Loading...
1/*
2 * Copyright (c) 2004-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18#include <linux/module.h>
19#include <linux/mmc/card.h>
20#include <linux/mmc/mmc.h>
21#include <linux/mmc/host.h>
22#include <linux/mmc/sdio_func.h>
23#include <linux/mmc/sdio_ids.h>
24#include <linux/mmc/sdio.h>
25#include <linux/mmc/sd.h>
26#include "hif.h"
27#include "hif-ops.h"
28#include "target.h"
29#include "debug.h"
30#include "cfg80211.h"
31#include "trace.h"
32
33struct ath6kl_sdio {
34 struct sdio_func *func;
35
36 /* protects access to bus_req_freeq */
37 spinlock_t lock;
38
39 /* free list */
40 struct list_head bus_req_freeq;
41
42 /* available bus requests */
43 struct bus_request bus_req[BUS_REQUEST_MAX_NUM];
44
45 struct ath6kl *ar;
46
47 u8 *dma_buffer;
48
49 /* protects access to dma_buffer */
50 struct mutex dma_buffer_mutex;
51
52 /* scatter request list head */
53 struct list_head scat_req;
54
55 atomic_t irq_handling;
56 wait_queue_head_t irq_wq;
57
58 /* protects access to scat_req */
59 spinlock_t scat_lock;
60
61 bool scatter_enabled;
62
63 bool is_disabled;
64 const struct sdio_device_id *id;
65 struct work_struct wr_async_work;
66 struct list_head wr_asyncq;
67
68 /* protects access to wr_asyncq */
69 spinlock_t wr_async_lock;
70};
71
72#define CMD53_ARG_READ 0
73#define CMD53_ARG_WRITE 1
74#define CMD53_ARG_BLOCK_BASIS 1
75#define CMD53_ARG_FIXED_ADDRESS 0
76#define CMD53_ARG_INCR_ADDRESS 1
77
78static int ath6kl_sdio_config(struct ath6kl *ar);
79
80static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar)
81{
82 return ar->hif_priv;
83}
84
85/*
86 * Macro to check if DMA buffer is WORD-aligned and DMA-able.
87 * Most host controllers assume the buffer is DMA'able and will
88 * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid
89 * check fails on stack memory.
90 */
91static inline bool buf_needs_bounce(u8 *buf)
92{
93 return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf);
94}
95
96static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar)
97{
98 struct ath6kl_mbox_info *mbox_info = &ar->mbox_info;
99
100 /* EP1 has an extended range */
101 mbox_info->htc_addr = HIF_MBOX_BASE_ADDR;
102 mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR;
103 mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH;
104 mbox_info->block_size = HIF_MBOX_BLOCK_SIZE;
105 mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR;
106 mbox_info->gmbox_sz = HIF_GMBOX_WIDTH;
107}
108
109static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func,
110 u8 mode, u8 opcode, u32 addr,
111 u16 blksz)
112{
113 *arg = (((rw & 1) << 31) |
114 ((func & 0x7) << 28) |
115 ((mode & 1) << 27) |
116 ((opcode & 1) << 26) |
117 ((addr & 0x1FFFF) << 9) |
118 (blksz & 0x1FF));
119}
120
121static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
122 unsigned int address,
123 unsigned char val)
124{
125 const u8 func = 0;
126
127 *arg = ((write & 1) << 31) |
128 ((func & 0x7) << 28) |
129 ((raw & 1) << 27) |
130 (1 << 26) |
131 ((address & 0x1FFFF) << 9) |
132 (1 << 8) |
133 (val & 0xFF);
134}
135
136static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
137 unsigned int address,
138 unsigned char byte)
139{
140 struct mmc_command io_cmd;
141
142 memset(&io_cmd, 0, sizeof(io_cmd));
143 ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
144 io_cmd.opcode = SD_IO_RW_DIRECT;
145 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
146
147 return mmc_wait_for_cmd(card->host, &io_cmd, 0);
148}
149
150static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr,
151 u8 *buf, u32 len)
152{
153 int ret = 0;
154
155 sdio_claim_host(func);
156
157 if (request & HIF_WRITE) {
158 /* FIXME: looks like ugly workaround for something */
159 if (addr >= HIF_MBOX_BASE_ADDR &&
160 addr <= HIF_MBOX_END_ADDR)
161 addr += (HIF_MBOX_WIDTH - len);
162
163 /* FIXME: this also looks like ugly workaround */
164 if (addr == HIF_MBOX0_EXT_BASE_ADDR)
165 addr += HIF_MBOX0_EXT_WIDTH - len;
166
167 if (request & HIF_FIXED_ADDRESS)
168 ret = sdio_writesb(func, addr, buf, len);
169 else
170 ret = sdio_memcpy_toio(func, addr, buf, len);
171 } else {
172 if (request & HIF_FIXED_ADDRESS)
173 ret = sdio_readsb(func, buf, addr, len);
174 else
175 ret = sdio_memcpy_fromio(func, buf, addr, len);
176 }
177
178 sdio_release_host(func);
179
180 ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n",
181 request & HIF_WRITE ? "wr" : "rd", addr,
182 request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len);
183 ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len);
184
185 trace_ath6kl_sdio(addr, request, buf, len);
186
187 return ret;
188}
189
190static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio)
191{
192 struct bus_request *bus_req;
193
194 spin_lock_bh(&ar_sdio->lock);
195
196 if (list_empty(&ar_sdio->bus_req_freeq)) {
197 spin_unlock_bh(&ar_sdio->lock);
198 return NULL;
199 }
200
201 bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
202 struct bus_request, list);
203 list_del(&bus_req->list);
204
205 spin_unlock_bh(&ar_sdio->lock);
206 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
207 __func__, bus_req);
208
209 return bus_req;
210}
211
212static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio,
213 struct bus_request *bus_req)
214{
215 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
216 __func__, bus_req);
217
218 spin_lock_bh(&ar_sdio->lock);
219 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
220 spin_unlock_bh(&ar_sdio->lock);
221}
222
223static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req,
224 struct mmc_data *data)
225{
226 struct scatterlist *sg;
227 int i;
228
229 data->blksz = HIF_MBOX_BLOCK_SIZE;
230 data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE;
231
232 ath6kl_dbg(ATH6KL_DBG_SCATTER,
233 "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n",
234 (scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr,
235 data->blksz, data->blocks, scat_req->len,
236 scat_req->scat_entries);
237
238 data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE :
239 MMC_DATA_READ;
240
241 /* fill SG entries */
242 sg = scat_req->sgentries;
243 sg_init_table(sg, scat_req->scat_entries);
244
245 /* assemble SG list */
246 for (i = 0; i < scat_req->scat_entries; i++, sg++) {
247 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n",
248 i, scat_req->scat_list[i].buf,
249 scat_req->scat_list[i].len);
250
251 sg_set_buf(sg, scat_req->scat_list[i].buf,
252 scat_req->scat_list[i].len);
253 }
254
255 /* set scatter-gather table for request */
256 data->sg = scat_req->sgentries;
257 data->sg_len = scat_req->scat_entries;
258}
259
260static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio,
261 struct bus_request *req)
262{
263 struct mmc_request mmc_req;
264 struct mmc_command cmd;
265 struct mmc_data data;
266 struct hif_scatter_req *scat_req;
267 u8 opcode, rw;
268 int status, len;
269
270 scat_req = req->scat_req;
271
272 if (scat_req->virt_scat) {
273 len = scat_req->len;
274 if (scat_req->req & HIF_BLOCK_BASIS)
275 len = round_down(len, HIF_MBOX_BLOCK_SIZE);
276
277 status = ath6kl_sdio_io(ar_sdio->func, scat_req->req,
278 scat_req->addr, scat_req->virt_dma_buf,
279 len);
280 goto scat_complete;
281 }
282
283 memset(&mmc_req, 0, sizeof(struct mmc_request));
284 memset(&cmd, 0, sizeof(struct mmc_command));
285 memset(&data, 0, sizeof(struct mmc_data));
286
287 ath6kl_sdio_setup_scat_data(scat_req, &data);
288
289 opcode = (scat_req->req & HIF_FIXED_ADDRESS) ?
290 CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS;
291
292 rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ;
293
294 /* Fixup the address so that the last byte will fall on MBOX EOM */
295 if (scat_req->req & HIF_WRITE) {
296 if (scat_req->addr == HIF_MBOX_BASE_ADDR)
297 scat_req->addr += HIF_MBOX_WIDTH - scat_req->len;
298 else
299 /* Uses extended address range */
300 scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len;
301 }
302
303 /* set command argument */
304 ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num,
305 CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr,
306 data.blocks);
307
308 cmd.opcode = SD_IO_RW_EXTENDED;
309 cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
310
311 mmc_req.cmd = &cmd;
312 mmc_req.data = &data;
313
314 sdio_claim_host(ar_sdio->func);
315
316 mmc_set_data_timeout(&data, ar_sdio->func->card);
317
318 trace_ath6kl_sdio_scat(scat_req->addr,
319 scat_req->req,
320 scat_req->len,
321 scat_req->scat_entries,
322 scat_req->scat_list);
323
324 /* synchronous call to process request */
325 mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req);
326
327 sdio_release_host(ar_sdio->func);
328
329 status = cmd.error ? cmd.error : data.error;
330
331scat_complete:
332 scat_req->status = status;
333
334 if (scat_req->status)
335 ath6kl_err("Scatter write request failed:%d\n",
336 scat_req->status);
337
338 if (scat_req->req & HIF_ASYNCHRONOUS)
339 scat_req->complete(ar_sdio->ar->htc_target, scat_req);
340
341 return status;
342}
343
344static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio,
345 int n_scat_entry, int n_scat_req,
346 bool virt_scat)
347{
348 struct hif_scatter_req *s_req;
349 struct bus_request *bus_req;
350 int i, scat_req_sz, scat_list_sz, size;
351 u8 *virt_buf;
352
353 scat_list_sz = n_scat_entry * sizeof(struct hif_scatter_item);
354 scat_req_sz = sizeof(*s_req) + scat_list_sz;
355
356 if (!virt_scat)
357 size = sizeof(struct scatterlist) * n_scat_entry;
358 else
359 size = 2 * L1_CACHE_BYTES +
360 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
361
362 for (i = 0; i < n_scat_req; i++) {
363 /* allocate the scatter request */
364 s_req = kzalloc(scat_req_sz, GFP_KERNEL);
365 if (!s_req)
366 return -ENOMEM;
367
368 if (virt_scat) {
369 virt_buf = kzalloc(size, GFP_KERNEL);
370 if (!virt_buf) {
371 kfree(s_req);
372 return -ENOMEM;
373 }
374
375 s_req->virt_dma_buf =
376 (u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf);
377 } else {
378 /* allocate sglist */
379 s_req->sgentries = kzalloc(size, GFP_KERNEL);
380
381 if (!s_req->sgentries) {
382 kfree(s_req);
383 return -ENOMEM;
384 }
385 }
386
387 /* allocate a bus request for this scatter request */
388 bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
389 if (!bus_req) {
390 kfree(s_req->sgentries);
391 kfree(s_req->virt_dma_buf);
392 kfree(s_req);
393 return -ENOMEM;
394 }
395
396 /* assign the scatter request to this bus request */
397 bus_req->scat_req = s_req;
398 s_req->busrequest = bus_req;
399
400 s_req->virt_scat = virt_scat;
401
402 /* add it to the scatter pool */
403 hif_scatter_req_add(ar_sdio->ar, s_req);
404 }
405
406 return 0;
407}
408
409static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf,
410 u32 len, u32 request)
411{
412 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
413 u8 *tbuf = NULL;
414 int ret;
415 bool bounced = false;
416
417 if (request & HIF_BLOCK_BASIS)
418 len = round_down(len, HIF_MBOX_BLOCK_SIZE);
419
420 if (buf_needs_bounce(buf)) {
421 if (!ar_sdio->dma_buffer)
422 return -ENOMEM;
423 mutex_lock(&ar_sdio->dma_buffer_mutex);
424 tbuf = ar_sdio->dma_buffer;
425
426 if (request & HIF_WRITE)
427 memcpy(tbuf, buf, len);
428
429 bounced = true;
430 } else {
431 tbuf = buf;
432 }
433
434 ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len);
435 if ((request & HIF_READ) && bounced)
436 memcpy(buf, tbuf, len);
437
438 if (bounced)
439 mutex_unlock(&ar_sdio->dma_buffer_mutex);
440
441 return ret;
442}
443
444static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio,
445 struct bus_request *req)
446{
447 if (req->scat_req) {
448 ath6kl_sdio_scat_rw(ar_sdio, req);
449 } else {
450 void *context;
451 int status;
452
453 status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address,
454 req->buffer, req->length,
455 req->request);
456 context = req->packet;
457 ath6kl_sdio_free_bus_req(ar_sdio, req);
458 ath6kl_hif_rw_comp_handler(context, status);
459 }
460}
461
462static void ath6kl_sdio_write_async_work(struct work_struct *work)
463{
464 struct ath6kl_sdio *ar_sdio;
465 struct bus_request *req, *tmp_req;
466
467 ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work);
468
469 spin_lock_bh(&ar_sdio->wr_async_lock);
470 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
471 list_del(&req->list);
472 spin_unlock_bh(&ar_sdio->wr_async_lock);
473 __ath6kl_sdio_write_async(ar_sdio, req);
474 spin_lock_bh(&ar_sdio->wr_async_lock);
475 }
476 spin_unlock_bh(&ar_sdio->wr_async_lock);
477}
478
479static void ath6kl_sdio_irq_handler(struct sdio_func *func)
480{
481 int status;
482 struct ath6kl_sdio *ar_sdio;
483
484 ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n");
485
486 ar_sdio = sdio_get_drvdata(func);
487 atomic_set(&ar_sdio->irq_handling, 1);
488 /*
489 * Release the host during interrups so we can pick it back up when
490 * we process commands.
491 */
492 sdio_release_host(ar_sdio->func);
493
494 status = ath6kl_hif_intr_bh_handler(ar_sdio->ar);
495 sdio_claim_host(ar_sdio->func);
496
497 atomic_set(&ar_sdio->irq_handling, 0);
498 wake_up(&ar_sdio->irq_wq);
499
500 WARN_ON(status && status != -ECANCELED);
501}
502
503static int ath6kl_sdio_power_on(struct ath6kl *ar)
504{
505 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
506 struct sdio_func *func = ar_sdio->func;
507 int ret = 0;
508
509 if (!ar_sdio->is_disabled)
510 return 0;
511
512 ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n");
513
514 sdio_claim_host(func);
515
516 ret = sdio_enable_func(func);
517 if (ret) {
518 ath6kl_err("Unable to enable sdio func: %d)\n", ret);
519 sdio_release_host(func);
520 return ret;
521 }
522
523 sdio_release_host(func);
524
525 /*
526 * Wait for hardware to initialise. It should take a lot less than
527 * 10 ms but let's be conservative here.
528 */
529 msleep(10);
530
531 ret = ath6kl_sdio_config(ar);
532 if (ret) {
533 ath6kl_err("Failed to config sdio: %d\n", ret);
534 goto out;
535 }
536
537 ar_sdio->is_disabled = false;
538
539out:
540 return ret;
541}
542
543static int ath6kl_sdio_power_off(struct ath6kl *ar)
544{
545 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
546 int ret;
547
548 if (ar_sdio->is_disabled)
549 return 0;
550
551 ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n");
552
553 /* Disable the card */
554 sdio_claim_host(ar_sdio->func);
555 ret = sdio_disable_func(ar_sdio->func);
556 sdio_release_host(ar_sdio->func);
557
558 if (ret)
559 return ret;
560
561 ar_sdio->is_disabled = true;
562
563 return ret;
564}
565
566static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer,
567 u32 length, u32 request,
568 struct htc_packet *packet)
569{
570 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
571 struct bus_request *bus_req;
572
573 bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
574
575 if (WARN_ON_ONCE(!bus_req))
576 return -ENOMEM;
577
578 bus_req->address = address;
579 bus_req->buffer = buffer;
580 bus_req->length = length;
581 bus_req->request = request;
582 bus_req->packet = packet;
583
584 spin_lock_bh(&ar_sdio->wr_async_lock);
585 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
586 spin_unlock_bh(&ar_sdio->wr_async_lock);
587 queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
588
589 return 0;
590}
591
592static void ath6kl_sdio_irq_enable(struct ath6kl *ar)
593{
594 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
595 int ret;
596
597 sdio_claim_host(ar_sdio->func);
598
599 /* Register the isr */
600 ret = sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler);
601 if (ret)
602 ath6kl_err("Failed to claim sdio irq: %d\n", ret);
603
604 sdio_release_host(ar_sdio->func);
605}
606
607static bool ath6kl_sdio_is_on_irq(struct ath6kl *ar)
608{
609 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
610
611 return !atomic_read(&ar_sdio->irq_handling);
612}
613
614static void ath6kl_sdio_irq_disable(struct ath6kl *ar)
615{
616 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
617 int ret;
618
619 sdio_claim_host(ar_sdio->func);
620
621 if (atomic_read(&ar_sdio->irq_handling)) {
622 sdio_release_host(ar_sdio->func);
623
624 ret = wait_event_interruptible(ar_sdio->irq_wq,
625 ath6kl_sdio_is_on_irq(ar));
626 if (ret)
627 return;
628
629 sdio_claim_host(ar_sdio->func);
630 }
631
632 ret = sdio_release_irq(ar_sdio->func);
633 if (ret)
634 ath6kl_err("Failed to release sdio irq: %d\n", ret);
635
636 sdio_release_host(ar_sdio->func);
637}
638
639static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar)
640{
641 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
642 struct hif_scatter_req *node = NULL;
643
644 spin_lock_bh(&ar_sdio->scat_lock);
645
646 if (!list_empty(&ar_sdio->scat_req)) {
647 node = list_first_entry(&ar_sdio->scat_req,
648 struct hif_scatter_req, list);
649 list_del(&node->list);
650
651 node->scat_q_depth = get_queue_depth(&ar_sdio->scat_req);
652 }
653
654 spin_unlock_bh(&ar_sdio->scat_lock);
655
656 return node;
657}
658
659static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar,
660 struct hif_scatter_req *s_req)
661{
662 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
663
664 spin_lock_bh(&ar_sdio->scat_lock);
665
666 list_add_tail(&s_req->list, &ar_sdio->scat_req);
667
668 spin_unlock_bh(&ar_sdio->scat_lock);
669}
670
671/* scatter gather read write request */
672static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar,
673 struct hif_scatter_req *scat_req)
674{
675 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
676 u32 request = scat_req->req;
677 int status = 0;
678
679 if (!scat_req->len)
680 return -EINVAL;
681
682 ath6kl_dbg(ATH6KL_DBG_SCATTER,
683 "hif-scatter: total len: %d scatter entries: %d\n",
684 scat_req->len, scat_req->scat_entries);
685
686 if (request & HIF_SYNCHRONOUS) {
687 status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest);
688 } else {
689 spin_lock_bh(&ar_sdio->wr_async_lock);
690 list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq);
691 spin_unlock_bh(&ar_sdio->wr_async_lock);
692 queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
693 }
694
695 return status;
696}
697
698/* clean up scatter support */
699static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar)
700{
701 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
702 struct hif_scatter_req *s_req, *tmp_req;
703
704 /* empty the free list */
705 spin_lock_bh(&ar_sdio->scat_lock);
706 list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) {
707 list_del(&s_req->list);
708 spin_unlock_bh(&ar_sdio->scat_lock);
709
710 /*
711 * FIXME: should we also call completion handler with
712 * ath6kl_hif_rw_comp_handler() with status -ECANCELED so
713 * that the packet is properly freed?
714 */
715 if (s_req->busrequest) {
716 s_req->busrequest->scat_req = NULL;
717 ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest);
718 }
719 kfree(s_req->virt_dma_buf);
720 kfree(s_req->sgentries);
721 kfree(s_req);
722
723 spin_lock_bh(&ar_sdio->scat_lock);
724 }
725 spin_unlock_bh(&ar_sdio->scat_lock);
726
727 ar_sdio->scatter_enabled = false;
728}
729
730/* setup of HIF scatter resources */
731static int ath6kl_sdio_enable_scatter(struct ath6kl *ar)
732{
733 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
734 struct htc_target *target = ar->htc_target;
735 int ret = 0;
736 bool virt_scat = false;
737
738 if (ar_sdio->scatter_enabled)
739 return 0;
740
741 ar_sdio->scatter_enabled = true;
742
743 /* check if host supports scatter and it meets our requirements */
744 if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) {
745 ath6kl_err("host only supports scatter of :%d entries, need: %d\n",
746 ar_sdio->func->card->host->max_segs,
747 MAX_SCATTER_ENTRIES_PER_REQ);
748 virt_scat = true;
749 }
750
751 if (!virt_scat) {
752 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
753 MAX_SCATTER_ENTRIES_PER_REQ,
754 MAX_SCATTER_REQUESTS, virt_scat);
755
756 if (!ret) {
757 ath6kl_dbg(ATH6KL_DBG_BOOT,
758 "hif-scatter enabled requests %d entries %d\n",
759 MAX_SCATTER_REQUESTS,
760 MAX_SCATTER_ENTRIES_PER_REQ);
761
762 target->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ;
763 target->max_xfer_szper_scatreq =
764 MAX_SCATTER_REQ_TRANSFER_SIZE;
765 } else {
766 ath6kl_sdio_cleanup_scatter(ar);
767 ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n");
768 }
769 }
770
771 if (virt_scat || ret) {
772 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
773 ATH6KL_SCATTER_ENTRIES_PER_REQ,
774 ATH6KL_SCATTER_REQS, virt_scat);
775
776 if (ret) {
777 ath6kl_err("failed to alloc virtual scatter resources !\n");
778 ath6kl_sdio_cleanup_scatter(ar);
779 return ret;
780 }
781
782 ath6kl_dbg(ATH6KL_DBG_BOOT,
783 "virtual scatter enabled requests %d entries %d\n",
784 ATH6KL_SCATTER_REQS, ATH6KL_SCATTER_ENTRIES_PER_REQ);
785
786 target->max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ;
787 target->max_xfer_szper_scatreq =
788 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
789 }
790
791 return 0;
792}
793
794static int ath6kl_sdio_config(struct ath6kl *ar)
795{
796 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
797 struct sdio_func *func = ar_sdio->func;
798 int ret;
799
800 sdio_claim_host(func);
801
802 if (ar_sdio->id->device >= SDIO_DEVICE_ID_ATHEROS_AR6003_00) {
803 /* enable 4-bit ASYNC interrupt on AR6003 or later */
804 ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card,
805 CCCR_SDIO_IRQ_MODE_REG,
806 SDIO_IRQ_MODE_ASYNC_4BIT_IRQ);
807 if (ret) {
808 ath6kl_err("Failed to enable 4-bit async irq mode %d\n",
809 ret);
810 goto out;
811 }
812
813 ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n");
814 }
815
816 /* give us some time to enable, in ms */
817 func->enable_timeout = 100;
818
819 ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE);
820 if (ret) {
821 ath6kl_err("Set sdio block size %d failed: %d)\n",
822 HIF_MBOX_BLOCK_SIZE, ret);
823 goto out;
824 }
825
826out:
827 sdio_release_host(func);
828
829 return ret;
830}
831
832static int ath6kl_set_sdio_pm_caps(struct ath6kl *ar)
833{
834 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
835 struct sdio_func *func = ar_sdio->func;
836 mmc_pm_flag_t flags;
837 int ret;
838
839 flags = sdio_get_host_pm_caps(func);
840
841 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags);
842
843 if (!(flags & MMC_PM_WAKE_SDIO_IRQ) ||
844 !(flags & MMC_PM_KEEP_POWER))
845 return -EINVAL;
846
847 ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
848 if (ret) {
849 ath6kl_err("set sdio keep pwr flag failed: %d\n", ret);
850 return ret;
851 }
852
853 /* sdio irq wakes up host */
854 ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ);
855 if (ret)
856 ath6kl_err("set sdio wake irq flag failed: %d\n", ret);
857
858 return ret;
859}
860
861static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow)
862{
863 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
864 struct sdio_func *func = ar_sdio->func;
865 mmc_pm_flag_t flags;
866 bool try_deepsleep = false;
867 int ret;
868
869 if (ar->suspend_mode == WLAN_POWER_STATE_WOW ||
870 (!ar->suspend_mode && wow)) {
871 ret = ath6kl_set_sdio_pm_caps(ar);
872 if (ret)
873 goto cut_pwr;
874
875 ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_WOW, wow);
876 if (ret && ret != -ENOTCONN)
877 ath6kl_err("wow suspend failed: %d\n", ret);
878
879 if (ret &&
880 (!ar->wow_suspend_mode ||
881 ar->wow_suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP))
882 try_deepsleep = true;
883 else if (ret &&
884 ar->wow_suspend_mode == WLAN_POWER_STATE_CUT_PWR)
885 goto cut_pwr;
886 if (!ret)
887 return 0;
888 }
889
890 if (ar->suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP ||
891 !ar->suspend_mode || try_deepsleep) {
892 flags = sdio_get_host_pm_caps(func);
893 if (!(flags & MMC_PM_KEEP_POWER))
894 goto cut_pwr;
895
896 ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
897 if (ret)
898 goto cut_pwr;
899
900 /*
901 * Workaround to support Deep Sleep with MSM, set the host pm
902 * flag as MMC_PM_WAKE_SDIO_IRQ to allow SDCC deiver to disable
903 * the sdc2_clock and internally allows MSM to enter
904 * TCXO shutdown properly.
905 */
906 if ((flags & MMC_PM_WAKE_SDIO_IRQ)) {
907 ret = sdio_set_host_pm_flags(func,
908 MMC_PM_WAKE_SDIO_IRQ);
909 if (ret)
910 goto cut_pwr;
911 }
912
913 ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_DEEPSLEEP,
914 NULL);
915 if (ret)
916 goto cut_pwr;
917
918 return 0;
919 }
920
921cut_pwr:
922 if (func->card && func->card->host)
923 func->card->host->pm_flags &= ~MMC_PM_KEEP_POWER;
924
925 return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_CUTPOWER, NULL);
926}
927
928static int ath6kl_sdio_resume(struct ath6kl *ar)
929{
930 switch (ar->state) {
931 case ATH6KL_STATE_OFF:
932 case ATH6KL_STATE_CUTPOWER:
933 ath6kl_dbg(ATH6KL_DBG_SUSPEND,
934 "sdio resume configuring sdio\n");
935
936 /* need to set sdio settings after power is cut from sdio */
937 ath6kl_sdio_config(ar);
938 break;
939
940 case ATH6KL_STATE_ON:
941 break;
942
943 case ATH6KL_STATE_DEEPSLEEP:
944 break;
945
946 case ATH6KL_STATE_WOW:
947 break;
948
949 case ATH6KL_STATE_SUSPENDING:
950 break;
951
952 case ATH6KL_STATE_RESUMING:
953 break;
954
955 case ATH6KL_STATE_RECOVERY:
956 break;
957 }
958
959 ath6kl_cfg80211_resume(ar);
960
961 return 0;
962}
963
964/* set the window address register (using 4-byte register access ). */
965static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
966{
967 int status;
968 u8 addr_val[4];
969 s32 i;
970
971 /*
972 * Write bytes 1,2,3 of the register to set the upper address bytes,
973 * the LSB is written last to initiate the access cycle
974 */
975
976 for (i = 1; i <= 3; i++) {
977 /*
978 * Fill the buffer with the address byte value we want to
979 * hit 4 times.
980 */
981 memset(addr_val, ((u8 *)&addr)[i], 4);
982
983 /*
984 * Hit each byte of the register address with a 4-byte
985 * write operation to the same address, this is a harmless
986 * operation.
987 */
988 status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val,
989 4, HIF_WR_SYNC_BYTE_FIX);
990 if (status)
991 break;
992 }
993
994 if (status) {
995 ath6kl_err("%s: failed to write initial bytes of 0x%x to window reg: 0x%X\n",
996 __func__, addr, reg_addr);
997 return status;
998 }
999
1000 /*
1001 * Write the address register again, this time write the whole
1002 * 4-byte value. The effect here is that the LSB write causes the
1003 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
1004 * effect since we are writing the same values again
1005 */
1006 status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr),
1007 4, HIF_WR_SYNC_BYTE_INC);
1008
1009 if (status) {
1010 ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n",
1011 __func__, addr, reg_addr);
1012 return status;
1013 }
1014
1015 return 0;
1016}
1017
1018static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data)
1019{
1020 int status;
1021
1022 /* set window register to start read cycle */
1023 status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS,
1024 address);
1025
1026 if (status)
1027 return status;
1028
1029 /* read the data */
1030 status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1031 (u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC);
1032 if (status) {
1033 ath6kl_err("%s: failed to read from window data addr\n",
1034 __func__);
1035 return status;
1036 }
1037
1038 return status;
1039}
1040
1041static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address,
1042 __le32 data)
1043{
1044 int status;
1045 u32 val = (__force u32) data;
1046
1047 /* set write data */
1048 status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1049 (u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC);
1050 if (status) {
1051 ath6kl_err("%s: failed to write 0x%x to window data addr\n",
1052 __func__, data);
1053 return status;
1054 }
1055
1056 /* set window register, which starts the write cycle */
1057 return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
1058 address);
1059}
1060
1061static int ath6kl_sdio_bmi_credits(struct ath6kl *ar)
1062{
1063 u32 addr;
1064 unsigned long timeout;
1065 int ret;
1066
1067 ar->bmi.cmd_credits = 0;
1068
1069 /* Read the counter register to get the command credits */
1070 addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4;
1071
1072 timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1073 while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) {
1074 /*
1075 * Hit the credit counter with a 4-byte access, the first byte
1076 * read will hit the counter and cause a decrement, while the
1077 * remaining 3 bytes has no effect. The rationale behind this
1078 * is to make all HIF accesses 4-byte aligned.
1079 */
1080 ret = ath6kl_sdio_read_write_sync(ar, addr,
1081 (u8 *)&ar->bmi.cmd_credits, 4,
1082 HIF_RD_SYNC_BYTE_INC);
1083 if (ret) {
1084 ath6kl_err("Unable to decrement the command credit count register: %d\n",
1085 ret);
1086 return ret;
1087 }
1088
1089 /* The counter is only 8 bits.
1090 * Ignore anything in the upper 3 bytes
1091 */
1092 ar->bmi.cmd_credits &= 0xFF;
1093 }
1094
1095 if (!ar->bmi.cmd_credits) {
1096 ath6kl_err("bmi communication timeout\n");
1097 return -ETIMEDOUT;
1098 }
1099
1100 return 0;
1101}
1102
1103static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar)
1104{
1105 unsigned long timeout;
1106 u32 rx_word = 0;
1107 int ret = 0;
1108
1109 timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1110 while ((time_before(jiffies, timeout)) && !rx_word) {
1111 ret = ath6kl_sdio_read_write_sync(ar,
1112 RX_LOOKAHEAD_VALID_ADDRESS,
1113 (u8 *)&rx_word, sizeof(rx_word),
1114 HIF_RD_SYNC_BYTE_INC);
1115 if (ret) {
1116 ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n");
1117 return ret;
1118 }
1119
1120 /* all we really want is one bit */
1121 rx_word &= (1 << ENDPOINT1);
1122 }
1123
1124 if (!rx_word) {
1125 ath6kl_err("bmi_recv_buf FIFO empty\n");
1126 return -EINVAL;
1127 }
1128
1129 return ret;
1130}
1131
1132static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len)
1133{
1134 int ret;
1135 u32 addr;
1136
1137 ret = ath6kl_sdio_bmi_credits(ar);
1138 if (ret)
1139 return ret;
1140
1141 addr = ar->mbox_info.htc_addr;
1142
1143 ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1144 HIF_WR_SYNC_BYTE_INC);
1145 if (ret) {
1146 ath6kl_err("unable to send the bmi data to the device\n");
1147 return ret;
1148 }
1149
1150 return 0;
1151}
1152
1153static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len)
1154{
1155 int ret;
1156 u32 addr;
1157
1158 /*
1159 * During normal bootup, small reads may be required.
1160 * Rather than issue an HIF Read and then wait as the Target
1161 * adds successive bytes to the FIFO, we wait here until
1162 * we know that response data is available.
1163 *
1164 * This allows us to cleanly timeout on an unexpected
1165 * Target failure rather than risk problems at the HIF level.
1166 * In particular, this avoids SDIO timeouts and possibly garbage
1167 * data on some host controllers. And on an interconnect
1168 * such as Compact Flash (as well as some SDIO masters) which
1169 * does not provide any indication on data timeout, it avoids
1170 * a potential hang or garbage response.
1171 *
1172 * Synchronization is more difficult for reads larger than the
1173 * size of the MBOX FIFO (128B), because the Target is unable
1174 * to push the 129th byte of data until AFTER the Host posts an
1175 * HIF Read and removes some FIFO data. So for large reads the
1176 * Host proceeds to post an HIF Read BEFORE all the data is
1177 * actually available to read. Fortunately, large BMI reads do
1178 * not occur in practice -- they're supported for debug/development.
1179 *
1180 * So Host/Target BMI synchronization is divided into these cases:
1181 * CASE 1: length < 4
1182 * Should not happen
1183 *
1184 * CASE 2: 4 <= length <= 128
1185 * Wait for first 4 bytes to be in FIFO
1186 * If CONSERVATIVE_BMI_READ is enabled, also wait for
1187 * a BMI command credit, which indicates that the ENTIRE
1188 * response is available in the FIFO
1189 *
1190 * CASE 3: length > 128
1191 * Wait for the first 4 bytes to be in FIFO
1192 *
1193 * For most uses, a small timeout should be sufficient and we will
1194 * usually see a response quickly; but there may be some unusual
1195 * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1196 * For now, we use an unbounded busy loop while waiting for
1197 * BMI_EXECUTE.
1198 *
1199 * If BMI_EXECUTE ever needs to support longer-latency execution,
1200 * especially in production, this code needs to be enhanced to sleep
1201 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently
1202 * a function of Host processor speed.
1203 */
1204 if (len >= 4) { /* NB: Currently, always true */
1205 ret = ath6kl_bmi_get_rx_lkahd(ar);
1206 if (ret)
1207 return ret;
1208 }
1209
1210 addr = ar->mbox_info.htc_addr;
1211 ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1212 HIF_RD_SYNC_BYTE_INC);
1213 if (ret) {
1214 ath6kl_err("Unable to read the bmi data from the device: %d\n",
1215 ret);
1216 return ret;
1217 }
1218
1219 return 0;
1220}
1221
1222static void ath6kl_sdio_stop(struct ath6kl *ar)
1223{
1224 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
1225 struct bus_request *req, *tmp_req;
1226 void *context;
1227
1228 /* FIXME: make sure that wq is not queued again */
1229
1230 cancel_work_sync(&ar_sdio->wr_async_work);
1231
1232 spin_lock_bh(&ar_sdio->wr_async_lock);
1233
1234 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1235 list_del(&req->list);
1236
1237 if (req->scat_req) {
1238 /* this is a scatter gather request */
1239 req->scat_req->status = -ECANCELED;
1240 req->scat_req->complete(ar_sdio->ar->htc_target,
1241 req->scat_req);
1242 } else {
1243 context = req->packet;
1244 ath6kl_sdio_free_bus_req(ar_sdio, req);
1245 ath6kl_hif_rw_comp_handler(context, -ECANCELED);
1246 }
1247 }
1248
1249 spin_unlock_bh(&ar_sdio->wr_async_lock);
1250
1251 WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4);
1252}
1253
1254static const struct ath6kl_hif_ops ath6kl_sdio_ops = {
1255 .read_write_sync = ath6kl_sdio_read_write_sync,
1256 .write_async = ath6kl_sdio_write_async,
1257 .irq_enable = ath6kl_sdio_irq_enable,
1258 .irq_disable = ath6kl_sdio_irq_disable,
1259 .scatter_req_get = ath6kl_sdio_scatter_req_get,
1260 .scatter_req_add = ath6kl_sdio_scatter_req_add,
1261 .enable_scatter = ath6kl_sdio_enable_scatter,
1262 .scat_req_rw = ath6kl_sdio_async_rw_scatter,
1263 .cleanup_scatter = ath6kl_sdio_cleanup_scatter,
1264 .suspend = ath6kl_sdio_suspend,
1265 .resume = ath6kl_sdio_resume,
1266 .diag_read32 = ath6kl_sdio_diag_read32,
1267 .diag_write32 = ath6kl_sdio_diag_write32,
1268 .bmi_read = ath6kl_sdio_bmi_read,
1269 .bmi_write = ath6kl_sdio_bmi_write,
1270 .power_on = ath6kl_sdio_power_on,
1271 .power_off = ath6kl_sdio_power_off,
1272 .stop = ath6kl_sdio_stop,
1273};
1274
1275#ifdef CONFIG_PM_SLEEP
1276
1277/*
1278 * Empty handlers so that mmc subsystem doesn't remove us entirely during
1279 * suspend. We instead follow cfg80211 suspend/resume handlers.
1280 */
1281static int ath6kl_sdio_pm_suspend(struct device *device)
1282{
1283 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n");
1284
1285 return 0;
1286}
1287
1288static int ath6kl_sdio_pm_resume(struct device *device)
1289{
1290 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n");
1291
1292 return 0;
1293}
1294
1295static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend,
1296 ath6kl_sdio_pm_resume);
1297
1298#define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops)
1299
1300#else
1301
1302#define ATH6KL_SDIO_PM_OPS NULL
1303
1304#endif /* CONFIG_PM_SLEEP */
1305
1306static int ath6kl_sdio_probe(struct sdio_func *func,
1307 const struct sdio_device_id *id)
1308{
1309 int ret;
1310 struct ath6kl_sdio *ar_sdio;
1311 struct ath6kl *ar;
1312 int count;
1313
1314 ath6kl_dbg(ATH6KL_DBG_BOOT,
1315 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
1316 func->num, func->vendor, func->device,
1317 func->max_blksize, func->cur_blksize);
1318
1319 ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL);
1320 if (!ar_sdio)
1321 return -ENOMEM;
1322
1323 ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL);
1324 if (!ar_sdio->dma_buffer) {
1325 ret = -ENOMEM;
1326 goto err_hif;
1327 }
1328
1329 ar_sdio->func = func;
1330 sdio_set_drvdata(func, ar_sdio);
1331
1332 ar_sdio->id = id;
1333 ar_sdio->is_disabled = true;
1334
1335 spin_lock_init(&ar_sdio->lock);
1336 spin_lock_init(&ar_sdio->scat_lock);
1337 spin_lock_init(&ar_sdio->wr_async_lock);
1338 mutex_init(&ar_sdio->dma_buffer_mutex);
1339
1340 INIT_LIST_HEAD(&ar_sdio->scat_req);
1341 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
1342 INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
1343
1344 INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work);
1345
1346 init_waitqueue_head(&ar_sdio->irq_wq);
1347
1348 for (count = 0; count < BUS_REQUEST_MAX_NUM; count++)
1349 ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]);
1350
1351 ar = ath6kl_core_create(&ar_sdio->func->dev);
1352 if (!ar) {
1353 ath6kl_err("Failed to alloc ath6kl core\n");
1354 ret = -ENOMEM;
1355 goto err_dma;
1356 }
1357
1358 ar_sdio->ar = ar;
1359 ar->hif_type = ATH6KL_HIF_TYPE_SDIO;
1360 ar->hif_priv = ar_sdio;
1361 ar->hif_ops = &ath6kl_sdio_ops;
1362 ar->bmi.max_data_size = 256;
1363
1364 ath6kl_sdio_set_mbox_info(ar);
1365
1366 ret = ath6kl_sdio_config(ar);
1367 if (ret) {
1368 ath6kl_err("Failed to config sdio: %d\n", ret);
1369 goto err_core_alloc;
1370 }
1371
1372 ret = ath6kl_core_init(ar, ATH6KL_HTC_TYPE_MBOX);
1373 if (ret) {
1374 ath6kl_err("Failed to init ath6kl core\n");
1375 goto err_core_alloc;
1376 }
1377
1378 return ret;
1379
1380err_core_alloc:
1381 ath6kl_core_destroy(ar_sdio->ar);
1382err_dma:
1383 kfree(ar_sdio->dma_buffer);
1384err_hif:
1385 kfree(ar_sdio);
1386
1387 return ret;
1388}
1389
1390static void ath6kl_sdio_remove(struct sdio_func *func)
1391{
1392 struct ath6kl_sdio *ar_sdio;
1393
1394 ath6kl_dbg(ATH6KL_DBG_BOOT,
1395 "sdio removed func %d vendor 0x%x device 0x%x\n",
1396 func->num, func->vendor, func->device);
1397
1398 ar_sdio = sdio_get_drvdata(func);
1399
1400 ath6kl_stop_txrx(ar_sdio->ar);
1401 cancel_work_sync(&ar_sdio->wr_async_work);
1402
1403 ath6kl_core_cleanup(ar_sdio->ar);
1404 ath6kl_core_destroy(ar_sdio->ar);
1405
1406 kfree(ar_sdio->dma_buffer);
1407 kfree(ar_sdio);
1408}
1409
1410static const struct sdio_device_id ath6kl_sdio_devices[] = {
1411 {SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_AR6003_00)},
1412 {SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_AR6003_01)},
1413 {SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_AR6004_00)},
1414 {SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_AR6004_01)},
1415 {SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_AR6004_02)},
1416 {SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_AR6004_18)},
1417 {SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_AR6004_19)},
1418 {},
1419};
1420
1421MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices);
1422
1423static struct sdio_driver ath6kl_sdio_driver = {
1424 .name = "ath6kl_sdio",
1425 .id_table = ath6kl_sdio_devices,
1426 .probe = ath6kl_sdio_probe,
1427 .remove = ath6kl_sdio_remove,
1428 .drv.pm = ATH6KL_SDIO_PM_OPS,
1429};
1430
1431static int __init ath6kl_sdio_init(void)
1432{
1433 int ret;
1434
1435 ret = sdio_register_driver(&ath6kl_sdio_driver);
1436 if (ret)
1437 ath6kl_err("sdio driver registration failed: %d\n", ret);
1438
1439 return ret;
1440}
1441
1442static void __exit ath6kl_sdio_exit(void)
1443{
1444 sdio_unregister_driver(&ath6kl_sdio_driver);
1445}
1446
1447module_init(ath6kl_sdio_init);
1448module_exit(ath6kl_sdio_exit);
1449
1450MODULE_AUTHOR("Atheros Communications, Inc.");
1451MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices");
1452MODULE_LICENSE("Dual BSD/GPL");
1453
1454MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_OTP_FILE);
1455MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_FIRMWARE_FILE);
1456MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_PATCH_FILE);
1457MODULE_FIRMWARE(AR6003_HW_2_0_BOARD_DATA_FILE);
1458MODULE_FIRMWARE(AR6003_HW_2_0_DEFAULT_BOARD_DATA_FILE);
1459MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_OTP_FILE);
1460MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_FIRMWARE_FILE);
1461MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_PATCH_FILE);
1462MODULE_FIRMWARE(AR6003_HW_2_1_1_BOARD_DATA_FILE);
1463MODULE_FIRMWARE(AR6003_HW_2_1_1_DEFAULT_BOARD_DATA_FILE);
1464MODULE_FIRMWARE(AR6004_HW_1_0_FW_DIR "/" AR6004_HW_1_0_FIRMWARE_FILE);
1465MODULE_FIRMWARE(AR6004_HW_1_0_BOARD_DATA_FILE);
1466MODULE_FIRMWARE(AR6004_HW_1_0_DEFAULT_BOARD_DATA_FILE);
1467MODULE_FIRMWARE(AR6004_HW_1_1_FW_DIR "/" AR6004_HW_1_1_FIRMWARE_FILE);
1468MODULE_FIRMWARE(AR6004_HW_1_1_BOARD_DATA_FILE);
1469MODULE_FIRMWARE(AR6004_HW_1_1_DEFAULT_BOARD_DATA_FILE);
1470MODULE_FIRMWARE(AR6004_HW_1_2_FW_DIR "/" AR6004_HW_1_2_FIRMWARE_FILE);
1471MODULE_FIRMWARE(AR6004_HW_1_2_BOARD_DATA_FILE);
1472MODULE_FIRMWARE(AR6004_HW_1_2_DEFAULT_BOARD_DATA_FILE);
1473MODULE_FIRMWARE(AR6004_HW_1_3_FW_DIR "/" AR6004_HW_1_3_FIRMWARE_FILE);
1474MODULE_FIRMWARE(AR6004_HW_1_3_BOARD_DATA_FILE);
1475MODULE_FIRMWARE(AR6004_HW_1_3_DEFAULT_BOARD_DATA_FILE);
1/*
2 * Copyright (c) 2004-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18#include <linux/module.h>
19#include <linux/mmc/card.h>
20#include <linux/mmc/mmc.h>
21#include <linux/mmc/host.h>
22#include <linux/mmc/sdio_func.h>
23#include <linux/mmc/sdio_ids.h>
24#include <linux/mmc/sdio.h>
25#include <linux/mmc/sd.h>
26#include "hif.h"
27#include "hif-ops.h"
28#include "target.h"
29#include "debug.h"
30#include "cfg80211.h"
31#include "trace.h"
32
33struct ath6kl_sdio {
34 struct sdio_func *func;
35
36 /* protects access to bus_req_freeq */
37 spinlock_t lock;
38
39 /* free list */
40 struct list_head bus_req_freeq;
41
42 /* available bus requests */
43 struct bus_request bus_req[BUS_REQUEST_MAX_NUM];
44
45 struct ath6kl *ar;
46
47 u8 *dma_buffer;
48
49 /* protects access to dma_buffer */
50 struct mutex dma_buffer_mutex;
51
52 /* scatter request list head */
53 struct list_head scat_req;
54
55 atomic_t irq_handling;
56 wait_queue_head_t irq_wq;
57
58 /* protects access to scat_req */
59 spinlock_t scat_lock;
60
61 bool scatter_enabled;
62
63 bool is_disabled;
64 const struct sdio_device_id *id;
65 struct work_struct wr_async_work;
66 struct list_head wr_asyncq;
67
68 /* protects access to wr_asyncq */
69 spinlock_t wr_async_lock;
70};
71
72#define CMD53_ARG_READ 0
73#define CMD53_ARG_WRITE 1
74#define CMD53_ARG_BLOCK_BASIS 1
75#define CMD53_ARG_FIXED_ADDRESS 0
76#define CMD53_ARG_INCR_ADDRESS 1
77
78static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar)
79{
80 return ar->hif_priv;
81}
82
83/*
84 * Macro to check if DMA buffer is WORD-aligned and DMA-able.
85 * Most host controllers assume the buffer is DMA'able and will
86 * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid
87 * check fails on stack memory.
88 */
89static inline bool buf_needs_bounce(u8 *buf)
90{
91 return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf);
92}
93
94static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar)
95{
96 struct ath6kl_mbox_info *mbox_info = &ar->mbox_info;
97
98 /* EP1 has an extended range */
99 mbox_info->htc_addr = HIF_MBOX_BASE_ADDR;
100 mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR;
101 mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH;
102 mbox_info->block_size = HIF_MBOX_BLOCK_SIZE;
103 mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR;
104 mbox_info->gmbox_sz = HIF_GMBOX_WIDTH;
105}
106
107static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func,
108 u8 mode, u8 opcode, u32 addr,
109 u16 blksz)
110{
111 *arg = (((rw & 1) << 31) |
112 ((func & 0x7) << 28) |
113 ((mode & 1) << 27) |
114 ((opcode & 1) << 26) |
115 ((addr & 0x1FFFF) << 9) |
116 (blksz & 0x1FF));
117}
118
119static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
120 unsigned int address,
121 unsigned char val)
122{
123 const u8 func = 0;
124
125 *arg = ((write & 1) << 31) |
126 ((func & 0x7) << 28) |
127 ((raw & 1) << 27) |
128 (1 << 26) |
129 ((address & 0x1FFFF) << 9) |
130 (1 << 8) |
131 (val & 0xFF);
132}
133
134static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
135 unsigned int address,
136 unsigned char byte)
137{
138 struct mmc_command io_cmd;
139
140 memset(&io_cmd, 0, sizeof(io_cmd));
141 ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
142 io_cmd.opcode = SD_IO_RW_DIRECT;
143 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
144
145 return mmc_wait_for_cmd(card->host, &io_cmd, 0);
146}
147
148static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr,
149 u8 *buf, u32 len)
150{
151 int ret = 0;
152
153 sdio_claim_host(func);
154
155 if (request & HIF_WRITE) {
156 /* FIXME: looks like ugly workaround for something */
157 if (addr >= HIF_MBOX_BASE_ADDR &&
158 addr <= HIF_MBOX_END_ADDR)
159 addr += (HIF_MBOX_WIDTH - len);
160
161 /* FIXME: this also looks like ugly workaround */
162 if (addr == HIF_MBOX0_EXT_BASE_ADDR)
163 addr += HIF_MBOX0_EXT_WIDTH - len;
164
165 if (request & HIF_FIXED_ADDRESS)
166 ret = sdio_writesb(func, addr, buf, len);
167 else
168 ret = sdio_memcpy_toio(func, addr, buf, len);
169 } else {
170 if (request & HIF_FIXED_ADDRESS)
171 ret = sdio_readsb(func, buf, addr, len);
172 else
173 ret = sdio_memcpy_fromio(func, buf, addr, len);
174 }
175
176 sdio_release_host(func);
177
178 ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n",
179 request & HIF_WRITE ? "wr" : "rd", addr,
180 request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len);
181 ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len);
182
183 trace_ath6kl_sdio(addr, request, buf, len);
184
185 return ret;
186}
187
188static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio)
189{
190 struct bus_request *bus_req;
191
192 spin_lock_bh(&ar_sdio->lock);
193
194 if (list_empty(&ar_sdio->bus_req_freeq)) {
195 spin_unlock_bh(&ar_sdio->lock);
196 return NULL;
197 }
198
199 bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
200 struct bus_request, list);
201 list_del(&bus_req->list);
202
203 spin_unlock_bh(&ar_sdio->lock);
204 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
205 __func__, bus_req);
206
207 return bus_req;
208}
209
210static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio,
211 struct bus_request *bus_req)
212{
213 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
214 __func__, bus_req);
215
216 spin_lock_bh(&ar_sdio->lock);
217 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
218 spin_unlock_bh(&ar_sdio->lock);
219}
220
221static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req,
222 struct mmc_data *data)
223{
224 struct scatterlist *sg;
225 int i;
226
227 data->blksz = HIF_MBOX_BLOCK_SIZE;
228 data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE;
229
230 ath6kl_dbg(ATH6KL_DBG_SCATTER,
231 "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n",
232 (scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr,
233 data->blksz, data->blocks, scat_req->len,
234 scat_req->scat_entries);
235
236 data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE :
237 MMC_DATA_READ;
238
239 /* fill SG entries */
240 sg = scat_req->sgentries;
241 sg_init_table(sg, scat_req->scat_entries);
242
243 /* assemble SG list */
244 for (i = 0; i < scat_req->scat_entries; i++, sg++) {
245 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n",
246 i, scat_req->scat_list[i].buf,
247 scat_req->scat_list[i].len);
248
249 sg_set_buf(sg, scat_req->scat_list[i].buf,
250 scat_req->scat_list[i].len);
251 }
252
253 /* set scatter-gather table for request */
254 data->sg = scat_req->sgentries;
255 data->sg_len = scat_req->scat_entries;
256}
257
258static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio,
259 struct bus_request *req)
260{
261 struct mmc_request mmc_req;
262 struct mmc_command cmd;
263 struct mmc_data data;
264 struct hif_scatter_req *scat_req;
265 u8 opcode, rw;
266 int status, len;
267
268 scat_req = req->scat_req;
269
270 if (scat_req->virt_scat) {
271 len = scat_req->len;
272 if (scat_req->req & HIF_BLOCK_BASIS)
273 len = round_down(len, HIF_MBOX_BLOCK_SIZE);
274
275 status = ath6kl_sdio_io(ar_sdio->func, scat_req->req,
276 scat_req->addr, scat_req->virt_dma_buf,
277 len);
278 goto scat_complete;
279 }
280
281 memset(&mmc_req, 0, sizeof(struct mmc_request));
282 memset(&cmd, 0, sizeof(struct mmc_command));
283 memset(&data, 0, sizeof(struct mmc_data));
284
285 ath6kl_sdio_setup_scat_data(scat_req, &data);
286
287 opcode = (scat_req->req & HIF_FIXED_ADDRESS) ?
288 CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS;
289
290 rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ;
291
292 /* Fixup the address so that the last byte will fall on MBOX EOM */
293 if (scat_req->req & HIF_WRITE) {
294 if (scat_req->addr == HIF_MBOX_BASE_ADDR)
295 scat_req->addr += HIF_MBOX_WIDTH - scat_req->len;
296 else
297 /* Uses extended address range */
298 scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len;
299 }
300
301 /* set command argument */
302 ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num,
303 CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr,
304 data.blocks);
305
306 cmd.opcode = SD_IO_RW_EXTENDED;
307 cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
308
309 mmc_req.cmd = &cmd;
310 mmc_req.data = &data;
311
312 sdio_claim_host(ar_sdio->func);
313
314 mmc_set_data_timeout(&data, ar_sdio->func->card);
315
316 trace_ath6kl_sdio_scat(scat_req->addr,
317 scat_req->req,
318 scat_req->len,
319 scat_req->scat_entries,
320 scat_req->scat_list);
321
322 /* synchronous call to process request */
323 mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req);
324
325 sdio_release_host(ar_sdio->func);
326
327 status = cmd.error ? cmd.error : data.error;
328
329scat_complete:
330 scat_req->status = status;
331
332 if (scat_req->status)
333 ath6kl_err("Scatter write request failed:%d\n",
334 scat_req->status);
335
336 if (scat_req->req & HIF_ASYNCHRONOUS)
337 scat_req->complete(ar_sdio->ar->htc_target, scat_req);
338
339 return status;
340}
341
342static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio,
343 int n_scat_entry, int n_scat_req,
344 bool virt_scat)
345{
346 struct hif_scatter_req *s_req;
347 struct bus_request *bus_req;
348 int i, scat_req_sz, scat_list_sz, size;
349 u8 *virt_buf;
350
351 scat_list_sz = (n_scat_entry - 1) * sizeof(struct hif_scatter_item);
352 scat_req_sz = sizeof(*s_req) + scat_list_sz;
353
354 if (!virt_scat)
355 size = sizeof(struct scatterlist) * n_scat_entry;
356 else
357 size = 2 * L1_CACHE_BYTES +
358 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
359
360 for (i = 0; i < n_scat_req; i++) {
361 /* allocate the scatter request */
362 s_req = kzalloc(scat_req_sz, GFP_KERNEL);
363 if (!s_req)
364 return -ENOMEM;
365
366 if (virt_scat) {
367 virt_buf = kzalloc(size, GFP_KERNEL);
368 if (!virt_buf) {
369 kfree(s_req);
370 return -ENOMEM;
371 }
372
373 s_req->virt_dma_buf =
374 (u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf);
375 } else {
376 /* allocate sglist */
377 s_req->sgentries = kzalloc(size, GFP_KERNEL);
378
379 if (!s_req->sgentries) {
380 kfree(s_req);
381 return -ENOMEM;
382 }
383 }
384
385 /* allocate a bus request for this scatter request */
386 bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
387 if (!bus_req) {
388 kfree(s_req->sgentries);
389 kfree(s_req->virt_dma_buf);
390 kfree(s_req);
391 return -ENOMEM;
392 }
393
394 /* assign the scatter request to this bus request */
395 bus_req->scat_req = s_req;
396 s_req->busrequest = bus_req;
397
398 s_req->virt_scat = virt_scat;
399
400 /* add it to the scatter pool */
401 hif_scatter_req_add(ar_sdio->ar, s_req);
402 }
403
404 return 0;
405}
406
407static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf,
408 u32 len, u32 request)
409{
410 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
411 u8 *tbuf = NULL;
412 int ret;
413 bool bounced = false;
414
415 if (request & HIF_BLOCK_BASIS)
416 len = round_down(len, HIF_MBOX_BLOCK_SIZE);
417
418 if (buf_needs_bounce(buf)) {
419 if (!ar_sdio->dma_buffer)
420 return -ENOMEM;
421 mutex_lock(&ar_sdio->dma_buffer_mutex);
422 tbuf = ar_sdio->dma_buffer;
423
424 if (request & HIF_WRITE)
425 memcpy(tbuf, buf, len);
426
427 bounced = true;
428 } else
429 tbuf = buf;
430
431 ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len);
432 if ((request & HIF_READ) && bounced)
433 memcpy(buf, tbuf, len);
434
435 if (bounced)
436 mutex_unlock(&ar_sdio->dma_buffer_mutex);
437
438 return ret;
439}
440
441static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio,
442 struct bus_request *req)
443{
444 if (req->scat_req)
445 ath6kl_sdio_scat_rw(ar_sdio, req);
446 else {
447 void *context;
448 int status;
449
450 status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address,
451 req->buffer, req->length,
452 req->request);
453 context = req->packet;
454 ath6kl_sdio_free_bus_req(ar_sdio, req);
455 ath6kl_hif_rw_comp_handler(context, status);
456 }
457}
458
459static void ath6kl_sdio_write_async_work(struct work_struct *work)
460{
461 struct ath6kl_sdio *ar_sdio;
462 struct bus_request *req, *tmp_req;
463
464 ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work);
465
466 spin_lock_bh(&ar_sdio->wr_async_lock);
467 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
468 list_del(&req->list);
469 spin_unlock_bh(&ar_sdio->wr_async_lock);
470 __ath6kl_sdio_write_async(ar_sdio, req);
471 spin_lock_bh(&ar_sdio->wr_async_lock);
472 }
473 spin_unlock_bh(&ar_sdio->wr_async_lock);
474}
475
476static void ath6kl_sdio_irq_handler(struct sdio_func *func)
477{
478 int status;
479 struct ath6kl_sdio *ar_sdio;
480
481 ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n");
482
483 ar_sdio = sdio_get_drvdata(func);
484 atomic_set(&ar_sdio->irq_handling, 1);
485 /*
486 * Release the host during interrups so we can pick it back up when
487 * we process commands.
488 */
489 sdio_release_host(ar_sdio->func);
490
491 status = ath6kl_hif_intr_bh_handler(ar_sdio->ar);
492 sdio_claim_host(ar_sdio->func);
493
494 atomic_set(&ar_sdio->irq_handling, 0);
495 wake_up(&ar_sdio->irq_wq);
496
497 WARN_ON(status && status != -ECANCELED);
498}
499
500static int ath6kl_sdio_power_on(struct ath6kl *ar)
501{
502 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
503 struct sdio_func *func = ar_sdio->func;
504 int ret = 0;
505
506 if (!ar_sdio->is_disabled)
507 return 0;
508
509 ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n");
510
511 sdio_claim_host(func);
512
513 ret = sdio_enable_func(func);
514 if (ret) {
515 ath6kl_err("Unable to enable sdio func: %d)\n", ret);
516 sdio_release_host(func);
517 return ret;
518 }
519
520 sdio_release_host(func);
521
522 /*
523 * Wait for hardware to initialise. It should take a lot less than
524 * 10 ms but let's be conservative here.
525 */
526 msleep(10);
527
528 ar_sdio->is_disabled = false;
529
530 return ret;
531}
532
533static int ath6kl_sdio_power_off(struct ath6kl *ar)
534{
535 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
536 int ret;
537
538 if (ar_sdio->is_disabled)
539 return 0;
540
541 ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n");
542
543 /* Disable the card */
544 sdio_claim_host(ar_sdio->func);
545 ret = sdio_disable_func(ar_sdio->func);
546 sdio_release_host(ar_sdio->func);
547
548 if (ret)
549 return ret;
550
551 ar_sdio->is_disabled = true;
552
553 return ret;
554}
555
556static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer,
557 u32 length, u32 request,
558 struct htc_packet *packet)
559{
560 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
561 struct bus_request *bus_req;
562
563 bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
564
565 if (WARN_ON_ONCE(!bus_req))
566 return -ENOMEM;
567
568 bus_req->address = address;
569 bus_req->buffer = buffer;
570 bus_req->length = length;
571 bus_req->request = request;
572 bus_req->packet = packet;
573
574 spin_lock_bh(&ar_sdio->wr_async_lock);
575 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
576 spin_unlock_bh(&ar_sdio->wr_async_lock);
577 queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
578
579 return 0;
580}
581
582static void ath6kl_sdio_irq_enable(struct ath6kl *ar)
583{
584 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
585 int ret;
586
587 sdio_claim_host(ar_sdio->func);
588
589 /* Register the isr */
590 ret = sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler);
591 if (ret)
592 ath6kl_err("Failed to claim sdio irq: %d\n", ret);
593
594 sdio_release_host(ar_sdio->func);
595}
596
597static bool ath6kl_sdio_is_on_irq(struct ath6kl *ar)
598{
599 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
600
601 return !atomic_read(&ar_sdio->irq_handling);
602}
603
604static void ath6kl_sdio_irq_disable(struct ath6kl *ar)
605{
606 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
607 int ret;
608
609 sdio_claim_host(ar_sdio->func);
610
611 if (atomic_read(&ar_sdio->irq_handling)) {
612 sdio_release_host(ar_sdio->func);
613
614 ret = wait_event_interruptible(ar_sdio->irq_wq,
615 ath6kl_sdio_is_on_irq(ar));
616 if (ret)
617 return;
618
619 sdio_claim_host(ar_sdio->func);
620 }
621
622 ret = sdio_release_irq(ar_sdio->func);
623 if (ret)
624 ath6kl_err("Failed to release sdio irq: %d\n", ret);
625
626 sdio_release_host(ar_sdio->func);
627}
628
629static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar)
630{
631 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
632 struct hif_scatter_req *node = NULL;
633
634 spin_lock_bh(&ar_sdio->scat_lock);
635
636 if (!list_empty(&ar_sdio->scat_req)) {
637 node = list_first_entry(&ar_sdio->scat_req,
638 struct hif_scatter_req, list);
639 list_del(&node->list);
640
641 node->scat_q_depth = get_queue_depth(&ar_sdio->scat_req);
642 }
643
644 spin_unlock_bh(&ar_sdio->scat_lock);
645
646 return node;
647}
648
649static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar,
650 struct hif_scatter_req *s_req)
651{
652 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
653
654 spin_lock_bh(&ar_sdio->scat_lock);
655
656 list_add_tail(&s_req->list, &ar_sdio->scat_req);
657
658 spin_unlock_bh(&ar_sdio->scat_lock);
659
660}
661
662/* scatter gather read write request */
663static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar,
664 struct hif_scatter_req *scat_req)
665{
666 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
667 u32 request = scat_req->req;
668 int status = 0;
669
670 if (!scat_req->len)
671 return -EINVAL;
672
673 ath6kl_dbg(ATH6KL_DBG_SCATTER,
674 "hif-scatter: total len: %d scatter entries: %d\n",
675 scat_req->len, scat_req->scat_entries);
676
677 if (request & HIF_SYNCHRONOUS)
678 status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest);
679 else {
680 spin_lock_bh(&ar_sdio->wr_async_lock);
681 list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq);
682 spin_unlock_bh(&ar_sdio->wr_async_lock);
683 queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
684 }
685
686 return status;
687}
688
689/* clean up scatter support */
690static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar)
691{
692 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
693 struct hif_scatter_req *s_req, *tmp_req;
694
695 /* empty the free list */
696 spin_lock_bh(&ar_sdio->scat_lock);
697 list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) {
698 list_del(&s_req->list);
699 spin_unlock_bh(&ar_sdio->scat_lock);
700
701 /*
702 * FIXME: should we also call completion handler with
703 * ath6kl_hif_rw_comp_handler() with status -ECANCELED so
704 * that the packet is properly freed?
705 */
706 if (s_req->busrequest)
707 ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest);
708 kfree(s_req->virt_dma_buf);
709 kfree(s_req->sgentries);
710 kfree(s_req);
711
712 spin_lock_bh(&ar_sdio->scat_lock);
713 }
714 spin_unlock_bh(&ar_sdio->scat_lock);
715}
716
717/* setup of HIF scatter resources */
718static int ath6kl_sdio_enable_scatter(struct ath6kl *ar)
719{
720 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
721 struct htc_target *target = ar->htc_target;
722 int ret = 0;
723 bool virt_scat = false;
724
725 if (ar_sdio->scatter_enabled)
726 return 0;
727
728 ar_sdio->scatter_enabled = true;
729
730 /* check if host supports scatter and it meets our requirements */
731 if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) {
732 ath6kl_err("host only supports scatter of :%d entries, need: %d\n",
733 ar_sdio->func->card->host->max_segs,
734 MAX_SCATTER_ENTRIES_PER_REQ);
735 virt_scat = true;
736 }
737
738 if (!virt_scat) {
739 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
740 MAX_SCATTER_ENTRIES_PER_REQ,
741 MAX_SCATTER_REQUESTS, virt_scat);
742
743 if (!ret) {
744 ath6kl_dbg(ATH6KL_DBG_BOOT,
745 "hif-scatter enabled requests %d entries %d\n",
746 MAX_SCATTER_REQUESTS,
747 MAX_SCATTER_ENTRIES_PER_REQ);
748
749 target->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ;
750 target->max_xfer_szper_scatreq =
751 MAX_SCATTER_REQ_TRANSFER_SIZE;
752 } else {
753 ath6kl_sdio_cleanup_scatter(ar);
754 ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n");
755 }
756 }
757
758 if (virt_scat || ret) {
759 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
760 ATH6KL_SCATTER_ENTRIES_PER_REQ,
761 ATH6KL_SCATTER_REQS, virt_scat);
762
763 if (ret) {
764 ath6kl_err("failed to alloc virtual scatter resources !\n");
765 ath6kl_sdio_cleanup_scatter(ar);
766 return ret;
767 }
768
769 ath6kl_dbg(ATH6KL_DBG_BOOT,
770 "virtual scatter enabled requests %d entries %d\n",
771 ATH6KL_SCATTER_REQS, ATH6KL_SCATTER_ENTRIES_PER_REQ);
772
773 target->max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ;
774 target->max_xfer_szper_scatreq =
775 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
776 }
777
778 return 0;
779}
780
781static int ath6kl_sdio_config(struct ath6kl *ar)
782{
783 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
784 struct sdio_func *func = ar_sdio->func;
785 int ret;
786
787 sdio_claim_host(func);
788
789 if ((ar_sdio->id->device & MANUFACTURER_ID_ATH6KL_BASE_MASK) >=
790 MANUFACTURER_ID_AR6003_BASE) {
791 /* enable 4-bit ASYNC interrupt on AR6003 or later */
792 ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card,
793 CCCR_SDIO_IRQ_MODE_REG,
794 SDIO_IRQ_MODE_ASYNC_4BIT_IRQ);
795 if (ret) {
796 ath6kl_err("Failed to enable 4-bit async irq mode %d\n",
797 ret);
798 goto out;
799 }
800
801 ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n");
802 }
803
804 /* give us some time to enable, in ms */
805 func->enable_timeout = 100;
806
807 ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE);
808 if (ret) {
809 ath6kl_err("Set sdio block size %d failed: %d)\n",
810 HIF_MBOX_BLOCK_SIZE, ret);
811 goto out;
812 }
813
814out:
815 sdio_release_host(func);
816
817 return ret;
818}
819
820static int ath6kl_set_sdio_pm_caps(struct ath6kl *ar)
821{
822 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
823 struct sdio_func *func = ar_sdio->func;
824 mmc_pm_flag_t flags;
825 int ret;
826
827 flags = sdio_get_host_pm_caps(func);
828
829 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags);
830
831 if (!(flags & MMC_PM_WAKE_SDIO_IRQ) ||
832 !(flags & MMC_PM_KEEP_POWER))
833 return -EINVAL;
834
835 ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
836 if (ret) {
837 ath6kl_err("set sdio keep pwr flag failed: %d\n", ret);
838 return ret;
839 }
840
841 /* sdio irq wakes up host */
842 ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ);
843 if (ret)
844 ath6kl_err("set sdio wake irq flag failed: %d\n", ret);
845
846 return ret;
847}
848
849static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow)
850{
851 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
852 struct sdio_func *func = ar_sdio->func;
853 mmc_pm_flag_t flags;
854 bool try_deepsleep = false;
855 int ret;
856
857 if (ar->suspend_mode == WLAN_POWER_STATE_WOW ||
858 (!ar->suspend_mode && wow)) {
859
860 ret = ath6kl_set_sdio_pm_caps(ar);
861 if (ret)
862 goto cut_pwr;
863
864 ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_WOW, wow);
865 if (ret && ret != -ENOTCONN)
866 ath6kl_err("wow suspend failed: %d\n", ret);
867
868 if (ret &&
869 (!ar->wow_suspend_mode ||
870 ar->wow_suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP))
871 try_deepsleep = true;
872 else if (ret &&
873 ar->wow_suspend_mode == WLAN_POWER_STATE_CUT_PWR)
874 goto cut_pwr;
875 if (!ret)
876 return 0;
877 }
878
879 if (ar->suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP ||
880 !ar->suspend_mode || try_deepsleep) {
881
882 flags = sdio_get_host_pm_caps(func);
883 if (!(flags & MMC_PM_KEEP_POWER))
884 goto cut_pwr;
885
886 ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
887 if (ret)
888 goto cut_pwr;
889
890 /*
891 * Workaround to support Deep Sleep with MSM, set the host pm
892 * flag as MMC_PM_WAKE_SDIO_IRQ to allow SDCC deiver to disable
893 * the sdc2_clock and internally allows MSM to enter
894 * TCXO shutdown properly.
895 */
896 if ((flags & MMC_PM_WAKE_SDIO_IRQ)) {
897 ret = sdio_set_host_pm_flags(func,
898 MMC_PM_WAKE_SDIO_IRQ);
899 if (ret)
900 goto cut_pwr;
901 }
902
903 ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_DEEPSLEEP,
904 NULL);
905 if (ret)
906 goto cut_pwr;
907
908 return 0;
909 }
910
911cut_pwr:
912 if (func->card && func->card->host)
913 func->card->host->pm_flags &= ~MMC_PM_KEEP_POWER;
914
915 return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_CUTPOWER, NULL);
916}
917
918static int ath6kl_sdio_resume(struct ath6kl *ar)
919{
920 switch (ar->state) {
921 case ATH6KL_STATE_OFF:
922 case ATH6KL_STATE_CUTPOWER:
923 ath6kl_dbg(ATH6KL_DBG_SUSPEND,
924 "sdio resume configuring sdio\n");
925
926 /* need to set sdio settings after power is cut from sdio */
927 ath6kl_sdio_config(ar);
928 break;
929
930 case ATH6KL_STATE_ON:
931 break;
932
933 case ATH6KL_STATE_DEEPSLEEP:
934 break;
935
936 case ATH6KL_STATE_WOW:
937 break;
938
939 case ATH6KL_STATE_SUSPENDING:
940 break;
941
942 case ATH6KL_STATE_RESUMING:
943 break;
944
945 case ATH6KL_STATE_RECOVERY:
946 break;
947 }
948
949 ath6kl_cfg80211_resume(ar);
950
951 return 0;
952}
953
954/* set the window address register (using 4-byte register access ). */
955static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
956{
957 int status;
958 u8 addr_val[4];
959 s32 i;
960
961 /*
962 * Write bytes 1,2,3 of the register to set the upper address bytes,
963 * the LSB is written last to initiate the access cycle
964 */
965
966 for (i = 1; i <= 3; i++) {
967 /*
968 * Fill the buffer with the address byte value we want to
969 * hit 4 times.
970 */
971 memset(addr_val, ((u8 *)&addr)[i], 4);
972
973 /*
974 * Hit each byte of the register address with a 4-byte
975 * write operation to the same address, this is a harmless
976 * operation.
977 */
978 status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val,
979 4, HIF_WR_SYNC_BYTE_FIX);
980 if (status)
981 break;
982 }
983
984 if (status) {
985 ath6kl_err("%s: failed to write initial bytes of 0x%x to window reg: 0x%X\n",
986 __func__, addr, reg_addr);
987 return status;
988 }
989
990 /*
991 * Write the address register again, this time write the whole
992 * 4-byte value. The effect here is that the LSB write causes the
993 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
994 * effect since we are writing the same values again
995 */
996 status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr),
997 4, HIF_WR_SYNC_BYTE_INC);
998
999 if (status) {
1000 ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n",
1001 __func__, addr, reg_addr);
1002 return status;
1003 }
1004
1005 return 0;
1006}
1007
1008static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data)
1009{
1010 int status;
1011
1012 /* set window register to start read cycle */
1013 status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS,
1014 address);
1015
1016 if (status)
1017 return status;
1018
1019 /* read the data */
1020 status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1021 (u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC);
1022 if (status) {
1023 ath6kl_err("%s: failed to read from window data addr\n",
1024 __func__);
1025 return status;
1026 }
1027
1028 return status;
1029}
1030
1031static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address,
1032 __le32 data)
1033{
1034 int status;
1035 u32 val = (__force u32) data;
1036
1037 /* set write data */
1038 status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1039 (u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC);
1040 if (status) {
1041 ath6kl_err("%s: failed to write 0x%x to window data addr\n",
1042 __func__, data);
1043 return status;
1044 }
1045
1046 /* set window register, which starts the write cycle */
1047 return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
1048 address);
1049}
1050
1051static int ath6kl_sdio_bmi_credits(struct ath6kl *ar)
1052{
1053 u32 addr;
1054 unsigned long timeout;
1055 int ret;
1056
1057 ar->bmi.cmd_credits = 0;
1058
1059 /* Read the counter register to get the command credits */
1060 addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4;
1061
1062 timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1063 while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) {
1064
1065 /*
1066 * Hit the credit counter with a 4-byte access, the first byte
1067 * read will hit the counter and cause a decrement, while the
1068 * remaining 3 bytes has no effect. The rationale behind this
1069 * is to make all HIF accesses 4-byte aligned.
1070 */
1071 ret = ath6kl_sdio_read_write_sync(ar, addr,
1072 (u8 *)&ar->bmi.cmd_credits, 4,
1073 HIF_RD_SYNC_BYTE_INC);
1074 if (ret) {
1075 ath6kl_err("Unable to decrement the command credit count register: %d\n",
1076 ret);
1077 return ret;
1078 }
1079
1080 /* The counter is only 8 bits.
1081 * Ignore anything in the upper 3 bytes
1082 */
1083 ar->bmi.cmd_credits &= 0xFF;
1084 }
1085
1086 if (!ar->bmi.cmd_credits) {
1087 ath6kl_err("bmi communication timeout\n");
1088 return -ETIMEDOUT;
1089 }
1090
1091 return 0;
1092}
1093
1094static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar)
1095{
1096 unsigned long timeout;
1097 u32 rx_word = 0;
1098 int ret = 0;
1099
1100 timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1101 while ((time_before(jiffies, timeout)) && !rx_word) {
1102 ret = ath6kl_sdio_read_write_sync(ar,
1103 RX_LOOKAHEAD_VALID_ADDRESS,
1104 (u8 *)&rx_word, sizeof(rx_word),
1105 HIF_RD_SYNC_BYTE_INC);
1106 if (ret) {
1107 ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n");
1108 return ret;
1109 }
1110
1111 /* all we really want is one bit */
1112 rx_word &= (1 << ENDPOINT1);
1113 }
1114
1115 if (!rx_word) {
1116 ath6kl_err("bmi_recv_buf FIFO empty\n");
1117 return -EINVAL;
1118 }
1119
1120 return ret;
1121}
1122
1123static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len)
1124{
1125 int ret;
1126 u32 addr;
1127
1128 ret = ath6kl_sdio_bmi_credits(ar);
1129 if (ret)
1130 return ret;
1131
1132 addr = ar->mbox_info.htc_addr;
1133
1134 ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1135 HIF_WR_SYNC_BYTE_INC);
1136 if (ret) {
1137 ath6kl_err("unable to send the bmi data to the device\n");
1138 return ret;
1139 }
1140
1141 return 0;
1142}
1143
1144static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len)
1145{
1146 int ret;
1147 u32 addr;
1148
1149 /*
1150 * During normal bootup, small reads may be required.
1151 * Rather than issue an HIF Read and then wait as the Target
1152 * adds successive bytes to the FIFO, we wait here until
1153 * we know that response data is available.
1154 *
1155 * This allows us to cleanly timeout on an unexpected
1156 * Target failure rather than risk problems at the HIF level.
1157 * In particular, this avoids SDIO timeouts and possibly garbage
1158 * data on some host controllers. And on an interconnect
1159 * such as Compact Flash (as well as some SDIO masters) which
1160 * does not provide any indication on data timeout, it avoids
1161 * a potential hang or garbage response.
1162 *
1163 * Synchronization is more difficult for reads larger than the
1164 * size of the MBOX FIFO (128B), because the Target is unable
1165 * to push the 129th byte of data until AFTER the Host posts an
1166 * HIF Read and removes some FIFO data. So for large reads the
1167 * Host proceeds to post an HIF Read BEFORE all the data is
1168 * actually available to read. Fortunately, large BMI reads do
1169 * not occur in practice -- they're supported for debug/development.
1170 *
1171 * So Host/Target BMI synchronization is divided into these cases:
1172 * CASE 1: length < 4
1173 * Should not happen
1174 *
1175 * CASE 2: 4 <= length <= 128
1176 * Wait for first 4 bytes to be in FIFO
1177 * If CONSERVATIVE_BMI_READ is enabled, also wait for
1178 * a BMI command credit, which indicates that the ENTIRE
1179 * response is available in the the FIFO
1180 *
1181 * CASE 3: length > 128
1182 * Wait for the first 4 bytes to be in FIFO
1183 *
1184 * For most uses, a small timeout should be sufficient and we will
1185 * usually see a response quickly; but there may be some unusual
1186 * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1187 * For now, we use an unbounded busy loop while waiting for
1188 * BMI_EXECUTE.
1189 *
1190 * If BMI_EXECUTE ever needs to support longer-latency execution,
1191 * especially in production, this code needs to be enhanced to sleep
1192 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently
1193 * a function of Host processor speed.
1194 */
1195 if (len >= 4) { /* NB: Currently, always true */
1196 ret = ath6kl_bmi_get_rx_lkahd(ar);
1197 if (ret)
1198 return ret;
1199 }
1200
1201 addr = ar->mbox_info.htc_addr;
1202 ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1203 HIF_RD_SYNC_BYTE_INC);
1204 if (ret) {
1205 ath6kl_err("Unable to read the bmi data from the device: %d\n",
1206 ret);
1207 return ret;
1208 }
1209
1210 return 0;
1211}
1212
1213static void ath6kl_sdio_stop(struct ath6kl *ar)
1214{
1215 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
1216 struct bus_request *req, *tmp_req;
1217 void *context;
1218
1219 /* FIXME: make sure that wq is not queued again */
1220
1221 cancel_work_sync(&ar_sdio->wr_async_work);
1222
1223 spin_lock_bh(&ar_sdio->wr_async_lock);
1224
1225 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1226 list_del(&req->list);
1227
1228 if (req->scat_req) {
1229 /* this is a scatter gather request */
1230 req->scat_req->status = -ECANCELED;
1231 req->scat_req->complete(ar_sdio->ar->htc_target,
1232 req->scat_req);
1233 } else {
1234 context = req->packet;
1235 ath6kl_sdio_free_bus_req(ar_sdio, req);
1236 ath6kl_hif_rw_comp_handler(context, -ECANCELED);
1237 }
1238 }
1239
1240 spin_unlock_bh(&ar_sdio->wr_async_lock);
1241
1242 WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4);
1243}
1244
1245static const struct ath6kl_hif_ops ath6kl_sdio_ops = {
1246 .read_write_sync = ath6kl_sdio_read_write_sync,
1247 .write_async = ath6kl_sdio_write_async,
1248 .irq_enable = ath6kl_sdio_irq_enable,
1249 .irq_disable = ath6kl_sdio_irq_disable,
1250 .scatter_req_get = ath6kl_sdio_scatter_req_get,
1251 .scatter_req_add = ath6kl_sdio_scatter_req_add,
1252 .enable_scatter = ath6kl_sdio_enable_scatter,
1253 .scat_req_rw = ath6kl_sdio_async_rw_scatter,
1254 .cleanup_scatter = ath6kl_sdio_cleanup_scatter,
1255 .suspend = ath6kl_sdio_suspend,
1256 .resume = ath6kl_sdio_resume,
1257 .diag_read32 = ath6kl_sdio_diag_read32,
1258 .diag_write32 = ath6kl_sdio_diag_write32,
1259 .bmi_read = ath6kl_sdio_bmi_read,
1260 .bmi_write = ath6kl_sdio_bmi_write,
1261 .power_on = ath6kl_sdio_power_on,
1262 .power_off = ath6kl_sdio_power_off,
1263 .stop = ath6kl_sdio_stop,
1264};
1265
1266#ifdef CONFIG_PM_SLEEP
1267
1268/*
1269 * Empty handlers so that mmc subsystem doesn't remove us entirely during
1270 * suspend. We instead follow cfg80211 suspend/resume handlers.
1271 */
1272static int ath6kl_sdio_pm_suspend(struct device *device)
1273{
1274 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n");
1275
1276 return 0;
1277}
1278
1279static int ath6kl_sdio_pm_resume(struct device *device)
1280{
1281 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n");
1282
1283 return 0;
1284}
1285
1286static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend,
1287 ath6kl_sdio_pm_resume);
1288
1289#define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops)
1290
1291#else
1292
1293#define ATH6KL_SDIO_PM_OPS NULL
1294
1295#endif /* CONFIG_PM_SLEEP */
1296
1297static int ath6kl_sdio_probe(struct sdio_func *func,
1298 const struct sdio_device_id *id)
1299{
1300 int ret;
1301 struct ath6kl_sdio *ar_sdio;
1302 struct ath6kl *ar;
1303 int count;
1304
1305 ath6kl_dbg(ATH6KL_DBG_BOOT,
1306 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
1307 func->num, func->vendor, func->device,
1308 func->max_blksize, func->cur_blksize);
1309
1310 ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL);
1311 if (!ar_sdio)
1312 return -ENOMEM;
1313
1314 ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL);
1315 if (!ar_sdio->dma_buffer) {
1316 ret = -ENOMEM;
1317 goto err_hif;
1318 }
1319
1320 ar_sdio->func = func;
1321 sdio_set_drvdata(func, ar_sdio);
1322
1323 ar_sdio->id = id;
1324 ar_sdio->is_disabled = true;
1325
1326 spin_lock_init(&ar_sdio->lock);
1327 spin_lock_init(&ar_sdio->scat_lock);
1328 spin_lock_init(&ar_sdio->wr_async_lock);
1329 mutex_init(&ar_sdio->dma_buffer_mutex);
1330
1331 INIT_LIST_HEAD(&ar_sdio->scat_req);
1332 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
1333 INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
1334
1335 INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work);
1336
1337 init_waitqueue_head(&ar_sdio->irq_wq);
1338
1339 for (count = 0; count < BUS_REQUEST_MAX_NUM; count++)
1340 ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]);
1341
1342 ar = ath6kl_core_create(&ar_sdio->func->dev);
1343 if (!ar) {
1344 ath6kl_err("Failed to alloc ath6kl core\n");
1345 ret = -ENOMEM;
1346 goto err_dma;
1347 }
1348
1349 ar_sdio->ar = ar;
1350 ar->hif_type = ATH6KL_HIF_TYPE_SDIO;
1351 ar->hif_priv = ar_sdio;
1352 ar->hif_ops = &ath6kl_sdio_ops;
1353 ar->bmi.max_data_size = 256;
1354
1355 ath6kl_sdio_set_mbox_info(ar);
1356
1357 ret = ath6kl_sdio_config(ar);
1358 if (ret) {
1359 ath6kl_err("Failed to config sdio: %d\n", ret);
1360 goto err_core_alloc;
1361 }
1362
1363 ret = ath6kl_core_init(ar, ATH6KL_HTC_TYPE_MBOX);
1364 if (ret) {
1365 ath6kl_err("Failed to init ath6kl core\n");
1366 goto err_core_alloc;
1367 }
1368
1369 return ret;
1370
1371err_core_alloc:
1372 ath6kl_core_destroy(ar_sdio->ar);
1373err_dma:
1374 kfree(ar_sdio->dma_buffer);
1375err_hif:
1376 kfree(ar_sdio);
1377
1378 return ret;
1379}
1380
1381static void ath6kl_sdio_remove(struct sdio_func *func)
1382{
1383 struct ath6kl_sdio *ar_sdio;
1384
1385 ath6kl_dbg(ATH6KL_DBG_BOOT,
1386 "sdio removed func %d vendor 0x%x device 0x%x\n",
1387 func->num, func->vendor, func->device);
1388
1389 ar_sdio = sdio_get_drvdata(func);
1390
1391 ath6kl_stop_txrx(ar_sdio->ar);
1392 cancel_work_sync(&ar_sdio->wr_async_work);
1393
1394 ath6kl_core_cleanup(ar_sdio->ar);
1395 ath6kl_core_destroy(ar_sdio->ar);
1396
1397 kfree(ar_sdio->dma_buffer);
1398 kfree(ar_sdio);
1399}
1400
1401static const struct sdio_device_id ath6kl_sdio_devices[] = {
1402 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x0))},
1403 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x1))},
1404 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x0))},
1405 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x1))},
1406 {},
1407};
1408
1409MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices);
1410
1411static struct sdio_driver ath6kl_sdio_driver = {
1412 .name = "ath6kl_sdio",
1413 .id_table = ath6kl_sdio_devices,
1414 .probe = ath6kl_sdio_probe,
1415 .remove = ath6kl_sdio_remove,
1416 .drv.pm = ATH6KL_SDIO_PM_OPS,
1417};
1418
1419static int __init ath6kl_sdio_init(void)
1420{
1421 int ret;
1422
1423 ret = sdio_register_driver(&ath6kl_sdio_driver);
1424 if (ret)
1425 ath6kl_err("sdio driver registration failed: %d\n", ret);
1426
1427 return ret;
1428}
1429
1430static void __exit ath6kl_sdio_exit(void)
1431{
1432 sdio_unregister_driver(&ath6kl_sdio_driver);
1433}
1434
1435module_init(ath6kl_sdio_init);
1436module_exit(ath6kl_sdio_exit);
1437
1438MODULE_AUTHOR("Atheros Communications, Inc.");
1439MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices");
1440MODULE_LICENSE("Dual BSD/GPL");
1441
1442MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_OTP_FILE);
1443MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_FIRMWARE_FILE);
1444MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_PATCH_FILE);
1445MODULE_FIRMWARE(AR6003_HW_2_0_BOARD_DATA_FILE);
1446MODULE_FIRMWARE(AR6003_HW_2_0_DEFAULT_BOARD_DATA_FILE);
1447MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_OTP_FILE);
1448MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_FIRMWARE_FILE);
1449MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_PATCH_FILE);
1450MODULE_FIRMWARE(AR6003_HW_2_1_1_BOARD_DATA_FILE);
1451MODULE_FIRMWARE(AR6003_HW_2_1_1_DEFAULT_BOARD_DATA_FILE);
1452MODULE_FIRMWARE(AR6004_HW_1_0_FW_DIR "/" AR6004_HW_1_0_FIRMWARE_FILE);
1453MODULE_FIRMWARE(AR6004_HW_1_0_BOARD_DATA_FILE);
1454MODULE_FIRMWARE(AR6004_HW_1_0_DEFAULT_BOARD_DATA_FILE);
1455MODULE_FIRMWARE(AR6004_HW_1_1_FW_DIR "/" AR6004_HW_1_1_FIRMWARE_FILE);
1456MODULE_FIRMWARE(AR6004_HW_1_1_BOARD_DATA_FILE);
1457MODULE_FIRMWARE(AR6004_HW_1_1_DEFAULT_BOARD_DATA_FILE);
1458MODULE_FIRMWARE(AR6004_HW_1_2_FW_DIR "/" AR6004_HW_1_2_FIRMWARE_FILE);
1459MODULE_FIRMWARE(AR6004_HW_1_2_BOARD_DATA_FILE);
1460MODULE_FIRMWARE(AR6004_HW_1_2_DEFAULT_BOARD_DATA_FILE);
1461MODULE_FIRMWARE(AR6004_HW_1_3_FW_DIR "/" AR6004_HW_1_3_FIRMWARE_FILE);
1462MODULE_FIRMWARE(AR6004_HW_1_3_BOARD_DATA_FILE);
1463MODULE_FIRMWARE(AR6004_HW_1_3_DEFAULT_BOARD_DATA_FILE);