT		(1 << 0)
  69#define SPCR_MSTR_BIT		(1 << 1)
  70#define SPCR_LSBF_BIT		(1 << 4)
  71#define SPCR_CPHA_BIT		(1 << 5)
  72#define SPCR_CPOL_BIT		(1 << 6)
  73#define SPCR_TFIE_BIT		(1 << 8)
  74#define SPCR_RFIE_BIT		(1 << 9)
  75#define SPCR_FIE_BIT		(1 << 10)
  76#define SPCR_ORIE_BIT		(1 << 11)
  77#define SPCR_MDFIE_BIT		(1 << 12)
  78#define SPCR_FICLR_BIT		(1 << 24)
  79#define SPSR_TFI_BIT		(1 << 0)
  80#define SPSR_RFI_BIT		(1 << 1)
  81#define SPSR_FI_BIT		(1 << 2)
  82#define SPSR_ORF_BIT		(1 << 3)
  83#define SPBRR_SIZE_BIT		(1 << 10)
  84
  85#define PCH_ALL			(SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  86				SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  87
  88#define SPCR_RFIC_FIELD		20
  89#define SPCR_TFIC_FIELD		16
  90
  91#define MASK_SPBRR_SPBR_BITS	((1 << 10) - 1)
  92#define MASK_RFIC_SPCR_BITS	(0xf << SPCR_RFIC_FIELD)
  93#define MASK_TFIC_SPCR_BITS	(0xf << SPCR_TFIC_FIELD)
  94
  95#define PCH_CLOCK_HZ		50000000
  96#define PCH_MAX_SPBR		1023
  97
  98/* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
  99#define PCI_VENDOR_ID_ROHM		0x10DB
 100#define PCI_DEVICE_ID_ML7213_SPI	0x802c
 101#define PCI_DEVICE_ID_ML7223_SPI	0x800F
 102#define PCI_DEVICE_ID_ML7831_SPI	0x8816
 103
 104/*
 105 * Set the number of SPI instance max
 106 * Intel EG20T PCH :		1ch
 107 * LAPIS Semiconductor ML7213 IOH :	2ch
 108 * LAPIS Semiconductor ML7223 IOH :	1ch
 109 * LAPIS Semiconductor ML7831 IOH :	1ch
 110*/
 111#define PCH_SPI_MAX_DEV			2
 112
 113#define PCH_BUF_SIZE		4096
 114#define PCH_DMA_TRANS_SIZE	12
 115
 116static int use_dma = 1;
 117
 118struct pch_spi_dma_ctrl {
 
 119	struct dma_async_tx_descriptor	*desc_tx;
 120	struct dma_async_tx_descriptor	*desc_rx;
 121	struct pch_dma_slave		param_tx;
 122	struct pch_dma_slave		param_rx;
 123	struct dma_chan		*chan_tx;
 124	struct dma_chan		*chan_rx;
 125	struct scatterlist		*sg_tx_p;
 126	struct scatterlist		*sg_rx_p;
 127	struct scatterlist		sg_tx;
 128	struct scatterlist		sg_rx;
 129	int				nent;
 130	void				*tx_buf_virt;
 131	void				*rx_buf_virt;
 132	dma_addr_t			tx_buf_dma;
 133	dma_addr_t			rx_buf_dma;
 134};
 135/**
 136 * struct pch_spi_data - Holds the SPI channel specific details
 137 * @io_remap_addr:		The remapped PCI base address
 138 * @master:			Pointer to the SPI master structure
 
 139 * @work:			Reference to work queue handler
 140 * @wk:				Workqueue for carrying out execution of the
 141 *				requests
 142 * @wait:			Wait queue for waking up upon receiving an
 143 *				interrupt.
 144 * @transfer_complete:		Status of SPI Transfer
 145 * @bcurrent_msg_processing:	Status flag for message processing
 146 * @lock:			Lock for protecting this structure
 147 * @queue:			SPI Message queue
 148 * @status:			Status of the SPI driver
 149 * @bpw_len:			Length of data to be transferred in bits per
 150 *				word
 151 * @transfer_active:		Flag showing active transfer
 152 * @tx_index:			Transmit data count; for bookkeeping during
 153 *				transfer
 154 * @rx_index:			Receive data count; for bookkeeping during
 155 *				transfer
 156 * @tx_buff:			Buffer for data to be transmitted
 157 * @rx_index:			Buffer for Received data
 158 * @n_curnt_chip:		The chip number that this SPI driver currently
 159 *				operates on
 160 * @current_chip:		Reference to the current chip that this SPI
 161 *				driver currently operates on
 162 * @current_msg:		The current message that this SPI driver is
 163 *				handling
 164 * @cur_trans:			The current transfer that this SPI driver is
 165 *				handling
 166 * @board_dat:			Reference to the SPI device data structure
 167 * @plat_dev:			platform_device structure
 168 * @ch:				SPI channel number
 
 
 169 * @irq_reg_sts:		Status of IRQ registration
 
 170 */
 171struct pch_spi_data {
 172	void __iomem *io_remap_addr;
 173	unsigned long io_base_addr;
 174	struct spi_master *master;
 175	struct work_struct work;
 176	struct workqueue_struct *wk;
 177	wait_queue_head_t wait;
 178	u8 transfer_complete;
 179	u8 bcurrent_msg_processing;
 180	spinlock_t lock;
 181	struct list_head queue;
 182	u8 status;
 183	u32 bpw_len;
 184	u8 transfer_active;
 185	u32 tx_index;
 186	u32 rx_index;
 187	u16 *pkt_tx_buff;
 188	u16 *pkt_rx_buff;
 189	u8 n_curnt_chip;
 190	struct spi_device *current_chip;
 191	struct spi_message *current_msg;
 192	struct spi_transfer *cur_trans;
 193	struct pch_spi_board_data *board_dat;
 194	struct platform_device	*plat_dev;
 195	int ch;
 196	struct pch_spi_dma_ctrl dma;
 197	int use_dma;
 198	u8 irq_reg_sts;
 199	int save_total_len;
 200};
 201
 202/**
 203 * struct pch_spi_board_data - Holds the SPI device specific details
 204 * @pdev:		Pointer to the PCI device
 205 * @suspend_sts:	Status of suspend
 206 * @num:		The number of SPI device instance
 207 */
 208struct pch_spi_board_data {
 209	struct pci_dev *pdev;
 210	u8 suspend_sts;
 211	int num;
 212};
 213
 214struct pch_pd_dev_save {
 215	int num;
 216	struct platform_device *pd_save[PCH_SPI_MAX_DEV];
 217	struct pch_spi_board_data *board_dat;
 218};
 219
 220static const struct pci_device_id pch_spi_pcidev_id[] = {
 221	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
 222	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
 223	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
 224	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
 225	{ }
 226};
 227
 228/**
 229 * pch_spi_writereg() - Performs  register writes
 230 * @master:	Pointer to struct spi_master.
 231 * @idx:	Register offset.
 232 * @val:	Value to be written to register.
 233 */
 234static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
 235{
 236	struct pch_spi_data *data = spi_master_get_devdata(master);
 237	iowrite32(val, (data->io_remap_addr + idx));
 238}
 239
 240/**
 241 * pch_spi_readreg() - Performs register reads
 242 * @master:	Pointer to struct spi_master.
 243 * @idx:	Register offset.
 244 */
 245static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
 246{
 247	struct pch_spi_data *data = spi_master_get_devdata(master);
 248	return ioread32(data->io_remap_addr + idx);
 249}
 250
 251static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
 252				      u32 set, u32 clr)
 253{
 254	u32 tmp = pch_spi_readreg(master, idx);
 255	tmp = (tmp & ~clr) | set;
 256	pch_spi_writereg(master, idx, tmp);
 257}
 258
 259static void pch_spi_set_master_mode(struct spi_master *master)
 260{
 261	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
 262}
 263
 264/**
 265 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
 266 * @master:	Pointer to struct spi_master.
 267 */
 268static void pch_spi_clear_fifo(struct spi_master *master)
 269{
 270	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
 271	pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
 272}
 273
 274static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
 275				void __iomem *io_remap_addr)
 276{
 277	u32 n_read, tx_index, rx_index, bpw_len;
 278	u16 *pkt_rx_buffer, *pkt_tx_buff;
 279	int read_cnt;
 280	u32 reg_spcr_val;
 281	void __iomem *spsr;
 282	void __iomem *spdrr;
 283	void __iomem *spdwr;
 284
 285	spsr = io_remap_addr + PCH_SPSR;
 286	iowrite32(reg_spsr_val, spsr);
 287
 288	if (data->transfer_active) {
 289		rx_index = data->rx_index;
 290		tx_index = data->tx_index;
 291		bpw_len = data->bpw_len;
 292		pkt_rx_buffer = data->pkt_rx_buff;
 293		pkt_tx_buff = data->pkt_tx_buff;
 294
 295		spdrr = io_remap_addr + PCH_SPDRR;
 296		spdwr = io_remap_addr + PCH_SPDWR;
 297
 298		n_read = PCH_READABLE(reg_spsr_val);
 299
 300		for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
 301			pkt_rx_buffer[rx_index++] = ioread32(spdrr);
 302			if (tx_index < bpw_len)
 303				iowrite32(pkt_tx_buff[tx_index++], spdwr);
 304		}
 305
 306		/* disable RFI if not needed */
 307		if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
 308			reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
 309			reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
 310
 311			/* reset rx threshold */
 312			reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
 313			reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
 314
 315			iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
 316		}
 317
 318		/* update counts */
 319		data->tx_index = tx_index;
 320		data->rx_index = rx_index;
 321
 322		/* if transfer complete interrupt */
 323		if (reg_spsr_val & SPSR_FI_BIT) {
 324			if ((tx_index == bpw_len) && (rx_index == tx_index)) {
 325				/* disable interrupts */
 326				pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
 327						   PCH_ALL);
 328
 329				/* transfer is completed;
 330				   inform pch_spi_process_messages */
 331				data->transfer_complete = true;
 332				data->transfer_active = false;
 333				wake_up(&data->wait);
 334			} else {
 335				dev_vdbg(&data->master->dev,
 336					"%s : Transfer is not completed",
 337					__func__);
 338			}
 339		}
 340	}
 341}
 342
 343/**
 344 * pch_spi_handler() - Interrupt handler
 345 * @irq:	The interrupt number.
 346 * @dev_id:	Pointer to struct pch_spi_board_data.
 347 */
 348static irqreturn_t pch_spi_handler(int irq, void *dev_id)
 349{
 350	u32 reg_spsr_val;
 351	void __iomem *spsr;
 352	void __iomem *io_remap_addr;
 353	irqreturn_t ret = IRQ_NONE;
 354	struct pch_spi_data *data = dev_id;
 355	struct pch_spi_board_data *board_dat = data->board_dat;
 356
 357	if (board_dat->suspend_sts) {
 358		dev_dbg(&board_dat->pdev->dev,
 359			"%s returning due to suspend\n", __func__);
 360		return IRQ_NONE;
 361	}
 362
 363	io_remap_addr = data->io_remap_addr;
 364	spsr = io_remap_addr + PCH_SPSR;
 365
 366	reg_spsr_val = ioread32(spsr);
 367
 368	if (reg_spsr_val & SPSR_ORF_BIT) {
 369		dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
 370		if (data->current_msg->complete) {
 371			data->transfer_complete = true;
 372			data->current_msg->status = -EIO;
 373			data->current_msg->complete(data->current_msg->context);
 374			data->bcurrent_msg_processing = false;
 375			data->current_msg = NULL;
 376			data->cur_trans = NULL;
 377		}
 378	}
 379
 380	if (data->use_dma)
 381		return IRQ_NONE;
 382
 383	/* Check if the interrupt is for SPI device */
 384	if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
 385		pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
 386		ret = IRQ_HANDLED;
 387	}
 388
 389	dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
 390		__func__, ret);
 391
 392	return ret;
 393}
 394
 395/**
 396 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
 397 * @master:	Pointer to struct spi_master.
 398 * @speed_hz:	Baud rate.
 399 */
 400static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
 401{
 402	u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
 403
 404	/* if baud rate is less than we can support limit it */
 405	if (n_spbr > PCH_MAX_SPBR)
 406		n_spbr = PCH_MAX_SPBR;
 407
 408	pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
 409}
 410
 411/**
 412 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
 413 * @master:		Pointer to struct spi_master.
 414 * @bits_per_word:	Bits per word for SPI transfer.
 415 */
 416static void pch_spi_set_bits_per_word(struct spi_master *master,
 417				      u8 bits_per_word)
 418{
 419	if (bits_per_word == 8)
 420		pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
 421	else
 422		pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
 423}
 424
 425/**
 426 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
 427 * @spi:	Pointer to struct spi_device.
 428 */
 429static void pch_spi_setup_transfer(struct spi_device *spi)
 430{
 431	u32 flags = 0;
 432
 433	dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
 434		__func__, pch_spi_readreg(spi->master, PCH_SPBRR),
 435		spi->max_speed_hz);
 436	pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
 437
 438	/* set bits per word */
 439	pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
 440
 441	if (!(spi->mode & SPI_LSB_FIRST))
 442		flags |= SPCR_LSBF_BIT;
 443	if (spi->mode & SPI_CPOL)
 444		flags |= SPCR_CPOL_BIT;
 445	if (spi->mode & SPI_CPHA)
 446		flags |= SPCR_CPHA_BIT;
 447	pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
 448			   (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
 449
 450	/* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
 451	pch_spi_clear_fifo(spi->master);
 452}
 453
 454/**
 455 * pch_spi_reset() - Clears SPI registers
 456 * @master:	Pointer to struct spi_master.
 457 */
 458static void pch_spi_reset(struct spi_master *master)
 459{
 460	/* write 1 to reset SPI */
 461	pch_spi_writereg(master, PCH_SRST, 0x1);
 462
 463	/* clear reset */
 464	pch_spi_writereg(master, PCH_SRST, 0x0);
 465}
 466
 467static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
 468{
 469
 470	struct spi_transfer *transfer;
 471	struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
 472	int retval;
 473	unsigned long flags;
 474
 475	spin_lock_irqsave(&data->lock, flags);
 476	/* validate Tx/Rx buffers and Transfer length */
 477	list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
 478		if (!transfer->tx_buf && !transfer->rx_buf) {
 479			dev_err(&pspi->dev,
 480				"%s Tx and Rx buffer NULL\n", __func__);
 481			retval = -EINVAL;
 482			goto err_return_spinlock;
 483		}
 484
 485		if (!transfer->len) {
 486			dev_err(&pspi->dev, "%s Transfer length invalid\n",
 487				__func__);
 488			retval = -EINVAL;
 489			goto err_return_spinlock;
 490		}
 491
 492		dev_dbg(&pspi->dev,
 493			"%s Tx/Rx buffer valid. Transfer length valid\n",
 494			__func__);
 495	}
 496	spin_unlock_irqrestore(&data->lock, flags);
 497
 498	/* We won't process any messages if we have been asked to terminate */
 499	if (data->status == STATUS_EXITING) {
 500		dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
 501		retval = -ESHUTDOWN;
 502		goto err_out;
 503	}
 504
 505	/* If suspended ,return -EINVAL */
 506	if (data->board_dat->suspend_sts) {
 507		dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
 508		retval = -EINVAL;
 509		goto err_out;
 510	}
 511
 512	/* set status of message */
 513	pmsg->actual_length = 0;
 514	dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
 515
 516	pmsg->status = -EINPROGRESS;
 517	spin_lock_irqsave(&data->lock, flags);
 518	/* add message to queue */
 519	list_add_tail(&pmsg->queue, &data->queue);
 520	spin_unlock_irqrestore(&data->lock, flags);
 521
 522	dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
 523
 524	/* schedule work queue to run */
 525	queue_work(data->wk, &data->work);
 526	dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
 527
 528	retval = 0;
 529
 530err_out:
 531	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
 532	return retval;
 533err_return_spinlock:
 534	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
 535	spin_unlock_irqrestore(&data->lock, flags);
 536	return retval;
 537}
 538
 539static inline void pch_spi_select_chip(struct pch_spi_data *data,
 540				       struct spi_device *pspi)
 541{
 542	if (data->current_chip != NULL) {
 543		if (pspi->chip_select != data->n_curnt_chip) {
 544			dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
 545			data->current_chip = NULL;
 546		}
 547	}
 548
 549	data->current_chip = pspi;
 550
 551	data->n_curnt_chip = data->current_chip->chip_select;
 552
 553	dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
 554	pch_spi_setup_transfer(pspi);
 555}
 556
 557static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
 558{
 559	int size;
 560	u32 n_writes;
 561	int j;
 562	struct spi_message *pmsg, *tmp;
 563	const u8 *tx_buf;
 564	const u16 *tx_sbuf;
 565
 566	/* set baud rate if needed */
 567	if (data->cur_trans->speed_hz) {
 568		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
 569		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
 570	}
 571
 572	/* set bits per word if needed */
 573	if (data->cur_trans->bits_per_word &&
 574	    (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
 575		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
 576		pch_spi_set_bits_per_word(data->master,
 577					  data->cur_trans->bits_per_word);
 578		*bpw = data->cur_trans->bits_per_word;
 579	} else {
 580		*bpw = data->current_msg->spi->bits_per_word;
 581	}
 582
 583	/* reset Tx/Rx index */
 584	data->tx_index = 0;
 585	data->rx_index = 0;
 586
 587	data->bpw_len = data->cur_trans->len / (*bpw / 8);
 588
 589	/* find alloc size */
 590	size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
 591
 592	/* allocate memory for pkt_tx_buff & pkt_rx_buffer */
 593	data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
 594	if (data->pkt_tx_buff != NULL) {
 595		data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
 596		if (!data->pkt_rx_buff)
 597			kfree(data->pkt_tx_buff);
 
 
 598	}
 599
 600	if (!data->pkt_rx_buff) {
 601		/* flush queue and set status of all transfers to -ENOMEM */
 602		dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
 603		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
 604			pmsg->status = -ENOMEM;
 605
 606			if (pmsg->complete)
 607				pmsg->complete(pmsg->context);
 608
 609			/* delete from queue */
 610			list_del_init(&pmsg->queue);
 611		}
 612		return;
 613	}
 614
 615	/* copy Tx Data */
 616	if (data->cur_trans->tx_buf != NULL) {
 617		if (*bpw == 8) {
 618			tx_buf = data->cur_trans->tx_buf;
 619			for (j = 0; j < data->bpw_len; j++)
 620				data->pkt_tx_buff[j] = *tx_buf++;
 621		} else {
 622			tx_sbuf = data->cur_trans->tx_buf;
 623			for (j = 0; j < data->bpw_len; j++)
 624				data->pkt_tx_buff[j] = *tx_sbuf++;
 625		}
 626	}
 627
 628	/* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
 629	n_writes = data->bpw_len;
 630	if (n_writes > PCH_MAX_FIFO_DEPTH)
 631		n_writes = PCH_MAX_FIFO_DEPTH;
 632
 633	dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
 634		"0x2 to SSNXCR\n", __func__);
 635	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
 
 636
 637	for (j = 0; j < n_writes; j++)
 638		pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
 639
 640	/* update tx_index */
 641	data->tx_index = j;
 642
 643	/* reset transfer complete flag */
 644	data->transfer_complete = false;
 645	data->transfer_active = true;
 646}
 647
 648static void pch_spi_nomore_transfer(struct pch_spi_data *data)
 649{
 650	struct spi_message *pmsg, *tmp;
 651	dev_dbg(&data->master->dev, "%s called\n", __func__);
 652	/* Invoke complete callback
 653	 * [To the spi core..indicating end of transfer] */
 654	data->current_msg->status = 0;
 655
 656	if (data->current_msg->complete) {
 657		dev_dbg(&data->master->dev,
 658			"%s:Invoking callback of SPI core\n", __func__);
 659		data->current_msg->complete(data->current_msg->context);
 660	}
 661
 662	/* update status in global variable */
 663	data->bcurrent_msg_processing = false;
 664
 665	dev_dbg(&data->master->dev,
 666		"%s:data->bcurrent_msg_processing = false\n", __func__);
 667
 668	data->current_msg = NULL;
 669	data->cur_trans = NULL;
 670
 671	/* check if we have items in list and not suspending
 672	 * return 1 if list empty */
 673	if ((list_empty(&data->queue) == 0) &&
 674	    (!data->board_dat->suspend_sts) &&
 675	    (data->status != STATUS_EXITING)) {
 676		/* We have some more work to do (either there is more tranint
 677		 * bpw;sfer requests in the current message or there are
 678		 *more messages)
 679		 */
 680		dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
 681		queue_work(data->wk, &data->work);
 682	} else if (data->board_dat->suspend_sts ||
 683		   data->status == STATUS_EXITING) {
 684		dev_dbg(&data->master->dev,
 685			"%s suspend/remove initiated, flushing queue\n",
 686			__func__);
 687		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
 688			pmsg->status = -EIO;
 689
 690			if (pmsg->complete)
 691				pmsg->complete(pmsg->context);
 692
 693			/* delete from queue */
 694			list_del_init(&pmsg->queue);
 695		}
 696	}
 697}
 698
 699static void pch_spi_set_ir(struct pch_spi_data *data)
 700{
 701	/* enable interrupts, set threshold, enable SPI */
 702	if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
 703		/* set receive threshold to PCH_RX_THOLD */
 704		pch_spi_setclr_reg(data->master, PCH_SPCR,
 705				   PCH_RX_THOLD << SPCR_RFIC_FIELD |
 706				   SPCR_FIE_BIT | SPCR_RFIE_BIT |
 707				   SPCR_ORIE_BIT | SPCR_SPE_BIT,
 708				   MASK_RFIC_SPCR_BITS | PCH_ALL);
 709	else
 710		/* set receive threshold to maximum */
 711		pch_spi_setclr_reg(data->master, PCH_SPCR,
 712				   PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
 713				   SPCR_FIE_BIT | SPCR_ORIE_BIT |
 714				   SPCR_SPE_BIT,
 715				   MASK_RFIC_SPCR_BITS | PCH_ALL);
 716
 717	/* Wait until the transfer completes; go to sleep after
 718				 initiating the transfer. */
 719	dev_dbg(&data->master->dev,
 720		"%s:waiting for transfer to get over\n", __func__);
 721
 722	wait_event_interruptible(data->wait, data->transfer_complete);
 723
 724	/* clear all interrupts */
 725	pch_spi_writereg(data->master, PCH_SPSR,
 726			 pch_spi_readreg(data->master, PCH_SPSR));
 727	/* Disable interrupts and SPI transfer */
 728	pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
 729	/* clear FIFO */
 730	pch_spi_clear_fifo(data->master);
 731}
 732
 733static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
 734{
 735	int j;
 736	u8 *rx_buf;
 737	u16 *rx_sbuf;
 738
 739	/* copy Rx Data */
 740	if (!data->cur_trans->rx_buf)
 741		return;
 742
 743	if (bpw == 8) {
 744		rx_buf = data->cur_trans->rx_buf;
 745		for (j = 0; j < data->bpw_len; j++)
 746			*rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
 747	} else {
 748		rx_sbuf = data->cur_trans->rx_buf;
 749		for (j = 0; j < data->bpw_len; j++)
 750			*rx_sbuf++ = data->pkt_rx_buff[j];
 751	}
 752}
 753
 754static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
 755{
 756	int j;
 757	u8 *rx_buf;
 758	u16 *rx_sbuf;
 759	const u8 *rx_dma_buf;
 760	const u16 *rx_dma_sbuf;
 761
 762	/* copy Rx Data */
 763	if (!data->cur_trans->rx_buf)
 764		return;
 765
 766	if (bpw == 8) {
 767		rx_buf = data->cur_trans->rx_buf;
 768		rx_dma_buf = data->dma.rx_buf_virt;
 769		for (j = 0; j < data->bpw_len; j++)
 770			*rx_buf++ = *rx_dma_buf++ & 0xFF;
 771		data->cur_trans->rx_buf = rx_buf;
 772	} else {
 773		rx_sbuf = data->cur_trans->rx_buf;
 774		rx_dma_sbuf = data->dma.rx_buf_virt;
 775		for (j = 0; j < data->bpw_len; j++)
 776			*rx_sbuf++ = *rx_dma_sbuf++;
 777		data->cur_trans->rx_buf = rx_sbuf;
 778	}
 779}
 780
 781static int pch_spi_start_transfer(struct pch_spi_data *data)
 782{
 783	struct pch_spi_dma_ctrl *dma;
 784	unsigned long flags;
 785	int rtn;
 786
 787	dma = &data->dma;
 788
 789	spin_lock_irqsave(&data->lock, flags);
 790
 791	/* disable interrupts, SPI set enable */
 792	pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
 793
 794	spin_unlock_irqrestore(&data->lock, flags);
 795
 796	/* Wait until the transfer completes; go to sleep after
 797				 initiating the transfer. */
 798	dev_dbg(&data->master->dev,
 799		"%s:waiting for transfer to get over\n", __func__);
 800	rtn = wait_event_interruptible_timeout(data->wait,
 801					       data->transfer_complete,
 802					       msecs_to_jiffies(2 * HZ));
 803	if (!rtn)
 804		dev_err(&data->master->dev,
 805			"%s wait-event timeout\n", __func__);
 806
 807	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
 808			    DMA_FROM_DEVICE);
 809
 810	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
 811			    DMA_FROM_DEVICE);
 812	memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
 813
 814	async_tx_ack(dma->desc_rx);
 815	async_tx_ack(dma->desc_tx);
 816	kfree(dma->sg_tx_p);
 817	kfree(dma->sg_rx_p);
 818
 819	spin_lock_irqsave(&data->lock, flags);
 820
 821	/* clear fifo threshold, disable interrupts, disable SPI transfer */
 822	pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
 823			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
 824			   SPCR_SPE_BIT);
 825	/* clear all interrupts */
 826	pch_spi_writereg(data->master, PCH_SPSR,
 827			 pch_spi_readreg(data->master, PCH_SPSR));
 828	/* clear FIFO */
 829	pch_spi_clear_fifo(data->master);
 830
 831	spin_unlock_irqrestore(&data->lock, flags);
 832
 833	return rtn;
 834}
 835
 836static void pch_dma_rx_complete(void *arg)
 837{
 838	struct pch_spi_data *data = arg;
 839
 840	/* transfer is completed;inform pch_spi_process_messages_dma */
 841	data->transfer_complete = true;
 842	wake_up_interruptible(&data->wait);
 843}
 844
 845static bool pch_spi_filter(struct dma_chan *chan, void *slave)
 846{
 847	struct pch_dma_slave *param = slave;
 848
 849	if ((chan->chan_id == param->chan_id) &&
 850	    (param->dma_dev == chan->device->dev)) {
 851		chan->private = param;
 852		return true;
 853	} else {
 854		return false;
 855	}
 856}
 857
 858static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
 859{
 860	dma_cap_mask_t mask;
 861	struct dma_chan *chan;
 862	struct pci_dev *dma_dev;
 863	struct pch_dma_slave *param;
 864	struct pch_spi_dma_ctrl *dma;
 865	unsigned int width;
 866
 867	if (bpw == 8)
 868		width = PCH_DMA_WIDTH_1_BYTE;
 869	else
 870		width = PCH_DMA_WIDTH_2_BYTES;
 871
 872	dma = &data->dma;
 873	dma_cap_zero(mask);
 874	dma_cap_set(DMA_SLAVE, mask);
 875
 876	/* Get DMA's dev information */
 877	dma_dev = pci_get_bus_and_slot(data->board_dat->pdev->bus->number,
 878				       PCI_DEVFN(12, 0));
 879
 880	/* Set Tx DMA */
 881	param = &dma->param_tx;
 882	param->dma_dev = &dma_dev->dev;
 883	param->chan_id = data->ch * 2; /* Tx = 0, 2 */;
 884	param->tx_reg = data->io_base_addr + PCH_SPDWR;
 885	param->width = width;
 886	chan = dma_request_channel(mask, pch_spi_filter, param);
 887	if (!chan) {
 888		dev_err(&data->master->dev,
 889			"ERROR: dma_request_channel FAILS(Tx)\n");
 890		data->use_dma = 0;
 891		return;
 892	}
 893	dma->chan_tx = chan;
 894
 895	/* Set Rx DMA */
 896	param = &dma->param_rx;
 897	param->dma_dev = &dma_dev->dev;
 898	param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */;
 899	param->rx_reg = data->io_base_addr + PCH_SPDRR;
 900	param->width = width;
 901	chan = dma_request_channel(mask, pch_spi_filter, param);
 902	if (!chan) {
 903		dev_err(&data->master->dev,
 904			"ERROR: dma_request_channel FAILS(Rx)\n");
 905		dma_release_channel(dma->chan_tx);
 906		dma->chan_tx = NULL;
 907		data->use_dma = 0;
 908		return;
 909	}
 910	dma->chan_rx = chan;
 
 
 
 
 
 
 911}
 912
 913static void pch_spi_release_dma(struct pch_spi_data *data)
 914{
 915	struct pch_spi_dma_ctrl *dma;
 916
 917	dma = &data->dma;
 918	if (dma->chan_tx) {
 919		dma_release_channel(dma->chan_tx);
 920		dma->chan_tx = NULL;
 921	}
 922	if (dma->chan_rx) {
 923		dma_release_channel(dma->chan_rx);
 924		dma->chan_rx = NULL;
 925	}
 926	return;
 
 927}
 928
 929static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
 930{
 931	const u8 *tx_buf;
 932	const u16 *tx_sbuf;
 933	u8 *tx_dma_buf;
 934	u16 *tx_dma_sbuf;
 935	struct scatterlist *sg;
 936	struct dma_async_tx_descriptor *desc_tx;
 937	struct dma_async_tx_descriptor *desc_rx;
 938	int num;
 939	int i;
 940	int size;
 941	int rem;
 942	int head;
 943	unsigned long flags;
 944	struct pch_spi_dma_ctrl *dma;
 945
 946	dma = &data->dma;
 947
 948	/* set baud rate if needed */
 949	if (data->cur_trans->speed_hz) {
 950		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
 951		spin_lock_irqsave(&data->lock, flags);
 952		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
 953		spin_unlock_irqrestore(&data->lock, flags);
 954	}
 955
 956	/* set bits per word if needed */
 957	if (data->cur_trans->bits_per_word &&
 958	    (data->current_msg->spi->bits_per_word !=
 959	     data->cur_trans->bits_per_word)) {
 960		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
 961		spin_lock_irqsave(&data->lock, flags);
 962		pch_spi_set_bits_per_word(data->master,
 963					  data->cur_trans->bits_per_word);
 964		spin_unlock_irqrestore(&data->lock, flags);
 965		*bpw = data->cur_trans->bits_per_word;
 966	} else {
 967		*bpw = data->current_msg->spi->bits_per_word;
 968	}
 969	data->bpw_len = data->cur_trans->len / (*bpw / 8);
 970
 971	if (data->bpw_len > PCH_BUF_SIZE) {
 972		data->bpw_len = PCH_BUF_SIZE;
 973		data->cur_trans->len -= PCH_BUF_SIZE;
 974	}
 975
 976	/* copy Tx Data */
 977	if (data->cur_trans->tx_buf != NULL) {
 978		if (*bpw == 8) {
 979			tx_buf = data->cur_trans->tx_buf;
 980			tx_dma_buf = dma->tx_buf_virt;
 981			for (i = 0; i < data->bpw_len; i++)
 982				*tx_dma_buf++ = *tx_buf++;
 983		} else {
 984			tx_sbuf = data->cur_trans->tx_buf;
 985			tx_dma_sbuf = dma->tx_buf_virt;
 986			for (i = 0; i < data->bpw_len; i++)
 987				*tx_dma_sbuf++ = *tx_sbuf++;
 988		}
 989	}
 990
 991	/* Calculate Rx parameter for DMA transmitting */
 992	if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
 993		if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
 994			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
 995			rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
 996		} else {
 997			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
 998			rem = PCH_DMA_TRANS_SIZE;
 999		}
1000		size = PCH_DMA_TRANS_SIZE;
1001	} else {
1002		num = 1;
1003		size = data->bpw_len;
1004		rem = data->bpw_len;
1005	}
1006	dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1007		__func__, num, size, rem);
1008	spin_lock_irqsave(&data->lock, flags);
1009
1010	/* set receive fifo threshold and transmit fifo threshold */
1011	pch_spi_setclr_reg(data->master, PCH_SPCR,
1012			   ((size - 1) << SPCR_RFIC_FIELD) |
1013			   (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1014			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1015
1016	spin_unlock_irqrestore(&data->lock, flags);
1017
1018	/* RX */
1019	dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
 
 
 
1020	sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1021	/* offset, length setting */
1022	sg = dma->sg_rx_p;
1023	for (i = 0; i < num; i++, sg++) {
1024		if (i == (num - 2)) {
1025			sg->offset = size * i;
1026			sg->offset = sg->offset * (*bpw / 8);
1027			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1028				    sg->offset);
1029			sg_dma_len(sg) = rem;
1030		} else if (i == (num - 1)) {
1031			sg->offset = size * (i - 1) + rem;
1032			sg->offset = sg->offset * (*bpw / 8);
1033			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1034				    sg->offset);
1035			sg_dma_len(sg) = size;
1036		} else {
1037			sg->offset = size * i;
1038			sg->offset = sg->offset * (*bpw / 8);
1039			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1040				    sg->offset);
1041			sg_dma_len(sg) = size;
1042		}
1043		sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1044	}
1045	sg = dma->sg_rx_p;
1046	desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1047					num, DMA_DEV_TO_MEM,
1048					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1049	if (!desc_rx) {
1050		dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1051			__func__);
1052		return;
1053	}
1054	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1055	desc_rx->callback = pch_dma_rx_complete;
1056	desc_rx->callback_param = data;
1057	dma->nent = num;
1058	dma->desc_rx = desc_rx;
1059
1060	/* Calculate Tx parameter for DMA transmitting */
1061	if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1062		head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1063		if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1064			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1065			rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1066		} else {
1067			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1068			rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1069			      PCH_DMA_TRANS_SIZE - head;
1070		}
1071		size = PCH_DMA_TRANS_SIZE;
1072	} else {
1073		num = 1;
1074		size = data->bpw_len;
1075		rem = data->bpw_len;
1076		head = 0;
1077	}
1078
1079	dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
 
 
 
1080	sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1081	/* offset, length setting */
1082	sg = dma->sg_tx_p;
1083	for (i = 0; i < num; i++, sg++) {
1084		if (i == 0) {
1085			sg->offset = 0;
1086			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1087				    sg->offset);
1088			sg_dma_len(sg) = size + head;
1089		} else if (i == (num - 1)) {
1090			sg->offset = head + size * i;
1091			sg->offset = sg->offset * (*bpw / 8);
1092			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1093				    sg->offset);
1094			sg_dma_len(sg) = rem;
1095		} else {
1096			sg->offset = head + size * i;
1097			sg->offset = sg->offset * (*bpw / 8);
1098			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1099				    sg->offset);
1100			sg_dma_len(sg) = size;
1101		}
1102		sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1103	}
1104	sg = dma->sg_tx_p;
1105	desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1106					sg, num, DMA_MEM_TO_DEV,
1107					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1108	if (!desc_tx) {
1109		dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1110			__func__);
1111		return;
1112	}
1113	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1114	desc_tx->callback = NULL;
1115	desc_tx->callback_param = data;
1116	dma->nent = num;
1117	dma->desc_tx = desc_tx;
1118
1119	dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1120
1121	spin_lock_irqsave(&data->lock, flags);
1122	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1123	desc_rx->tx_submit(desc_rx);
1124	desc_tx->tx_submit(desc_tx);
1125	spin_unlock_irqrestore(&data->lock, flags);
1126
1127	/* reset transfer complete flag */
1128	data->transfer_complete = false;
1129}
1130
1131static void pch_spi_process_messages(struct work_struct *pwork)
1132{
1133	struct spi_message *pmsg, *tmp;
1134	struct pch_spi_data *data;
1135	int bpw;
1136
1137	data = container_of(pwork, struct pch_spi_data, work);
1138	dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1139
1140	spin_lock(&data->lock);
1141	/* check if suspend has been initiated;if yes flush queue */
1142	if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1143		dev_dbg(&data->master->dev,
1144			"%s suspend/remove initiated, flushing queue\n", __func__);
1145		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1146			pmsg->status = -EIO;
1147
1148			if (pmsg->complete) {
1149				spin_unlock(&data->lock);
1150				pmsg->complete(pmsg->context);
1151				spin_lock(&data->lock);
1152			}
1153
1154			/* delete from queue */
1155			list_del_init(&pmsg->queue);
1156		}
1157
1158		spin_unlock(&data->lock);
1159		return;
1160	}
1161
1162	data->bcurrent_msg_processing = true;
1163	dev_dbg(&data->master->dev,
1164		"%s Set data->bcurrent_msg_processing= true\n", __func__);
1165
1166	/* Get the message from the queue and delete it from there. */
1167	data->current_msg = list_entry(data->queue.next, struct spi_message,
1168					queue);
1169
1170	list_del_init(&data->current_msg->queue);
1171
1172	data->current_msg->status = 0;
1173
1174	pch_spi_select_chip(data, data->current_msg->spi);
1175
1176	spin_unlock(&data->lock);
1177
1178	if (data->use_dma)
1179		pch_spi_request_dma(data,
1180				    data->current_msg->spi->bits_per_word);
1181	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1182	do {
1183		int cnt;
1184		/* If we are already processing a message get the next
1185		transfer structure from the message otherwise retrieve
1186		the 1st transfer request from the message. */
1187		spin_lock(&data->lock);
1188		if (data->cur_trans == NULL) {
1189			data->cur_trans =
1190				list_entry(data->current_msg->transfers.next,
1191					   struct spi_transfer, transfer_list);
1192			dev_dbg(&data->master->dev, "%s "
1193				":Getting 1st transfer message\n", __func__);
 
1194		} else {
1195			data->cur_trans =
1196				list_entry(data->cur_trans->transfer_list.next,
1197					   struct spi_transfer, transfer_list);
1198			dev_dbg(&data->master->dev, "%s "
1199				":Getting next transfer message\n", __func__);
 
1200		}
1201		spin_unlock(&data->lock);
1202
1203		if (!data->cur_trans->len)
1204			goto out;
1205		cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1206		data->save_total_len = data->cur_trans->len;
1207		if (data->use_dma) {
1208			int i;
1209			char *save_rx_buf = data->cur_trans->rx_buf;
1210			for (i = 0; i < cnt; i ++) {
 
1211				pch_spi_handle_dma(data, &bpw);
1212				if (!pch_spi_start_transfer(data)) {
1213					data->transfer_complete = true;
1214					data->current_msg->status = -EIO;
1215					data->current_msg->complete
1216						   (data->current_msg->context);
1217					data->bcurrent_msg_processing = false;
1218					data->current_msg = NULL;
1219					data->cur_trans = NULL;
1220					goto out;
1221				}
1222				pch_spi_copy_rx_data_for_dma(data, bpw);
1223			}
1224			data->cur_trans->rx_buf = save_rx_buf;
1225		} else {
1226			pch_spi_set_tx(data, &bpw);
1227			pch_spi_set_ir(data);
1228			pch_spi_copy_rx_data(data, bpw);
1229			kfree(data->pkt_rx_buff);
1230			data->pkt_rx_buff = NULL;
1231			kfree(data->pkt_tx_buff);
1232			data->pkt_tx_buff = NULL;
1233		}
1234		/* increment message count */
1235		data->cur_trans->len = data->save_total_len;
1236		data->current_msg->actual_length += data->cur_trans->len;
1237
1238		dev_dbg(&data->master->dev,
1239			"%s:data->current_msg->actual_length=%d\n",
1240			__func__, data->current_msg->actual_length);
1241
1242		/* check for delay */
1243		if (data->cur_trans->delay_usecs) {
1244			dev_dbg(&data->master->dev, "%s:"
1245				"delay in usec=%d\n", __func__,
1246				data->cur_trans->delay_usecs);
1247			udelay(data->cur_trans->delay_usecs);
1248		}
1249
1250		spin_lock(&data->lock);
1251
1252		/* No more transfer in this message. */
1253		if ((data->cur_trans->transfer_list.next) ==
1254		    &(data->current_msg->transfers)) {
1255			pch_spi_nomore_transfer(data);
1256		}
1257
1258		spin_unlock(&data->lock);
1259
1260	} while (data->cur_trans != NULL);
1261
1262out:
1263	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1264	if (data->use_dma)
1265		pch_spi_release_dma(data);
1266}
1267
1268static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1269				   struct pch_spi_data *data)
1270{
1271	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1272
1273	/* free workqueue */
1274	if (data->wk != NULL) {
1275		destroy_workqueue(data->wk);
1276		data->wk = NULL;
1277		dev_dbg(&board_dat->pdev->dev,
1278			"%s destroy_workqueue invoked successfully\n",
1279			__func__);
1280	}
1281}
1282
1283static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1284				 struct pch_spi_data *data)
1285{
1286	int retval = 0;
1287
1288	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1289
1290	/* create workqueue */
1291	data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
1292	if (!data->wk) {
1293		dev_err(&board_dat->pdev->dev,
1294			"%s create_singlet hread_workqueue failed\n", __func__);
1295		retval = -EBUSY;
1296		goto err_return;
1297	}
1298
1299	/* reset PCH SPI h/w */
1300	pch_spi_reset(data->master);
1301	dev_dbg(&board_dat->pdev->dev,
1302		"%s pch_spi_reset invoked successfully\n", __func__);
1303
1304	dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1305
1306err_return:
1307	if (retval != 0) {
1308		dev_err(&board_dat->pdev->dev,
1309			"%s FAIL:invoking pch_spi_free_resources\n", __func__);
1310		pch_spi_free_resources(board_dat, data);
1311	}
1312
1313	dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1314
1315	return retval;
1316}
1317
1318static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1319			     struct pch_spi_data *data)
1320{
1321	struct pch_spi_dma_ctrl *dma;
1322
1323	dma = &data->dma;
1324	if (dma->tx_buf_dma)
1325		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1326				  dma->tx_buf_virt, dma->tx_buf_dma);
1327	if (dma->rx_buf_dma)
1328		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1329				  dma->rx_buf_virt, dma->rx_buf_dma);
1330	return;
1331}
1332
1333static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1334			      struct pch_spi_data *data)
1335{
1336	struct pch_spi_dma_ctrl *dma;
 
1337
1338	dma = &data->dma;
 
1339	/* Get Consistent memory for Tx DMA */
1340	dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1341				PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
 
 
 
1342	/* Get Consistent memory for Rx DMA */
1343	dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1344				PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
 
 
 
 
1345}
1346
1347static int pch_spi_pd_probe(struct platform_device *plat_dev)
1348{
1349	int ret;
1350	struct spi_master *master;
1351	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1352	struct pch_spi_data *data;
1353
1354	dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1355
1356	master = spi_alloc_master(&board_dat->pdev->dev,
1357				  sizeof(struct pch_spi_data));
1358	if (!master) {
1359		dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1360			plat_dev->id);
1361		return -ENOMEM;
1362	}
1363
1364	data = spi_master_get_devdata(master);
1365	data->master = master;
1366
1367	platform_set_drvdata(plat_dev, data);
1368
1369	/* baseaddress + address offset) */
1370	data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1371					 PCH_ADDRESS_SIZE * plat_dev->id;
1372	data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1373	if (!data->io_remap_addr) {
1374		dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1375		ret = -ENOMEM;
1376		goto err_pci_iomap;
1377	}
1378	data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1379
1380	dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1381		plat_dev->id, data->io_remap_addr);
1382
1383	/* initialize members of SPI master */
1384	master->num_chipselect = PCH_MAX_CS;
1385	master->transfer = pch_spi_transfer;
1386	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1387	master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1388	master->max_speed_hz = PCH_MAX_BAUDRATE;
 
1389
1390	data->board_dat = board_dat;
1391	data->plat_dev = plat_dev;
1392	data->n_curnt_chip = 255;
1393	data->status = STATUS_RUNNING;
1394	data->ch = plat_dev->id;
1395	data->use_dma = use_dma;
1396
1397	INIT_LIST_HEAD(&data->queue);
1398	spin_lock_init(&data->lock);
1399	INIT_WORK(&data->work, pch_spi_process_messages);
1400	init_waitqueue_head(&data->wait);
1401
1402	ret = pch_spi_get_resources(board_dat, data);
1403	if (ret) {
1404		dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1405		goto err_spi_get_resources;
1406	}
1407
1408	ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1409			  IRQF_SHARED, KBUILD_MODNAME, data);
1410	if (ret) {
1411		dev_err(&plat_dev->dev,
1412			"%s request_irq failed\n", __func__);
1413		goto err_request_irq;
1414	}
1415	data->irq_reg_sts = true;
1416
1417	pch_spi_set_master_mode(master);
1418
1419	if (use_dma) {
1420		dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1421		pch_alloc_dma_buf(board_dat, data);
 
 
1422	}
1423
1424	ret = spi_register_master(master);
1425	if (ret != 0) {
1426		dev_err(&plat_dev->dev,
1427			"%s spi_register_master FAILED\n", __func__);
1428		goto err_spi_register_master;
1429	}
1430
1431	return 0;
1432
1433err_spi_register_master:
1434	pch_free_dma_buf(board_dat, data);
1435	free_irq(board_dat->pdev->irq, data);
1436err_request_irq:
1437	pch_spi_free_resources(board_dat, data);
1438err_spi_get_resources:
1439	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1440err_pci_iomap:
1441	spi_master_put(master);
1442
1443	return ret;
1444}
1445
1446static int pch_spi_pd_remove(struct platform_device *plat_dev)
1447{
1448	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1449	struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1450	int count;
1451	unsigned long flags;
1452
1453	dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1454		__func__, plat_dev->id, board_dat->pdev->irq);
1455
1456	if (use_dma)
1457		pch_free_dma_buf(board_dat, data);
1458
1459	/* check for any pending messages; no action is taken if the queue
1460	 * is still full; but at least we tried.  Unload anyway */
1461	count = 500;
1462	spin_lock_irqsave(&data->lock, flags);
1463	data->status = STATUS_EXITING;
1464	while ((list_empty(&data->queue) == 0) && --count) {
1465		dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1466			__func__);
1467		spin_unlock_irqrestore(&data->lock, flags);
1468		msleep(PCH_SLEEP_TIME);
1469		spin_lock_irqsave(&data->lock, flags);
1470	}
1471	spin_unlock_irqrestore(&data->lock, flags);
1472
1473	pch_spi_free_resources(board_dat, data);
1474	/* disable interrupts & free IRQ */
1475	if (data->irq_reg_sts) {
1476		/* disable interrupts */
1477		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1478		data->irq_reg_sts = false;
1479		free_irq(board_dat->pdev->irq, data);
1480	}
1481
1482	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1483	spi_unregister_master(data->master);
1484
1485	return 0;
1486}
1487#ifdef CONFIG_PM
1488static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1489			      pm_message_t state)
1490{
1491	u8 count;
1492	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1493	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1494
1495	dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1496
1497	if (!board_dat) {
1498		dev_err(&pd_dev->dev,
1499			"%s pci_get_drvdata returned NULL\n", __func__);
1500		return -EFAULT;
1501	}
1502
1503	/* check if the current message is processed:
1504	   Only after thats done the transfer will be suspended */
1505	count = 255;
1506	while ((--count) > 0) {
1507		if (!(data->bcurrent_msg_processing))
1508			break;
1509		msleep(PCH_SLEEP_TIME);
1510	}
1511
1512	/* Free IRQ */
1513	if (data->irq_reg_sts) {
1514		/* disable all interrupts */
1515		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1516		pch_spi_reset(data->master);
1517		free_irq(board_dat->pdev->irq, data);
1518
1519		data->irq_reg_sts = false;
1520		dev_dbg(&pd_dev->dev,
1521			"%s free_irq invoked successfully.\n", __func__);
1522	}
1523
1524	return 0;
1525}
1526
1527static int pch_spi_pd_resume(struct platform_device *pd_dev)
1528{
1529	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1530	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1531	int retval;
1532
1533	if (!board_dat) {
1534		dev_err(&pd_dev->dev,
1535			"%s pci_get_drvdata returned NULL\n", __func__);
1536		return -EFAULT;
1537	}
1538
1539	if (!data->irq_reg_sts) {
1540		/* register IRQ */
1541		retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1542				     IRQF_SHARED, KBUILD_MODNAME, data);
1543		if (retval < 0) {
1544			dev_err(&pd_dev->dev,
1545				"%s request_irq failed\n", __func__);
1546			return retval;
1547		}
1548
1549		/* reset PCH SPI h/w */
1550		pch_spi_reset(data->master);
1551		pch_spi_set_master_mode(data->master);
1552		data->irq_reg_sts = true;
1553	}
1554	return 0;
1555}
1556#else
1557#define pch_spi_pd_suspend NULL
1558#define pch_spi_pd_resume NULL
1559#endif
1560
1561static struct platform_driver pch_spi_pd_driver = {
1562	.driver = {
1563		.name = "pch-spi",
1564		.owner = THIS_MODULE,
1565	},
1566	.probe = pch_spi_pd_probe,
1567	.remove = pch_spi_pd_remove,
1568	.suspend = pch_spi_pd_suspend,
1569	.resume = pch_spi_pd_resume
1570};
1571
1572static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1573{
1574	struct pch_spi_board_data *board_dat;
1575	struct platform_device *pd_dev = NULL;
1576	int retval;
1577	int i;
1578	struct pch_pd_dev_save *pd_dev_save;
1579
1580	pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1581	if (!pd_dev_save) {
1582		dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
1583		return -ENOMEM;
1584	}
1585
1586	board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1587	if (!board_dat) {
1588		dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
1589		retval = -ENOMEM;
1590		goto err_no_mem;
1591	}
1592
1593	retval = pci_request_regions(pdev, KBUILD_MODNAME);
1594	if (retval) {
1595		dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1596		goto pci_request_regions;
1597	}
1598
1599	board_dat->pdev = pdev;
1600	board_dat->num = id->driver_data;
1601	pd_dev_save->num = id->driver_data;
1602	pd_dev_save->board_dat = board_dat;
1603
1604	retval = pci_enable_device(pdev);
1605	if (retval) {
1606		dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1607		goto pci_enable_device;
1608	}
1609
1610	for (i = 0; i < board_dat->num; i++) {
1611		pd_dev = platform_device_alloc("pch-spi", i);
1612		if (!pd_dev) {
1613			dev_err(&pdev->dev, "platform_device_alloc failed\n");
1614			retval = -ENOMEM;
1615			goto err_platform_device;
1616		}
1617		pd_dev_save->pd_save[i] = pd_dev;
1618		pd_dev->dev.parent = &pdev->dev;
1619
1620		retval = platform_device_add_data(pd_dev, board_dat,
1621						  sizeof(*board_dat));
1622		if (retval) {
1623			dev_err(&pdev->dev,
1624				"platform_device_add_data failed\n");
1625			platform_device_put(pd_dev);
1626			goto err_platform_device;
1627		}
1628
1629		retval = platform_device_add(pd_dev);
1630		if (retval) {
1631			dev_err(&pdev->dev, "platform_device_add failed\n");
1632			platform_device_put(pd_dev);
1633			goto err_platform_device;
1634		}
1635	}
1636
1637	pci_set_drvdata(pdev, pd_dev_save);
1638
1639	return 0;
1640
1641err_platform_device:
1642	while (--i >= 0)
1643		platform_device_unregister(pd_dev_save->pd_save[i]);
1644	pci_disable_device(pdev);
1645pci_enable_device:
1646	pci_release_regions(pdev);
1647pci_request_regions:
1648	kfree(board_dat);
1649err_no_mem:
1650	kfree(pd_dev_save);
1651
1652	return retval;
1653}
1654
1655static void pch_spi_remove(struct pci_dev *pdev)
1656{
1657	int i;
1658	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1659
1660	dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1661
1662	for (i = 0; i < pd_dev_save->num; i++)
1663		platform_device_unregister(pd_dev_save->pd_save[i]);
1664
1665	pci_disable_device(pdev);
1666	pci_release_regions(pdev);
1667	kfree(pd_dev_save->board_dat);
1668	kfree(pd_dev_save);
1669}
1670
1671#ifdef CONFIG_PM
1672static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1673{
1674	int retval;
1675	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1676
1677	dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1678
1679	pd_dev_save->board_dat->suspend_sts = true;
1680
1681	/* save config space */
1682	retval = pci_save_state(pdev);
1683	if (retval == 0) {
1684		pci_enable_wake(pdev, PCI_D3hot, 0);
1685		pci_disable_device(pdev);
1686		pci_set_power_state(pdev, PCI_D3hot);
1687	} else {
1688		dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1689	}
1690
1691	return retval;
1692}
1693
1694static int pch_spi_resume(struct pci_dev *pdev)
1695{
1696	int retval;
1697	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1698	dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1699
1700	pci_set_power_state(pdev, PCI_D0);
1701	pci_restore_state(pdev);
1702
1703	retval = pci_enable_device(pdev);
1704	if (retval < 0) {
1705		dev_err(&pdev->dev,
1706			"%s pci_enable_device failed\n", __func__);
1707	} else {
1708		pci_enable_wake(pdev, PCI_D3hot, 0);
1709
1710		/* set suspend status to false */
1711		pd_dev_save->board_dat->suspend_sts = false;
1712	}
1713
1714	return retval;
1715}
1716#else
1717#define pch_spi_suspend NULL
1718#define pch_spi_resume NULL
1719
1720#endif
1721
1722static struct pci_driver pch_spi_pcidev_driver = {
1723	.name = "pch_spi",
1724	.id_table = pch_spi_pcidev_id,
1725	.probe = pch_spi_probe,
1726	.remove = pch_spi_remove,
1727	.suspend = pch_spi_suspend,
1728	.resume = pch_spi_resume,
1729};
1730
1731static int __init pch_spi_init(void)
1732{
1733	int ret;
1734	ret = platform_driver_register(&pch_spi_pd_driver);
1735	if (ret)
1736		return ret;
1737
1738	ret = pci_register_driver(&pch_spi_pcidev_driver);
1739	if (ret) {
1740		platform_driver_unregister(&pch_spi_pd_driver);
1741		return ret;
1742	}
1743
1744	return 0;
1745}
1746module_init(pch_spi_init);
1747
1748static void __exit pch_spi_exit(void)
1749{
1750	pci_unregister_driver(&pch_spi_pcidev_driver);
1751	platform_driver_unregister(&pch_spi_pd_driver);
1752}
1753module_exit(pch_spi_exit);
1754
1755module_param(use_dma, int, 0644);
1756MODULE_PARM_DESC(use_dma,
1757		 "to use DMA for data transfers pass 1 else 0; default 1");
1758
1759MODULE_LICENSE("GPL");
1760MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1761MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1762