Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4/* Linux PRO/1000 Ethernet Driver main header file */
5
6#ifndef _E1000_H_
7#define _E1000_H_
8
9#include <linux/bitops.h>
10#include <linux/types.h>
11#include <linux/timer.h>
12#include <linux/workqueue.h>
13#include <linux/io.h>
14#include <linux/netdevice.h>
15#include <linux/pci.h>
16#include <linux/crc32.h>
17#include <linux/if_vlan.h>
18#include <linux/timecounter.h>
19#include <linux/net_tstamp.h>
20#include <linux/ptp_clock_kernel.h>
21#include <linux/ptp_classify.h>
22#include <linux/mii.h>
23#include <linux/mdio.h>
24#include <linux/mutex.h>
25#include <linux/pm_qos.h>
26#include "hw.h"
27
28struct e1000_info;
29
30#define e_dbg(format, arg...) \
31 netdev_dbg(hw->adapter->netdev, format, ## arg)
32#define e_err(format, arg...) \
33 netdev_err(adapter->netdev, format, ## arg)
34#define e_info(format, arg...) \
35 netdev_info(adapter->netdev, format, ## arg)
36#define e_warn(format, arg...) \
37 netdev_warn(adapter->netdev, format, ## arg)
38#define e_notice(format, arg...) \
39 netdev_notice(adapter->netdev, format, ## arg)
40
41/* Interrupt modes, as used by the IntMode parameter */
42#define E1000E_INT_MODE_LEGACY 0
43#define E1000E_INT_MODE_MSI 1
44#define E1000E_INT_MODE_MSIX 2
45
46/* Tx/Rx descriptor defines */
47#define E1000_DEFAULT_TXD 256
48#define E1000_MAX_TXD 4096
49#define E1000_MIN_TXD 64
50
51#define E1000_DEFAULT_RXD 256
52#define E1000_MAX_RXD 4096
53#define E1000_MIN_RXD 64
54
55#define E1000_MIN_ITR_USECS 10 /* 100000 irq/sec */
56#define E1000_MAX_ITR_USECS 10000 /* 100 irq/sec */
57
58#define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */
59
60/* How many Tx Descriptors do we need to call netif_wake_queue ? */
61/* How many Rx Buffers do we bundle into one write to the hardware ? */
62#define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */
63
64#define AUTO_ALL_MODES 0
65#define E1000_EEPROM_APME 0x0400
66
67#define E1000_MNG_VLAN_NONE (-1)
68
69#define DEFAULT_JUMBO 9234
70
71/* Time to wait before putting the device into D3 if there's no link (in ms). */
72#define LINK_TIMEOUT 100
73
74/* Count for polling __E1000_RESET condition every 10-20msec.
75 * Experimentation has shown the reset can take approximately 210msec.
76 */
77#define E1000_CHECK_RESET_COUNT 25
78
79#define PCICFG_DESC_RING_STATUS 0xe4
80#define FLUSH_DESC_REQUIRED 0x100
81
82/* in the case of WTHRESH, it appears at least the 82571/2 hardware
83 * writes back 4 descriptors when WTHRESH=5, and 3 descriptors when
84 * WTHRESH=4, so a setting of 5 gives the most efficient bus
85 * utilization but to avoid possible Tx stalls, set it to 1
86 */
87#define E1000_TXDCTL_DMA_BURST_ENABLE \
88 (E1000_TXDCTL_GRAN | /* set descriptor granularity */ \
89 E1000_TXDCTL_COUNT_DESC | \
90 (1u << 16) | /* wthresh must be +1 more than desired */\
91 (1u << 8) | /* hthresh */ \
92 0x1f) /* pthresh */
93
94#define E1000_RXDCTL_DMA_BURST_ENABLE \
95 (0x01000000 | /* set descriptor granularity */ \
96 (4u << 16) | /* set writeback threshold */ \
97 (4u << 8) | /* set prefetch threshold */ \
98 0x20) /* set hthresh */
99
100#define E1000_TIDV_FPD BIT(31)
101#define E1000_RDTR_FPD BIT(31)
102
103enum e1000_boards {
104 board_82571,
105 board_82572,
106 board_82573,
107 board_82574,
108 board_82583,
109 board_80003es2lan,
110 board_ich8lan,
111 board_ich9lan,
112 board_ich10lan,
113 board_pchlan,
114 board_pch2lan,
115 board_pch_lpt,
116 board_pch_spt,
117 board_pch_cnp,
118 board_pch_tgp,
119 board_pch_adp,
120 board_pch_mtp
121};
122
123struct e1000_ps_page {
124 struct page *page;
125 u64 dma; /* must be u64 - written to hw */
126};
127
128/* wrappers around a pointer to a socket buffer,
129 * so a DMA handle can be stored along with the buffer
130 */
131struct e1000_buffer {
132 dma_addr_t dma;
133 struct sk_buff *skb;
134 union {
135 /* Tx */
136 struct {
137 unsigned long time_stamp;
138 u16 length;
139 u16 next_to_watch;
140 unsigned int segs;
141 unsigned int bytecount;
142 u16 mapped_as_page;
143 };
144 /* Rx */
145 struct {
146 /* arrays of page information for packet split */
147 struct e1000_ps_page *ps_pages;
148 struct page *page;
149 };
150 };
151};
152
153struct e1000_ring {
154 struct e1000_adapter *adapter; /* back pointer to adapter */
155 void *desc; /* pointer to ring memory */
156 dma_addr_t dma; /* phys address of ring */
157 unsigned int size; /* length of ring in bytes */
158 unsigned int count; /* number of desc. in ring */
159
160 u16 next_to_use;
161 u16 next_to_clean;
162
163 void __iomem *head;
164 void __iomem *tail;
165
166 /* array of buffer information structs */
167 struct e1000_buffer *buffer_info;
168
169 char name[IFNAMSIZ + 5];
170 u32 ims_val;
171 u32 itr_val;
172 void __iomem *itr_register;
173 int set_itr;
174
175 struct sk_buff *rx_skb_top;
176};
177
178/* PHY register snapshot values */
179struct e1000_phy_regs {
180 u16 bmcr; /* basic mode control register */
181 u16 bmsr; /* basic mode status register */
182 u16 advertise; /* auto-negotiation advertisement */
183 u16 lpa; /* link partner ability register */
184 u16 expansion; /* auto-negotiation expansion reg */
185 u16 ctrl1000; /* 1000BASE-T control register */
186 u16 stat1000; /* 1000BASE-T status register */
187 u16 estatus; /* extended status register */
188};
189
190/* board specific private data structure */
191struct e1000_adapter {
192 struct timer_list watchdog_timer;
193 struct timer_list phy_info_timer;
194 struct timer_list blink_timer;
195
196 struct work_struct reset_task;
197 struct work_struct watchdog_task;
198
199 const struct e1000_info *ei;
200
201 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
202 u32 bd_number;
203 u32 rx_buffer_len;
204 u16 mng_vlan_id;
205 u16 link_speed;
206 u16 link_duplex;
207 u16 eeprom_vers;
208
209 /* track device up/down/testing state */
210 unsigned long state;
211
212 /* Interrupt Throttle Rate */
213 u32 itr;
214 u32 itr_setting;
215 u16 tx_itr;
216 u16 rx_itr;
217
218 /* Tx - one ring per active queue */
219 struct e1000_ring *tx_ring ____cacheline_aligned_in_smp;
220 u32 tx_fifo_limit;
221
222 struct napi_struct napi;
223
224 unsigned int uncorr_errors; /* uncorrectable ECC errors */
225 unsigned int corr_errors; /* correctable ECC errors */
226 unsigned int restart_queue;
227 u32 txd_cmd;
228
229 bool detect_tx_hung;
230 bool tx_hang_recheck;
231 u8 tx_timeout_factor;
232
233 u32 tx_int_delay;
234 u32 tx_abs_int_delay;
235
236 unsigned int total_tx_bytes;
237 unsigned int total_tx_packets;
238 unsigned int total_rx_bytes;
239 unsigned int total_rx_packets;
240
241 /* Tx stats */
242 u64 tpt_old;
243 u64 colc_old;
244 u32 gotc;
245 u64 gotc_old;
246 u32 tx_timeout_count;
247 u32 tx_fifo_head;
248 u32 tx_head_addr;
249 u32 tx_fifo_size;
250 u32 tx_dma_failed;
251 u32 tx_hwtstamp_timeouts;
252 u32 tx_hwtstamp_skipped;
253
254 /* Rx */
255 bool (*clean_rx)(struct e1000_ring *ring, int *work_done,
256 int work_to_do) ____cacheline_aligned_in_smp;
257 void (*alloc_rx_buf)(struct e1000_ring *ring, int cleaned_count,
258 gfp_t gfp);
259 struct e1000_ring *rx_ring;
260
261 u32 rx_int_delay;
262 u32 rx_abs_int_delay;
263
264 /* Rx stats */
265 u64 hw_csum_err;
266 u64 hw_csum_good;
267 u64 rx_hdr_split;
268 u32 gorc;
269 u64 gorc_old;
270 u32 alloc_rx_buff_failed;
271 u32 rx_dma_failed;
272 u32 rx_hwtstamp_cleared;
273
274 unsigned int rx_ps_pages;
275 u16 rx_ps_bsize0;
276 u32 max_frame_size;
277 u32 min_frame_size;
278
279 /* OS defined structs */
280 struct net_device *netdev;
281 struct pci_dev *pdev;
282
283 /* structs defined in e1000_hw.h */
284 struct e1000_hw hw;
285
286 spinlock_t stats64_lock; /* protects statistics counters */
287 struct e1000_hw_stats stats;
288 struct e1000_phy_info phy_info;
289 struct e1000_phy_stats phy_stats;
290
291 /* Snapshot of PHY registers */
292 struct e1000_phy_regs phy_regs;
293
294 struct e1000_ring test_tx_ring;
295 struct e1000_ring test_rx_ring;
296 u32 test_icr;
297
298 u32 msg_enable;
299 unsigned int num_vectors;
300 struct msix_entry *msix_entries;
301 int int_mode;
302 u32 eiac_mask;
303
304 u32 eeprom_wol;
305 u32 wol;
306 u32 pba;
307 u32 max_hw_frame_size;
308
309 bool fc_autoneg;
310
311 unsigned int flags;
312 unsigned int flags2;
313 struct work_struct downshift_task;
314 struct work_struct update_phy_task;
315 struct work_struct print_hang_task;
316
317 int phy_hang_count;
318
319 u16 tx_ring_count;
320 u16 rx_ring_count;
321
322 struct hwtstamp_config hwtstamp_config;
323 struct delayed_work systim_overflow_work;
324 struct sk_buff *tx_hwtstamp_skb;
325 unsigned long tx_hwtstamp_start;
326 struct work_struct tx_hwtstamp_work;
327 spinlock_t systim_lock; /* protects SYSTIML/H regsters */
328 struct cyclecounter cc;
329 struct timecounter tc;
330 struct ptp_clock *ptp_clock;
331 struct ptp_clock_info ptp_clock_info;
332 struct pm_qos_request pm_qos_req;
333 long ptp_delta;
334
335 u16 eee_advert;
336};
337
338struct e1000_info {
339 enum e1000_mac_type mac;
340 unsigned int flags;
341 unsigned int flags2;
342 u32 pba;
343 u32 max_hw_frame_size;
344 s32 (*get_variants)(struct e1000_adapter *);
345 const struct e1000_mac_operations *mac_ops;
346 const struct e1000_phy_operations *phy_ops;
347 const struct e1000_nvm_operations *nvm_ops;
348};
349
350s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca);
351
352/* The system time is maintained by a 64-bit counter comprised of the 32-bit
353 * SYSTIMH and SYSTIML registers. How the counter increments (and therefore
354 * its resolution) is based on the contents of the TIMINCA register - it
355 * increments every incperiod (bits 31:24) clock ticks by incvalue (bits 23:0).
356 * For the best accuracy, the incperiod should be as small as possible. The
357 * incvalue is scaled by a factor as large as possible (while still fitting
358 * in bits 23:0) so that relatively small clock corrections can be made.
359 *
360 * As a result, a shift of INCVALUE_SHIFT_n is used to fit a value of
361 * INCVALUE_n into the TIMINCA register allowing 32+8+(24-INCVALUE_SHIFT_n)
362 * bits to count nanoseconds leaving the rest for fractional nonseconds.
363 *
364 * Any given INCVALUE also has an associated maximum adjustment value. This
365 * maximum adjustment value is the largest increase (or decrease) which can be
366 * safely applied without overflowing the INCVALUE. Since INCVALUE has
367 * a maximum range of 24 bits, its largest value is 0xFFFFFF.
368 *
369 * To understand where the maximum value comes from, consider the following
370 * equation:
371 *
372 * new_incval = base_incval + (base_incval * adjustment) / 1billion
373 *
374 * To avoid overflow that means:
375 * max_incval = base_incval + (base_incval * max_adj) / billion
376 *
377 * Re-arranging:
378 * max_adj = floor(((max_incval - base_incval) * 1billion) / 1billion)
379 */
380#define INCVALUE_96MHZ 125
381#define INCVALUE_SHIFT_96MHZ 17
382#define INCPERIOD_SHIFT_96MHZ 2
383#define INCPERIOD_96MHZ (12 >> INCPERIOD_SHIFT_96MHZ)
384#define MAX_PPB_96MHZ 23999900 /* 23,999,900 ppb */
385
386#define INCVALUE_25MHZ 40
387#define INCVALUE_SHIFT_25MHZ 18
388#define INCPERIOD_25MHZ 1
389#define MAX_PPB_25MHZ 599999900 /* 599,999,900 ppb */
390
391#define INCVALUE_24MHZ 125
392#define INCVALUE_SHIFT_24MHZ 14
393#define INCPERIOD_24MHZ 3
394#define MAX_PPB_24MHZ 999999999 /* 999,999,999 ppb */
395
396#define INCVALUE_38400KHZ 26
397#define INCVALUE_SHIFT_38400KHZ 19
398#define INCPERIOD_38400KHZ 1
399#define MAX_PPB_38400KHZ 230769100 /* 230,769,100 ppb */
400
401/* Another drawback of scaling the incvalue by a large factor is the
402 * 64-bit SYSTIM register overflows more quickly. This is dealt with
403 * by simply reading the clock before it overflows.
404 *
405 * Clock ns bits Overflows after
406 * ~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~
407 * 96MHz 47-bit 2^(47-INCPERIOD_SHIFT_96MHz) / 10^9 / 3600 = 9.77 hrs
408 * 25MHz 46-bit 2^46 / 10^9 / 3600 = 19.55 hours
409 */
410#define E1000_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 60 * 4)
411#define E1000_MAX_82574_SYSTIM_REREADS 50
412#define E1000_82574_SYSTIM_EPSILON (1ULL << 35ULL)
413
414/* hardware capability, feature, and workaround flags */
415#define FLAG_HAS_AMT BIT(0)
416#define FLAG_HAS_FLASH BIT(1)
417#define FLAG_HAS_HW_VLAN_FILTER BIT(2)
418#define FLAG_HAS_WOL BIT(3)
419/* reserved BIT(4) */
420#define FLAG_HAS_CTRLEXT_ON_LOAD BIT(5)
421#define FLAG_HAS_SWSM_ON_LOAD BIT(6)
422#define FLAG_HAS_JUMBO_FRAMES BIT(7)
423#define FLAG_READ_ONLY_NVM BIT(8)
424#define FLAG_IS_ICH BIT(9)
425#define FLAG_HAS_MSIX BIT(10)
426#define FLAG_HAS_SMART_POWER_DOWN BIT(11)
427#define FLAG_IS_QUAD_PORT_A BIT(12)
428#define FLAG_IS_QUAD_PORT BIT(13)
429#define FLAG_HAS_HW_TIMESTAMP BIT(14)
430#define FLAG_APME_IN_WUC BIT(15)
431#define FLAG_APME_IN_CTRL3 BIT(16)
432#define FLAG_APME_CHECK_PORT_B BIT(17)
433#define FLAG_DISABLE_FC_PAUSE_TIME BIT(18)
434#define FLAG_NO_WAKE_UCAST BIT(19)
435#define FLAG_MNG_PT_ENABLED BIT(20)
436#define FLAG_RESET_OVERWRITES_LAA BIT(21)
437#define FLAG_TARC_SPEED_MODE_BIT BIT(22)
438#define FLAG_TARC_SET_BIT_ZERO BIT(23)
439#define FLAG_RX_NEEDS_RESTART BIT(24)
440#define FLAG_LSC_GIG_SPEED_DROP BIT(25)
441#define FLAG_SMART_POWER_DOWN BIT(26)
442#define FLAG_MSI_ENABLED BIT(27)
443/* reserved BIT(28) */
444#define FLAG_TSO_FORCE BIT(29)
445#define FLAG_RESTART_NOW BIT(30)
446#define FLAG_MSI_TEST_FAILED BIT(31)
447
448#define FLAG2_CRC_STRIPPING BIT(0)
449#define FLAG2_HAS_PHY_WAKEUP BIT(1)
450#define FLAG2_IS_DISCARDING BIT(2)
451#define FLAG2_DISABLE_ASPM_L1 BIT(3)
452#define FLAG2_HAS_PHY_STATS BIT(4)
453#define FLAG2_HAS_EEE BIT(5)
454#define FLAG2_DMA_BURST BIT(6)
455#define FLAG2_DISABLE_ASPM_L0S BIT(7)
456#define FLAG2_DISABLE_AIM BIT(8)
457#define FLAG2_CHECK_PHY_HANG BIT(9)
458#define FLAG2_NO_DISABLE_RX BIT(10)
459#define FLAG2_PCIM2PCI_ARBITER_WA BIT(11)
460#define FLAG2_DFLT_CRC_STRIPPING BIT(12)
461#define FLAG2_CHECK_RX_HWTSTAMP BIT(13)
462#define FLAG2_CHECK_SYSTIM_OVERFLOW BIT(14)
463#define FLAG2_ENABLE_S0IX_FLOWS BIT(15)
464
465#define E1000_RX_DESC_PS(R, i) \
466 (&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
467#define E1000_RX_DESC_EXT(R, i) \
468 (&(((union e1000_rx_desc_extended *)((R).desc))[i]))
469#define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i]))
470#define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc)
471#define E1000_CONTEXT_DESC(R, i) E1000_GET_DESC(R, i, e1000_context_desc)
472
473enum e1000_state_t {
474 __E1000_TESTING,
475 __E1000_RESETTING,
476 __E1000_ACCESS_SHARED_RESOURCE,
477 __E1000_DOWN
478};
479
480enum latency_range {
481 lowest_latency = 0,
482 low_latency = 1,
483 bulk_latency = 2,
484 latency_invalid = 255
485};
486
487extern char e1000e_driver_name[];
488
489void e1000e_check_options(struct e1000_adapter *adapter);
490void e1000e_set_ethtool_ops(struct net_device *netdev);
491
492int e1000e_open(struct net_device *netdev);
493int e1000e_close(struct net_device *netdev);
494void e1000e_up(struct e1000_adapter *adapter);
495void e1000e_down(struct e1000_adapter *adapter, bool reset);
496void e1000e_reinit_locked(struct e1000_adapter *adapter);
497void e1000e_reset(struct e1000_adapter *adapter);
498void e1000e_power_up_phy(struct e1000_adapter *adapter);
499int e1000e_setup_rx_resources(struct e1000_ring *ring);
500int e1000e_setup_tx_resources(struct e1000_ring *ring);
501void e1000e_free_rx_resources(struct e1000_ring *ring);
502void e1000e_free_tx_resources(struct e1000_ring *ring);
503void e1000e_get_stats64(struct net_device *netdev,
504 struct rtnl_link_stats64 *stats);
505void e1000e_set_interrupt_capability(struct e1000_adapter *adapter);
506void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter);
507void e1000e_get_hw_control(struct e1000_adapter *adapter);
508void e1000e_release_hw_control(struct e1000_adapter *adapter);
509void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr);
510
511extern unsigned int copybreak;
512
513extern const struct e1000_info e1000_82571_info;
514extern const struct e1000_info e1000_82572_info;
515extern const struct e1000_info e1000_82573_info;
516extern const struct e1000_info e1000_82574_info;
517extern const struct e1000_info e1000_82583_info;
518extern const struct e1000_info e1000_ich8_info;
519extern const struct e1000_info e1000_ich9_info;
520extern const struct e1000_info e1000_ich10_info;
521extern const struct e1000_info e1000_pch_info;
522extern const struct e1000_info e1000_pch2_info;
523extern const struct e1000_info e1000_pch_lpt_info;
524extern const struct e1000_info e1000_pch_spt_info;
525extern const struct e1000_info e1000_pch_cnp_info;
526extern const struct e1000_info e1000_pch_tgp_info;
527extern const struct e1000_info e1000_pch_adp_info;
528extern const struct e1000_info e1000_pch_mtp_info;
529extern const struct e1000_info e1000_es2_info;
530
531void e1000e_ptp_init(struct e1000_adapter *adapter);
532void e1000e_ptp_remove(struct e1000_adapter *adapter);
533
534u64 e1000e_read_systim(struct e1000_adapter *adapter,
535 struct ptp_system_timestamp *sts);
536
537static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
538{
539 return hw->phy.ops.reset(hw);
540}
541
542static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data)
543{
544 return hw->phy.ops.read_reg(hw, offset, data);
545}
546
547static inline s32 e1e_rphy_locked(struct e1000_hw *hw, u32 offset, u16 *data)
548{
549 return hw->phy.ops.read_reg_locked(hw, offset, data);
550}
551
552static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data)
553{
554 return hw->phy.ops.write_reg(hw, offset, data);
555}
556
557static inline s32 e1e_wphy_locked(struct e1000_hw *hw, u32 offset, u16 data)
558{
559 return hw->phy.ops.write_reg_locked(hw, offset, data);
560}
561
562void e1000e_reload_nvm_generic(struct e1000_hw *hw);
563
564static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw)
565{
566 if (hw->mac.ops.read_mac_addr)
567 return hw->mac.ops.read_mac_addr(hw);
568
569 return e1000_read_mac_addr_generic(hw);
570}
571
572static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
573{
574 return hw->nvm.ops.validate(hw);
575}
576
577static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw)
578{
579 return hw->nvm.ops.update(hw);
580}
581
582static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words,
583 u16 *data)
584{
585 return hw->nvm.ops.read(hw, offset, words, data);
586}
587
588static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words,
589 u16 *data)
590{
591 return hw->nvm.ops.write(hw, offset, words, data);
592}
593
594static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
595{
596 return hw->phy.ops.get_info(hw);
597}
598
599static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
600{
601 return readl(hw->hw_addr + reg);
602}
603
604#define er32(reg) __er32(hw, E1000_##reg)
605
606void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val);
607
608#define ew32(reg, val) __ew32(hw, E1000_##reg, (val))
609
610#define e1e_flush() er32(STATUS)
611
612#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
613 (__ew32((a), (reg + ((offset) << 2)), (value)))
614
615#define E1000_READ_REG_ARRAY(a, reg, offset) \
616 (readl((a)->hw_addr + reg + ((offset) << 2)))
617
618#endif /* _E1000_H_ */
1/* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22/* Linux PRO/1000 Ethernet Driver main header file */
23
24#ifndef _E1000_H_
25#define _E1000_H_
26
27#include <linux/bitops.h>
28#include <linux/types.h>
29#include <linux/timer.h>
30#include <linux/workqueue.h>
31#include <linux/io.h>
32#include <linux/netdevice.h>
33#include <linux/pci.h>
34#include <linux/pci-aspm.h>
35#include <linux/crc32.h>
36#include <linux/if_vlan.h>
37#include <linux/clocksource.h>
38#include <linux/net_tstamp.h>
39#include <linux/ptp_clock_kernel.h>
40#include <linux/ptp_classify.h>
41#include <linux/mii.h>
42#include <linux/mdio.h>
43#include "hw.h"
44
45struct e1000_info;
46
47#define e_dbg(format, arg...) \
48 netdev_dbg(hw->adapter->netdev, format, ## arg)
49#define e_err(format, arg...) \
50 netdev_err(adapter->netdev, format, ## arg)
51#define e_info(format, arg...) \
52 netdev_info(adapter->netdev, format, ## arg)
53#define e_warn(format, arg...) \
54 netdev_warn(adapter->netdev, format, ## arg)
55#define e_notice(format, arg...) \
56 netdev_notice(adapter->netdev, format, ## arg)
57
58/* Interrupt modes, as used by the IntMode parameter */
59#define E1000E_INT_MODE_LEGACY 0
60#define E1000E_INT_MODE_MSI 1
61#define E1000E_INT_MODE_MSIX 2
62
63/* Tx/Rx descriptor defines */
64#define E1000_DEFAULT_TXD 256
65#define E1000_MAX_TXD 4096
66#define E1000_MIN_TXD 64
67
68#define E1000_DEFAULT_RXD 256
69#define E1000_MAX_RXD 4096
70#define E1000_MIN_RXD 64
71
72#define E1000_MIN_ITR_USECS 10 /* 100000 irq/sec */
73#define E1000_MAX_ITR_USECS 10000 /* 100 irq/sec */
74
75#define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */
76
77/* How many Tx Descriptors do we need to call netif_wake_queue ? */
78/* How many Rx Buffers do we bundle into one write to the hardware ? */
79#define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */
80
81#define AUTO_ALL_MODES 0
82#define E1000_EEPROM_APME 0x0400
83
84#define E1000_MNG_VLAN_NONE (-1)
85
86#define DEFAULT_JUMBO 9234
87
88/* Time to wait before putting the device into D3 if there's no link (in ms). */
89#define LINK_TIMEOUT 100
90
91/* Count for polling __E1000_RESET condition every 10-20msec.
92 * Experimentation has shown the reset can take approximately 210msec.
93 */
94#define E1000_CHECK_RESET_COUNT 25
95
96#define DEFAULT_RDTR 0
97#define DEFAULT_RADV 8
98#define BURST_RDTR 0x20
99#define BURST_RADV 0x20
100
101/* in the case of WTHRESH, it appears at least the 82571/2 hardware
102 * writes back 4 descriptors when WTHRESH=5, and 3 descriptors when
103 * WTHRESH=4, so a setting of 5 gives the most efficient bus
104 * utilization but to avoid possible Tx stalls, set it to 1
105 */
106#define E1000_TXDCTL_DMA_BURST_ENABLE \
107 (E1000_TXDCTL_GRAN | /* set descriptor granularity */ \
108 E1000_TXDCTL_COUNT_DESC | \
109 (1 << 16) | /* wthresh must be +1 more than desired */\
110 (1 << 8) | /* hthresh */ \
111 0x1f) /* pthresh */
112
113#define E1000_RXDCTL_DMA_BURST_ENABLE \
114 (0x01000000 | /* set descriptor granularity */ \
115 (4 << 16) | /* set writeback threshold */ \
116 (4 << 8) | /* set prefetch threshold */ \
117 0x20) /* set hthresh */
118
119#define E1000_TIDV_FPD (1 << 31)
120#define E1000_RDTR_FPD (1 << 31)
121
122enum e1000_boards {
123 board_82571,
124 board_82572,
125 board_82573,
126 board_82574,
127 board_82583,
128 board_80003es2lan,
129 board_ich8lan,
130 board_ich9lan,
131 board_ich10lan,
132 board_pchlan,
133 board_pch2lan,
134 board_pch_lpt,
135};
136
137struct e1000_ps_page {
138 struct page *page;
139 u64 dma; /* must be u64 - written to hw */
140};
141
142/* wrappers around a pointer to a socket buffer,
143 * so a DMA handle can be stored along with the buffer
144 */
145struct e1000_buffer {
146 dma_addr_t dma;
147 struct sk_buff *skb;
148 union {
149 /* Tx */
150 struct {
151 unsigned long time_stamp;
152 u16 length;
153 u16 next_to_watch;
154 unsigned int segs;
155 unsigned int bytecount;
156 u16 mapped_as_page;
157 };
158 /* Rx */
159 struct {
160 /* arrays of page information for packet split */
161 struct e1000_ps_page *ps_pages;
162 struct page *page;
163 };
164 };
165};
166
167struct e1000_ring {
168 struct e1000_adapter *adapter; /* back pointer to adapter */
169 void *desc; /* pointer to ring memory */
170 dma_addr_t dma; /* phys address of ring */
171 unsigned int size; /* length of ring in bytes */
172 unsigned int count; /* number of desc. in ring */
173
174 u16 next_to_use;
175 u16 next_to_clean;
176
177 void __iomem *head;
178 void __iomem *tail;
179
180 /* array of buffer information structs */
181 struct e1000_buffer *buffer_info;
182
183 char name[IFNAMSIZ + 5];
184 u32 ims_val;
185 u32 itr_val;
186 void __iomem *itr_register;
187 int set_itr;
188
189 struct sk_buff *rx_skb_top;
190};
191
192/* PHY register snapshot values */
193struct e1000_phy_regs {
194 u16 bmcr; /* basic mode control register */
195 u16 bmsr; /* basic mode status register */
196 u16 advertise; /* auto-negotiation advertisement */
197 u16 lpa; /* link partner ability register */
198 u16 expansion; /* auto-negotiation expansion reg */
199 u16 ctrl1000; /* 1000BASE-T control register */
200 u16 stat1000; /* 1000BASE-T status register */
201 u16 estatus; /* extended status register */
202};
203
204/* board specific private data structure */
205struct e1000_adapter {
206 struct timer_list watchdog_timer;
207 struct timer_list phy_info_timer;
208 struct timer_list blink_timer;
209
210 struct work_struct reset_task;
211 struct work_struct watchdog_task;
212
213 const struct e1000_info *ei;
214
215 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
216 u32 bd_number;
217 u32 rx_buffer_len;
218 u16 mng_vlan_id;
219 u16 link_speed;
220 u16 link_duplex;
221 u16 eeprom_vers;
222
223 /* track device up/down/testing state */
224 unsigned long state;
225
226 /* Interrupt Throttle Rate */
227 u32 itr;
228 u32 itr_setting;
229 u16 tx_itr;
230 u16 rx_itr;
231
232 /* Tx - one ring per active queue */
233 struct e1000_ring *tx_ring ____cacheline_aligned_in_smp;
234 u32 tx_fifo_limit;
235
236 struct napi_struct napi;
237
238 unsigned int uncorr_errors; /* uncorrectable ECC errors */
239 unsigned int corr_errors; /* correctable ECC errors */
240 unsigned int restart_queue;
241 u32 txd_cmd;
242
243 bool detect_tx_hung;
244 bool tx_hang_recheck;
245 u8 tx_timeout_factor;
246
247 u32 tx_int_delay;
248 u32 tx_abs_int_delay;
249
250 unsigned int total_tx_bytes;
251 unsigned int total_tx_packets;
252 unsigned int total_rx_bytes;
253 unsigned int total_rx_packets;
254
255 /* Tx stats */
256 u64 tpt_old;
257 u64 colc_old;
258 u32 gotc;
259 u64 gotc_old;
260 u32 tx_timeout_count;
261 u32 tx_fifo_head;
262 u32 tx_head_addr;
263 u32 tx_fifo_size;
264 u32 tx_dma_failed;
265 u32 tx_hwtstamp_timeouts;
266
267 /* Rx */
268 bool (*clean_rx) (struct e1000_ring *ring, int *work_done,
269 int work_to_do) ____cacheline_aligned_in_smp;
270 void (*alloc_rx_buf) (struct e1000_ring *ring, int cleaned_count,
271 gfp_t gfp);
272 struct e1000_ring *rx_ring;
273
274 u32 rx_int_delay;
275 u32 rx_abs_int_delay;
276
277 /* Rx stats */
278 u64 hw_csum_err;
279 u64 hw_csum_good;
280 u64 rx_hdr_split;
281 u32 gorc;
282 u64 gorc_old;
283 u32 alloc_rx_buff_failed;
284 u32 rx_dma_failed;
285 u32 rx_hwtstamp_cleared;
286
287 unsigned int rx_ps_pages;
288 u16 rx_ps_bsize0;
289 u32 max_frame_size;
290 u32 min_frame_size;
291
292 /* OS defined structs */
293 struct net_device *netdev;
294 struct pci_dev *pdev;
295
296 /* structs defined in e1000_hw.h */
297 struct e1000_hw hw;
298
299 spinlock_t stats64_lock; /* protects statistics counters */
300 struct e1000_hw_stats stats;
301 struct e1000_phy_info phy_info;
302 struct e1000_phy_stats phy_stats;
303
304 /* Snapshot of PHY registers */
305 struct e1000_phy_regs phy_regs;
306
307 struct e1000_ring test_tx_ring;
308 struct e1000_ring test_rx_ring;
309 u32 test_icr;
310
311 u32 msg_enable;
312 unsigned int num_vectors;
313 struct msix_entry *msix_entries;
314 int int_mode;
315 u32 eiac_mask;
316
317 u32 eeprom_wol;
318 u32 wol;
319 u32 pba;
320 u32 max_hw_frame_size;
321
322 bool fc_autoneg;
323
324 unsigned int flags;
325 unsigned int flags2;
326 struct work_struct downshift_task;
327 struct work_struct update_phy_task;
328 struct work_struct print_hang_task;
329
330 int phy_hang_count;
331
332 u16 tx_ring_count;
333 u16 rx_ring_count;
334
335 struct hwtstamp_config hwtstamp_config;
336 struct delayed_work systim_overflow_work;
337 struct sk_buff *tx_hwtstamp_skb;
338 unsigned long tx_hwtstamp_start;
339 struct work_struct tx_hwtstamp_work;
340 spinlock_t systim_lock; /* protects SYSTIML/H regsters */
341 struct cyclecounter cc;
342 struct timecounter tc;
343 struct ptp_clock *ptp_clock;
344 struct ptp_clock_info ptp_clock_info;
345
346 u16 eee_advert;
347};
348
349struct e1000_info {
350 enum e1000_mac_type mac;
351 unsigned int flags;
352 unsigned int flags2;
353 u32 pba;
354 u32 max_hw_frame_size;
355 s32 (*get_variants)(struct e1000_adapter *);
356 const struct e1000_mac_operations *mac_ops;
357 const struct e1000_phy_operations *phy_ops;
358 const struct e1000_nvm_operations *nvm_ops;
359};
360
361s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca);
362
363/* The system time is maintained by a 64-bit counter comprised of the 32-bit
364 * SYSTIMH and SYSTIML registers. How the counter increments (and therefore
365 * its resolution) is based on the contents of the TIMINCA register - it
366 * increments every incperiod (bits 31:24) clock ticks by incvalue (bits 23:0).
367 * For the best accuracy, the incperiod should be as small as possible. The
368 * incvalue is scaled by a factor as large as possible (while still fitting
369 * in bits 23:0) so that relatively small clock corrections can be made.
370 *
371 * As a result, a shift of INCVALUE_SHIFT_n is used to fit a value of
372 * INCVALUE_n into the TIMINCA register allowing 32+8+(24-INCVALUE_SHIFT_n)
373 * bits to count nanoseconds leaving the rest for fractional nonseconds.
374 */
375#define INCVALUE_96MHz 125
376#define INCVALUE_SHIFT_96MHz 17
377#define INCPERIOD_SHIFT_96MHz 2
378#define INCPERIOD_96MHz (12 >> INCPERIOD_SHIFT_96MHz)
379
380#define INCVALUE_25MHz 40
381#define INCVALUE_SHIFT_25MHz 18
382#define INCPERIOD_25MHz 1
383
384/* Another drawback of scaling the incvalue by a large factor is the
385 * 64-bit SYSTIM register overflows more quickly. This is dealt with
386 * by simply reading the clock before it overflows.
387 *
388 * Clock ns bits Overflows after
389 * ~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~
390 * 96MHz 47-bit 2^(47-INCPERIOD_SHIFT_96MHz) / 10^9 / 3600 = 9.77 hrs
391 * 25MHz 46-bit 2^46 / 10^9 / 3600 = 19.55 hours
392 */
393#define E1000_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 60 * 4)
394
395/* hardware capability, feature, and workaround flags */
396#define FLAG_HAS_AMT (1 << 0)
397#define FLAG_HAS_FLASH (1 << 1)
398#define FLAG_HAS_HW_VLAN_FILTER (1 << 2)
399#define FLAG_HAS_WOL (1 << 3)
400/* reserved bit4 */
401#define FLAG_HAS_CTRLEXT_ON_LOAD (1 << 5)
402#define FLAG_HAS_SWSM_ON_LOAD (1 << 6)
403#define FLAG_HAS_JUMBO_FRAMES (1 << 7)
404#define FLAG_READ_ONLY_NVM (1 << 8)
405#define FLAG_IS_ICH (1 << 9)
406#define FLAG_HAS_MSIX (1 << 10)
407#define FLAG_HAS_SMART_POWER_DOWN (1 << 11)
408#define FLAG_IS_QUAD_PORT_A (1 << 12)
409#define FLAG_IS_QUAD_PORT (1 << 13)
410#define FLAG_HAS_HW_TIMESTAMP (1 << 14)
411#define FLAG_APME_IN_WUC (1 << 15)
412#define FLAG_APME_IN_CTRL3 (1 << 16)
413#define FLAG_APME_CHECK_PORT_B (1 << 17)
414#define FLAG_DISABLE_FC_PAUSE_TIME (1 << 18)
415#define FLAG_NO_WAKE_UCAST (1 << 19)
416#define FLAG_MNG_PT_ENABLED (1 << 20)
417#define FLAG_RESET_OVERWRITES_LAA (1 << 21)
418#define FLAG_TARC_SPEED_MODE_BIT (1 << 22)
419#define FLAG_TARC_SET_BIT_ZERO (1 << 23)
420#define FLAG_RX_NEEDS_RESTART (1 << 24)
421#define FLAG_LSC_GIG_SPEED_DROP (1 << 25)
422#define FLAG_SMART_POWER_DOWN (1 << 26)
423#define FLAG_MSI_ENABLED (1 << 27)
424/* reserved (1 << 28) */
425#define FLAG_TSO_FORCE (1 << 29)
426#define FLAG_RESTART_NOW (1 << 30)
427#define FLAG_MSI_TEST_FAILED (1 << 31)
428
429#define FLAG2_CRC_STRIPPING (1 << 0)
430#define FLAG2_HAS_PHY_WAKEUP (1 << 1)
431#define FLAG2_IS_DISCARDING (1 << 2)
432#define FLAG2_DISABLE_ASPM_L1 (1 << 3)
433#define FLAG2_HAS_PHY_STATS (1 << 4)
434#define FLAG2_HAS_EEE (1 << 5)
435#define FLAG2_DMA_BURST (1 << 6)
436#define FLAG2_DISABLE_ASPM_L0S (1 << 7)
437#define FLAG2_DISABLE_AIM (1 << 8)
438#define FLAG2_CHECK_PHY_HANG (1 << 9)
439#define FLAG2_NO_DISABLE_RX (1 << 10)
440#define FLAG2_PCIM2PCI_ARBITER_WA (1 << 11)
441#define FLAG2_DFLT_CRC_STRIPPING (1 << 12)
442#define FLAG2_CHECK_RX_HWTSTAMP (1 << 13)
443
444#define E1000_RX_DESC_PS(R, i) \
445 (&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
446#define E1000_RX_DESC_EXT(R, i) \
447 (&(((union e1000_rx_desc_extended *)((R).desc))[i]))
448#define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i]))
449#define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc)
450#define E1000_CONTEXT_DESC(R, i) E1000_GET_DESC(R, i, e1000_context_desc)
451
452enum e1000_state_t {
453 __E1000_TESTING,
454 __E1000_RESETTING,
455 __E1000_ACCESS_SHARED_RESOURCE,
456 __E1000_DOWN
457};
458
459enum latency_range {
460 lowest_latency = 0,
461 low_latency = 1,
462 bulk_latency = 2,
463 latency_invalid = 255
464};
465
466extern char e1000e_driver_name[];
467extern const char e1000e_driver_version[];
468
469void e1000e_check_options(struct e1000_adapter *adapter);
470void e1000e_set_ethtool_ops(struct net_device *netdev);
471
472int e1000e_up(struct e1000_adapter *adapter);
473void e1000e_down(struct e1000_adapter *adapter, bool reset);
474void e1000e_reinit_locked(struct e1000_adapter *adapter);
475void e1000e_reset(struct e1000_adapter *adapter);
476void e1000e_power_up_phy(struct e1000_adapter *adapter);
477int e1000e_setup_rx_resources(struct e1000_ring *ring);
478int e1000e_setup_tx_resources(struct e1000_ring *ring);
479void e1000e_free_rx_resources(struct e1000_ring *ring);
480void e1000e_free_tx_resources(struct e1000_ring *ring);
481struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
482 struct rtnl_link_stats64 *stats);
483void e1000e_set_interrupt_capability(struct e1000_adapter *adapter);
484void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter);
485void e1000e_get_hw_control(struct e1000_adapter *adapter);
486void e1000e_release_hw_control(struct e1000_adapter *adapter);
487void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr);
488
489extern unsigned int copybreak;
490
491extern const struct e1000_info e1000_82571_info;
492extern const struct e1000_info e1000_82572_info;
493extern const struct e1000_info e1000_82573_info;
494extern const struct e1000_info e1000_82574_info;
495extern const struct e1000_info e1000_82583_info;
496extern const struct e1000_info e1000_ich8_info;
497extern const struct e1000_info e1000_ich9_info;
498extern const struct e1000_info e1000_ich10_info;
499extern const struct e1000_info e1000_pch_info;
500extern const struct e1000_info e1000_pch2_info;
501extern const struct e1000_info e1000_pch_lpt_info;
502extern const struct e1000_info e1000_es2_info;
503
504void e1000e_ptp_init(struct e1000_adapter *adapter);
505void e1000e_ptp_remove(struct e1000_adapter *adapter);
506
507static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
508{
509 return hw->phy.ops.reset(hw);
510}
511
512static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data)
513{
514 return hw->phy.ops.read_reg(hw, offset, data);
515}
516
517static inline s32 e1e_rphy_locked(struct e1000_hw *hw, u32 offset, u16 *data)
518{
519 return hw->phy.ops.read_reg_locked(hw, offset, data);
520}
521
522static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data)
523{
524 return hw->phy.ops.write_reg(hw, offset, data);
525}
526
527static inline s32 e1e_wphy_locked(struct e1000_hw *hw, u32 offset, u16 data)
528{
529 return hw->phy.ops.write_reg_locked(hw, offset, data);
530}
531
532void e1000e_reload_nvm_generic(struct e1000_hw *hw);
533
534static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw)
535{
536 if (hw->mac.ops.read_mac_addr)
537 return hw->mac.ops.read_mac_addr(hw);
538
539 return e1000_read_mac_addr_generic(hw);
540}
541
542static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
543{
544 return hw->nvm.ops.validate(hw);
545}
546
547static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw)
548{
549 return hw->nvm.ops.update(hw);
550}
551
552static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words,
553 u16 *data)
554{
555 return hw->nvm.ops.read(hw, offset, words, data);
556}
557
558static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words,
559 u16 *data)
560{
561 return hw->nvm.ops.write(hw, offset, words, data);
562}
563
564static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
565{
566 return hw->phy.ops.get_info(hw);
567}
568
569static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
570{
571 return readl(hw->hw_addr + reg);
572}
573
574#define er32(reg) __er32(hw, E1000_##reg)
575
576/**
577 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
578 * @hw: pointer to the HW structure
579 *
580 * When updating the MAC CSR registers, the Manageability Engine (ME) could
581 * be accessing the registers at the same time. Normally, this is handled in
582 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
583 * accesses later than it should which could result in the register to have
584 * an incorrect value. Workaround this by checking the FWSM register which
585 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
586 * and try again a number of times.
587 **/
588static inline s32 __ew32_prepare(struct e1000_hw *hw)
589{
590 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
591
592 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
593 udelay(50);
594
595 return i;
596}
597
598static inline void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
599{
600 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
601 __ew32_prepare(hw);
602
603 writel(val, hw->hw_addr + reg);
604}
605
606#define ew32(reg, val) __ew32(hw, E1000_##reg, (val))
607
608#define e1e_flush() er32(STATUS)
609
610#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
611 (__ew32((a), (reg + ((offset) << 2)), (value)))
612
613#define E1000_READ_REG_ARRAY(a, reg, offset) \
614 (readl((a)->hw_addr + reg + ((offset) << 2)))
615
616#endif /* _E1000_H_ */