Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2006 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4/*
   5 *	e100.c: Intel(R) PRO/100 ethernet driver
   6 *
   7 *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
   8 *	original e100 driver, but better described as a munging of
   9 *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
  10 *
  11 *	References:
  12 *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
  13 *		Open Source Software Developers Manual,
  14 *		http://sourceforge.net/projects/e1000
  15 *
  16 *
  17 *	                      Theory of Operation
  18 *
  19 *	I.   General
  20 *
  21 *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
  22 *	controller family, which includes the 82557, 82558, 82559, 82550,
  23 *	82551, and 82562 devices.  82558 and greater controllers
  24 *	integrate the Intel 82555 PHY.  The controllers are used in
  25 *	server and client network interface cards, as well as in
  26 *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
  27 *	configurations.  8255x supports a 32-bit linear addressing
  28 *	mode and operates at 33Mhz PCI clock rate.
  29 *
  30 *	II.  Driver Operation
  31 *
  32 *	Memory-mapped mode is used exclusively to access the device's
  33 *	shared-memory structure, the Control/Status Registers (CSR). All
  34 *	setup, configuration, and control of the device, including queuing
  35 *	of Tx, Rx, and configuration commands is through the CSR.
  36 *	cmd_lock serializes accesses to the CSR command register.  cb_lock
  37 *	protects the shared Command Block List (CBL).
  38 *
  39 *	8255x is highly MII-compliant and all access to the PHY go
  40 *	through the Management Data Interface (MDI).  Consequently, the
  41 *	driver leverages the mii.c library shared with other MII-compliant
  42 *	devices.
  43 *
  44 *	Big- and Little-Endian byte order as well as 32- and 64-bit
  45 *	archs are supported.  Weak-ordered memory and non-cache-coherent
  46 *	archs are supported.
  47 *
  48 *	III. Transmit
  49 *
  50 *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
  51 *	together in a fixed-size ring (CBL) thus forming the flexible mode
  52 *	memory structure.  A TCB marked with the suspend-bit indicates
  53 *	the end of the ring.  The last TCB processed suspends the
  54 *	controller, and the controller can be restarted by issue a CU
  55 *	resume command to continue from the suspend point, or a CU start
  56 *	command to start at a given position in the ring.
  57 *
  58 *	Non-Tx commands (config, multicast setup, etc) are linked
  59 *	into the CBL ring along with Tx commands.  The common structure
  60 *	used for both Tx and non-Tx commands is the Command Block (CB).
  61 *
  62 *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
  63 *	is the next CB to check for completion; cb_to_send is the first
  64 *	CB to start on in case of a previous failure to resume.  CB clean
  65 *	up happens in interrupt context in response to a CU interrupt.
  66 *	cbs_avail keeps track of number of free CB resources available.
  67 *
  68 * 	Hardware padding of short packets to minimum packet size is
  69 * 	enabled.  82557 pads with 7Eh, while the later controllers pad
  70 * 	with 00h.
  71 *
  72 *	IV.  Receive
  73 *
  74 *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
  75 *	Descriptors (RFD) + data buffer, thus forming the simplified mode
  76 *	memory structure.  Rx skbs are allocated to contain both the RFD
  77 *	and the data buffer, but the RFD is pulled off before the skb is
  78 *	indicated.  The data buffer is aligned such that encapsulated
  79 *	protocol headers are u32-aligned.  Since the RFD is part of the
  80 *	mapped shared memory, and completion status is contained within
  81 *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
  82 *	view from software and hardware.
  83 *
  84 *	In order to keep updates to the RFD link field from colliding with
  85 *	hardware writes to mark packets complete, we use the feature that
  86 *	hardware will not write to a size 0 descriptor and mark the previous
  87 *	packet as end-of-list (EL).   After updating the link, we remove EL
  88 *	and only then restore the size such that hardware may use the
  89 *	previous-to-end RFD.
  90 *
  91 *	Under typical operation, the  receive unit (RU) is start once,
  92 *	and the controller happily fills RFDs as frames arrive.  If
  93 *	replacement RFDs cannot be allocated, or the RU goes non-active,
  94 *	the RU must be restarted.  Frame arrival generates an interrupt,
  95 *	and Rx indication and re-allocation happen in the same context,
  96 *	therefore no locking is required.  A software-generated interrupt
  97 *	is generated from the watchdog to recover from a failed allocation
  98 *	scenario where all Rx resources have been indicated and none re-
  99 *	placed.
 100 *
 101 *	V.   Miscellaneous
 102 *
 103 * 	VLAN offloading of tagging, stripping and filtering is not
 104 * 	supported, but driver will accommodate the extra 4-byte VLAN tag
 105 * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
 106 * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
 107 * 	not supported (hardware limitation).
 108 *
 109 * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
 110 *
 111 * 	Thanks to JC (jchapman@katalix.com) for helping with
 112 * 	testing/troubleshooting the development driver.
 113 *
 114 * 	TODO:
 115 * 	o several entry points race with dev->close
 116 * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
 117 *
 118 *	FIXES:
 119 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
 120 *	- Stratus87247: protect MDI control register manipulations
 121 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
 122 *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
 123 */
 124
 125#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 126
 127#include <linux/hardirq.h>
 128#include <linux/interrupt.h>
 129#include <linux/module.h>
 130#include <linux/moduleparam.h>
 131#include <linux/kernel.h>
 132#include <linux/types.h>
 133#include <linux/sched.h>
 134#include <linux/slab.h>
 135#include <linux/delay.h>
 136#include <linux/init.h>
 137#include <linux/pci.h>
 138#include <linux/dma-mapping.h>
 139#include <linux/dmapool.h>
 140#include <linux/netdevice.h>
 141#include <linux/etherdevice.h>
 142#include <linux/mii.h>
 143#include <linux/if_vlan.h>
 144#include <linux/skbuff.h>
 145#include <linux/ethtool.h>
 146#include <linux/string.h>
 147#include <linux/firmware.h>
 148#include <linux/rtnetlink.h>
 149#include <asm/unaligned.h>
 150
 151
 152#define DRV_NAME		"e100"
 
 
 153#define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
 154#define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"
 155
 156#define E100_WATCHDOG_PERIOD	(2 * HZ)
 157#define E100_NAPI_WEIGHT	16
 158
 159#define FIRMWARE_D101M		"e100/d101m_ucode.bin"
 160#define FIRMWARE_D101S		"e100/d101s_ucode.bin"
 161#define FIRMWARE_D102E		"e100/d102e_ucode.bin"
 162
 163MODULE_DESCRIPTION(DRV_DESCRIPTION);
 164MODULE_AUTHOR(DRV_COPYRIGHT);
 165MODULE_LICENSE("GPL v2");
 
 166MODULE_FIRMWARE(FIRMWARE_D101M);
 167MODULE_FIRMWARE(FIRMWARE_D101S);
 168MODULE_FIRMWARE(FIRMWARE_D102E);
 169
 170static int debug = 3;
 171static int eeprom_bad_csum_allow = 0;
 172static int use_io = 0;
 173module_param(debug, int, 0);
 174module_param(eeprom_bad_csum_allow, int, 0);
 175module_param(use_io, int, 0);
 176MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 177MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
 178MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
 179
 180#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
 181	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
 182	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
 183static const struct pci_device_id e100_id_table[] = {
 184	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
 185	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
 186	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
 187	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
 188	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
 189	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
 190	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
 191	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
 192	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
 193	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
 194	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
 195	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
 196	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
 197	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
 198	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
 199	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
 200	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
 201	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
 202	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
 203	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
 204	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
 205	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
 206	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
 207	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
 208	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
 209	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
 210	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
 211	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
 212	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
 213	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
 214	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
 215	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
 216	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
 217	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
 218	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
 219	INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
 220	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
 221	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
 222	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
 223	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
 224	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
 225	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
 226	{ 0, }
 227};
 228MODULE_DEVICE_TABLE(pci, e100_id_table);
 229
 230enum mac {
 231	mac_82557_D100_A  = 0,
 232	mac_82557_D100_B  = 1,
 233	mac_82557_D100_C  = 2,
 234	mac_82558_D101_A4 = 4,
 235	mac_82558_D101_B0 = 5,
 236	mac_82559_D101M   = 8,
 237	mac_82559_D101S   = 9,
 238	mac_82550_D102    = 12,
 239	mac_82550_D102_C  = 13,
 240	mac_82551_E       = 14,
 241	mac_82551_F       = 15,
 242	mac_82551_10      = 16,
 243	mac_unknown       = 0xFF,
 244};
 245
 246enum phy {
 247	phy_100a     = 0x000003E0,
 248	phy_100c     = 0x035002A8,
 249	phy_82555_tx = 0x015002A8,
 250	phy_nsc_tx   = 0x5C002000,
 251	phy_82562_et = 0x033002A8,
 252	phy_82562_em = 0x032002A8,
 253	phy_82562_ek = 0x031002A8,
 254	phy_82562_eh = 0x017002A8,
 255	phy_82552_v  = 0xd061004d,
 256	phy_unknown  = 0xFFFFFFFF,
 257};
 258
 259/* CSR (Control/Status Registers) */
 260struct csr {
 261	struct {
 262		u8 status;
 263		u8 stat_ack;
 264		u8 cmd_lo;
 265		u8 cmd_hi;
 266		u32 gen_ptr;
 267	} scb;
 268	u32 port;
 269	u16 flash_ctrl;
 270	u8 eeprom_ctrl_lo;
 271	u8 eeprom_ctrl_hi;
 272	u32 mdi_ctrl;
 273	u32 rx_dma_count;
 274};
 275
 276enum scb_status {
 277	rus_no_res       = 0x08,
 278	rus_ready        = 0x10,
 279	rus_mask         = 0x3C,
 280};
 281
 282enum ru_state  {
 283	RU_SUSPENDED = 0,
 284	RU_RUNNING	 = 1,
 285	RU_UNINITIALIZED = -1,
 286};
 287
 288enum scb_stat_ack {
 289	stat_ack_not_ours    = 0x00,
 290	stat_ack_sw_gen      = 0x04,
 291	stat_ack_rnr         = 0x10,
 292	stat_ack_cu_idle     = 0x20,
 293	stat_ack_frame_rx    = 0x40,
 294	stat_ack_cu_cmd_done = 0x80,
 295	stat_ack_not_present = 0xFF,
 296	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
 297	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
 298};
 299
 300enum scb_cmd_hi {
 301	irq_mask_none = 0x00,
 302	irq_mask_all  = 0x01,
 303	irq_sw_gen    = 0x02,
 304};
 305
 306enum scb_cmd_lo {
 307	cuc_nop        = 0x00,
 308	ruc_start      = 0x01,
 309	ruc_load_base  = 0x06,
 310	cuc_start      = 0x10,
 311	cuc_resume     = 0x20,
 312	cuc_dump_addr  = 0x40,
 313	cuc_dump_stats = 0x50,
 314	cuc_load_base  = 0x60,
 315	cuc_dump_reset = 0x70,
 316};
 317
 318enum cuc_dump {
 319	cuc_dump_complete       = 0x0000A005,
 320	cuc_dump_reset_complete = 0x0000A007,
 321};
 322
 323enum port {
 324	software_reset  = 0x0000,
 325	selftest        = 0x0001,
 326	selective_reset = 0x0002,
 327};
 328
 329enum eeprom_ctrl_lo {
 330	eesk = 0x01,
 331	eecs = 0x02,
 332	eedi = 0x04,
 333	eedo = 0x08,
 334};
 335
 336enum mdi_ctrl {
 337	mdi_write = 0x04000000,
 338	mdi_read  = 0x08000000,
 339	mdi_ready = 0x10000000,
 340};
 341
 342enum eeprom_op {
 343	op_write = 0x05,
 344	op_read  = 0x06,
 345	op_ewds  = 0x10,
 346	op_ewen  = 0x13,
 347};
 348
 349enum eeprom_offsets {
 350	eeprom_cnfg_mdix  = 0x03,
 351	eeprom_phy_iface  = 0x06,
 352	eeprom_id         = 0x0A,
 353	eeprom_config_asf = 0x0D,
 354	eeprom_smbus_addr = 0x90,
 355};
 356
 357enum eeprom_cnfg_mdix {
 358	eeprom_mdix_enabled = 0x0080,
 359};
 360
 361enum eeprom_phy_iface {
 362	NoSuchPhy = 0,
 363	I82553AB,
 364	I82553C,
 365	I82503,
 366	DP83840,
 367	S80C240,
 368	S80C24,
 369	I82555,
 370	DP83840A = 10,
 371};
 372
 373enum eeprom_id {
 374	eeprom_id_wol = 0x0020,
 375};
 376
 377enum eeprom_config_asf {
 378	eeprom_asf = 0x8000,
 379	eeprom_gcl = 0x4000,
 380};
 381
 382enum cb_status {
 383	cb_complete = 0x8000,
 384	cb_ok       = 0x2000,
 385};
 386
 387/*
 388 * cb_command - Command Block flags
 389 * @cb_tx_nc:  0: controller does CRC (normal),  1: CRC from skb memory
 390 */
 391enum cb_command {
 392	cb_nop    = 0x0000,
 393	cb_iaaddr = 0x0001,
 394	cb_config = 0x0002,
 395	cb_multi  = 0x0003,
 396	cb_tx     = 0x0004,
 397	cb_ucode  = 0x0005,
 398	cb_dump   = 0x0006,
 399	cb_tx_sf  = 0x0008,
 400	cb_tx_nc  = 0x0010,
 401	cb_cid    = 0x1f00,
 402	cb_i      = 0x2000,
 403	cb_s      = 0x4000,
 404	cb_el     = 0x8000,
 405};
 406
 407struct rfd {
 408	__le16 status;
 409	__le16 command;
 410	__le32 link;
 411	__le32 rbd;
 412	__le16 actual_size;
 413	__le16 size;
 414};
 415
 416struct rx {
 417	struct rx *next, *prev;
 418	struct sk_buff *skb;
 419	dma_addr_t dma_addr;
 420};
 421
 422#if defined(__BIG_ENDIAN_BITFIELD)
 423#define X(a,b)	b,a
 424#else
 425#define X(a,b)	a,b
 426#endif
 427struct config {
 428/*0*/	u8 X(byte_count:6, pad0:2);
 429/*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
 430/*2*/	u8 adaptive_ifs;
 431/*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
 432	   term_write_cache_line:1), pad3:4);
 433/*4*/	u8 X(rx_dma_max_count:7, pad4:1);
 434/*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
 435/*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
 436	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
 437	   rx_save_overruns : 1), rx_save_bad_frames : 1);
 438/*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
 439	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
 440	   tx_dynamic_tbd:1);
 441/*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
 442/*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
 443	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
 444/*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
 445	   loopback:2);
 446/*11*/	u8 X(linear_priority:3, pad11:5);
 447/*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
 448/*13*/	u8 ip_addr_lo;
 449/*14*/	u8 ip_addr_hi;
 450/*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
 451	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
 452	   pad15_2:1), crs_or_cdt:1);
 453/*16*/	u8 fc_delay_lo;
 454/*17*/	u8 fc_delay_hi;
 455/*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
 456	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
 457/*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
 458	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
 459	   full_duplex_force:1), full_duplex_pin:1);
 460/*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
 461/*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
 462/*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
 463	u8 pad_d102[9];
 464};
 465
 466#define E100_MAX_MULTICAST_ADDRS	64
 467struct multi {
 468	__le16 count;
 469	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
 470};
 471
 472/* Important: keep total struct u32-aligned */
 473#define UCODE_SIZE			134
 474struct cb {
 475	__le16 status;
 476	__le16 command;
 477	__le32 link;
 478	union {
 479		u8 iaaddr[ETH_ALEN];
 480		__le32 ucode[UCODE_SIZE];
 481		struct config config;
 482		struct multi multi;
 483		struct {
 484			u32 tbd_array;
 485			u16 tcb_byte_count;
 486			u8 threshold;
 487			u8 tbd_count;
 488			struct {
 489				__le32 buf_addr;
 490				__le16 size;
 491				u16 eol;
 492			} tbd;
 493		} tcb;
 494		__le32 dump_buffer_addr;
 495	} u;
 496	struct cb *next, *prev;
 497	dma_addr_t dma_addr;
 498	struct sk_buff *skb;
 499};
 500
 501enum loopback {
 502	lb_none = 0, lb_mac = 1, lb_phy = 3,
 503};
 504
 505struct stats {
 506	__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
 507		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
 508		tx_multiple_collisions, tx_total_collisions;
 509	__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
 510		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
 511		rx_short_frame_errors;
 512	__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
 513	__le16 xmt_tco_frames, rcv_tco_frames;
 514	__le32 complete;
 515};
 516
 517struct mem {
 518	struct {
 519		u32 signature;
 520		u32 result;
 521	} selftest;
 522	struct stats stats;
 523	u8 dump_buf[596];
 524};
 525
 526struct param_range {
 527	u32 min;
 528	u32 max;
 529	u32 count;
 530};
 531
 532struct params {
 533	struct param_range rfds;
 534	struct param_range cbs;
 535};
 536
 537struct nic {
 538	/* Begin: frequently used values: keep adjacent for cache effect */
 539	u32 msg_enable				____cacheline_aligned;
 540	struct net_device *netdev;
 541	struct pci_dev *pdev;
 542	u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
 543
 544	struct rx *rxs				____cacheline_aligned;
 545	struct rx *rx_to_use;
 546	struct rx *rx_to_clean;
 547	struct rfd blank_rfd;
 548	enum ru_state ru_running;
 549
 550	spinlock_t cb_lock			____cacheline_aligned;
 551	spinlock_t cmd_lock;
 552	struct csr __iomem *csr;
 553	enum scb_cmd_lo cuc_cmd;
 554	unsigned int cbs_avail;
 555	struct napi_struct napi;
 556	struct cb *cbs;
 557	struct cb *cb_to_use;
 558	struct cb *cb_to_send;
 559	struct cb *cb_to_clean;
 560	__le16 tx_command;
 561	/* End: frequently used values: keep adjacent for cache effect */
 562
 563	enum {
 564		ich                = (1 << 0),
 565		promiscuous        = (1 << 1),
 566		multicast_all      = (1 << 2),
 567		wol_magic          = (1 << 3),
 568		ich_10h_workaround = (1 << 4),
 569	} flags					____cacheline_aligned;
 570
 571	enum mac mac;
 572	enum phy phy;
 573	struct params params;
 574	struct timer_list watchdog;
 575	struct mii_if_info mii;
 576	struct work_struct tx_timeout_task;
 577	enum loopback loopback;
 578
 579	struct mem *mem;
 580	dma_addr_t dma_addr;
 581
 582	struct dma_pool *cbs_pool;
 583	dma_addr_t cbs_dma_addr;
 584	u8 adaptive_ifs;
 585	u8 tx_threshold;
 586	u32 tx_frames;
 587	u32 tx_collisions;
 588	u32 tx_deferred;
 589	u32 tx_single_collisions;
 590	u32 tx_multiple_collisions;
 591	u32 tx_fc_pause;
 592	u32 tx_tco_frames;
 593
 594	u32 rx_fc_pause;
 595	u32 rx_fc_unsupported;
 596	u32 rx_tco_frames;
 597	u32 rx_short_frame_errors;
 598	u32 rx_over_length_errors;
 599
 600	u16 eeprom_wc;
 601	__le16 eeprom[256];
 602	spinlock_t mdio_lock;
 603	const struct firmware *fw;
 604};
 605
 606static inline void e100_write_flush(struct nic *nic)
 607{
 608	/* Flush previous PCI writes through intermediate bridges
 609	 * by doing a benign read */
 610	(void)ioread8(&nic->csr->scb.status);
 611}
 612
 613static void e100_enable_irq(struct nic *nic)
 614{
 615	unsigned long flags;
 616
 617	spin_lock_irqsave(&nic->cmd_lock, flags);
 618	iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
 619	e100_write_flush(nic);
 620	spin_unlock_irqrestore(&nic->cmd_lock, flags);
 621}
 622
 623static void e100_disable_irq(struct nic *nic)
 624{
 625	unsigned long flags;
 626
 627	spin_lock_irqsave(&nic->cmd_lock, flags);
 628	iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
 629	e100_write_flush(nic);
 630	spin_unlock_irqrestore(&nic->cmd_lock, flags);
 631}
 632
 633static void e100_hw_reset(struct nic *nic)
 634{
 635	/* Put CU and RU into idle with a selective reset to get
 636	 * device off of PCI bus */
 637	iowrite32(selective_reset, &nic->csr->port);
 638	e100_write_flush(nic); udelay(20);
 639
 640	/* Now fully reset device */
 641	iowrite32(software_reset, &nic->csr->port);
 642	e100_write_flush(nic); udelay(20);
 643
 644	/* Mask off our interrupt line - it's unmasked after reset */
 645	e100_disable_irq(nic);
 646}
 647
 648static int e100_self_test(struct nic *nic)
 649{
 650	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
 651
 652	/* Passing the self-test is a pretty good indication
 653	 * that the device can DMA to/from host memory */
 654
 655	nic->mem->selftest.signature = 0;
 656	nic->mem->selftest.result = 0xFFFFFFFF;
 657
 658	iowrite32(selftest | dma_addr, &nic->csr->port);
 659	e100_write_flush(nic);
 660	/* Wait 10 msec for self-test to complete */
 661	msleep(10);
 662
 663	/* Interrupts are enabled after self-test */
 664	e100_disable_irq(nic);
 665
 666	/* Check results of self-test */
 667	if (nic->mem->selftest.result != 0) {
 668		netif_err(nic, hw, nic->netdev,
 669			  "Self-test failed: result=0x%08X\n",
 670			  nic->mem->selftest.result);
 671		return -ETIMEDOUT;
 672	}
 673	if (nic->mem->selftest.signature == 0) {
 674		netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
 675		return -ETIMEDOUT;
 676	}
 677
 678	return 0;
 679}
 680
 681static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
 682{
 683	u32 cmd_addr_data[3];
 684	u8 ctrl;
 685	int i, j;
 686
 687	/* Three cmds: write/erase enable, write data, write/erase disable */
 688	cmd_addr_data[0] = op_ewen << (addr_len - 2);
 689	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
 690		le16_to_cpu(data);
 691	cmd_addr_data[2] = op_ewds << (addr_len - 2);
 692
 693	/* Bit-bang cmds to write word to eeprom */
 694	for (j = 0; j < 3; j++) {
 695
 696		/* Chip select */
 697		iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 698		e100_write_flush(nic); udelay(4);
 699
 700		for (i = 31; i >= 0; i--) {
 701			ctrl = (cmd_addr_data[j] & (1 << i)) ?
 702				eecs | eedi : eecs;
 703			iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 704			e100_write_flush(nic); udelay(4);
 705
 706			iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 707			e100_write_flush(nic); udelay(4);
 708		}
 709		/* Wait 10 msec for cmd to complete */
 710		msleep(10);
 711
 712		/* Chip deselect */
 713		iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 714		e100_write_flush(nic); udelay(4);
 715	}
 716};
 717
 718/* General technique stolen from the eepro100 driver - very clever */
 719static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
 720{
 721	u32 cmd_addr_data;
 722	u16 data = 0;
 723	u8 ctrl;
 724	int i;
 725
 726	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
 727
 728	/* Chip select */
 729	iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 730	e100_write_flush(nic); udelay(4);
 731
 732	/* Bit-bang to read word from eeprom */
 733	for (i = 31; i >= 0; i--) {
 734		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
 735		iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 736		e100_write_flush(nic); udelay(4);
 737
 738		iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 739		e100_write_flush(nic); udelay(4);
 740
 741		/* Eeprom drives a dummy zero to EEDO after receiving
 742		 * complete address.  Use this to adjust addr_len. */
 743		ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
 744		if (!(ctrl & eedo) && i > 16) {
 745			*addr_len -= (i - 16);
 746			i = 17;
 747		}
 748
 749		data = (data << 1) | (ctrl & eedo ? 1 : 0);
 750	}
 751
 752	/* Chip deselect */
 753	iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 754	e100_write_flush(nic); udelay(4);
 755
 756	return cpu_to_le16(data);
 757};
 758
 759/* Load entire EEPROM image into driver cache and validate checksum */
 760static int e100_eeprom_load(struct nic *nic)
 761{
 762	u16 addr, addr_len = 8, checksum = 0;
 763
 764	/* Try reading with an 8-bit addr len to discover actual addr len */
 765	e100_eeprom_read(nic, &addr_len, 0);
 766	nic->eeprom_wc = 1 << addr_len;
 767
 768	for (addr = 0; addr < nic->eeprom_wc; addr++) {
 769		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
 770		if (addr < nic->eeprom_wc - 1)
 771			checksum += le16_to_cpu(nic->eeprom[addr]);
 772	}
 773
 774	/* The checksum, stored in the last word, is calculated such that
 775	 * the sum of words should be 0xBABA */
 776	if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
 777		netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
 778		if (!eeprom_bad_csum_allow)
 779			return -EAGAIN;
 780	}
 781
 782	return 0;
 783}
 784
 785/* Save (portion of) driver EEPROM cache to device and update checksum */
 786static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
 787{
 788	u16 addr, addr_len = 8, checksum = 0;
 789
 790	/* Try reading with an 8-bit addr len to discover actual addr len */
 791	e100_eeprom_read(nic, &addr_len, 0);
 792	nic->eeprom_wc = 1 << addr_len;
 793
 794	if (start + count >= nic->eeprom_wc)
 795		return -EINVAL;
 796
 797	for (addr = start; addr < start + count; addr++)
 798		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
 799
 800	/* The checksum, stored in the last word, is calculated such that
 801	 * the sum of words should be 0xBABA */
 802	for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
 803		checksum += le16_to_cpu(nic->eeprom[addr]);
 804	nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
 805	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
 806		nic->eeprom[nic->eeprom_wc - 1]);
 807
 808	return 0;
 809}
 810
 811#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
 812#define E100_WAIT_SCB_FAST 20       /* delay like the old code */
 813static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
 814{
 815	unsigned long flags;
 816	unsigned int i;
 817	int err = 0;
 818
 819	spin_lock_irqsave(&nic->cmd_lock, flags);
 820
 821	/* Previous command is accepted when SCB clears */
 822	for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
 823		if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
 824			break;
 825		cpu_relax();
 826		if (unlikely(i > E100_WAIT_SCB_FAST))
 827			udelay(5);
 828	}
 829	if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
 830		err = -EAGAIN;
 831		goto err_unlock;
 832	}
 833
 834	if (unlikely(cmd != cuc_resume))
 835		iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
 836	iowrite8(cmd, &nic->csr->scb.cmd_lo);
 837
 838err_unlock:
 839	spin_unlock_irqrestore(&nic->cmd_lock, flags);
 840
 841	return err;
 842}
 843
 844static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
 845	int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
 846{
 847	struct cb *cb;
 848	unsigned long flags;
 849	int err;
 850
 851	spin_lock_irqsave(&nic->cb_lock, flags);
 852
 853	if (unlikely(!nic->cbs_avail)) {
 854		err = -ENOMEM;
 855		goto err_unlock;
 856	}
 857
 858	cb = nic->cb_to_use;
 859	nic->cb_to_use = cb->next;
 860	nic->cbs_avail--;
 861	cb->skb = skb;
 862
 863	err = cb_prepare(nic, cb, skb);
 864	if (err)
 865		goto err_unlock;
 866
 867	if (unlikely(!nic->cbs_avail))
 868		err = -ENOSPC;
 869
 870
 871	/* Order is important otherwise we'll be in a race with h/w:
 872	 * set S-bit in current first, then clear S-bit in previous. */
 873	cb->command |= cpu_to_le16(cb_s);
 874	dma_wmb();
 875	cb->prev->command &= cpu_to_le16(~cb_s);
 876
 877	while (nic->cb_to_send != nic->cb_to_use) {
 878		if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
 879			nic->cb_to_send->dma_addr))) {
 880			/* Ok, here's where things get sticky.  It's
 881			 * possible that we can't schedule the command
 882			 * because the controller is too busy, so
 883			 * let's just queue the command and try again
 884			 * when another command is scheduled. */
 885			if (err == -ENOSPC) {
 886				//request a reset
 887				schedule_work(&nic->tx_timeout_task);
 888			}
 889			break;
 890		} else {
 891			nic->cuc_cmd = cuc_resume;
 892			nic->cb_to_send = nic->cb_to_send->next;
 893		}
 894	}
 895
 896err_unlock:
 897	spin_unlock_irqrestore(&nic->cb_lock, flags);
 898
 899	return err;
 900}
 901
 902static int mdio_read(struct net_device *netdev, int addr, int reg)
 903{
 904	struct nic *nic = netdev_priv(netdev);
 905	return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
 906}
 907
 908static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
 909{
 910	struct nic *nic = netdev_priv(netdev);
 911
 912	nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
 913}
 914
 915/* the standard mdio_ctrl() function for usual MII-compliant hardware */
 916static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
 917{
 918	u32 data_out = 0;
 919	unsigned int i;
 920	unsigned long flags;
 921
 922
 923	/*
 924	 * Stratus87247: we shouldn't be writing the MDI control
 925	 * register until the Ready bit shows True.  Also, since
 926	 * manipulation of the MDI control registers is a multi-step
 927	 * procedure it should be done under lock.
 928	 */
 929	spin_lock_irqsave(&nic->mdio_lock, flags);
 930	for (i = 100; i; --i) {
 931		if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
 932			break;
 933		udelay(20);
 934	}
 935	if (unlikely(!i)) {
 936		netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
 937		spin_unlock_irqrestore(&nic->mdio_lock, flags);
 938		return 0;		/* No way to indicate timeout error */
 939	}
 940	iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
 941
 942	for (i = 0; i < 100; i++) {
 943		udelay(20);
 944		if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
 945			break;
 946	}
 947	spin_unlock_irqrestore(&nic->mdio_lock, flags);
 948	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
 949		     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
 950		     dir == mdi_read ? "READ" : "WRITE",
 951		     addr, reg, data, data_out);
 952	return (u16)data_out;
 953}
 954
 955/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
 956static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
 957				 u32 addr,
 958				 u32 dir,
 959				 u32 reg,
 960				 u16 data)
 961{
 962	if ((reg == MII_BMCR) && (dir == mdi_write)) {
 963		if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
 964			u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
 965							MII_ADVERTISE);
 966
 967			/*
 968			 * Workaround Si issue where sometimes the part will not
 969			 * autoneg to 100Mbps even when advertised.
 970			 */
 971			if (advert & ADVERTISE_100FULL)
 972				data |= BMCR_SPEED100 | BMCR_FULLDPLX;
 973			else if (advert & ADVERTISE_100HALF)
 974				data |= BMCR_SPEED100;
 975		}
 976	}
 977	return mdio_ctrl_hw(nic, addr, dir, reg, data);
 978}
 979
 980/* Fully software-emulated mdio_ctrl() function for cards without
 981 * MII-compliant PHYs.
 982 * For now, this is mainly geared towards 80c24 support; in case of further
 983 * requirements for other types (i82503, ...?) either extend this mechanism
 984 * or split it, whichever is cleaner.
 985 */
 986static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
 987				      u32 addr,
 988				      u32 dir,
 989				      u32 reg,
 990				      u16 data)
 991{
 992	/* might need to allocate a netdev_priv'ed register array eventually
 993	 * to be able to record state changes, but for now
 994	 * some fully hardcoded register handling ought to be ok I guess. */
 995
 996	if (dir == mdi_read) {
 997		switch (reg) {
 998		case MII_BMCR:
 999			/* Auto-negotiation, right? */
1000			return  BMCR_ANENABLE |
1001				BMCR_FULLDPLX;
1002		case MII_BMSR:
1003			return	BMSR_LSTATUS /* for mii_link_ok() */ |
1004				BMSR_ANEGCAPABLE |
1005				BMSR_10FULL;
1006		case MII_ADVERTISE:
1007			/* 80c24 is a "combo card" PHY, right? */
1008			return	ADVERTISE_10HALF |
1009				ADVERTISE_10FULL;
1010		default:
1011			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1012				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1013				     dir == mdi_read ? "READ" : "WRITE",
1014				     addr, reg, data);
1015			return 0xFFFF;
1016		}
1017	} else {
1018		switch (reg) {
1019		default:
1020			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1021				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1022				     dir == mdi_read ? "READ" : "WRITE",
1023				     addr, reg, data);
1024			return 0xFFFF;
1025		}
1026	}
1027}
1028static inline int e100_phy_supports_mii(struct nic *nic)
1029{
1030	/* for now, just check it by comparing whether we
1031	   are using MII software emulation.
1032	*/
1033	return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1034}
1035
1036static void e100_get_defaults(struct nic *nic)
1037{
1038	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1039	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1040
1041	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1042	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1043	if (nic->mac == mac_unknown)
1044		nic->mac = mac_82557_D100_A;
1045
1046	nic->params.rfds = rfds;
1047	nic->params.cbs = cbs;
1048
1049	/* Quadwords to DMA into FIFO before starting frame transmit */
1050	nic->tx_threshold = 0xE0;
1051
1052	/* no interrupt for every tx completion, delay = 256us if not 557 */
1053	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1054		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1055
1056	/* Template for a freshly allocated RFD */
1057	nic->blank_rfd.command = 0;
1058	nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1059	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1060
1061	/* MII setup */
1062	nic->mii.phy_id_mask = 0x1F;
1063	nic->mii.reg_num_mask = 0x1F;
1064	nic->mii.dev = nic->netdev;
1065	nic->mii.mdio_read = mdio_read;
1066	nic->mii.mdio_write = mdio_write;
1067}
1068
1069static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1070{
1071	struct config *config = &cb->u.config;
1072	u8 *c = (u8 *)config;
1073	struct net_device *netdev = nic->netdev;
1074
1075	cb->command = cpu_to_le16(cb_config);
1076
1077	memset(config, 0, sizeof(struct config));
1078
1079	config->byte_count = 0x16;		/* bytes in this struct */
1080	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
1081	config->direct_rx_dma = 0x1;		/* reserved */
1082	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
1083	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
1084	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
1085	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
1086	if (e100_phy_supports_mii(nic))
1087		config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1088	config->pad10 = 0x6;
1089	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
1090	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
1091	config->ifs = 0x6;			/* x16 = inter frame spacing */
1092	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
1093	config->pad15_1 = 0x1;
1094	config->pad15_2 = 0x1;
1095	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
1096	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
1097	config->tx_padding = 0x1;		/* 1=pad short frames */
1098	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
1099	config->pad18 = 0x1;
1100	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
1101	config->pad20_1 = 0x1F;
1102	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
1103	config->pad21_1 = 0x5;
1104
1105	config->adaptive_ifs = nic->adaptive_ifs;
1106	config->loopback = nic->loopback;
1107
1108	if (nic->mii.force_media && nic->mii.full_duplex)
1109		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */
1110
1111	if (nic->flags & promiscuous || nic->loopback) {
1112		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
1113		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
1114		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
1115	}
1116
1117	if (unlikely(netdev->features & NETIF_F_RXFCS))
1118		config->rx_crc_transfer = 0x1;	/* 1=save, 0=discard */
1119
1120	if (nic->flags & multicast_all)
1121		config->multicast_all = 0x1;		/* 1=accept, 0=no */
1122
1123	/* disable WoL when up */
1124	if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1125		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */
1126
1127	if (nic->mac >= mac_82558_D101_A4) {
1128		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
1129		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
1130		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
1131		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
1132		if (nic->mac >= mac_82559_D101M) {
1133			config->tno_intr = 0x1;		/* TCO stats enable */
1134			/* Enable TCO in extended config */
1135			if (nic->mac >= mac_82551_10) {
1136				config->byte_count = 0x20; /* extended bytes */
1137				config->rx_d102_mode = 0x1; /* GMRC for TCO */
1138			}
1139		} else {
1140			config->standard_stat_counter = 0x0;
1141		}
1142	}
1143
1144	if (netdev->features & NETIF_F_RXALL) {
1145		config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1146		config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1147		config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1148	}
1149
1150	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
1151		     c + 0);
1152	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
1153		     c + 8);
1154	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
1155		     c + 16);
1156	return 0;
1157}
1158
1159/*************************************************************************
1160*  CPUSaver parameters
1161*
1162*  All CPUSaver parameters are 16-bit literals that are part of a
1163*  "move immediate value" instruction.  By changing the value of
1164*  the literal in the instruction before the code is loaded, the
1165*  driver can change the algorithm.
1166*
1167*  INTDELAY - This loads the dead-man timer with its initial value.
1168*    When this timer expires the interrupt is asserted, and the
1169*    timer is reset each time a new packet is received.  (see
1170*    BUNDLEMAX below to set the limit on number of chained packets)
1171*    The current default is 0x600 or 1536.  Experiments show that
1172*    the value should probably stay within the 0x200 - 0x1000.
1173*
1174*  BUNDLEMAX -
1175*    This sets the maximum number of frames that will be bundled.  In
1176*    some situations, such as the TCP windowing algorithm, it may be
1177*    better to limit the growth of the bundle size than let it go as
1178*    high as it can, because that could cause too much added latency.
1179*    The default is six, because this is the number of packets in the
1180*    default TCP window size.  A value of 1 would make CPUSaver indicate
1181*    an interrupt for every frame received.  If you do not want to put
1182*    a limit on the bundle size, set this value to xFFFF.
1183*
1184*  BUNDLESMALL -
1185*    This contains a bit-mask describing the minimum size frame that
1186*    will be bundled.  The default masks the lower 7 bits, which means
1187*    that any frame less than 128 bytes in length will not be bundled,
1188*    but will instead immediately generate an interrupt.  This does
1189*    not affect the current bundle in any way.  Any frame that is 128
1190*    bytes or large will be bundled normally.  This feature is meant
1191*    to provide immediate indication of ACK frames in a TCP environment.
1192*    Customers were seeing poor performance when a machine with CPUSaver
1193*    enabled was sending but not receiving.  The delay introduced when
1194*    the ACKs were received was enough to reduce total throughput, because
1195*    the sender would sit idle until the ACK was finally seen.
1196*
1197*    The current default is 0xFF80, which masks out the lower 7 bits.
1198*    This means that any frame which is x7F (127) bytes or smaller
1199*    will cause an immediate interrupt.  Because this value must be a
1200*    bit mask, there are only a few valid values that can be used.  To
1201*    turn this feature off, the driver can write the value xFFFF to the
1202*    lower word of this instruction (in the same way that the other
1203*    parameters are used).  Likewise, a value of 0xF800 (2047) would
1204*    cause an interrupt to be generated for every frame, because all
1205*    standard Ethernet frames are <= 2047 bytes in length.
1206*************************************************************************/
1207
1208/* if you wish to disable the ucode functionality, while maintaining the
1209 * workarounds it provides, set the following defines to:
1210 * BUNDLESMALL 0
1211 * BUNDLEMAX 1
1212 * INTDELAY 1
1213 */
1214#define BUNDLESMALL 1
1215#define BUNDLEMAX (u16)6
1216#define INTDELAY (u16)1536 /* 0x600 */
1217
1218/* Initialize firmware */
1219static const struct firmware *e100_request_firmware(struct nic *nic)
1220{
1221	const char *fw_name;
1222	const struct firmware *fw = nic->fw;
1223	u8 timer, bundle, min_size;
1224	int err = 0;
1225	bool required = false;
1226
1227	/* do not load u-code for ICH devices */
1228	if (nic->flags & ich)
1229		return NULL;
1230
1231	/* Search for ucode match against h/w revision
1232	 *
1233	 * Based on comments in the source code for the FreeBSD fxp
1234	 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1235	 *
1236	 *    "fixes for bugs in the B-step hardware (specifically, bugs
1237	 *     with Inline Receive)."
1238	 *
1239	 * So we must fail if it cannot be loaded.
1240	 *
1241	 * The other microcode files are only required for the optional
1242	 * CPUSaver feature.  Nice to have, but no reason to fail.
1243	 */
1244	if (nic->mac == mac_82559_D101M) {
1245		fw_name = FIRMWARE_D101M;
1246	} else if (nic->mac == mac_82559_D101S) {
1247		fw_name = FIRMWARE_D101S;
1248	} else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1249		fw_name = FIRMWARE_D102E;
1250		required = true;
1251	} else { /* No ucode on other devices */
1252		return NULL;
1253	}
1254
1255	/* If the firmware has not previously been loaded, request a pointer
1256	 * to it. If it was previously loaded, we are reinitializing the
1257	 * adapter, possibly in a resume from hibernate, in which case
1258	 * request_firmware() cannot be used.
1259	 */
1260	if (!fw)
1261		err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1262
1263	if (err) {
1264		if (required) {
1265			netif_err(nic, probe, nic->netdev,
1266				  "Failed to load firmware \"%s\": %d\n",
1267				  fw_name, err);
1268			return ERR_PTR(err);
1269		} else {
1270			netif_info(nic, probe, nic->netdev,
1271				   "CPUSaver disabled. Needs \"%s\": %d\n",
1272				   fw_name, err);
1273			return NULL;
1274		}
1275	}
1276
1277	/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1278	   indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1279	if (fw->size != UCODE_SIZE * 4 + 3) {
1280		netif_err(nic, probe, nic->netdev,
1281			  "Firmware \"%s\" has wrong size %zu\n",
1282			  fw_name, fw->size);
1283		release_firmware(fw);
1284		return ERR_PTR(-EINVAL);
1285	}
1286
1287	/* Read timer, bundle and min_size from end of firmware blob */
1288	timer = fw->data[UCODE_SIZE * 4];
1289	bundle = fw->data[UCODE_SIZE * 4 + 1];
1290	min_size = fw->data[UCODE_SIZE * 4 + 2];
1291
1292	if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1293	    min_size >= UCODE_SIZE) {
1294		netif_err(nic, probe, nic->netdev,
1295			  "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1296			  fw_name, timer, bundle, min_size);
1297		release_firmware(fw);
1298		return ERR_PTR(-EINVAL);
1299	}
1300
1301	/* OK, firmware is validated and ready to use. Save a pointer
1302	 * to it in the nic */
1303	nic->fw = fw;
1304	return fw;
1305}
1306
1307static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1308			     struct sk_buff *skb)
1309{
1310	const struct firmware *fw = (void *)skb;
1311	u8 timer, bundle, min_size;
1312
1313	/* It's not a real skb; we just abused the fact that e100_exec_cb
1314	   will pass it through to here... */
1315	cb->skb = NULL;
1316
1317	/* firmware is stored as little endian already */
1318	memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1319
1320	/* Read timer, bundle and min_size from end of firmware blob */
1321	timer = fw->data[UCODE_SIZE * 4];
1322	bundle = fw->data[UCODE_SIZE * 4 + 1];
1323	min_size = fw->data[UCODE_SIZE * 4 + 2];
1324
1325	/* Insert user-tunable settings in cb->u.ucode */
1326	cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1327	cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1328	cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1329	cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1330	cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1331	cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1332
1333	cb->command = cpu_to_le16(cb_ucode | cb_el);
1334	return 0;
1335}
1336
1337static inline int e100_load_ucode_wait(struct nic *nic)
1338{
1339	const struct firmware *fw;
1340	int err = 0, counter = 50;
1341	struct cb *cb = nic->cb_to_clean;
1342
1343	fw = e100_request_firmware(nic);
1344	/* If it's NULL, then no ucode is required */
1345	if (IS_ERR_OR_NULL(fw))
1346		return PTR_ERR_OR_ZERO(fw);
1347
1348	if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1349		netif_err(nic, probe, nic->netdev,
1350			  "ucode cmd failed with error %d\n", err);
1351
1352	/* must restart cuc */
1353	nic->cuc_cmd = cuc_start;
1354
1355	/* wait for completion */
1356	e100_write_flush(nic);
1357	udelay(10);
1358
1359	/* wait for possibly (ouch) 500ms */
1360	while (!(cb->status & cpu_to_le16(cb_complete))) {
1361		msleep(10);
1362		if (!--counter) break;
1363	}
1364
1365	/* ack any interrupts, something could have been set */
1366	iowrite8(~0, &nic->csr->scb.stat_ack);
1367
1368	/* if the command failed, or is not OK, notify and return */
1369	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1370		netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1371		err = -EPERM;
1372	}
1373
1374	return err;
1375}
1376
1377static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1378	struct sk_buff *skb)
1379{
1380	cb->command = cpu_to_le16(cb_iaaddr);
1381	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1382	return 0;
1383}
1384
1385static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1386{
1387	cb->command = cpu_to_le16(cb_dump);
1388	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1389		offsetof(struct mem, dump_buf));
1390	return 0;
1391}
1392
1393static int e100_phy_check_without_mii(struct nic *nic)
1394{
1395	u8 phy_type;
1396	int without_mii;
1397
1398	phy_type = (le16_to_cpu(nic->eeprom[eeprom_phy_iface]) >> 8) & 0x0f;
1399
1400	switch (phy_type) {
1401	case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1402	case I82503: /* Non-MII PHY; UNTESTED! */
1403	case S80C24: /* Non-MII PHY; tested and working */
1404		/* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1405		 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1406		 * doesn't have a programming interface of any sort.  The
1407		 * media is sensed automatically based on how the link partner
1408		 * is configured.  This is, in essence, manual configuration.
1409		 */
1410		netif_info(nic, probe, nic->netdev,
1411			   "found MII-less i82503 or 80c24 or other PHY\n");
1412
1413		nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1414		nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1415
1416		/* these might be needed for certain MII-less cards...
1417		 * nic->flags |= ich;
1418		 * nic->flags |= ich_10h_workaround; */
1419
1420		without_mii = 1;
1421		break;
1422	default:
1423		without_mii = 0;
1424		break;
1425	}
1426	return without_mii;
1427}
1428
1429#define NCONFIG_AUTO_SWITCH	0x0080
1430#define MII_NSC_CONG		MII_RESV1
1431#define NSC_CONG_ENABLE		0x0100
1432#define NSC_CONG_TXREADY	0x0400
 
1433static int e100_phy_init(struct nic *nic)
1434{
1435	struct net_device *netdev = nic->netdev;
1436	u32 addr;
1437	u16 bmcr, stat, id_lo, id_hi, cong;
1438
1439	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1440	for (addr = 0; addr < 32; addr++) {
1441		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1442		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1443		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1444		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1445		if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1446			break;
1447	}
1448	if (addr == 32) {
1449		/* uhoh, no PHY detected: check whether we seem to be some
1450		 * weird, rare variant which is *known* to not have any MII.
1451		 * But do this AFTER MII checking only, since this does
1452		 * lookup of EEPROM values which may easily be unreliable. */
1453		if (e100_phy_check_without_mii(nic))
1454			return 0; /* simply return and hope for the best */
1455		else {
1456			/* for unknown cases log a fatal error */
1457			netif_err(nic, hw, nic->netdev,
1458				  "Failed to locate any known PHY, aborting\n");
1459			return -EAGAIN;
1460		}
1461	} else
1462		netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1463			     "phy_addr = %d\n", nic->mii.phy_id);
1464
1465	/* Get phy ID */
1466	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1467	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1468	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1469	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1470		     "phy ID = 0x%08X\n", nic->phy);
1471
1472	/* Select the phy and isolate the rest */
1473	for (addr = 0; addr < 32; addr++) {
1474		if (addr != nic->mii.phy_id) {
1475			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1476		} else if (nic->phy != phy_82552_v) {
1477			bmcr = mdio_read(netdev, addr, MII_BMCR);
1478			mdio_write(netdev, addr, MII_BMCR,
1479				bmcr & ~BMCR_ISOLATE);
1480		}
1481	}
1482	/*
1483	 * Workaround for 82552:
1484	 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1485	 * other phy_id's) using bmcr value from addr discovery loop above.
1486	 */
1487	if (nic->phy == phy_82552_v)
1488		mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1489			bmcr & ~BMCR_ISOLATE);
1490
1491	/* Handle National tx phys */
1492#define NCS_PHY_MODEL_MASK	0xFFF0FFFF
1493	if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1494		/* Disable congestion control */
1495		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1496		cong |= NSC_CONG_TXREADY;
1497		cong &= ~NSC_CONG_ENABLE;
1498		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1499	}
1500
1501	if (nic->phy == phy_82552_v) {
1502		u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1503
1504		/* assign special tweaked mdio_ctrl() function */
1505		nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1506
1507		/* Workaround Si not advertising flow-control during autoneg */
1508		advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1509		mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1510
1511		/* Reset for the above changes to take effect */
1512		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1513		bmcr |= BMCR_RESET;
1514		mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1515	} else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1516	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1517	   (le16_to_cpu(nic->eeprom[eeprom_cnfg_mdix]) & eeprom_mdix_enabled))) {
1518		/* enable/disable MDI/MDI-X auto-switching. */
1519		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1520				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1521	}
1522
1523	return 0;
1524}
1525
1526static int e100_hw_init(struct nic *nic)
1527{
1528	int err = 0;
1529
1530	e100_hw_reset(nic);
1531
1532	netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1533	if ((err = e100_self_test(nic)))
1534		return err;
1535
1536	if ((err = e100_phy_init(nic)))
1537		return err;
1538	if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1539		return err;
1540	if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1541		return err;
1542	if ((err = e100_load_ucode_wait(nic)))
1543		return err;
1544	if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1545		return err;
1546	if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1547		return err;
1548	if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1549		nic->dma_addr + offsetof(struct mem, stats))))
1550		return err;
1551	if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1552		return err;
1553
1554	e100_disable_irq(nic);
1555
1556	return 0;
1557}
1558
1559static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1560{
1561	struct net_device *netdev = nic->netdev;
1562	struct netdev_hw_addr *ha;
1563	u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1564
1565	cb->command = cpu_to_le16(cb_multi);
1566	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1567	i = 0;
1568	netdev_for_each_mc_addr(ha, netdev) {
1569		if (i == count)
1570			break;
1571		memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1572			ETH_ALEN);
1573	}
1574	return 0;
1575}
1576
1577static void e100_set_multicast_list(struct net_device *netdev)
1578{
1579	struct nic *nic = netdev_priv(netdev);
1580
1581	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1582		     "mc_count=%d, flags=0x%04X\n",
1583		     netdev_mc_count(netdev), netdev->flags);
1584
1585	if (netdev->flags & IFF_PROMISC)
1586		nic->flags |= promiscuous;
1587	else
1588		nic->flags &= ~promiscuous;
1589
1590	if (netdev->flags & IFF_ALLMULTI ||
1591		netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1592		nic->flags |= multicast_all;
1593	else
1594		nic->flags &= ~multicast_all;
1595
1596	e100_exec_cb(nic, NULL, e100_configure);
1597	e100_exec_cb(nic, NULL, e100_multi);
1598}
1599
1600static void e100_update_stats(struct nic *nic)
1601{
1602	struct net_device *dev = nic->netdev;
1603	struct net_device_stats *ns = &dev->stats;
1604	struct stats *s = &nic->mem->stats;
1605	__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1606		(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1607		&s->complete;
1608
1609	/* Device's stats reporting may take several microseconds to
1610	 * complete, so we're always waiting for results of the
1611	 * previous command. */
1612
1613	if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1614		*complete = 0;
1615		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1616		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1617		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1618		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1619		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1620		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1621		ns->collisions += nic->tx_collisions;
1622		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1623			le32_to_cpu(s->tx_lost_crs);
1624		nic->rx_short_frame_errors +=
1625			le32_to_cpu(s->rx_short_frame_errors);
1626		ns->rx_length_errors = nic->rx_short_frame_errors +
1627			nic->rx_over_length_errors;
1628		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1629		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1630		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1631		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1632		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1633		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1634			le32_to_cpu(s->rx_alignment_errors) +
1635			le32_to_cpu(s->rx_short_frame_errors) +
1636			le32_to_cpu(s->rx_cdt_errors);
1637		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1638		nic->tx_single_collisions +=
1639			le32_to_cpu(s->tx_single_collisions);
1640		nic->tx_multiple_collisions +=
1641			le32_to_cpu(s->tx_multiple_collisions);
1642		if (nic->mac >= mac_82558_D101_A4) {
1643			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1644			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1645			nic->rx_fc_unsupported +=
1646				le32_to_cpu(s->fc_rcv_unsupported);
1647			if (nic->mac >= mac_82559_D101M) {
1648				nic->tx_tco_frames +=
1649					le16_to_cpu(s->xmt_tco_frames);
1650				nic->rx_tco_frames +=
1651					le16_to_cpu(s->rcv_tco_frames);
1652			}
1653		}
1654	}
1655
1656
1657	if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1658		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1659			     "exec cuc_dump_reset failed\n");
1660}
1661
1662static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1663{
1664	/* Adjust inter-frame-spacing (IFS) between two transmits if
1665	 * we're getting collisions on a half-duplex connection. */
1666
1667	if (duplex == DUPLEX_HALF) {
1668		u32 prev = nic->adaptive_ifs;
1669		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1670
1671		if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1672		   (nic->tx_frames > min_frames)) {
1673			if (nic->adaptive_ifs < 60)
1674				nic->adaptive_ifs += 5;
1675		} else if (nic->tx_frames < min_frames) {
1676			if (nic->adaptive_ifs >= 5)
1677				nic->adaptive_ifs -= 5;
1678		}
1679		if (nic->adaptive_ifs != prev)
1680			e100_exec_cb(nic, NULL, e100_configure);
1681	}
1682}
1683
1684static void e100_watchdog(struct timer_list *t)
1685{
1686	struct nic *nic = from_timer(nic, t, watchdog);
1687	struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1688	u32 speed;
1689
1690	netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1691		     "right now = %ld\n", jiffies);
1692
1693	/* mii library handles link maintenance tasks */
1694
1695	mii_ethtool_gset(&nic->mii, &cmd);
1696	speed = ethtool_cmd_speed(&cmd);
1697
1698	if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1699		netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1700			    speed == SPEED_100 ? 100 : 10,
1701			    cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1702	} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1703		netdev_info(nic->netdev, "NIC Link is Down\n");
1704	}
1705
1706	mii_check_link(&nic->mii);
1707
1708	/* Software generated interrupt to recover from (rare) Rx
1709	 * allocation failure.
1710	 * Unfortunately have to use a spinlock to not re-enable interrupts
1711	 * accidentally, due to hardware that shares a register between the
1712	 * interrupt mask bit and the SW Interrupt generation bit */
1713	spin_lock_irq(&nic->cmd_lock);
1714	iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1715	e100_write_flush(nic);
1716	spin_unlock_irq(&nic->cmd_lock);
1717
1718	e100_update_stats(nic);
1719	e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1720
1721	if (nic->mac <= mac_82557_D100_C)
1722		/* Issue a multicast command to workaround a 557 lock up */
1723		e100_set_multicast_list(nic->netdev);
1724
1725	if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1726		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1727		nic->flags |= ich_10h_workaround;
1728	else
1729		nic->flags &= ~ich_10h_workaround;
1730
1731	mod_timer(&nic->watchdog,
1732		  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1733}
1734
1735static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1736	struct sk_buff *skb)
1737{
1738	dma_addr_t dma_addr;
1739	cb->command = nic->tx_command;
1740
1741	dma_addr = dma_map_single(&nic->pdev->dev, skb->data, skb->len,
1742				  DMA_TO_DEVICE);
1743	/* If we can't map the skb, have the upper layer try later */
1744	if (dma_mapping_error(&nic->pdev->dev, dma_addr))
1745		return -ENOMEM;
1746
1747	/*
1748	 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1749	 * testing, ie sending frames with bad CRC.
1750	 */
1751	if (unlikely(skb->no_fcs))
1752		cb->command |= cpu_to_le16(cb_tx_nc);
1753	else
1754		cb->command &= ~cpu_to_le16(cb_tx_nc);
1755
1756	/* interrupt every 16 packets regardless of delay */
1757	if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1758		cb->command |= cpu_to_le16(cb_i);
1759	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1760	cb->u.tcb.tcb_byte_count = 0;
1761	cb->u.tcb.threshold = nic->tx_threshold;
1762	cb->u.tcb.tbd_count = 1;
1763	cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1764	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1765	skb_tx_timestamp(skb);
1766	return 0;
1767}
1768
1769static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1770				   struct net_device *netdev)
1771{
1772	struct nic *nic = netdev_priv(netdev);
1773	int err;
1774
1775	if (nic->flags & ich_10h_workaround) {
1776		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1777		   Issue a NOP command followed by a 1us delay before
1778		   issuing the Tx command. */
1779		if (e100_exec_cmd(nic, cuc_nop, 0))
1780			netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1781				     "exec cuc_nop failed\n");
1782		udelay(1);
1783	}
1784
1785	err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1786
1787	switch (err) {
1788	case -ENOSPC:
1789		/* We queued the skb, but now we're out of space. */
1790		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1791			     "No space for CB\n");
1792		netif_stop_queue(netdev);
1793		break;
1794	case -ENOMEM:
1795		/* This is a hard error - log it. */
1796		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1797			     "Out of Tx resources, returning skb\n");
1798		netif_stop_queue(netdev);
1799		return NETDEV_TX_BUSY;
1800	}
1801
1802	return NETDEV_TX_OK;
1803}
1804
1805static int e100_tx_clean(struct nic *nic)
1806{
1807	struct net_device *dev = nic->netdev;
1808	struct cb *cb;
1809	int tx_cleaned = 0;
1810
1811	spin_lock(&nic->cb_lock);
1812
1813	/* Clean CBs marked complete */
1814	for (cb = nic->cb_to_clean;
1815	    cb->status & cpu_to_le16(cb_complete);
1816	    cb = nic->cb_to_clean = cb->next) {
1817		dma_rmb(); /* read skb after status */
1818		netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1819			     "cb[%d]->status = 0x%04X\n",
1820			     (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1821			     cb->status);
1822
1823		if (likely(cb->skb != NULL)) {
1824			dev->stats.tx_packets++;
1825			dev->stats.tx_bytes += cb->skb->len;
1826
1827			dma_unmap_single(&nic->pdev->dev,
1828					 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1829					 le16_to_cpu(cb->u.tcb.tbd.size),
1830					 DMA_TO_DEVICE);
1831			dev_kfree_skb_any(cb->skb);
1832			cb->skb = NULL;
1833			tx_cleaned = 1;
1834		}
1835		cb->status = 0;
1836		nic->cbs_avail++;
1837	}
1838
1839	spin_unlock(&nic->cb_lock);
1840
1841	/* Recover from running out of Tx resources in xmit_frame */
1842	if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1843		netif_wake_queue(nic->netdev);
1844
1845	return tx_cleaned;
1846}
1847
1848static void e100_clean_cbs(struct nic *nic)
1849{
1850	if (nic->cbs) {
1851		while (nic->cbs_avail != nic->params.cbs.count) {
1852			struct cb *cb = nic->cb_to_clean;
1853			if (cb->skb) {
1854				dma_unmap_single(&nic->pdev->dev,
1855						 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1856						 le16_to_cpu(cb->u.tcb.tbd.size),
1857						 DMA_TO_DEVICE);
1858				dev_kfree_skb(cb->skb);
1859			}
1860			nic->cb_to_clean = nic->cb_to_clean->next;
1861			nic->cbs_avail++;
1862		}
1863		dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1864		nic->cbs = NULL;
1865		nic->cbs_avail = 0;
1866	}
1867	nic->cuc_cmd = cuc_start;
1868	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1869		nic->cbs;
1870}
1871
1872static int e100_alloc_cbs(struct nic *nic)
1873{
1874	struct cb *cb;
1875	unsigned int i, count = nic->params.cbs.count;
1876
1877	nic->cuc_cmd = cuc_start;
1878	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1879	nic->cbs_avail = 0;
1880
1881	nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL,
1882				   &nic->cbs_dma_addr);
1883	if (!nic->cbs)
1884		return -ENOMEM;
 
1885
1886	for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1887		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1888		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1889
1890		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1891		cb->link = cpu_to_le32(nic->cbs_dma_addr +
1892			((i+1) % count) * sizeof(struct cb));
1893	}
1894
1895	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1896	nic->cbs_avail = count;
1897
1898	return 0;
1899}
1900
1901static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1902{
1903	if (!nic->rxs) return;
1904	if (RU_SUSPENDED != nic->ru_running) return;
1905
1906	/* handle init time starts */
1907	if (!rx) rx = nic->rxs;
1908
1909	/* (Re)start RU if suspended or idle and RFA is non-NULL */
1910	if (rx->skb) {
1911		e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1912		nic->ru_running = RU_RUNNING;
1913	}
1914}
1915
1916#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1917static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1918{
1919	if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1920		return -ENOMEM;
1921
1922	/* Init, and map the RFD. */
1923	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1924	rx->dma_addr = dma_map_single(&nic->pdev->dev, rx->skb->data,
1925				      RFD_BUF_LEN, DMA_BIDIRECTIONAL);
1926
1927	if (dma_mapping_error(&nic->pdev->dev, rx->dma_addr)) {
1928		dev_kfree_skb_any(rx->skb);
1929		rx->skb = NULL;
1930		rx->dma_addr = 0;
1931		return -ENOMEM;
1932	}
1933
1934	/* Link the RFD to end of RFA by linking previous RFD to
1935	 * this one.  We are safe to touch the previous RFD because
1936	 * it is protected by the before last buffer's el bit being set */
1937	if (rx->prev->skb) {
1938		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1939		put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1940		dma_sync_single_for_device(&nic->pdev->dev,
1941					   rx->prev->dma_addr,
1942					   sizeof(struct rfd),
1943					   DMA_BIDIRECTIONAL);
1944	}
1945
1946	return 0;
1947}
1948
1949static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1950	unsigned int *work_done, unsigned int work_to_do)
1951{
1952	struct net_device *dev = nic->netdev;
1953	struct sk_buff *skb = rx->skb;
1954	struct rfd *rfd = (struct rfd *)skb->data;
1955	u16 rfd_status, actual_size;
1956	u16 fcs_pad = 0;
1957
1958	if (unlikely(work_done && *work_done >= work_to_do))
1959		return -EAGAIN;
1960
1961	/* Need to sync before taking a peek at cb_complete bit */
1962	dma_sync_single_for_cpu(&nic->pdev->dev, rx->dma_addr,
1963				sizeof(struct rfd), DMA_BIDIRECTIONAL);
1964	rfd_status = le16_to_cpu(rfd->status);
1965
1966	netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1967		     "status=0x%04X\n", rfd_status);
1968	dma_rmb(); /* read size after status bit */
1969
1970	/* If data isn't ready, nothing to indicate */
1971	if (unlikely(!(rfd_status & cb_complete))) {
1972		/* If the next buffer has the el bit, but we think the receiver
1973		 * is still running, check to see if it really stopped while
1974		 * we had interrupts off.
1975		 * This allows for a fast restart without re-enabling
1976		 * interrupts */
1977		if ((le16_to_cpu(rfd->command) & cb_el) &&
1978		    (RU_RUNNING == nic->ru_running))
1979
1980			if (ioread8(&nic->csr->scb.status) & rus_no_res)
1981				nic->ru_running = RU_SUSPENDED;
1982		dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
1983					   sizeof(struct rfd),
1984					   DMA_FROM_DEVICE);
1985		return -ENODATA;
1986	}
1987
1988	/* Get actual data size */
1989	if (unlikely(dev->features & NETIF_F_RXFCS))
1990		fcs_pad = 4;
1991	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1992	if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1993		actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1994
1995	/* Get data */
1996	dma_unmap_single(&nic->pdev->dev, rx->dma_addr, RFD_BUF_LEN,
1997			 DMA_BIDIRECTIONAL);
1998
1999	/* If this buffer has the el bit, but we think the receiver
2000	 * is still running, check to see if it really stopped while
2001	 * we had interrupts off.
2002	 * This allows for a fast restart without re-enabling interrupts.
2003	 * This can happen when the RU sees the size change but also sees
2004	 * the el bit set. */
2005	if ((le16_to_cpu(rfd->command) & cb_el) &&
2006	    (RU_RUNNING == nic->ru_running)) {
2007
2008	    if (ioread8(&nic->csr->scb.status) & rus_no_res)
2009		nic->ru_running = RU_SUSPENDED;
2010	}
2011
2012	/* Pull off the RFD and put the actual data (minus eth hdr) */
2013	skb_reserve(skb, sizeof(struct rfd));
2014	skb_put(skb, actual_size);
2015	skb->protocol = eth_type_trans(skb, nic->netdev);
2016
2017	/* If we are receiving all frames, then don't bother
2018	 * checking for errors.
2019	 */
2020	if (unlikely(dev->features & NETIF_F_RXALL)) {
2021		if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2022			/* Received oversized frame, but keep it. */
2023			nic->rx_over_length_errors++;
2024		goto process_skb;
2025	}
2026
2027	if (unlikely(!(rfd_status & cb_ok))) {
2028		/* Don't indicate if hardware indicates errors */
2029		dev_kfree_skb_any(skb);
2030	} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2031		/* Don't indicate oversized frames */
2032		nic->rx_over_length_errors++;
2033		dev_kfree_skb_any(skb);
2034	} else {
2035process_skb:
2036		dev->stats.rx_packets++;
2037		dev->stats.rx_bytes += (actual_size - fcs_pad);
2038		netif_receive_skb(skb);
2039		if (work_done)
2040			(*work_done)++;
2041	}
2042
2043	rx->skb = NULL;
2044
2045	return 0;
2046}
2047
2048static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2049	unsigned int work_to_do)
2050{
2051	struct rx *rx;
2052	int restart_required = 0, err = 0;
2053	struct rx *old_before_last_rx, *new_before_last_rx;
2054	struct rfd *old_before_last_rfd, *new_before_last_rfd;
2055
2056	/* Indicate newly arrived packets */
2057	for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2058		err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2059		/* Hit quota or no more to clean */
2060		if (-EAGAIN == err || -ENODATA == err)
2061			break;
2062	}
2063
2064
2065	/* On EAGAIN, hit quota so have more work to do, restart once
2066	 * cleanup is complete.
2067	 * Else, are we already rnr? then pay attention!!! this ensures that
2068	 * the state machine progression never allows a start with a
2069	 * partially cleaned list, avoiding a race between hardware
2070	 * and rx_to_clean when in NAPI mode */
2071	if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2072		restart_required = 1;
2073
2074	old_before_last_rx = nic->rx_to_use->prev->prev;
2075	old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2076
2077	/* Alloc new skbs to refill list */
2078	for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2079		if (unlikely(e100_rx_alloc_skb(nic, rx)))
2080			break; /* Better luck next time (see watchdog) */
2081	}
2082
2083	new_before_last_rx = nic->rx_to_use->prev->prev;
2084	if (new_before_last_rx != old_before_last_rx) {
2085		/* Set the el-bit on the buffer that is before the last buffer.
2086		 * This lets us update the next pointer on the last buffer
2087		 * without worrying about hardware touching it.
2088		 * We set the size to 0 to prevent hardware from touching this
2089		 * buffer.
2090		 * When the hardware hits the before last buffer with el-bit
2091		 * and size of 0, it will RNR interrupt, the RUS will go into
2092		 * the No Resources state.  It will not complete nor write to
2093		 * this buffer. */
2094		new_before_last_rfd =
2095			(struct rfd *)new_before_last_rx->skb->data;
2096		new_before_last_rfd->size = 0;
2097		new_before_last_rfd->command |= cpu_to_le16(cb_el);
2098		dma_sync_single_for_device(&nic->pdev->dev,
2099					   new_before_last_rx->dma_addr,
2100					   sizeof(struct rfd),
2101					   DMA_BIDIRECTIONAL);
2102
2103		/* Now that we have a new stopping point, we can clear the old
2104		 * stopping point.  We must sync twice to get the proper
2105		 * ordering on the hardware side of things. */
2106		old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2107		dma_sync_single_for_device(&nic->pdev->dev,
2108					   old_before_last_rx->dma_addr,
2109					   sizeof(struct rfd),
2110					   DMA_BIDIRECTIONAL);
2111		old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2112							+ ETH_FCS_LEN);
2113		dma_sync_single_for_device(&nic->pdev->dev,
2114					   old_before_last_rx->dma_addr,
2115					   sizeof(struct rfd),
2116					   DMA_BIDIRECTIONAL);
2117	}
2118
2119	if (restart_required) {
2120		// ack the rnr?
2121		iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2122		e100_start_receiver(nic, nic->rx_to_clean);
2123		if (work_done)
2124			(*work_done)++;
2125	}
2126}
2127
2128static void e100_rx_clean_list(struct nic *nic)
2129{
2130	struct rx *rx;
2131	unsigned int i, count = nic->params.rfds.count;
2132
2133	nic->ru_running = RU_UNINITIALIZED;
2134
2135	if (nic->rxs) {
2136		for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2137			if (rx->skb) {
2138				dma_unmap_single(&nic->pdev->dev,
2139						 rx->dma_addr, RFD_BUF_LEN,
2140						 DMA_BIDIRECTIONAL);
2141				dev_kfree_skb(rx->skb);
2142			}
2143		}
2144		kfree(nic->rxs);
2145		nic->rxs = NULL;
2146	}
2147
2148	nic->rx_to_use = nic->rx_to_clean = NULL;
2149}
2150
2151static int e100_rx_alloc_list(struct nic *nic)
2152{
2153	struct rx *rx;
2154	unsigned int i, count = nic->params.rfds.count;
2155	struct rfd *before_last;
2156
2157	nic->rx_to_use = nic->rx_to_clean = NULL;
2158	nic->ru_running = RU_UNINITIALIZED;
2159
2160	if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_KERNEL)))
2161		return -ENOMEM;
2162
2163	for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2164		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2165		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2166		if (e100_rx_alloc_skb(nic, rx)) {
2167			e100_rx_clean_list(nic);
2168			return -ENOMEM;
2169		}
2170	}
2171	/* Set the el-bit on the buffer that is before the last buffer.
2172	 * This lets us update the next pointer on the last buffer without
2173	 * worrying about hardware touching it.
2174	 * We set the size to 0 to prevent hardware from touching this buffer.
2175	 * When the hardware hits the before last buffer with el-bit and size
2176	 * of 0, it will RNR interrupt, the RU will go into the No Resources
2177	 * state.  It will not complete nor write to this buffer. */
2178	rx = nic->rxs->prev->prev;
2179	before_last = (struct rfd *)rx->skb->data;
2180	before_last->command |= cpu_to_le16(cb_el);
2181	before_last->size = 0;
2182	dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
2183				   sizeof(struct rfd), DMA_BIDIRECTIONAL);
2184
2185	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2186	nic->ru_running = RU_SUSPENDED;
2187
2188	return 0;
2189}
2190
2191static irqreturn_t e100_intr(int irq, void *dev_id)
2192{
2193	struct net_device *netdev = dev_id;
2194	struct nic *nic = netdev_priv(netdev);
2195	u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2196
2197	netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2198		     "stat_ack = 0x%02X\n", stat_ack);
2199
2200	if (stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
2201	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
2202		return IRQ_NONE;
2203
2204	/* Ack interrupt(s) */
2205	iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2206
2207	/* We hit Receive No Resource (RNR); restart RU after cleaning */
2208	if (stat_ack & stat_ack_rnr)
2209		nic->ru_running = RU_SUSPENDED;
2210
2211	if (likely(napi_schedule_prep(&nic->napi))) {
2212		e100_disable_irq(nic);
2213		__napi_schedule(&nic->napi);
2214	}
2215
2216	return IRQ_HANDLED;
2217}
2218
2219static int e100_poll(struct napi_struct *napi, int budget)
2220{
2221	struct nic *nic = container_of(napi, struct nic, napi);
2222	unsigned int work_done = 0;
2223
2224	e100_rx_clean(nic, &work_done, budget);
2225	e100_tx_clean(nic);
2226
2227	/* If budget fully consumed, continue polling */
2228	if (work_done == budget)
2229		return budget;
2230
2231	/* only re-enable interrupt if stack agrees polling is really done */
2232	if (likely(napi_complete_done(napi, work_done)))
2233		e100_enable_irq(nic);
 
2234
2235	return work_done;
2236}
2237
2238#ifdef CONFIG_NET_POLL_CONTROLLER
2239static void e100_netpoll(struct net_device *netdev)
2240{
2241	struct nic *nic = netdev_priv(netdev);
2242
2243	e100_disable_irq(nic);
2244	e100_intr(nic->pdev->irq, netdev);
2245	e100_tx_clean(nic);
2246	e100_enable_irq(nic);
2247}
2248#endif
2249
2250static int e100_set_mac_address(struct net_device *netdev, void *p)
2251{
2252	struct nic *nic = netdev_priv(netdev);
2253	struct sockaddr *addr = p;
2254
2255	if (!is_valid_ether_addr(addr->sa_data))
2256		return -EADDRNOTAVAIL;
2257
2258	eth_hw_addr_set(netdev, addr->sa_data);
2259	e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2260
2261	return 0;
2262}
2263
 
 
 
 
 
 
 
 
2264static int e100_asf(struct nic *nic)
2265{
2266	/* ASF can be enabled from eeprom */
2267	return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2268	   (le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_asf) &&
2269	   !(le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_gcl) &&
2270	   ((le16_to_cpu(nic->eeprom[eeprom_smbus_addr]) & 0xFF) != 0xFE);
2271}
2272
2273static int e100_up(struct nic *nic)
2274{
2275	int err;
2276
2277	if ((err = e100_rx_alloc_list(nic)))
2278		return err;
2279	if ((err = e100_alloc_cbs(nic)))
2280		goto err_rx_clean_list;
2281	if ((err = e100_hw_init(nic)))
2282		goto err_clean_cbs;
2283	e100_set_multicast_list(nic->netdev);
2284	e100_start_receiver(nic, NULL);
2285	mod_timer(&nic->watchdog, jiffies);
2286	if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2287		nic->netdev->name, nic->netdev)))
2288		goto err_no_irq;
2289	netif_wake_queue(nic->netdev);
2290	napi_enable(&nic->napi);
2291	/* enable ints _after_ enabling poll, preventing a race between
2292	 * disable ints+schedule */
2293	e100_enable_irq(nic);
2294	return 0;
2295
2296err_no_irq:
2297	del_timer_sync(&nic->watchdog);
2298err_clean_cbs:
2299	e100_clean_cbs(nic);
2300err_rx_clean_list:
2301	e100_rx_clean_list(nic);
2302	return err;
2303}
2304
2305static void e100_down(struct nic *nic)
2306{
2307	/* wait here for poll to complete */
2308	napi_disable(&nic->napi);
2309	netif_stop_queue(nic->netdev);
2310	e100_hw_reset(nic);
2311	free_irq(nic->pdev->irq, nic->netdev);
2312	del_timer_sync(&nic->watchdog);
2313	netif_carrier_off(nic->netdev);
2314	e100_clean_cbs(nic);
2315	e100_rx_clean_list(nic);
2316}
2317
2318static void e100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
2319{
2320	struct nic *nic = netdev_priv(netdev);
2321
2322	/* Reset outside of interrupt context, to avoid request_irq
2323	 * in interrupt context */
2324	schedule_work(&nic->tx_timeout_task);
2325}
2326
2327static void e100_tx_timeout_task(struct work_struct *work)
2328{
2329	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2330	struct net_device *netdev = nic->netdev;
2331
2332	netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2333		     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2334
2335	rtnl_lock();
2336	if (netif_running(netdev)) {
2337		e100_down(netdev_priv(netdev));
2338		e100_up(netdev_priv(netdev));
2339	}
2340	rtnl_unlock();
2341}
2342
2343static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2344{
2345	int err;
2346	struct sk_buff *skb;
2347
2348	/* Use driver resources to perform internal MAC or PHY
2349	 * loopback test.  A single packet is prepared and transmitted
2350	 * in loopback mode, and the test passes if the received
2351	 * packet compares byte-for-byte to the transmitted packet. */
2352
2353	if ((err = e100_rx_alloc_list(nic)))
2354		return err;
2355	if ((err = e100_alloc_cbs(nic)))
2356		goto err_clean_rx;
2357
2358	/* ICH PHY loopback is broken so do MAC loopback instead */
2359	if (nic->flags & ich && loopback_mode == lb_phy)
2360		loopback_mode = lb_mac;
2361
2362	nic->loopback = loopback_mode;
2363	if ((err = e100_hw_init(nic)))
2364		goto err_loopback_none;
2365
2366	if (loopback_mode == lb_phy)
2367		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2368			BMCR_LOOPBACK);
2369
2370	e100_start_receiver(nic, NULL);
2371
2372	if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2373		err = -ENOMEM;
2374		goto err_loopback_none;
2375	}
2376	skb_put(skb, ETH_DATA_LEN);
2377	memset(skb->data, 0xFF, ETH_DATA_LEN);
2378	e100_xmit_frame(skb, nic->netdev);
2379
2380	msleep(10);
2381
2382	dma_sync_single_for_cpu(&nic->pdev->dev, nic->rx_to_clean->dma_addr,
2383				RFD_BUF_LEN, DMA_BIDIRECTIONAL);
2384
2385	if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2386	   skb->data, ETH_DATA_LEN))
2387		err = -EAGAIN;
2388
2389err_loopback_none:
2390	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2391	nic->loopback = lb_none;
2392	e100_clean_cbs(nic);
2393	e100_hw_reset(nic);
2394err_clean_rx:
2395	e100_rx_clean_list(nic);
2396	return err;
2397}
2398
2399#define MII_LED_CONTROL	0x1B
2400#define E100_82552_LED_OVERRIDE 0x19
2401#define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2402#define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
2403
2404static int e100_get_link_ksettings(struct net_device *netdev,
2405				   struct ethtool_link_ksettings *cmd)
2406{
2407	struct nic *nic = netdev_priv(netdev);
2408
2409	mii_ethtool_get_link_ksettings(&nic->mii, cmd);
2410
2411	return 0;
2412}
2413
2414static int e100_set_link_ksettings(struct net_device *netdev,
2415				   const struct ethtool_link_ksettings *cmd)
2416{
2417	struct nic *nic = netdev_priv(netdev);
2418	int err;
2419
2420	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2421	err = mii_ethtool_set_link_ksettings(&nic->mii, cmd);
2422	e100_exec_cb(nic, NULL, e100_configure);
2423
2424	return err;
2425}
2426
2427static void e100_get_drvinfo(struct net_device *netdev,
2428	struct ethtool_drvinfo *info)
2429{
2430	struct nic *nic = netdev_priv(netdev);
2431	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2432	strscpy(info->bus_info, pci_name(nic->pdev),
 
2433		sizeof(info->bus_info));
2434}
2435
2436#define E100_PHY_REGS 0x1D
2437static int e100_get_regs_len(struct net_device *netdev)
2438{
2439	struct nic *nic = netdev_priv(netdev);
2440
2441	/* We know the number of registers, and the size of the dump buffer.
2442	 * Calculate the total size in bytes.
2443	 */
2444	return (1 + E100_PHY_REGS) * sizeof(u32) + sizeof(nic->mem->dump_buf);
2445}
2446
2447static void e100_get_regs(struct net_device *netdev,
2448	struct ethtool_regs *regs, void *p)
2449{
2450	struct nic *nic = netdev_priv(netdev);
2451	u32 *buff = p;
2452	int i;
2453
2454	regs->version = (1 << 24) | nic->pdev->revision;
2455	buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2456		ioread8(&nic->csr->scb.cmd_lo) << 16 |
2457		ioread16(&nic->csr->scb.status);
2458	for (i = 0; i < E100_PHY_REGS; i++)
2459		/* Note that we read the registers in reverse order. This
2460		 * ordering is the ABI apparently used by ethtool and other
2461		 * applications.
2462		 */
2463		buff[1 + i] = mdio_read(netdev, nic->mii.phy_id,
2464					E100_PHY_REGS - 1 - i);
2465	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2466	e100_exec_cb(nic, NULL, e100_dump);
2467	msleep(10);
2468	memcpy(&buff[1 + E100_PHY_REGS], nic->mem->dump_buf,
2469	       sizeof(nic->mem->dump_buf));
2470}
2471
2472static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2473{
2474	struct nic *nic = netdev_priv(netdev);
2475	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2476	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2477}
2478
2479static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2480{
2481	struct nic *nic = netdev_priv(netdev);
2482
2483	if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2484	    !device_can_wakeup(&nic->pdev->dev))
2485		return -EOPNOTSUPP;
2486
2487	if (wol->wolopts)
2488		nic->flags |= wol_magic;
2489	else
2490		nic->flags &= ~wol_magic;
2491
2492	device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2493
2494	e100_exec_cb(nic, NULL, e100_configure);
2495
2496	return 0;
2497}
2498
2499static u32 e100_get_msglevel(struct net_device *netdev)
2500{
2501	struct nic *nic = netdev_priv(netdev);
2502	return nic->msg_enable;
2503}
2504
2505static void e100_set_msglevel(struct net_device *netdev, u32 value)
2506{
2507	struct nic *nic = netdev_priv(netdev);
2508	nic->msg_enable = value;
2509}
2510
2511static int e100_nway_reset(struct net_device *netdev)
2512{
2513	struct nic *nic = netdev_priv(netdev);
2514	return mii_nway_restart(&nic->mii);
2515}
2516
2517static u32 e100_get_link(struct net_device *netdev)
2518{
2519	struct nic *nic = netdev_priv(netdev);
2520	return mii_link_ok(&nic->mii);
2521}
2522
2523static int e100_get_eeprom_len(struct net_device *netdev)
2524{
2525	struct nic *nic = netdev_priv(netdev);
2526	return nic->eeprom_wc << 1;
2527}
2528
2529#define E100_EEPROM_MAGIC	0x1234
2530static int e100_get_eeprom(struct net_device *netdev,
2531	struct ethtool_eeprom *eeprom, u8 *bytes)
2532{
2533	struct nic *nic = netdev_priv(netdev);
2534
2535	eeprom->magic = E100_EEPROM_MAGIC;
2536	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2537
2538	return 0;
2539}
2540
2541static int e100_set_eeprom(struct net_device *netdev,
2542	struct ethtool_eeprom *eeprom, u8 *bytes)
2543{
2544	struct nic *nic = netdev_priv(netdev);
2545
2546	if (eeprom->magic != E100_EEPROM_MAGIC)
2547		return -EINVAL;
2548
2549	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2550
2551	return e100_eeprom_save(nic, eeprom->offset >> 1,
2552		(eeprom->len >> 1) + 1);
2553}
2554
2555static void e100_get_ringparam(struct net_device *netdev,
2556			       struct ethtool_ringparam *ring,
2557			       struct kernel_ethtool_ringparam *kernel_ring,
2558			       struct netlink_ext_ack *extack)
2559{
2560	struct nic *nic = netdev_priv(netdev);
2561	struct param_range *rfds = &nic->params.rfds;
2562	struct param_range *cbs = &nic->params.cbs;
2563
2564	ring->rx_max_pending = rfds->max;
2565	ring->tx_max_pending = cbs->max;
2566	ring->rx_pending = rfds->count;
2567	ring->tx_pending = cbs->count;
2568}
2569
2570static int e100_set_ringparam(struct net_device *netdev,
2571			      struct ethtool_ringparam *ring,
2572			      struct kernel_ethtool_ringparam *kernel_ring,
2573			      struct netlink_ext_ack *extack)
2574{
2575	struct nic *nic = netdev_priv(netdev);
2576	struct param_range *rfds = &nic->params.rfds;
2577	struct param_range *cbs = &nic->params.cbs;
2578
2579	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2580		return -EINVAL;
2581
2582	if (netif_running(netdev))
2583		e100_down(nic);
2584	rfds->count = max(ring->rx_pending, rfds->min);
2585	rfds->count = min(rfds->count, rfds->max);
2586	cbs->count = max(ring->tx_pending, cbs->min);
2587	cbs->count = min(cbs->count, cbs->max);
2588	netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2589		   rfds->count, cbs->count);
2590	if (netif_running(netdev))
2591		e100_up(nic);
2592
2593	return 0;
2594}
2595
2596static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2597	"Link test     (on/offline)",
2598	"Eeprom test   (on/offline)",
2599	"Self test        (offline)",
2600	"Mac loopback     (offline)",
2601	"Phy loopback     (offline)",
2602};
2603#define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test)
2604
2605static void e100_diag_test(struct net_device *netdev,
2606	struct ethtool_test *test, u64 *data)
2607{
2608	struct ethtool_cmd cmd;
2609	struct nic *nic = netdev_priv(netdev);
2610	int i;
2611
2612	memset(data, 0, E100_TEST_LEN * sizeof(u64));
2613	data[0] = !mii_link_ok(&nic->mii);
2614	data[1] = e100_eeprom_load(nic);
2615	if (test->flags & ETH_TEST_FL_OFFLINE) {
2616
2617		/* save speed, duplex & autoneg settings */
2618		mii_ethtool_gset(&nic->mii, &cmd);
2619
2620		if (netif_running(netdev))
2621			e100_down(nic);
2622		data[2] = e100_self_test(nic);
2623		data[3] = e100_loopback_test(nic, lb_mac);
2624		data[4] = e100_loopback_test(nic, lb_phy);
2625
2626		/* restore speed, duplex & autoneg settings */
2627		mii_ethtool_sset(&nic->mii, &cmd);
2628
2629		if (netif_running(netdev))
2630			e100_up(nic);
2631	}
2632	for (i = 0; i < E100_TEST_LEN; i++)
2633		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2634
2635	msleep_interruptible(4 * 1000);
2636}
2637
2638static int e100_set_phys_id(struct net_device *netdev,
2639			    enum ethtool_phys_id_state state)
2640{
2641	struct nic *nic = netdev_priv(netdev);
2642	enum led_state {
2643		led_on     = 0x01,
2644		led_off    = 0x04,
2645		led_on_559 = 0x05,
2646		led_on_557 = 0x07,
2647	};
2648	u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2649		MII_LED_CONTROL;
2650	u16 leds = 0;
2651
2652	switch (state) {
2653	case ETHTOOL_ID_ACTIVE:
2654		return 2;
2655
2656	case ETHTOOL_ID_ON:
2657		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2658		       (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2659		break;
2660
2661	case ETHTOOL_ID_OFF:
2662		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2663		break;
2664
2665	case ETHTOOL_ID_INACTIVE:
2666		break;
2667	}
2668
2669	mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2670	return 0;
2671}
2672
2673static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2674	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2675	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2676	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
2677	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2678	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2679	"tx_heartbeat_errors", "tx_window_errors",
2680	/* device-specific stats */
2681	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2682	"tx_flow_control_pause", "rx_flow_control_pause",
2683	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2684	"rx_short_frame_errors", "rx_over_length_errors",
2685};
2686#define E100_NET_STATS_LEN	21
2687#define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats)
2688
2689static int e100_get_sset_count(struct net_device *netdev, int sset)
2690{
2691	switch (sset) {
2692	case ETH_SS_TEST:
2693		return E100_TEST_LEN;
2694	case ETH_SS_STATS:
2695		return E100_STATS_LEN;
2696	default:
2697		return -EOPNOTSUPP;
2698	}
2699}
2700
2701static void e100_get_ethtool_stats(struct net_device *netdev,
2702	struct ethtool_stats *stats, u64 *data)
2703{
2704	struct nic *nic = netdev_priv(netdev);
2705	int i;
2706
2707	for (i = 0; i < E100_NET_STATS_LEN; i++)
2708		data[i] = ((unsigned long *)&netdev->stats)[i];
2709
2710	data[i++] = nic->tx_deferred;
2711	data[i++] = nic->tx_single_collisions;
2712	data[i++] = nic->tx_multiple_collisions;
2713	data[i++] = nic->tx_fc_pause;
2714	data[i++] = nic->rx_fc_pause;
2715	data[i++] = nic->rx_fc_unsupported;
2716	data[i++] = nic->tx_tco_frames;
2717	data[i++] = nic->rx_tco_frames;
2718	data[i++] = nic->rx_short_frame_errors;
2719	data[i++] = nic->rx_over_length_errors;
2720}
2721
2722static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2723{
2724	switch (stringset) {
2725	case ETH_SS_TEST:
2726		memcpy(data, e100_gstrings_test, sizeof(e100_gstrings_test));
2727		break;
2728	case ETH_SS_STATS:
2729		memcpy(data, e100_gstrings_stats, sizeof(e100_gstrings_stats));
2730		break;
2731	}
2732}
2733
2734static const struct ethtool_ops e100_ethtool_ops = {
 
 
2735	.get_drvinfo		= e100_get_drvinfo,
2736	.get_regs_len		= e100_get_regs_len,
2737	.get_regs		= e100_get_regs,
2738	.get_wol		= e100_get_wol,
2739	.set_wol		= e100_set_wol,
2740	.get_msglevel		= e100_get_msglevel,
2741	.set_msglevel		= e100_set_msglevel,
2742	.nway_reset		= e100_nway_reset,
2743	.get_link		= e100_get_link,
2744	.get_eeprom_len		= e100_get_eeprom_len,
2745	.get_eeprom		= e100_get_eeprom,
2746	.set_eeprom		= e100_set_eeprom,
2747	.get_ringparam		= e100_get_ringparam,
2748	.set_ringparam		= e100_set_ringparam,
2749	.self_test		= e100_diag_test,
2750	.get_strings		= e100_get_strings,
2751	.set_phys_id		= e100_set_phys_id,
2752	.get_ethtool_stats	= e100_get_ethtool_stats,
2753	.get_sset_count		= e100_get_sset_count,
2754	.get_ts_info		= ethtool_op_get_ts_info,
2755	.get_link_ksettings	= e100_get_link_ksettings,
2756	.set_link_ksettings	= e100_set_link_ksettings,
2757};
2758
2759static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2760{
2761	struct nic *nic = netdev_priv(netdev);
2762
2763	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2764}
2765
2766static int e100_alloc(struct nic *nic)
2767{
2768	nic->mem = dma_alloc_coherent(&nic->pdev->dev, sizeof(struct mem),
2769				      &nic->dma_addr, GFP_KERNEL);
2770	return nic->mem ? 0 : -ENOMEM;
2771}
2772
2773static void e100_free(struct nic *nic)
2774{
2775	if (nic->mem) {
2776		dma_free_coherent(&nic->pdev->dev, sizeof(struct mem),
2777				  nic->mem, nic->dma_addr);
2778		nic->mem = NULL;
2779	}
2780}
2781
2782static int e100_open(struct net_device *netdev)
2783{
2784	struct nic *nic = netdev_priv(netdev);
2785	int err = 0;
2786
2787	netif_carrier_off(netdev);
2788	if ((err = e100_up(nic)))
2789		netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2790	return err;
2791}
2792
2793static int e100_close(struct net_device *netdev)
2794{
2795	e100_down(netdev_priv(netdev));
2796	return 0;
2797}
2798
2799static int e100_set_features(struct net_device *netdev,
2800			     netdev_features_t features)
2801{
2802	struct nic *nic = netdev_priv(netdev);
2803	netdev_features_t changed = features ^ netdev->features;
2804
2805	if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2806		return 0;
2807
2808	netdev->features = features;
2809	e100_exec_cb(nic, NULL, e100_configure);
2810	return 1;
2811}
2812
2813static const struct net_device_ops e100_netdev_ops = {
2814	.ndo_open		= e100_open,
2815	.ndo_stop		= e100_close,
2816	.ndo_start_xmit		= e100_xmit_frame,
2817	.ndo_validate_addr	= eth_validate_addr,
2818	.ndo_set_rx_mode	= e100_set_multicast_list,
2819	.ndo_set_mac_address	= e100_set_mac_address,
2820	.ndo_eth_ioctl		= e100_do_ioctl,
 
2821	.ndo_tx_timeout		= e100_tx_timeout,
2822#ifdef CONFIG_NET_POLL_CONTROLLER
2823	.ndo_poll_controller	= e100_netpoll,
2824#endif
2825	.ndo_set_features	= e100_set_features,
2826};
2827
2828static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2829{
2830	struct net_device *netdev;
2831	struct nic *nic;
2832	int err;
2833
2834	if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2835		return -ENOMEM;
2836
2837	netdev->hw_features |= NETIF_F_RXFCS;
2838	netdev->priv_flags |= IFF_SUPP_NOFCS;
2839	netdev->hw_features |= NETIF_F_RXALL;
2840
2841	netdev->netdev_ops = &e100_netdev_ops;
2842	netdev->ethtool_ops = &e100_ethtool_ops;
2843	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2844	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
2845
2846	nic = netdev_priv(netdev);
2847	netif_napi_add_weight(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2848	nic->netdev = netdev;
2849	nic->pdev = pdev;
2850	nic->msg_enable = (1 << debug) - 1;
2851	nic->mdio_ctrl = mdio_ctrl_hw;
2852	pci_set_drvdata(pdev, netdev);
2853
2854	if ((err = pci_enable_device(pdev))) {
2855		netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2856		goto err_out_free_dev;
2857	}
2858
2859	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2860		netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2861		err = -ENODEV;
2862		goto err_out_disable_pdev;
2863	}
2864
2865	if ((err = pci_request_regions(pdev, DRV_NAME))) {
2866		netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2867		goto err_out_disable_pdev;
2868	}
2869
2870	if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
2871		netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2872		goto err_out_free_res;
2873	}
2874
2875	SET_NETDEV_DEV(netdev, &pdev->dev);
2876
2877	if (use_io)
2878		netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2879
2880	nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2881	if (!nic->csr) {
2882		netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2883		err = -ENOMEM;
2884		goto err_out_free_res;
2885	}
2886
2887	if (ent->driver_data)
2888		nic->flags |= ich;
2889	else
2890		nic->flags &= ~ich;
2891
2892	e100_get_defaults(nic);
2893
2894	/* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2895	if (nic->mac < mac_82558_D101_A4)
2896		netdev->features |= NETIF_F_VLAN_CHALLENGED;
2897
2898	/* locks must be initialized before calling hw_reset */
2899	spin_lock_init(&nic->cb_lock);
2900	spin_lock_init(&nic->cmd_lock);
2901	spin_lock_init(&nic->mdio_lock);
2902
2903	/* Reset the device before pci_set_master() in case device is in some
2904	 * funky state and has an interrupt pending - hint: we don't have the
2905	 * interrupt handler registered yet. */
2906	e100_hw_reset(nic);
2907
2908	pci_set_master(pdev);
2909
2910	timer_setup(&nic->watchdog, e100_watchdog, 0);
 
 
2911
2912	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2913
2914	if ((err = e100_alloc(nic))) {
2915		netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2916		goto err_out_iounmap;
2917	}
2918
2919	if ((err = e100_eeprom_load(nic)))
2920		goto err_out_free;
2921
2922	e100_phy_init(nic);
2923
2924	eth_hw_addr_set(netdev, (u8 *)nic->eeprom);
2925	if (!is_valid_ether_addr(netdev->dev_addr)) {
2926		if (!eeprom_bad_csum_allow) {
2927			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2928			err = -EAGAIN;
2929			goto err_out_free;
2930		} else {
2931			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2932		}
2933	}
2934
2935	/* Wol magic packet can be enabled from eeprom */
2936	if ((nic->mac >= mac_82558_D101_A4) &&
2937	   (le16_to_cpu(nic->eeprom[eeprom_id]) & eeprom_id_wol)) {
2938		nic->flags |= wol_magic;
2939		device_set_wakeup_enable(&pdev->dev, true);
2940	}
2941
2942	/* ack any pending wake events, disable PME */
2943	pci_pme_active(pdev, false);
2944
2945	strcpy(netdev->name, "eth%d");
2946	if ((err = register_netdev(netdev))) {
2947		netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2948		goto err_out_free;
2949	}
2950	nic->cbs_pool = dma_pool_create(netdev->name,
2951			   &nic->pdev->dev,
2952			   nic->params.cbs.max * sizeof(struct cb),
2953			   sizeof(u32),
2954			   0);
2955	if (!nic->cbs_pool) {
2956		netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n");
2957		err = -ENOMEM;
2958		goto err_out_pool;
2959	}
2960	netif_info(nic, probe, nic->netdev,
2961		   "addr 0x%llx, irq %d, MAC addr %pM\n",
2962		   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2963		   pdev->irq, netdev->dev_addr);
2964
2965	return 0;
2966
2967err_out_pool:
2968	unregister_netdev(netdev);
2969err_out_free:
2970	e100_free(nic);
2971err_out_iounmap:
2972	pci_iounmap(pdev, nic->csr);
2973err_out_free_res:
2974	pci_release_regions(pdev);
2975err_out_disable_pdev:
2976	pci_disable_device(pdev);
2977err_out_free_dev:
2978	free_netdev(netdev);
2979	return err;
2980}
2981
2982static void e100_remove(struct pci_dev *pdev)
2983{
2984	struct net_device *netdev = pci_get_drvdata(pdev);
2985
2986	if (netdev) {
2987		struct nic *nic = netdev_priv(netdev);
2988		unregister_netdev(netdev);
2989		e100_free(nic);
2990		pci_iounmap(pdev, nic->csr);
2991		dma_pool_destroy(nic->cbs_pool);
2992		free_netdev(netdev);
2993		pci_release_regions(pdev);
2994		pci_disable_device(pdev);
2995	}
2996}
2997
2998#define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
2999#define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
3000#define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
3001static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
3002{
3003	struct net_device *netdev = pci_get_drvdata(pdev);
3004	struct nic *nic = netdev_priv(netdev);
3005
3006	netif_device_detach(netdev);
3007
3008	if (netif_running(netdev))
3009		e100_down(nic);
 
 
 
3010
3011	if ((nic->flags & wol_magic) | e100_asf(nic)) {
3012		/* enable reverse auto-negotiation */
3013		if (nic->phy == phy_82552_v) {
3014			u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3015			                           E100_82552_SMARTSPEED);
3016
3017			mdio_write(netdev, nic->mii.phy_id,
3018			           E100_82552_SMARTSPEED, smartspeed |
3019			           E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3020		}
3021		*enable_wake = true;
3022	} else {
3023		*enable_wake = false;
3024	}
3025
3026	pci_disable_device(pdev);
3027}
3028
3029static int __e100_power_off(struct pci_dev *pdev, bool wake)
3030{
3031	if (wake)
3032		return pci_prepare_to_sleep(pdev);
3033
3034	pci_wake_from_d3(pdev, false);
3035	pci_set_power_state(pdev, PCI_D3hot);
3036
3037	return 0;
3038}
3039
3040static int __maybe_unused e100_suspend(struct device *dev_d)
 
3041{
3042	bool wake;
3043
3044	__e100_shutdown(to_pci_dev(dev_d), &wake);
3045
3046	return 0;
3047}
3048
3049static int __maybe_unused e100_resume(struct device *dev_d)
3050{
3051	struct net_device *netdev = dev_get_drvdata(dev_d);
3052	struct nic *nic = netdev_priv(netdev);
3053	int err;
3054
3055	err = pci_enable_device(to_pci_dev(dev_d));
3056	if (err) {
3057		netdev_err(netdev, "Resume cannot enable PCI device, aborting\n");
3058		return err;
3059	}
3060	pci_set_master(to_pci_dev(dev_d));
3061
3062	/* disable reverse auto-negotiation */
3063	if (nic->phy == phy_82552_v) {
3064		u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3065		                           E100_82552_SMARTSPEED);
3066
3067		mdio_write(netdev, nic->mii.phy_id,
3068		           E100_82552_SMARTSPEED,
3069		           smartspeed & ~(E100_82552_REV_ANEG));
3070	}
3071
 
3072	if (netif_running(netdev))
3073		e100_up(nic);
3074
3075	netif_device_attach(netdev);
3076
3077	return 0;
3078}
 
3079
3080static void e100_shutdown(struct pci_dev *pdev)
3081{
3082	bool wake;
3083	__e100_shutdown(pdev, &wake);
3084	if (system_state == SYSTEM_POWER_OFF)
3085		__e100_power_off(pdev, wake);
3086}
3087
3088/* ------------------ PCI Error Recovery infrastructure  -------------- */
3089/**
3090 * e100_io_error_detected - called when PCI error is detected.
3091 * @pdev: Pointer to PCI device
3092 * @state: The current pci connection state
3093 */
3094static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3095{
3096	struct net_device *netdev = pci_get_drvdata(pdev);
3097	struct nic *nic = netdev_priv(netdev);
3098
3099	netif_device_detach(netdev);
3100
3101	if (state == pci_channel_io_perm_failure)
3102		return PCI_ERS_RESULT_DISCONNECT;
3103
3104	if (netif_running(netdev))
3105		e100_down(nic);
3106	pci_disable_device(pdev);
3107
3108	/* Request a slot reset. */
3109	return PCI_ERS_RESULT_NEED_RESET;
3110}
3111
3112/**
3113 * e100_io_slot_reset - called after the pci bus has been reset.
3114 * @pdev: Pointer to PCI device
3115 *
3116 * Restart the card from scratch.
3117 */
3118static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3119{
3120	struct net_device *netdev = pci_get_drvdata(pdev);
3121	struct nic *nic = netdev_priv(netdev);
3122
3123	if (pci_enable_device(pdev)) {
3124		pr_err("Cannot re-enable PCI device after reset\n");
3125		return PCI_ERS_RESULT_DISCONNECT;
3126	}
3127	pci_set_master(pdev);
3128
3129	/* Only one device per card can do a reset */
3130	if (0 != PCI_FUNC(pdev->devfn))
3131		return PCI_ERS_RESULT_RECOVERED;
3132	e100_hw_reset(nic);
3133	e100_phy_init(nic);
3134
3135	return PCI_ERS_RESULT_RECOVERED;
3136}
3137
3138/**
3139 * e100_io_resume - resume normal operations
3140 * @pdev: Pointer to PCI device
3141 *
3142 * Resume normal operations after an error recovery
3143 * sequence has been completed.
3144 */
3145static void e100_io_resume(struct pci_dev *pdev)
3146{
3147	struct net_device *netdev = pci_get_drvdata(pdev);
3148	struct nic *nic = netdev_priv(netdev);
3149
3150	/* ack any pending wake events, disable PME */
3151	pci_enable_wake(pdev, PCI_D0, 0);
3152
3153	netif_device_attach(netdev);
3154	if (netif_running(netdev)) {
3155		e100_open(netdev);
3156		mod_timer(&nic->watchdog, jiffies);
3157	}
3158}
3159
3160static const struct pci_error_handlers e100_err_handler = {
3161	.error_detected = e100_io_error_detected,
3162	.slot_reset = e100_io_slot_reset,
3163	.resume = e100_io_resume,
3164};
3165
3166static SIMPLE_DEV_PM_OPS(e100_pm_ops, e100_suspend, e100_resume);
3167
3168static struct pci_driver e100_driver = {
3169	.name =         DRV_NAME,
3170	.id_table =     e100_id_table,
3171	.probe =        e100_probe,
3172	.remove =       e100_remove,
3173
3174	/* Power Management hooks */
3175	.driver.pm =	&e100_pm_ops,
3176
 
3177	.shutdown =     e100_shutdown,
3178	.err_handler = &e100_err_handler,
3179};
3180
3181static int __init e100_init_module(void)
3182{
3183	if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3184		pr_info("%s\n", DRV_DESCRIPTION);
3185		pr_info("%s\n", DRV_COPYRIGHT);
3186	}
3187	return pci_register_driver(&e100_driver);
3188}
3189
3190static void __exit e100_cleanup_module(void)
3191{
3192	pci_unregister_driver(&e100_driver);
3193}
3194
3195module_init(e100_init_module);
3196module_exit(e100_cleanup_module);
v3.15
   1/*******************************************************************************
   2
   3  Intel PRO/100 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29/*
  30 *	e100.c: Intel(R) PRO/100 ethernet driver
  31 *
  32 *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
  33 *	original e100 driver, but better described as a munging of
  34 *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
  35 *
  36 *	References:
  37 *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
  38 *		Open Source Software Developers Manual,
  39 *		http://sourceforge.net/projects/e1000
  40 *
  41 *
  42 *	                      Theory of Operation
  43 *
  44 *	I.   General
  45 *
  46 *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
  47 *	controller family, which includes the 82557, 82558, 82559, 82550,
  48 *	82551, and 82562 devices.  82558 and greater controllers
  49 *	integrate the Intel 82555 PHY.  The controllers are used in
  50 *	server and client network interface cards, as well as in
  51 *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
  52 *	configurations.  8255x supports a 32-bit linear addressing
  53 *	mode and operates at 33Mhz PCI clock rate.
  54 *
  55 *	II.  Driver Operation
  56 *
  57 *	Memory-mapped mode is used exclusively to access the device's
  58 *	shared-memory structure, the Control/Status Registers (CSR). All
  59 *	setup, configuration, and control of the device, including queuing
  60 *	of Tx, Rx, and configuration commands is through the CSR.
  61 *	cmd_lock serializes accesses to the CSR command register.  cb_lock
  62 *	protects the shared Command Block List (CBL).
  63 *
  64 *	8255x is highly MII-compliant and all access to the PHY go
  65 *	through the Management Data Interface (MDI).  Consequently, the
  66 *	driver leverages the mii.c library shared with other MII-compliant
  67 *	devices.
  68 *
  69 *	Big- and Little-Endian byte order as well as 32- and 64-bit
  70 *	archs are supported.  Weak-ordered memory and non-cache-coherent
  71 *	archs are supported.
  72 *
  73 *	III. Transmit
  74 *
  75 *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
  76 *	together in a fixed-size ring (CBL) thus forming the flexible mode
  77 *	memory structure.  A TCB marked with the suspend-bit indicates
  78 *	the end of the ring.  The last TCB processed suspends the
  79 *	controller, and the controller can be restarted by issue a CU
  80 *	resume command to continue from the suspend point, or a CU start
  81 *	command to start at a given position in the ring.
  82 *
  83 *	Non-Tx commands (config, multicast setup, etc) are linked
  84 *	into the CBL ring along with Tx commands.  The common structure
  85 *	used for both Tx and non-Tx commands is the Command Block (CB).
  86 *
  87 *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
  88 *	is the next CB to check for completion; cb_to_send is the first
  89 *	CB to start on in case of a previous failure to resume.  CB clean
  90 *	up happens in interrupt context in response to a CU interrupt.
  91 *	cbs_avail keeps track of number of free CB resources available.
  92 *
  93 * 	Hardware padding of short packets to minimum packet size is
  94 * 	enabled.  82557 pads with 7Eh, while the later controllers pad
  95 * 	with 00h.
  96 *
  97 *	IV.  Receive
  98 *
  99 *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
 100 *	Descriptors (RFD) + data buffer, thus forming the simplified mode
 101 *	memory structure.  Rx skbs are allocated to contain both the RFD
 102 *	and the data buffer, but the RFD is pulled off before the skb is
 103 *	indicated.  The data buffer is aligned such that encapsulated
 104 *	protocol headers are u32-aligned.  Since the RFD is part of the
 105 *	mapped shared memory, and completion status is contained within
 106 *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
 107 *	view from software and hardware.
 108 *
 109 *	In order to keep updates to the RFD link field from colliding with
 110 *	hardware writes to mark packets complete, we use the feature that
 111 *	hardware will not write to a size 0 descriptor and mark the previous
 112 *	packet as end-of-list (EL).   After updating the link, we remove EL
 113 *	and only then restore the size such that hardware may use the
 114 *	previous-to-end RFD.
 115 *
 116 *	Under typical operation, the  receive unit (RU) is start once,
 117 *	and the controller happily fills RFDs as frames arrive.  If
 118 *	replacement RFDs cannot be allocated, or the RU goes non-active,
 119 *	the RU must be restarted.  Frame arrival generates an interrupt,
 120 *	and Rx indication and re-allocation happen in the same context,
 121 *	therefore no locking is required.  A software-generated interrupt
 122 *	is generated from the watchdog to recover from a failed allocation
 123 *	scenario where all Rx resources have been indicated and none re-
 124 *	placed.
 125 *
 126 *	V.   Miscellaneous
 127 *
 128 * 	VLAN offloading of tagging, stripping and filtering is not
 129 * 	supported, but driver will accommodate the extra 4-byte VLAN tag
 130 * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
 131 * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
 132 * 	not supported (hardware limitation).
 133 *
 134 * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
 135 *
 136 * 	Thanks to JC (jchapman@katalix.com) for helping with
 137 * 	testing/troubleshooting the development driver.
 138 *
 139 * 	TODO:
 140 * 	o several entry points race with dev->close
 141 * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
 142 *
 143 *	FIXES:
 144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
 145 *	- Stratus87247: protect MDI control register manipulations
 146 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
 147 *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
 148 */
 149
 150#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 151
 152#include <linux/hardirq.h>
 153#include <linux/interrupt.h>
 154#include <linux/module.h>
 155#include <linux/moduleparam.h>
 156#include <linux/kernel.h>
 157#include <linux/types.h>
 158#include <linux/sched.h>
 159#include <linux/slab.h>
 160#include <linux/delay.h>
 161#include <linux/init.h>
 162#include <linux/pci.h>
 163#include <linux/dma-mapping.h>
 164#include <linux/dmapool.h>
 165#include <linux/netdevice.h>
 166#include <linux/etherdevice.h>
 167#include <linux/mii.h>
 168#include <linux/if_vlan.h>
 169#include <linux/skbuff.h>
 170#include <linux/ethtool.h>
 171#include <linux/string.h>
 172#include <linux/firmware.h>
 173#include <linux/rtnetlink.h>
 174#include <asm/unaligned.h>
 175
 176
 177#define DRV_NAME		"e100"
 178#define DRV_EXT			"-NAPI"
 179#define DRV_VERSION		"3.5.24-k2"DRV_EXT
 180#define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
 181#define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"
 182
 183#define E100_WATCHDOG_PERIOD	(2 * HZ)
 184#define E100_NAPI_WEIGHT	16
 185
 186#define FIRMWARE_D101M		"e100/d101m_ucode.bin"
 187#define FIRMWARE_D101S		"e100/d101s_ucode.bin"
 188#define FIRMWARE_D102E		"e100/d102e_ucode.bin"
 189
 190MODULE_DESCRIPTION(DRV_DESCRIPTION);
 191MODULE_AUTHOR(DRV_COPYRIGHT);
 192MODULE_LICENSE("GPL");
 193MODULE_VERSION(DRV_VERSION);
 194MODULE_FIRMWARE(FIRMWARE_D101M);
 195MODULE_FIRMWARE(FIRMWARE_D101S);
 196MODULE_FIRMWARE(FIRMWARE_D102E);
 197
 198static int debug = 3;
 199static int eeprom_bad_csum_allow = 0;
 200static int use_io = 0;
 201module_param(debug, int, 0);
 202module_param(eeprom_bad_csum_allow, int, 0);
 203module_param(use_io, int, 0);
 204MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 205MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
 206MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
 207
 208#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
 209	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
 210	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
 211static DEFINE_PCI_DEVICE_TABLE(e100_id_table) = {
 212	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
 213	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
 214	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
 215	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
 216	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
 217	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
 218	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
 219	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
 220	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
 221	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
 222	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
 223	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
 224	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
 225	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
 226	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
 227	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
 228	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
 229	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
 230	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
 231	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
 232	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
 233	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
 234	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
 235	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
 236	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
 237	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
 238	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
 239	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
 240	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
 241	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
 242	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
 243	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
 244	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
 245	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
 246	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
 247	INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
 248	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
 249	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
 250	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
 251	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
 252	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
 253	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
 254	{ 0, }
 255};
 256MODULE_DEVICE_TABLE(pci, e100_id_table);
 257
 258enum mac {
 259	mac_82557_D100_A  = 0,
 260	mac_82557_D100_B  = 1,
 261	mac_82557_D100_C  = 2,
 262	mac_82558_D101_A4 = 4,
 263	mac_82558_D101_B0 = 5,
 264	mac_82559_D101M   = 8,
 265	mac_82559_D101S   = 9,
 266	mac_82550_D102    = 12,
 267	mac_82550_D102_C  = 13,
 268	mac_82551_E       = 14,
 269	mac_82551_F       = 15,
 270	mac_82551_10      = 16,
 271	mac_unknown       = 0xFF,
 272};
 273
 274enum phy {
 275	phy_100a     = 0x000003E0,
 276	phy_100c     = 0x035002A8,
 277	phy_82555_tx = 0x015002A8,
 278	phy_nsc_tx   = 0x5C002000,
 279	phy_82562_et = 0x033002A8,
 280	phy_82562_em = 0x032002A8,
 281	phy_82562_ek = 0x031002A8,
 282	phy_82562_eh = 0x017002A8,
 283	phy_82552_v  = 0xd061004d,
 284	phy_unknown  = 0xFFFFFFFF,
 285};
 286
 287/* CSR (Control/Status Registers) */
 288struct csr {
 289	struct {
 290		u8 status;
 291		u8 stat_ack;
 292		u8 cmd_lo;
 293		u8 cmd_hi;
 294		u32 gen_ptr;
 295	} scb;
 296	u32 port;
 297	u16 flash_ctrl;
 298	u8 eeprom_ctrl_lo;
 299	u8 eeprom_ctrl_hi;
 300	u32 mdi_ctrl;
 301	u32 rx_dma_count;
 302};
 303
 304enum scb_status {
 305	rus_no_res       = 0x08,
 306	rus_ready        = 0x10,
 307	rus_mask         = 0x3C,
 308};
 309
 310enum ru_state  {
 311	RU_SUSPENDED = 0,
 312	RU_RUNNING	 = 1,
 313	RU_UNINITIALIZED = -1,
 314};
 315
 316enum scb_stat_ack {
 317	stat_ack_not_ours    = 0x00,
 318	stat_ack_sw_gen      = 0x04,
 319	stat_ack_rnr         = 0x10,
 320	stat_ack_cu_idle     = 0x20,
 321	stat_ack_frame_rx    = 0x40,
 322	stat_ack_cu_cmd_done = 0x80,
 323	stat_ack_not_present = 0xFF,
 324	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
 325	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
 326};
 327
 328enum scb_cmd_hi {
 329	irq_mask_none = 0x00,
 330	irq_mask_all  = 0x01,
 331	irq_sw_gen    = 0x02,
 332};
 333
 334enum scb_cmd_lo {
 335	cuc_nop        = 0x00,
 336	ruc_start      = 0x01,
 337	ruc_load_base  = 0x06,
 338	cuc_start      = 0x10,
 339	cuc_resume     = 0x20,
 340	cuc_dump_addr  = 0x40,
 341	cuc_dump_stats = 0x50,
 342	cuc_load_base  = 0x60,
 343	cuc_dump_reset = 0x70,
 344};
 345
 346enum cuc_dump {
 347	cuc_dump_complete       = 0x0000A005,
 348	cuc_dump_reset_complete = 0x0000A007,
 349};
 350
 351enum port {
 352	software_reset  = 0x0000,
 353	selftest        = 0x0001,
 354	selective_reset = 0x0002,
 355};
 356
 357enum eeprom_ctrl_lo {
 358	eesk = 0x01,
 359	eecs = 0x02,
 360	eedi = 0x04,
 361	eedo = 0x08,
 362};
 363
 364enum mdi_ctrl {
 365	mdi_write = 0x04000000,
 366	mdi_read  = 0x08000000,
 367	mdi_ready = 0x10000000,
 368};
 369
 370enum eeprom_op {
 371	op_write = 0x05,
 372	op_read  = 0x06,
 373	op_ewds  = 0x10,
 374	op_ewen  = 0x13,
 375};
 376
 377enum eeprom_offsets {
 378	eeprom_cnfg_mdix  = 0x03,
 379	eeprom_phy_iface  = 0x06,
 380	eeprom_id         = 0x0A,
 381	eeprom_config_asf = 0x0D,
 382	eeprom_smbus_addr = 0x90,
 383};
 384
 385enum eeprom_cnfg_mdix {
 386	eeprom_mdix_enabled = 0x0080,
 387};
 388
 389enum eeprom_phy_iface {
 390	NoSuchPhy = 0,
 391	I82553AB,
 392	I82553C,
 393	I82503,
 394	DP83840,
 395	S80C240,
 396	S80C24,
 397	I82555,
 398	DP83840A = 10,
 399};
 400
 401enum eeprom_id {
 402	eeprom_id_wol = 0x0020,
 403};
 404
 405enum eeprom_config_asf {
 406	eeprom_asf = 0x8000,
 407	eeprom_gcl = 0x4000,
 408};
 409
 410enum cb_status {
 411	cb_complete = 0x8000,
 412	cb_ok       = 0x2000,
 413};
 414
 415/**
 416 * cb_command - Command Block flags
 417 * @cb_tx_nc:  0: controler does CRC (normal),  1: CRC from skb memory
 418 */
 419enum cb_command {
 420	cb_nop    = 0x0000,
 421	cb_iaaddr = 0x0001,
 422	cb_config = 0x0002,
 423	cb_multi  = 0x0003,
 424	cb_tx     = 0x0004,
 425	cb_ucode  = 0x0005,
 426	cb_dump   = 0x0006,
 427	cb_tx_sf  = 0x0008,
 428	cb_tx_nc  = 0x0010,
 429	cb_cid    = 0x1f00,
 430	cb_i      = 0x2000,
 431	cb_s      = 0x4000,
 432	cb_el     = 0x8000,
 433};
 434
 435struct rfd {
 436	__le16 status;
 437	__le16 command;
 438	__le32 link;
 439	__le32 rbd;
 440	__le16 actual_size;
 441	__le16 size;
 442};
 443
 444struct rx {
 445	struct rx *next, *prev;
 446	struct sk_buff *skb;
 447	dma_addr_t dma_addr;
 448};
 449
 450#if defined(__BIG_ENDIAN_BITFIELD)
 451#define X(a,b)	b,a
 452#else
 453#define X(a,b)	a,b
 454#endif
 455struct config {
 456/*0*/	u8 X(byte_count:6, pad0:2);
 457/*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
 458/*2*/	u8 adaptive_ifs;
 459/*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
 460	   term_write_cache_line:1), pad3:4);
 461/*4*/	u8 X(rx_dma_max_count:7, pad4:1);
 462/*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
 463/*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
 464	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
 465	   rx_save_overruns : 1), rx_save_bad_frames : 1);
 466/*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
 467	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
 468	   tx_dynamic_tbd:1);
 469/*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
 470/*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
 471	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
 472/*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
 473	   loopback:2);
 474/*11*/	u8 X(linear_priority:3, pad11:5);
 475/*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
 476/*13*/	u8 ip_addr_lo;
 477/*14*/	u8 ip_addr_hi;
 478/*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
 479	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
 480	   pad15_2:1), crs_or_cdt:1);
 481/*16*/	u8 fc_delay_lo;
 482/*17*/	u8 fc_delay_hi;
 483/*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
 484	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
 485/*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
 486	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
 487	   full_duplex_force:1), full_duplex_pin:1);
 488/*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
 489/*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
 490/*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
 491	u8 pad_d102[9];
 492};
 493
 494#define E100_MAX_MULTICAST_ADDRS	64
 495struct multi {
 496	__le16 count;
 497	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
 498};
 499
 500/* Important: keep total struct u32-aligned */
 501#define UCODE_SIZE			134
 502struct cb {
 503	__le16 status;
 504	__le16 command;
 505	__le32 link;
 506	union {
 507		u8 iaaddr[ETH_ALEN];
 508		__le32 ucode[UCODE_SIZE];
 509		struct config config;
 510		struct multi multi;
 511		struct {
 512			u32 tbd_array;
 513			u16 tcb_byte_count;
 514			u8 threshold;
 515			u8 tbd_count;
 516			struct {
 517				__le32 buf_addr;
 518				__le16 size;
 519				u16 eol;
 520			} tbd;
 521		} tcb;
 522		__le32 dump_buffer_addr;
 523	} u;
 524	struct cb *next, *prev;
 525	dma_addr_t dma_addr;
 526	struct sk_buff *skb;
 527};
 528
 529enum loopback {
 530	lb_none = 0, lb_mac = 1, lb_phy = 3,
 531};
 532
 533struct stats {
 534	__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
 535		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
 536		tx_multiple_collisions, tx_total_collisions;
 537	__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
 538		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
 539		rx_short_frame_errors;
 540	__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
 541	__le16 xmt_tco_frames, rcv_tco_frames;
 542	__le32 complete;
 543};
 544
 545struct mem {
 546	struct {
 547		u32 signature;
 548		u32 result;
 549	} selftest;
 550	struct stats stats;
 551	u8 dump_buf[596];
 552};
 553
 554struct param_range {
 555	u32 min;
 556	u32 max;
 557	u32 count;
 558};
 559
 560struct params {
 561	struct param_range rfds;
 562	struct param_range cbs;
 563};
 564
 565struct nic {
 566	/* Begin: frequently used values: keep adjacent for cache effect */
 567	u32 msg_enable				____cacheline_aligned;
 568	struct net_device *netdev;
 569	struct pci_dev *pdev;
 570	u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
 571
 572	struct rx *rxs				____cacheline_aligned;
 573	struct rx *rx_to_use;
 574	struct rx *rx_to_clean;
 575	struct rfd blank_rfd;
 576	enum ru_state ru_running;
 577
 578	spinlock_t cb_lock			____cacheline_aligned;
 579	spinlock_t cmd_lock;
 580	struct csr __iomem *csr;
 581	enum scb_cmd_lo cuc_cmd;
 582	unsigned int cbs_avail;
 583	struct napi_struct napi;
 584	struct cb *cbs;
 585	struct cb *cb_to_use;
 586	struct cb *cb_to_send;
 587	struct cb *cb_to_clean;
 588	__le16 tx_command;
 589	/* End: frequently used values: keep adjacent for cache effect */
 590
 591	enum {
 592		ich                = (1 << 0),
 593		promiscuous        = (1 << 1),
 594		multicast_all      = (1 << 2),
 595		wol_magic          = (1 << 3),
 596		ich_10h_workaround = (1 << 4),
 597	} flags					____cacheline_aligned;
 598
 599	enum mac mac;
 600	enum phy phy;
 601	struct params params;
 602	struct timer_list watchdog;
 603	struct mii_if_info mii;
 604	struct work_struct tx_timeout_task;
 605	enum loopback loopback;
 606
 607	struct mem *mem;
 608	dma_addr_t dma_addr;
 609
 610	struct pci_pool *cbs_pool;
 611	dma_addr_t cbs_dma_addr;
 612	u8 adaptive_ifs;
 613	u8 tx_threshold;
 614	u32 tx_frames;
 615	u32 tx_collisions;
 616	u32 tx_deferred;
 617	u32 tx_single_collisions;
 618	u32 tx_multiple_collisions;
 619	u32 tx_fc_pause;
 620	u32 tx_tco_frames;
 621
 622	u32 rx_fc_pause;
 623	u32 rx_fc_unsupported;
 624	u32 rx_tco_frames;
 625	u32 rx_short_frame_errors;
 626	u32 rx_over_length_errors;
 627
 628	u16 eeprom_wc;
 629	__le16 eeprom[256];
 630	spinlock_t mdio_lock;
 631	const struct firmware *fw;
 632};
 633
 634static inline void e100_write_flush(struct nic *nic)
 635{
 636	/* Flush previous PCI writes through intermediate bridges
 637	 * by doing a benign read */
 638	(void)ioread8(&nic->csr->scb.status);
 639}
 640
 641static void e100_enable_irq(struct nic *nic)
 642{
 643	unsigned long flags;
 644
 645	spin_lock_irqsave(&nic->cmd_lock, flags);
 646	iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
 647	e100_write_flush(nic);
 648	spin_unlock_irqrestore(&nic->cmd_lock, flags);
 649}
 650
 651static void e100_disable_irq(struct nic *nic)
 652{
 653	unsigned long flags;
 654
 655	spin_lock_irqsave(&nic->cmd_lock, flags);
 656	iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
 657	e100_write_flush(nic);
 658	spin_unlock_irqrestore(&nic->cmd_lock, flags);
 659}
 660
 661static void e100_hw_reset(struct nic *nic)
 662{
 663	/* Put CU and RU into idle with a selective reset to get
 664	 * device off of PCI bus */
 665	iowrite32(selective_reset, &nic->csr->port);
 666	e100_write_flush(nic); udelay(20);
 667
 668	/* Now fully reset device */
 669	iowrite32(software_reset, &nic->csr->port);
 670	e100_write_flush(nic); udelay(20);
 671
 672	/* Mask off our interrupt line - it's unmasked after reset */
 673	e100_disable_irq(nic);
 674}
 675
 676static int e100_self_test(struct nic *nic)
 677{
 678	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
 679
 680	/* Passing the self-test is a pretty good indication
 681	 * that the device can DMA to/from host memory */
 682
 683	nic->mem->selftest.signature = 0;
 684	nic->mem->selftest.result = 0xFFFFFFFF;
 685
 686	iowrite32(selftest | dma_addr, &nic->csr->port);
 687	e100_write_flush(nic);
 688	/* Wait 10 msec for self-test to complete */
 689	msleep(10);
 690
 691	/* Interrupts are enabled after self-test */
 692	e100_disable_irq(nic);
 693
 694	/* Check results of self-test */
 695	if (nic->mem->selftest.result != 0) {
 696		netif_err(nic, hw, nic->netdev,
 697			  "Self-test failed: result=0x%08X\n",
 698			  nic->mem->selftest.result);
 699		return -ETIMEDOUT;
 700	}
 701	if (nic->mem->selftest.signature == 0) {
 702		netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
 703		return -ETIMEDOUT;
 704	}
 705
 706	return 0;
 707}
 708
 709static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
 710{
 711	u32 cmd_addr_data[3];
 712	u8 ctrl;
 713	int i, j;
 714
 715	/* Three cmds: write/erase enable, write data, write/erase disable */
 716	cmd_addr_data[0] = op_ewen << (addr_len - 2);
 717	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
 718		le16_to_cpu(data);
 719	cmd_addr_data[2] = op_ewds << (addr_len - 2);
 720
 721	/* Bit-bang cmds to write word to eeprom */
 722	for (j = 0; j < 3; j++) {
 723
 724		/* Chip select */
 725		iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 726		e100_write_flush(nic); udelay(4);
 727
 728		for (i = 31; i >= 0; i--) {
 729			ctrl = (cmd_addr_data[j] & (1 << i)) ?
 730				eecs | eedi : eecs;
 731			iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 732			e100_write_flush(nic); udelay(4);
 733
 734			iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 735			e100_write_flush(nic); udelay(4);
 736		}
 737		/* Wait 10 msec for cmd to complete */
 738		msleep(10);
 739
 740		/* Chip deselect */
 741		iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 742		e100_write_flush(nic); udelay(4);
 743	}
 744};
 745
 746/* General technique stolen from the eepro100 driver - very clever */
 747static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
 748{
 749	u32 cmd_addr_data;
 750	u16 data = 0;
 751	u8 ctrl;
 752	int i;
 753
 754	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
 755
 756	/* Chip select */
 757	iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 758	e100_write_flush(nic); udelay(4);
 759
 760	/* Bit-bang to read word from eeprom */
 761	for (i = 31; i >= 0; i--) {
 762		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
 763		iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 764		e100_write_flush(nic); udelay(4);
 765
 766		iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 767		e100_write_flush(nic); udelay(4);
 768
 769		/* Eeprom drives a dummy zero to EEDO after receiving
 770		 * complete address.  Use this to adjust addr_len. */
 771		ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
 772		if (!(ctrl & eedo) && i > 16) {
 773			*addr_len -= (i - 16);
 774			i = 17;
 775		}
 776
 777		data = (data << 1) | (ctrl & eedo ? 1 : 0);
 778	}
 779
 780	/* Chip deselect */
 781	iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 782	e100_write_flush(nic); udelay(4);
 783
 784	return cpu_to_le16(data);
 785};
 786
 787/* Load entire EEPROM image into driver cache and validate checksum */
 788static int e100_eeprom_load(struct nic *nic)
 789{
 790	u16 addr, addr_len = 8, checksum = 0;
 791
 792	/* Try reading with an 8-bit addr len to discover actual addr len */
 793	e100_eeprom_read(nic, &addr_len, 0);
 794	nic->eeprom_wc = 1 << addr_len;
 795
 796	for (addr = 0; addr < nic->eeprom_wc; addr++) {
 797		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
 798		if (addr < nic->eeprom_wc - 1)
 799			checksum += le16_to_cpu(nic->eeprom[addr]);
 800	}
 801
 802	/* The checksum, stored in the last word, is calculated such that
 803	 * the sum of words should be 0xBABA */
 804	if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
 805		netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
 806		if (!eeprom_bad_csum_allow)
 807			return -EAGAIN;
 808	}
 809
 810	return 0;
 811}
 812
 813/* Save (portion of) driver EEPROM cache to device and update checksum */
 814static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
 815{
 816	u16 addr, addr_len = 8, checksum = 0;
 817
 818	/* Try reading with an 8-bit addr len to discover actual addr len */
 819	e100_eeprom_read(nic, &addr_len, 0);
 820	nic->eeprom_wc = 1 << addr_len;
 821
 822	if (start + count >= nic->eeprom_wc)
 823		return -EINVAL;
 824
 825	for (addr = start; addr < start + count; addr++)
 826		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
 827
 828	/* The checksum, stored in the last word, is calculated such that
 829	 * the sum of words should be 0xBABA */
 830	for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
 831		checksum += le16_to_cpu(nic->eeprom[addr]);
 832	nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
 833	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
 834		nic->eeprom[nic->eeprom_wc - 1]);
 835
 836	return 0;
 837}
 838
 839#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
 840#define E100_WAIT_SCB_FAST 20       /* delay like the old code */
 841static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
 842{
 843	unsigned long flags;
 844	unsigned int i;
 845	int err = 0;
 846
 847	spin_lock_irqsave(&nic->cmd_lock, flags);
 848
 849	/* Previous command is accepted when SCB clears */
 850	for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
 851		if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
 852			break;
 853		cpu_relax();
 854		if (unlikely(i > E100_WAIT_SCB_FAST))
 855			udelay(5);
 856	}
 857	if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
 858		err = -EAGAIN;
 859		goto err_unlock;
 860	}
 861
 862	if (unlikely(cmd != cuc_resume))
 863		iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
 864	iowrite8(cmd, &nic->csr->scb.cmd_lo);
 865
 866err_unlock:
 867	spin_unlock_irqrestore(&nic->cmd_lock, flags);
 868
 869	return err;
 870}
 871
 872static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
 873	int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
 874{
 875	struct cb *cb;
 876	unsigned long flags;
 877	int err = 0;
 878
 879	spin_lock_irqsave(&nic->cb_lock, flags);
 880
 881	if (unlikely(!nic->cbs_avail)) {
 882		err = -ENOMEM;
 883		goto err_unlock;
 884	}
 885
 886	cb = nic->cb_to_use;
 887	nic->cb_to_use = cb->next;
 888	nic->cbs_avail--;
 889	cb->skb = skb;
 890
 891	err = cb_prepare(nic, cb, skb);
 892	if (err)
 893		goto err_unlock;
 894
 895	if (unlikely(!nic->cbs_avail))
 896		err = -ENOSPC;
 897
 898
 899	/* Order is important otherwise we'll be in a race with h/w:
 900	 * set S-bit in current first, then clear S-bit in previous. */
 901	cb->command |= cpu_to_le16(cb_s);
 902	wmb();
 903	cb->prev->command &= cpu_to_le16(~cb_s);
 904
 905	while (nic->cb_to_send != nic->cb_to_use) {
 906		if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
 907			nic->cb_to_send->dma_addr))) {
 908			/* Ok, here's where things get sticky.  It's
 909			 * possible that we can't schedule the command
 910			 * because the controller is too busy, so
 911			 * let's just queue the command and try again
 912			 * when another command is scheduled. */
 913			if (err == -ENOSPC) {
 914				//request a reset
 915				schedule_work(&nic->tx_timeout_task);
 916			}
 917			break;
 918		} else {
 919			nic->cuc_cmd = cuc_resume;
 920			nic->cb_to_send = nic->cb_to_send->next;
 921		}
 922	}
 923
 924err_unlock:
 925	spin_unlock_irqrestore(&nic->cb_lock, flags);
 926
 927	return err;
 928}
 929
 930static int mdio_read(struct net_device *netdev, int addr, int reg)
 931{
 932	struct nic *nic = netdev_priv(netdev);
 933	return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
 934}
 935
 936static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
 937{
 938	struct nic *nic = netdev_priv(netdev);
 939
 940	nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
 941}
 942
 943/* the standard mdio_ctrl() function for usual MII-compliant hardware */
 944static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
 945{
 946	u32 data_out = 0;
 947	unsigned int i;
 948	unsigned long flags;
 949
 950
 951	/*
 952	 * Stratus87247: we shouldn't be writing the MDI control
 953	 * register until the Ready bit shows True.  Also, since
 954	 * manipulation of the MDI control registers is a multi-step
 955	 * procedure it should be done under lock.
 956	 */
 957	spin_lock_irqsave(&nic->mdio_lock, flags);
 958	for (i = 100; i; --i) {
 959		if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
 960			break;
 961		udelay(20);
 962	}
 963	if (unlikely(!i)) {
 964		netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
 965		spin_unlock_irqrestore(&nic->mdio_lock, flags);
 966		return 0;		/* No way to indicate timeout error */
 967	}
 968	iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
 969
 970	for (i = 0; i < 100; i++) {
 971		udelay(20);
 972		if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
 973			break;
 974	}
 975	spin_unlock_irqrestore(&nic->mdio_lock, flags);
 976	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
 977		     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
 978		     dir == mdi_read ? "READ" : "WRITE",
 979		     addr, reg, data, data_out);
 980	return (u16)data_out;
 981}
 982
 983/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
 984static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
 985				 u32 addr,
 986				 u32 dir,
 987				 u32 reg,
 988				 u16 data)
 989{
 990	if ((reg == MII_BMCR) && (dir == mdi_write)) {
 991		if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
 992			u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
 993							MII_ADVERTISE);
 994
 995			/*
 996			 * Workaround Si issue where sometimes the part will not
 997			 * autoneg to 100Mbps even when advertised.
 998			 */
 999			if (advert & ADVERTISE_100FULL)
1000				data |= BMCR_SPEED100 | BMCR_FULLDPLX;
1001			else if (advert & ADVERTISE_100HALF)
1002				data |= BMCR_SPEED100;
1003		}
1004	}
1005	return mdio_ctrl_hw(nic, addr, dir, reg, data);
1006}
1007
1008/* Fully software-emulated mdio_ctrl() function for cards without
1009 * MII-compliant PHYs.
1010 * For now, this is mainly geared towards 80c24 support; in case of further
1011 * requirements for other types (i82503, ...?) either extend this mechanism
1012 * or split it, whichever is cleaner.
1013 */
1014static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
1015				      u32 addr,
1016				      u32 dir,
1017				      u32 reg,
1018				      u16 data)
1019{
1020	/* might need to allocate a netdev_priv'ed register array eventually
1021	 * to be able to record state changes, but for now
1022	 * some fully hardcoded register handling ought to be ok I guess. */
1023
1024	if (dir == mdi_read) {
1025		switch (reg) {
1026		case MII_BMCR:
1027			/* Auto-negotiation, right? */
1028			return  BMCR_ANENABLE |
1029				BMCR_FULLDPLX;
1030		case MII_BMSR:
1031			return	BMSR_LSTATUS /* for mii_link_ok() */ |
1032				BMSR_ANEGCAPABLE |
1033				BMSR_10FULL;
1034		case MII_ADVERTISE:
1035			/* 80c24 is a "combo card" PHY, right? */
1036			return	ADVERTISE_10HALF |
1037				ADVERTISE_10FULL;
1038		default:
1039			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1040				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1041				     dir == mdi_read ? "READ" : "WRITE",
1042				     addr, reg, data);
1043			return 0xFFFF;
1044		}
1045	} else {
1046		switch (reg) {
1047		default:
1048			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1049				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1050				     dir == mdi_read ? "READ" : "WRITE",
1051				     addr, reg, data);
1052			return 0xFFFF;
1053		}
1054	}
1055}
1056static inline int e100_phy_supports_mii(struct nic *nic)
1057{
1058	/* for now, just check it by comparing whether we
1059	   are using MII software emulation.
1060	*/
1061	return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1062}
1063
1064static void e100_get_defaults(struct nic *nic)
1065{
1066	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1067	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1068
1069	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1070	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1071	if (nic->mac == mac_unknown)
1072		nic->mac = mac_82557_D100_A;
1073
1074	nic->params.rfds = rfds;
1075	nic->params.cbs = cbs;
1076
1077	/* Quadwords to DMA into FIFO before starting frame transmit */
1078	nic->tx_threshold = 0xE0;
1079
1080	/* no interrupt for every tx completion, delay = 256us if not 557 */
1081	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1082		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1083
1084	/* Template for a freshly allocated RFD */
1085	nic->blank_rfd.command = 0;
1086	nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1087	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1088
1089	/* MII setup */
1090	nic->mii.phy_id_mask = 0x1F;
1091	nic->mii.reg_num_mask = 0x1F;
1092	nic->mii.dev = nic->netdev;
1093	nic->mii.mdio_read = mdio_read;
1094	nic->mii.mdio_write = mdio_write;
1095}
1096
1097static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1098{
1099	struct config *config = &cb->u.config;
1100	u8 *c = (u8 *)config;
1101	struct net_device *netdev = nic->netdev;
1102
1103	cb->command = cpu_to_le16(cb_config);
1104
1105	memset(config, 0, sizeof(struct config));
1106
1107	config->byte_count = 0x16;		/* bytes in this struct */
1108	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
1109	config->direct_rx_dma = 0x1;		/* reserved */
1110	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
1111	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
1112	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
1113	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
1114	if (e100_phy_supports_mii(nic))
1115		config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1116	config->pad10 = 0x6;
1117	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
1118	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
1119	config->ifs = 0x6;			/* x16 = inter frame spacing */
1120	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
1121	config->pad15_1 = 0x1;
1122	config->pad15_2 = 0x1;
1123	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
1124	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
1125	config->tx_padding = 0x1;		/* 1=pad short frames */
1126	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
1127	config->pad18 = 0x1;
1128	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
1129	config->pad20_1 = 0x1F;
1130	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
1131	config->pad21_1 = 0x5;
1132
1133	config->adaptive_ifs = nic->adaptive_ifs;
1134	config->loopback = nic->loopback;
1135
1136	if (nic->mii.force_media && nic->mii.full_duplex)
1137		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */
1138
1139	if (nic->flags & promiscuous || nic->loopback) {
1140		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
1141		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
1142		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
1143	}
1144
1145	if (unlikely(netdev->features & NETIF_F_RXFCS))
1146		config->rx_crc_transfer = 0x1;	/* 1=save, 0=discard */
1147
1148	if (nic->flags & multicast_all)
1149		config->multicast_all = 0x1;		/* 1=accept, 0=no */
1150
1151	/* disable WoL when up */
1152	if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1153		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */
1154
1155	if (nic->mac >= mac_82558_D101_A4) {
1156		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
1157		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
1158		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
1159		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
1160		if (nic->mac >= mac_82559_D101M) {
1161			config->tno_intr = 0x1;		/* TCO stats enable */
1162			/* Enable TCO in extended config */
1163			if (nic->mac >= mac_82551_10) {
1164				config->byte_count = 0x20; /* extended bytes */
1165				config->rx_d102_mode = 0x1; /* GMRC for TCO */
1166			}
1167		} else {
1168			config->standard_stat_counter = 0x0;
1169		}
1170	}
1171
1172	if (netdev->features & NETIF_F_RXALL) {
1173		config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1174		config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1175		config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1176	}
1177
1178	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
1179		     c + 0);
1180	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
1181		     c + 8);
1182	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
1183		     c + 16);
1184	return 0;
1185}
1186
1187/*************************************************************************
1188*  CPUSaver parameters
1189*
1190*  All CPUSaver parameters are 16-bit literals that are part of a
1191*  "move immediate value" instruction.  By changing the value of
1192*  the literal in the instruction before the code is loaded, the
1193*  driver can change the algorithm.
1194*
1195*  INTDELAY - This loads the dead-man timer with its initial value.
1196*    When this timer expires the interrupt is asserted, and the
1197*    timer is reset each time a new packet is received.  (see
1198*    BUNDLEMAX below to set the limit on number of chained packets)
1199*    The current default is 0x600 or 1536.  Experiments show that
1200*    the value should probably stay within the 0x200 - 0x1000.
1201*
1202*  BUNDLEMAX -
1203*    This sets the maximum number of frames that will be bundled.  In
1204*    some situations, such as the TCP windowing algorithm, it may be
1205*    better to limit the growth of the bundle size than let it go as
1206*    high as it can, because that could cause too much added latency.
1207*    The default is six, because this is the number of packets in the
1208*    default TCP window size.  A value of 1 would make CPUSaver indicate
1209*    an interrupt for every frame received.  If you do not want to put
1210*    a limit on the bundle size, set this value to xFFFF.
1211*
1212*  BUNDLESMALL -
1213*    This contains a bit-mask describing the minimum size frame that
1214*    will be bundled.  The default masks the lower 7 bits, which means
1215*    that any frame less than 128 bytes in length will not be bundled,
1216*    but will instead immediately generate an interrupt.  This does
1217*    not affect the current bundle in any way.  Any frame that is 128
1218*    bytes or large will be bundled normally.  This feature is meant
1219*    to provide immediate indication of ACK frames in a TCP environment.
1220*    Customers were seeing poor performance when a machine with CPUSaver
1221*    enabled was sending but not receiving.  The delay introduced when
1222*    the ACKs were received was enough to reduce total throughput, because
1223*    the sender would sit idle until the ACK was finally seen.
1224*
1225*    The current default is 0xFF80, which masks out the lower 7 bits.
1226*    This means that any frame which is x7F (127) bytes or smaller
1227*    will cause an immediate interrupt.  Because this value must be a
1228*    bit mask, there are only a few valid values that can be used.  To
1229*    turn this feature off, the driver can write the value xFFFF to the
1230*    lower word of this instruction (in the same way that the other
1231*    parameters are used).  Likewise, a value of 0xF800 (2047) would
1232*    cause an interrupt to be generated for every frame, because all
1233*    standard Ethernet frames are <= 2047 bytes in length.
1234*************************************************************************/
1235
1236/* if you wish to disable the ucode functionality, while maintaining the
1237 * workarounds it provides, set the following defines to:
1238 * BUNDLESMALL 0
1239 * BUNDLEMAX 1
1240 * INTDELAY 1
1241 */
1242#define BUNDLESMALL 1
1243#define BUNDLEMAX (u16)6
1244#define INTDELAY (u16)1536 /* 0x600 */
1245
1246/* Initialize firmware */
1247static const struct firmware *e100_request_firmware(struct nic *nic)
1248{
1249	const char *fw_name;
1250	const struct firmware *fw = nic->fw;
1251	u8 timer, bundle, min_size;
1252	int err = 0;
1253	bool required = false;
1254
1255	/* do not load u-code for ICH devices */
1256	if (nic->flags & ich)
1257		return NULL;
1258
1259	/* Search for ucode match against h/w revision
1260	 *
1261	 * Based on comments in the source code for the FreeBSD fxp
1262	 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1263	 *
1264	 *    "fixes for bugs in the B-step hardware (specifically, bugs
1265	 *     with Inline Receive)."
1266	 *
1267	 * So we must fail if it cannot be loaded.
1268	 *
1269	 * The other microcode files are only required for the optional
1270	 * CPUSaver feature.  Nice to have, but no reason to fail.
1271	 */
1272	if (nic->mac == mac_82559_D101M) {
1273		fw_name = FIRMWARE_D101M;
1274	} else if (nic->mac == mac_82559_D101S) {
1275		fw_name = FIRMWARE_D101S;
1276	} else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1277		fw_name = FIRMWARE_D102E;
1278		required = true;
1279	} else { /* No ucode on other devices */
1280		return NULL;
1281	}
1282
1283	/* If the firmware has not previously been loaded, request a pointer
1284	 * to it. If it was previously loaded, we are reinitializing the
1285	 * adapter, possibly in a resume from hibernate, in which case
1286	 * request_firmware() cannot be used.
1287	 */
1288	if (!fw)
1289		err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1290
1291	if (err) {
1292		if (required) {
1293			netif_err(nic, probe, nic->netdev,
1294				  "Failed to load firmware \"%s\": %d\n",
1295				  fw_name, err);
1296			return ERR_PTR(err);
1297		} else {
1298			netif_info(nic, probe, nic->netdev,
1299				   "CPUSaver disabled. Needs \"%s\": %d\n",
1300				   fw_name, err);
1301			return NULL;
1302		}
1303	}
1304
1305	/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1306	   indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1307	if (fw->size != UCODE_SIZE * 4 + 3) {
1308		netif_err(nic, probe, nic->netdev,
1309			  "Firmware \"%s\" has wrong size %zu\n",
1310			  fw_name, fw->size);
1311		release_firmware(fw);
1312		return ERR_PTR(-EINVAL);
1313	}
1314
1315	/* Read timer, bundle and min_size from end of firmware blob */
1316	timer = fw->data[UCODE_SIZE * 4];
1317	bundle = fw->data[UCODE_SIZE * 4 + 1];
1318	min_size = fw->data[UCODE_SIZE * 4 + 2];
1319
1320	if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1321	    min_size >= UCODE_SIZE) {
1322		netif_err(nic, probe, nic->netdev,
1323			  "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1324			  fw_name, timer, bundle, min_size);
1325		release_firmware(fw);
1326		return ERR_PTR(-EINVAL);
1327	}
1328
1329	/* OK, firmware is validated and ready to use. Save a pointer
1330	 * to it in the nic */
1331	nic->fw = fw;
1332	return fw;
1333}
1334
1335static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1336			     struct sk_buff *skb)
1337{
1338	const struct firmware *fw = (void *)skb;
1339	u8 timer, bundle, min_size;
1340
1341	/* It's not a real skb; we just abused the fact that e100_exec_cb
1342	   will pass it through to here... */
1343	cb->skb = NULL;
1344
1345	/* firmware is stored as little endian already */
1346	memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1347
1348	/* Read timer, bundle and min_size from end of firmware blob */
1349	timer = fw->data[UCODE_SIZE * 4];
1350	bundle = fw->data[UCODE_SIZE * 4 + 1];
1351	min_size = fw->data[UCODE_SIZE * 4 + 2];
1352
1353	/* Insert user-tunable settings in cb->u.ucode */
1354	cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1355	cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1356	cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1357	cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1358	cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1359	cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1360
1361	cb->command = cpu_to_le16(cb_ucode | cb_el);
1362	return 0;
1363}
1364
1365static inline int e100_load_ucode_wait(struct nic *nic)
1366{
1367	const struct firmware *fw;
1368	int err = 0, counter = 50;
1369	struct cb *cb = nic->cb_to_clean;
1370
1371	fw = e100_request_firmware(nic);
1372	/* If it's NULL, then no ucode is required */
1373	if (!fw || IS_ERR(fw))
1374		return PTR_ERR(fw);
1375
1376	if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1377		netif_err(nic, probe, nic->netdev,
1378			  "ucode cmd failed with error %d\n", err);
1379
1380	/* must restart cuc */
1381	nic->cuc_cmd = cuc_start;
1382
1383	/* wait for completion */
1384	e100_write_flush(nic);
1385	udelay(10);
1386
1387	/* wait for possibly (ouch) 500ms */
1388	while (!(cb->status & cpu_to_le16(cb_complete))) {
1389		msleep(10);
1390		if (!--counter) break;
1391	}
1392
1393	/* ack any interrupts, something could have been set */
1394	iowrite8(~0, &nic->csr->scb.stat_ack);
1395
1396	/* if the command failed, or is not OK, notify and return */
1397	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1398		netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1399		err = -EPERM;
1400	}
1401
1402	return err;
1403}
1404
1405static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1406	struct sk_buff *skb)
1407{
1408	cb->command = cpu_to_le16(cb_iaaddr);
1409	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1410	return 0;
1411}
1412
1413static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1414{
1415	cb->command = cpu_to_le16(cb_dump);
1416	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1417		offsetof(struct mem, dump_buf));
1418	return 0;
1419}
1420
1421static int e100_phy_check_without_mii(struct nic *nic)
1422{
1423	u8 phy_type;
1424	int without_mii;
1425
1426	phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
1427
1428	switch (phy_type) {
1429	case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1430	case I82503: /* Non-MII PHY; UNTESTED! */
1431	case S80C24: /* Non-MII PHY; tested and working */
1432		/* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1433		 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1434		 * doesn't have a programming interface of any sort.  The
1435		 * media is sensed automatically based on how the link partner
1436		 * is configured.  This is, in essence, manual configuration.
1437		 */
1438		netif_info(nic, probe, nic->netdev,
1439			   "found MII-less i82503 or 80c24 or other PHY\n");
1440
1441		nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1442		nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1443
1444		/* these might be needed for certain MII-less cards...
1445		 * nic->flags |= ich;
1446		 * nic->flags |= ich_10h_workaround; */
1447
1448		without_mii = 1;
1449		break;
1450	default:
1451		without_mii = 0;
1452		break;
1453	}
1454	return without_mii;
1455}
1456
1457#define NCONFIG_AUTO_SWITCH	0x0080
1458#define MII_NSC_CONG		MII_RESV1
1459#define NSC_CONG_ENABLE		0x0100
1460#define NSC_CONG_TXREADY	0x0400
1461#define ADVERTISE_FC_SUPPORTED	0x0400
1462static int e100_phy_init(struct nic *nic)
1463{
1464	struct net_device *netdev = nic->netdev;
1465	u32 addr;
1466	u16 bmcr, stat, id_lo, id_hi, cong;
1467
1468	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1469	for (addr = 0; addr < 32; addr++) {
1470		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1471		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1472		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1473		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1474		if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1475			break;
1476	}
1477	if (addr == 32) {
1478		/* uhoh, no PHY detected: check whether we seem to be some
1479		 * weird, rare variant which is *known* to not have any MII.
1480		 * But do this AFTER MII checking only, since this does
1481		 * lookup of EEPROM values which may easily be unreliable. */
1482		if (e100_phy_check_without_mii(nic))
1483			return 0; /* simply return and hope for the best */
1484		else {
1485			/* for unknown cases log a fatal error */
1486			netif_err(nic, hw, nic->netdev,
1487				  "Failed to locate any known PHY, aborting\n");
1488			return -EAGAIN;
1489		}
1490	} else
1491		netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1492			     "phy_addr = %d\n", nic->mii.phy_id);
1493
1494	/* Get phy ID */
1495	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1496	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1497	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1498	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1499		     "phy ID = 0x%08X\n", nic->phy);
1500
1501	/* Select the phy and isolate the rest */
1502	for (addr = 0; addr < 32; addr++) {
1503		if (addr != nic->mii.phy_id) {
1504			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1505		} else if (nic->phy != phy_82552_v) {
1506			bmcr = mdio_read(netdev, addr, MII_BMCR);
1507			mdio_write(netdev, addr, MII_BMCR,
1508				bmcr & ~BMCR_ISOLATE);
1509		}
1510	}
1511	/*
1512	 * Workaround for 82552:
1513	 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1514	 * other phy_id's) using bmcr value from addr discovery loop above.
1515	 */
1516	if (nic->phy == phy_82552_v)
1517		mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1518			bmcr & ~BMCR_ISOLATE);
1519
1520	/* Handle National tx phys */
1521#define NCS_PHY_MODEL_MASK	0xFFF0FFFF
1522	if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1523		/* Disable congestion control */
1524		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1525		cong |= NSC_CONG_TXREADY;
1526		cong &= ~NSC_CONG_ENABLE;
1527		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1528	}
1529
1530	if (nic->phy == phy_82552_v) {
1531		u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1532
1533		/* assign special tweaked mdio_ctrl() function */
1534		nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1535
1536		/* Workaround Si not advertising flow-control during autoneg */
1537		advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1538		mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1539
1540		/* Reset for the above changes to take effect */
1541		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1542		bmcr |= BMCR_RESET;
1543		mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1544	} else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1545	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1546		!(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1547		/* enable/disable MDI/MDI-X auto-switching. */
1548		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1549				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1550	}
1551
1552	return 0;
1553}
1554
1555static int e100_hw_init(struct nic *nic)
1556{
1557	int err = 0;
1558
1559	e100_hw_reset(nic);
1560
1561	netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1562	if (!in_interrupt() && (err = e100_self_test(nic)))
1563		return err;
1564
1565	if ((err = e100_phy_init(nic)))
1566		return err;
1567	if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1568		return err;
1569	if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1570		return err;
1571	if ((err = e100_load_ucode_wait(nic)))
1572		return err;
1573	if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1574		return err;
1575	if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1576		return err;
1577	if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1578		nic->dma_addr + offsetof(struct mem, stats))))
1579		return err;
1580	if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1581		return err;
1582
1583	e100_disable_irq(nic);
1584
1585	return 0;
1586}
1587
1588static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1589{
1590	struct net_device *netdev = nic->netdev;
1591	struct netdev_hw_addr *ha;
1592	u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1593
1594	cb->command = cpu_to_le16(cb_multi);
1595	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1596	i = 0;
1597	netdev_for_each_mc_addr(ha, netdev) {
1598		if (i == count)
1599			break;
1600		memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1601			ETH_ALEN);
1602	}
1603	return 0;
1604}
1605
1606static void e100_set_multicast_list(struct net_device *netdev)
1607{
1608	struct nic *nic = netdev_priv(netdev);
1609
1610	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1611		     "mc_count=%d, flags=0x%04X\n",
1612		     netdev_mc_count(netdev), netdev->flags);
1613
1614	if (netdev->flags & IFF_PROMISC)
1615		nic->flags |= promiscuous;
1616	else
1617		nic->flags &= ~promiscuous;
1618
1619	if (netdev->flags & IFF_ALLMULTI ||
1620		netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1621		nic->flags |= multicast_all;
1622	else
1623		nic->flags &= ~multicast_all;
1624
1625	e100_exec_cb(nic, NULL, e100_configure);
1626	e100_exec_cb(nic, NULL, e100_multi);
1627}
1628
1629static void e100_update_stats(struct nic *nic)
1630{
1631	struct net_device *dev = nic->netdev;
1632	struct net_device_stats *ns = &dev->stats;
1633	struct stats *s = &nic->mem->stats;
1634	__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1635		(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1636		&s->complete;
1637
1638	/* Device's stats reporting may take several microseconds to
1639	 * complete, so we're always waiting for results of the
1640	 * previous command. */
1641
1642	if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1643		*complete = 0;
1644		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1645		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1646		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1647		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1648		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1649		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1650		ns->collisions += nic->tx_collisions;
1651		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1652			le32_to_cpu(s->tx_lost_crs);
1653		nic->rx_short_frame_errors +=
1654			le32_to_cpu(s->rx_short_frame_errors);
1655		ns->rx_length_errors = nic->rx_short_frame_errors +
1656			nic->rx_over_length_errors;
1657		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1658		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1659		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1660		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1661		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1662		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1663			le32_to_cpu(s->rx_alignment_errors) +
1664			le32_to_cpu(s->rx_short_frame_errors) +
1665			le32_to_cpu(s->rx_cdt_errors);
1666		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1667		nic->tx_single_collisions +=
1668			le32_to_cpu(s->tx_single_collisions);
1669		nic->tx_multiple_collisions +=
1670			le32_to_cpu(s->tx_multiple_collisions);
1671		if (nic->mac >= mac_82558_D101_A4) {
1672			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1673			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1674			nic->rx_fc_unsupported +=
1675				le32_to_cpu(s->fc_rcv_unsupported);
1676			if (nic->mac >= mac_82559_D101M) {
1677				nic->tx_tco_frames +=
1678					le16_to_cpu(s->xmt_tco_frames);
1679				nic->rx_tco_frames +=
1680					le16_to_cpu(s->rcv_tco_frames);
1681			}
1682		}
1683	}
1684
1685
1686	if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1687		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1688			     "exec cuc_dump_reset failed\n");
1689}
1690
1691static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1692{
1693	/* Adjust inter-frame-spacing (IFS) between two transmits if
1694	 * we're getting collisions on a half-duplex connection. */
1695
1696	if (duplex == DUPLEX_HALF) {
1697		u32 prev = nic->adaptive_ifs;
1698		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1699
1700		if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1701		   (nic->tx_frames > min_frames)) {
1702			if (nic->adaptive_ifs < 60)
1703				nic->adaptive_ifs += 5;
1704		} else if (nic->tx_frames < min_frames) {
1705			if (nic->adaptive_ifs >= 5)
1706				nic->adaptive_ifs -= 5;
1707		}
1708		if (nic->adaptive_ifs != prev)
1709			e100_exec_cb(nic, NULL, e100_configure);
1710	}
1711}
1712
1713static void e100_watchdog(unsigned long data)
1714{
1715	struct nic *nic = (struct nic *)data;
1716	struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1717	u32 speed;
1718
1719	netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1720		     "right now = %ld\n", jiffies);
1721
1722	/* mii library handles link maintenance tasks */
1723
1724	mii_ethtool_gset(&nic->mii, &cmd);
1725	speed = ethtool_cmd_speed(&cmd);
1726
1727	if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1728		netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1729			    speed == SPEED_100 ? 100 : 10,
1730			    cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1731	} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1732		netdev_info(nic->netdev, "NIC Link is Down\n");
1733	}
1734
1735	mii_check_link(&nic->mii);
1736
1737	/* Software generated interrupt to recover from (rare) Rx
1738	 * allocation failure.
1739	 * Unfortunately have to use a spinlock to not re-enable interrupts
1740	 * accidentally, due to hardware that shares a register between the
1741	 * interrupt mask bit and the SW Interrupt generation bit */
1742	spin_lock_irq(&nic->cmd_lock);
1743	iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1744	e100_write_flush(nic);
1745	spin_unlock_irq(&nic->cmd_lock);
1746
1747	e100_update_stats(nic);
1748	e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1749
1750	if (nic->mac <= mac_82557_D100_C)
1751		/* Issue a multicast command to workaround a 557 lock up */
1752		e100_set_multicast_list(nic->netdev);
1753
1754	if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1755		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1756		nic->flags |= ich_10h_workaround;
1757	else
1758		nic->flags &= ~ich_10h_workaround;
1759
1760	mod_timer(&nic->watchdog,
1761		  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1762}
1763
1764static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1765	struct sk_buff *skb)
1766{
1767	dma_addr_t dma_addr;
1768	cb->command = nic->tx_command;
1769
1770	dma_addr = pci_map_single(nic->pdev,
1771				  skb->data, skb->len, PCI_DMA_TODEVICE);
1772	/* If we can't map the skb, have the upper layer try later */
1773	if (pci_dma_mapping_error(nic->pdev, dma_addr))
1774		return -ENOMEM;
1775
1776	/*
1777	 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1778	 * testing, ie sending frames with bad CRC.
1779	 */
1780	if (unlikely(skb->no_fcs))
1781		cb->command |= cpu_to_le16(cb_tx_nc);
1782	else
1783		cb->command &= ~cpu_to_le16(cb_tx_nc);
1784
1785	/* interrupt every 16 packets regardless of delay */
1786	if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1787		cb->command |= cpu_to_le16(cb_i);
1788	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1789	cb->u.tcb.tcb_byte_count = 0;
1790	cb->u.tcb.threshold = nic->tx_threshold;
1791	cb->u.tcb.tbd_count = 1;
1792	cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1793	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1794	skb_tx_timestamp(skb);
1795	return 0;
1796}
1797
1798static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1799				   struct net_device *netdev)
1800{
1801	struct nic *nic = netdev_priv(netdev);
1802	int err;
1803
1804	if (nic->flags & ich_10h_workaround) {
1805		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1806		   Issue a NOP command followed by a 1us delay before
1807		   issuing the Tx command. */
1808		if (e100_exec_cmd(nic, cuc_nop, 0))
1809			netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1810				     "exec cuc_nop failed\n");
1811		udelay(1);
1812	}
1813
1814	err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1815
1816	switch (err) {
1817	case -ENOSPC:
1818		/* We queued the skb, but now we're out of space. */
1819		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1820			     "No space for CB\n");
1821		netif_stop_queue(netdev);
1822		break;
1823	case -ENOMEM:
1824		/* This is a hard error - log it. */
1825		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1826			     "Out of Tx resources, returning skb\n");
1827		netif_stop_queue(netdev);
1828		return NETDEV_TX_BUSY;
1829	}
1830
1831	return NETDEV_TX_OK;
1832}
1833
1834static int e100_tx_clean(struct nic *nic)
1835{
1836	struct net_device *dev = nic->netdev;
1837	struct cb *cb;
1838	int tx_cleaned = 0;
1839
1840	spin_lock(&nic->cb_lock);
1841
1842	/* Clean CBs marked complete */
1843	for (cb = nic->cb_to_clean;
1844	    cb->status & cpu_to_le16(cb_complete);
1845	    cb = nic->cb_to_clean = cb->next) {
1846		rmb(); /* read skb after status */
1847		netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1848			     "cb[%d]->status = 0x%04X\n",
1849			     (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1850			     cb->status);
1851
1852		if (likely(cb->skb != NULL)) {
1853			dev->stats.tx_packets++;
1854			dev->stats.tx_bytes += cb->skb->len;
1855
1856			pci_unmap_single(nic->pdev,
1857				le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1858				le16_to_cpu(cb->u.tcb.tbd.size),
1859				PCI_DMA_TODEVICE);
1860			dev_kfree_skb_any(cb->skb);
1861			cb->skb = NULL;
1862			tx_cleaned = 1;
1863		}
1864		cb->status = 0;
1865		nic->cbs_avail++;
1866	}
1867
1868	spin_unlock(&nic->cb_lock);
1869
1870	/* Recover from running out of Tx resources in xmit_frame */
1871	if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1872		netif_wake_queue(nic->netdev);
1873
1874	return tx_cleaned;
1875}
1876
1877static void e100_clean_cbs(struct nic *nic)
1878{
1879	if (nic->cbs) {
1880		while (nic->cbs_avail != nic->params.cbs.count) {
1881			struct cb *cb = nic->cb_to_clean;
1882			if (cb->skb) {
1883				pci_unmap_single(nic->pdev,
1884					le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1885					le16_to_cpu(cb->u.tcb.tbd.size),
1886					PCI_DMA_TODEVICE);
1887				dev_kfree_skb(cb->skb);
1888			}
1889			nic->cb_to_clean = nic->cb_to_clean->next;
1890			nic->cbs_avail++;
1891		}
1892		pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1893		nic->cbs = NULL;
1894		nic->cbs_avail = 0;
1895	}
1896	nic->cuc_cmd = cuc_start;
1897	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1898		nic->cbs;
1899}
1900
1901static int e100_alloc_cbs(struct nic *nic)
1902{
1903	struct cb *cb;
1904	unsigned int i, count = nic->params.cbs.count;
1905
1906	nic->cuc_cmd = cuc_start;
1907	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1908	nic->cbs_avail = 0;
1909
1910	nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL,
1911				  &nic->cbs_dma_addr);
1912	if (!nic->cbs)
1913		return -ENOMEM;
1914	memset(nic->cbs, 0, count * sizeof(struct cb));
1915
1916	for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1917		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1918		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1919
1920		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1921		cb->link = cpu_to_le32(nic->cbs_dma_addr +
1922			((i+1) % count) * sizeof(struct cb));
1923	}
1924
1925	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1926	nic->cbs_avail = count;
1927
1928	return 0;
1929}
1930
1931static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1932{
1933	if (!nic->rxs) return;
1934	if (RU_SUSPENDED != nic->ru_running) return;
1935
1936	/* handle init time starts */
1937	if (!rx) rx = nic->rxs;
1938
1939	/* (Re)start RU if suspended or idle and RFA is non-NULL */
1940	if (rx->skb) {
1941		e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1942		nic->ru_running = RU_RUNNING;
1943	}
1944}
1945
1946#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1947static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1948{
1949	if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1950		return -ENOMEM;
1951
1952	/* Init, and map the RFD. */
1953	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1954	rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1955		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1956
1957	if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1958		dev_kfree_skb_any(rx->skb);
1959		rx->skb = NULL;
1960		rx->dma_addr = 0;
1961		return -ENOMEM;
1962	}
1963
1964	/* Link the RFD to end of RFA by linking previous RFD to
1965	 * this one.  We are safe to touch the previous RFD because
1966	 * it is protected by the before last buffer's el bit being set */
1967	if (rx->prev->skb) {
1968		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1969		put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1970		pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1971			sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
 
 
1972	}
1973
1974	return 0;
1975}
1976
1977static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1978	unsigned int *work_done, unsigned int work_to_do)
1979{
1980	struct net_device *dev = nic->netdev;
1981	struct sk_buff *skb = rx->skb;
1982	struct rfd *rfd = (struct rfd *)skb->data;
1983	u16 rfd_status, actual_size;
1984	u16 fcs_pad = 0;
1985
1986	if (unlikely(work_done && *work_done >= work_to_do))
1987		return -EAGAIN;
1988
1989	/* Need to sync before taking a peek at cb_complete bit */
1990	pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1991		sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1992	rfd_status = le16_to_cpu(rfd->status);
1993
1994	netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1995		     "status=0x%04X\n", rfd_status);
1996	rmb(); /* read size after status bit */
1997
1998	/* If data isn't ready, nothing to indicate */
1999	if (unlikely(!(rfd_status & cb_complete))) {
2000		/* If the next buffer has the el bit, but we think the receiver
2001		 * is still running, check to see if it really stopped while
2002		 * we had interrupts off.
2003		 * This allows for a fast restart without re-enabling
2004		 * interrupts */
2005		if ((le16_to_cpu(rfd->command) & cb_el) &&
2006		    (RU_RUNNING == nic->ru_running))
2007
2008			if (ioread8(&nic->csr->scb.status) & rus_no_res)
2009				nic->ru_running = RU_SUSPENDED;
2010		pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2011					       sizeof(struct rfd),
2012					       PCI_DMA_FROMDEVICE);
2013		return -ENODATA;
2014	}
2015
2016	/* Get actual data size */
2017	if (unlikely(dev->features & NETIF_F_RXFCS))
2018		fcs_pad = 4;
2019	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
2020	if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
2021		actual_size = RFD_BUF_LEN - sizeof(struct rfd);
2022
2023	/* Get data */
2024	pci_unmap_single(nic->pdev, rx->dma_addr,
2025		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2026
2027	/* If this buffer has the el bit, but we think the receiver
2028	 * is still running, check to see if it really stopped while
2029	 * we had interrupts off.
2030	 * This allows for a fast restart without re-enabling interrupts.
2031	 * This can happen when the RU sees the size change but also sees
2032	 * the el bit set. */
2033	if ((le16_to_cpu(rfd->command) & cb_el) &&
2034	    (RU_RUNNING == nic->ru_running)) {
2035
2036	    if (ioread8(&nic->csr->scb.status) & rus_no_res)
2037		nic->ru_running = RU_SUSPENDED;
2038	}
2039
2040	/* Pull off the RFD and put the actual data (minus eth hdr) */
2041	skb_reserve(skb, sizeof(struct rfd));
2042	skb_put(skb, actual_size);
2043	skb->protocol = eth_type_trans(skb, nic->netdev);
2044
2045	/* If we are receiving all frames, then don't bother
2046	 * checking for errors.
2047	 */
2048	if (unlikely(dev->features & NETIF_F_RXALL)) {
2049		if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2050			/* Received oversized frame, but keep it. */
2051			nic->rx_over_length_errors++;
2052		goto process_skb;
2053	}
2054
2055	if (unlikely(!(rfd_status & cb_ok))) {
2056		/* Don't indicate if hardware indicates errors */
2057		dev_kfree_skb_any(skb);
2058	} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2059		/* Don't indicate oversized frames */
2060		nic->rx_over_length_errors++;
2061		dev_kfree_skb_any(skb);
2062	} else {
2063process_skb:
2064		dev->stats.rx_packets++;
2065		dev->stats.rx_bytes += (actual_size - fcs_pad);
2066		netif_receive_skb(skb);
2067		if (work_done)
2068			(*work_done)++;
2069	}
2070
2071	rx->skb = NULL;
2072
2073	return 0;
2074}
2075
2076static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2077	unsigned int work_to_do)
2078{
2079	struct rx *rx;
2080	int restart_required = 0, err = 0;
2081	struct rx *old_before_last_rx, *new_before_last_rx;
2082	struct rfd *old_before_last_rfd, *new_before_last_rfd;
2083
2084	/* Indicate newly arrived packets */
2085	for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2086		err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2087		/* Hit quota or no more to clean */
2088		if (-EAGAIN == err || -ENODATA == err)
2089			break;
2090	}
2091
2092
2093	/* On EAGAIN, hit quota so have more work to do, restart once
2094	 * cleanup is complete.
2095	 * Else, are we already rnr? then pay attention!!! this ensures that
2096	 * the state machine progression never allows a start with a
2097	 * partially cleaned list, avoiding a race between hardware
2098	 * and rx_to_clean when in NAPI mode */
2099	if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2100		restart_required = 1;
2101
2102	old_before_last_rx = nic->rx_to_use->prev->prev;
2103	old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2104
2105	/* Alloc new skbs to refill list */
2106	for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2107		if (unlikely(e100_rx_alloc_skb(nic, rx)))
2108			break; /* Better luck next time (see watchdog) */
2109	}
2110
2111	new_before_last_rx = nic->rx_to_use->prev->prev;
2112	if (new_before_last_rx != old_before_last_rx) {
2113		/* Set the el-bit on the buffer that is before the last buffer.
2114		 * This lets us update the next pointer on the last buffer
2115		 * without worrying about hardware touching it.
2116		 * We set the size to 0 to prevent hardware from touching this
2117		 * buffer.
2118		 * When the hardware hits the before last buffer with el-bit
2119		 * and size of 0, it will RNR interrupt, the RUS will go into
2120		 * the No Resources state.  It will not complete nor write to
2121		 * this buffer. */
2122		new_before_last_rfd =
2123			(struct rfd *)new_before_last_rx->skb->data;
2124		new_before_last_rfd->size = 0;
2125		new_before_last_rfd->command |= cpu_to_le16(cb_el);
2126		pci_dma_sync_single_for_device(nic->pdev,
2127			new_before_last_rx->dma_addr, sizeof(struct rfd),
2128			PCI_DMA_BIDIRECTIONAL);
 
2129
2130		/* Now that we have a new stopping point, we can clear the old
2131		 * stopping point.  We must sync twice to get the proper
2132		 * ordering on the hardware side of things. */
2133		old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2134		pci_dma_sync_single_for_device(nic->pdev,
2135			old_before_last_rx->dma_addr, sizeof(struct rfd),
2136			PCI_DMA_BIDIRECTIONAL);
 
2137		old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2138							+ ETH_FCS_LEN);
2139		pci_dma_sync_single_for_device(nic->pdev,
2140			old_before_last_rx->dma_addr, sizeof(struct rfd),
2141			PCI_DMA_BIDIRECTIONAL);
 
2142	}
2143
2144	if (restart_required) {
2145		// ack the rnr?
2146		iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2147		e100_start_receiver(nic, nic->rx_to_clean);
2148		if (work_done)
2149			(*work_done)++;
2150	}
2151}
2152
2153static void e100_rx_clean_list(struct nic *nic)
2154{
2155	struct rx *rx;
2156	unsigned int i, count = nic->params.rfds.count;
2157
2158	nic->ru_running = RU_UNINITIALIZED;
2159
2160	if (nic->rxs) {
2161		for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2162			if (rx->skb) {
2163				pci_unmap_single(nic->pdev, rx->dma_addr,
2164					RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
 
2165				dev_kfree_skb(rx->skb);
2166			}
2167		}
2168		kfree(nic->rxs);
2169		nic->rxs = NULL;
2170	}
2171
2172	nic->rx_to_use = nic->rx_to_clean = NULL;
2173}
2174
2175static int e100_rx_alloc_list(struct nic *nic)
2176{
2177	struct rx *rx;
2178	unsigned int i, count = nic->params.rfds.count;
2179	struct rfd *before_last;
2180
2181	nic->rx_to_use = nic->rx_to_clean = NULL;
2182	nic->ru_running = RU_UNINITIALIZED;
2183
2184	if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
2185		return -ENOMEM;
2186
2187	for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2188		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2189		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2190		if (e100_rx_alloc_skb(nic, rx)) {
2191			e100_rx_clean_list(nic);
2192			return -ENOMEM;
2193		}
2194	}
2195	/* Set the el-bit on the buffer that is before the last buffer.
2196	 * This lets us update the next pointer on the last buffer without
2197	 * worrying about hardware touching it.
2198	 * We set the size to 0 to prevent hardware from touching this buffer.
2199	 * When the hardware hits the before last buffer with el-bit and size
2200	 * of 0, it will RNR interrupt, the RU will go into the No Resources
2201	 * state.  It will not complete nor write to this buffer. */
2202	rx = nic->rxs->prev->prev;
2203	before_last = (struct rfd *)rx->skb->data;
2204	before_last->command |= cpu_to_le16(cb_el);
2205	before_last->size = 0;
2206	pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2207		sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
2208
2209	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2210	nic->ru_running = RU_SUSPENDED;
2211
2212	return 0;
2213}
2214
2215static irqreturn_t e100_intr(int irq, void *dev_id)
2216{
2217	struct net_device *netdev = dev_id;
2218	struct nic *nic = netdev_priv(netdev);
2219	u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2220
2221	netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2222		     "stat_ack = 0x%02X\n", stat_ack);
2223
2224	if (stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
2225	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
2226		return IRQ_NONE;
2227
2228	/* Ack interrupt(s) */
2229	iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2230
2231	/* We hit Receive No Resource (RNR); restart RU after cleaning */
2232	if (stat_ack & stat_ack_rnr)
2233		nic->ru_running = RU_SUSPENDED;
2234
2235	if (likely(napi_schedule_prep(&nic->napi))) {
2236		e100_disable_irq(nic);
2237		__napi_schedule(&nic->napi);
2238	}
2239
2240	return IRQ_HANDLED;
2241}
2242
2243static int e100_poll(struct napi_struct *napi, int budget)
2244{
2245	struct nic *nic = container_of(napi, struct nic, napi);
2246	unsigned int work_done = 0;
2247
2248	e100_rx_clean(nic, &work_done, budget);
2249	e100_tx_clean(nic);
2250
2251	/* If budget not fully consumed, exit the polling mode */
2252	if (work_done < budget) {
2253		napi_complete(napi);
 
 
 
2254		e100_enable_irq(nic);
2255	}
2256
2257	return work_done;
2258}
2259
2260#ifdef CONFIG_NET_POLL_CONTROLLER
2261static void e100_netpoll(struct net_device *netdev)
2262{
2263	struct nic *nic = netdev_priv(netdev);
2264
2265	e100_disable_irq(nic);
2266	e100_intr(nic->pdev->irq, netdev);
2267	e100_tx_clean(nic);
2268	e100_enable_irq(nic);
2269}
2270#endif
2271
2272static int e100_set_mac_address(struct net_device *netdev, void *p)
2273{
2274	struct nic *nic = netdev_priv(netdev);
2275	struct sockaddr *addr = p;
2276
2277	if (!is_valid_ether_addr(addr->sa_data))
2278		return -EADDRNOTAVAIL;
2279
2280	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2281	e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2282
2283	return 0;
2284}
2285
2286static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2287{
2288	if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2289		return -EINVAL;
2290	netdev->mtu = new_mtu;
2291	return 0;
2292}
2293
2294static int e100_asf(struct nic *nic)
2295{
2296	/* ASF can be enabled from eeprom */
2297	return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2298	   (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2299	   !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2300	   ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE);
2301}
2302
2303static int e100_up(struct nic *nic)
2304{
2305	int err;
2306
2307	if ((err = e100_rx_alloc_list(nic)))
2308		return err;
2309	if ((err = e100_alloc_cbs(nic)))
2310		goto err_rx_clean_list;
2311	if ((err = e100_hw_init(nic)))
2312		goto err_clean_cbs;
2313	e100_set_multicast_list(nic->netdev);
2314	e100_start_receiver(nic, NULL);
2315	mod_timer(&nic->watchdog, jiffies);
2316	if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2317		nic->netdev->name, nic->netdev)))
2318		goto err_no_irq;
2319	netif_wake_queue(nic->netdev);
2320	napi_enable(&nic->napi);
2321	/* enable ints _after_ enabling poll, preventing a race between
2322	 * disable ints+schedule */
2323	e100_enable_irq(nic);
2324	return 0;
2325
2326err_no_irq:
2327	del_timer_sync(&nic->watchdog);
2328err_clean_cbs:
2329	e100_clean_cbs(nic);
2330err_rx_clean_list:
2331	e100_rx_clean_list(nic);
2332	return err;
2333}
2334
2335static void e100_down(struct nic *nic)
2336{
2337	/* wait here for poll to complete */
2338	napi_disable(&nic->napi);
2339	netif_stop_queue(nic->netdev);
2340	e100_hw_reset(nic);
2341	free_irq(nic->pdev->irq, nic->netdev);
2342	del_timer_sync(&nic->watchdog);
2343	netif_carrier_off(nic->netdev);
2344	e100_clean_cbs(nic);
2345	e100_rx_clean_list(nic);
2346}
2347
2348static void e100_tx_timeout(struct net_device *netdev)
2349{
2350	struct nic *nic = netdev_priv(netdev);
2351
2352	/* Reset outside of interrupt context, to avoid request_irq
2353	 * in interrupt context */
2354	schedule_work(&nic->tx_timeout_task);
2355}
2356
2357static void e100_tx_timeout_task(struct work_struct *work)
2358{
2359	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2360	struct net_device *netdev = nic->netdev;
2361
2362	netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2363		     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2364
2365	rtnl_lock();
2366	if (netif_running(netdev)) {
2367		e100_down(netdev_priv(netdev));
2368		e100_up(netdev_priv(netdev));
2369	}
2370	rtnl_unlock();
2371}
2372
2373static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2374{
2375	int err;
2376	struct sk_buff *skb;
2377
2378	/* Use driver resources to perform internal MAC or PHY
2379	 * loopback test.  A single packet is prepared and transmitted
2380	 * in loopback mode, and the test passes if the received
2381	 * packet compares byte-for-byte to the transmitted packet. */
2382
2383	if ((err = e100_rx_alloc_list(nic)))
2384		return err;
2385	if ((err = e100_alloc_cbs(nic)))
2386		goto err_clean_rx;
2387
2388	/* ICH PHY loopback is broken so do MAC loopback instead */
2389	if (nic->flags & ich && loopback_mode == lb_phy)
2390		loopback_mode = lb_mac;
2391
2392	nic->loopback = loopback_mode;
2393	if ((err = e100_hw_init(nic)))
2394		goto err_loopback_none;
2395
2396	if (loopback_mode == lb_phy)
2397		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2398			BMCR_LOOPBACK);
2399
2400	e100_start_receiver(nic, NULL);
2401
2402	if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2403		err = -ENOMEM;
2404		goto err_loopback_none;
2405	}
2406	skb_put(skb, ETH_DATA_LEN);
2407	memset(skb->data, 0xFF, ETH_DATA_LEN);
2408	e100_xmit_frame(skb, nic->netdev);
2409
2410	msleep(10);
2411
2412	pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2413			RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2414
2415	if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2416	   skb->data, ETH_DATA_LEN))
2417		err = -EAGAIN;
2418
2419err_loopback_none:
2420	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2421	nic->loopback = lb_none;
2422	e100_clean_cbs(nic);
2423	e100_hw_reset(nic);
2424err_clean_rx:
2425	e100_rx_clean_list(nic);
2426	return err;
2427}
2428
2429#define MII_LED_CONTROL	0x1B
2430#define E100_82552_LED_OVERRIDE 0x19
2431#define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2432#define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
2433
2434static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
 
2435{
2436	struct nic *nic = netdev_priv(netdev);
2437	return mii_ethtool_gset(&nic->mii, cmd);
 
 
 
2438}
2439
2440static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
 
2441{
2442	struct nic *nic = netdev_priv(netdev);
2443	int err;
2444
2445	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2446	err = mii_ethtool_sset(&nic->mii, cmd);
2447	e100_exec_cb(nic, NULL, e100_configure);
2448
2449	return err;
2450}
2451
2452static void e100_get_drvinfo(struct net_device *netdev,
2453	struct ethtool_drvinfo *info)
2454{
2455	struct nic *nic = netdev_priv(netdev);
2456	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2457	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2458	strlcpy(info->bus_info, pci_name(nic->pdev),
2459		sizeof(info->bus_info));
2460}
2461
2462#define E100_PHY_REGS 0x1C
2463static int e100_get_regs_len(struct net_device *netdev)
2464{
2465	struct nic *nic = netdev_priv(netdev);
2466	return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
 
 
 
 
2467}
2468
2469static void e100_get_regs(struct net_device *netdev,
2470	struct ethtool_regs *regs, void *p)
2471{
2472	struct nic *nic = netdev_priv(netdev);
2473	u32 *buff = p;
2474	int i;
2475
2476	regs->version = (1 << 24) | nic->pdev->revision;
2477	buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2478		ioread8(&nic->csr->scb.cmd_lo) << 16 |
2479		ioread16(&nic->csr->scb.status);
2480	for (i = E100_PHY_REGS; i >= 0; i--)
2481		buff[1 + E100_PHY_REGS - i] =
2482			mdio_read(netdev, nic->mii.phy_id, i);
 
 
 
 
2483	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2484	e100_exec_cb(nic, NULL, e100_dump);
2485	msleep(10);
2486	memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2487		sizeof(nic->mem->dump_buf));
2488}
2489
2490static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2491{
2492	struct nic *nic = netdev_priv(netdev);
2493	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2494	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2495}
2496
2497static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2498{
2499	struct nic *nic = netdev_priv(netdev);
2500
2501	if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2502	    !device_can_wakeup(&nic->pdev->dev))
2503		return -EOPNOTSUPP;
2504
2505	if (wol->wolopts)
2506		nic->flags |= wol_magic;
2507	else
2508		nic->flags &= ~wol_magic;
2509
2510	device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2511
2512	e100_exec_cb(nic, NULL, e100_configure);
2513
2514	return 0;
2515}
2516
2517static u32 e100_get_msglevel(struct net_device *netdev)
2518{
2519	struct nic *nic = netdev_priv(netdev);
2520	return nic->msg_enable;
2521}
2522
2523static void e100_set_msglevel(struct net_device *netdev, u32 value)
2524{
2525	struct nic *nic = netdev_priv(netdev);
2526	nic->msg_enable = value;
2527}
2528
2529static int e100_nway_reset(struct net_device *netdev)
2530{
2531	struct nic *nic = netdev_priv(netdev);
2532	return mii_nway_restart(&nic->mii);
2533}
2534
2535static u32 e100_get_link(struct net_device *netdev)
2536{
2537	struct nic *nic = netdev_priv(netdev);
2538	return mii_link_ok(&nic->mii);
2539}
2540
2541static int e100_get_eeprom_len(struct net_device *netdev)
2542{
2543	struct nic *nic = netdev_priv(netdev);
2544	return nic->eeprom_wc << 1;
2545}
2546
2547#define E100_EEPROM_MAGIC	0x1234
2548static int e100_get_eeprom(struct net_device *netdev,
2549	struct ethtool_eeprom *eeprom, u8 *bytes)
2550{
2551	struct nic *nic = netdev_priv(netdev);
2552
2553	eeprom->magic = E100_EEPROM_MAGIC;
2554	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2555
2556	return 0;
2557}
2558
2559static int e100_set_eeprom(struct net_device *netdev,
2560	struct ethtool_eeprom *eeprom, u8 *bytes)
2561{
2562	struct nic *nic = netdev_priv(netdev);
2563
2564	if (eeprom->magic != E100_EEPROM_MAGIC)
2565		return -EINVAL;
2566
2567	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2568
2569	return e100_eeprom_save(nic, eeprom->offset >> 1,
2570		(eeprom->len >> 1) + 1);
2571}
2572
2573static void e100_get_ringparam(struct net_device *netdev,
2574	struct ethtool_ringparam *ring)
 
 
2575{
2576	struct nic *nic = netdev_priv(netdev);
2577	struct param_range *rfds = &nic->params.rfds;
2578	struct param_range *cbs = &nic->params.cbs;
2579
2580	ring->rx_max_pending = rfds->max;
2581	ring->tx_max_pending = cbs->max;
2582	ring->rx_pending = rfds->count;
2583	ring->tx_pending = cbs->count;
2584}
2585
2586static int e100_set_ringparam(struct net_device *netdev,
2587	struct ethtool_ringparam *ring)
 
 
2588{
2589	struct nic *nic = netdev_priv(netdev);
2590	struct param_range *rfds = &nic->params.rfds;
2591	struct param_range *cbs = &nic->params.cbs;
2592
2593	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2594		return -EINVAL;
2595
2596	if (netif_running(netdev))
2597		e100_down(nic);
2598	rfds->count = max(ring->rx_pending, rfds->min);
2599	rfds->count = min(rfds->count, rfds->max);
2600	cbs->count = max(ring->tx_pending, cbs->min);
2601	cbs->count = min(cbs->count, cbs->max);
2602	netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2603		   rfds->count, cbs->count);
2604	if (netif_running(netdev))
2605		e100_up(nic);
2606
2607	return 0;
2608}
2609
2610static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2611	"Link test     (on/offline)",
2612	"Eeprom test   (on/offline)",
2613	"Self test        (offline)",
2614	"Mac loopback     (offline)",
2615	"Phy loopback     (offline)",
2616};
2617#define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test)
2618
2619static void e100_diag_test(struct net_device *netdev,
2620	struct ethtool_test *test, u64 *data)
2621{
2622	struct ethtool_cmd cmd;
2623	struct nic *nic = netdev_priv(netdev);
2624	int i, err;
2625
2626	memset(data, 0, E100_TEST_LEN * sizeof(u64));
2627	data[0] = !mii_link_ok(&nic->mii);
2628	data[1] = e100_eeprom_load(nic);
2629	if (test->flags & ETH_TEST_FL_OFFLINE) {
2630
2631		/* save speed, duplex & autoneg settings */
2632		err = mii_ethtool_gset(&nic->mii, &cmd);
2633
2634		if (netif_running(netdev))
2635			e100_down(nic);
2636		data[2] = e100_self_test(nic);
2637		data[3] = e100_loopback_test(nic, lb_mac);
2638		data[4] = e100_loopback_test(nic, lb_phy);
2639
2640		/* restore speed, duplex & autoneg settings */
2641		err = mii_ethtool_sset(&nic->mii, &cmd);
2642
2643		if (netif_running(netdev))
2644			e100_up(nic);
2645	}
2646	for (i = 0; i < E100_TEST_LEN; i++)
2647		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2648
2649	msleep_interruptible(4 * 1000);
2650}
2651
2652static int e100_set_phys_id(struct net_device *netdev,
2653			    enum ethtool_phys_id_state state)
2654{
2655	struct nic *nic = netdev_priv(netdev);
2656	enum led_state {
2657		led_on     = 0x01,
2658		led_off    = 0x04,
2659		led_on_559 = 0x05,
2660		led_on_557 = 0x07,
2661	};
2662	u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2663		MII_LED_CONTROL;
2664	u16 leds = 0;
2665
2666	switch (state) {
2667	case ETHTOOL_ID_ACTIVE:
2668		return 2;
2669
2670	case ETHTOOL_ID_ON:
2671		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2672		       (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2673		break;
2674
2675	case ETHTOOL_ID_OFF:
2676		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2677		break;
2678
2679	case ETHTOOL_ID_INACTIVE:
2680		break;
2681	}
2682
2683	mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2684	return 0;
2685}
2686
2687static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2688	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2689	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2690	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
2691	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2692	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2693	"tx_heartbeat_errors", "tx_window_errors",
2694	/* device-specific stats */
2695	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2696	"tx_flow_control_pause", "rx_flow_control_pause",
2697	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2698	"rx_short_frame_errors", "rx_over_length_errors",
2699};
2700#define E100_NET_STATS_LEN	21
2701#define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats)
2702
2703static int e100_get_sset_count(struct net_device *netdev, int sset)
2704{
2705	switch (sset) {
2706	case ETH_SS_TEST:
2707		return E100_TEST_LEN;
2708	case ETH_SS_STATS:
2709		return E100_STATS_LEN;
2710	default:
2711		return -EOPNOTSUPP;
2712	}
2713}
2714
2715static void e100_get_ethtool_stats(struct net_device *netdev,
2716	struct ethtool_stats *stats, u64 *data)
2717{
2718	struct nic *nic = netdev_priv(netdev);
2719	int i;
2720
2721	for (i = 0; i < E100_NET_STATS_LEN; i++)
2722		data[i] = ((unsigned long *)&netdev->stats)[i];
2723
2724	data[i++] = nic->tx_deferred;
2725	data[i++] = nic->tx_single_collisions;
2726	data[i++] = nic->tx_multiple_collisions;
2727	data[i++] = nic->tx_fc_pause;
2728	data[i++] = nic->rx_fc_pause;
2729	data[i++] = nic->rx_fc_unsupported;
2730	data[i++] = nic->tx_tco_frames;
2731	data[i++] = nic->rx_tco_frames;
2732	data[i++] = nic->rx_short_frame_errors;
2733	data[i++] = nic->rx_over_length_errors;
2734}
2735
2736static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2737{
2738	switch (stringset) {
2739	case ETH_SS_TEST:
2740		memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2741		break;
2742	case ETH_SS_STATS:
2743		memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2744		break;
2745	}
2746}
2747
2748static const struct ethtool_ops e100_ethtool_ops = {
2749	.get_settings		= e100_get_settings,
2750	.set_settings		= e100_set_settings,
2751	.get_drvinfo		= e100_get_drvinfo,
2752	.get_regs_len		= e100_get_regs_len,
2753	.get_regs		= e100_get_regs,
2754	.get_wol		= e100_get_wol,
2755	.set_wol		= e100_set_wol,
2756	.get_msglevel		= e100_get_msglevel,
2757	.set_msglevel		= e100_set_msglevel,
2758	.nway_reset		= e100_nway_reset,
2759	.get_link		= e100_get_link,
2760	.get_eeprom_len		= e100_get_eeprom_len,
2761	.get_eeprom		= e100_get_eeprom,
2762	.set_eeprom		= e100_set_eeprom,
2763	.get_ringparam		= e100_get_ringparam,
2764	.set_ringparam		= e100_set_ringparam,
2765	.self_test		= e100_diag_test,
2766	.get_strings		= e100_get_strings,
2767	.set_phys_id		= e100_set_phys_id,
2768	.get_ethtool_stats	= e100_get_ethtool_stats,
2769	.get_sset_count		= e100_get_sset_count,
2770	.get_ts_info		= ethtool_op_get_ts_info,
 
 
2771};
2772
2773static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2774{
2775	struct nic *nic = netdev_priv(netdev);
2776
2777	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2778}
2779
2780static int e100_alloc(struct nic *nic)
2781{
2782	nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2783		&nic->dma_addr);
2784	return nic->mem ? 0 : -ENOMEM;
2785}
2786
2787static void e100_free(struct nic *nic)
2788{
2789	if (nic->mem) {
2790		pci_free_consistent(nic->pdev, sizeof(struct mem),
2791			nic->mem, nic->dma_addr);
2792		nic->mem = NULL;
2793	}
2794}
2795
2796static int e100_open(struct net_device *netdev)
2797{
2798	struct nic *nic = netdev_priv(netdev);
2799	int err = 0;
2800
2801	netif_carrier_off(netdev);
2802	if ((err = e100_up(nic)))
2803		netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2804	return err;
2805}
2806
2807static int e100_close(struct net_device *netdev)
2808{
2809	e100_down(netdev_priv(netdev));
2810	return 0;
2811}
2812
2813static int e100_set_features(struct net_device *netdev,
2814			     netdev_features_t features)
2815{
2816	struct nic *nic = netdev_priv(netdev);
2817	netdev_features_t changed = features ^ netdev->features;
2818
2819	if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2820		return 0;
2821
2822	netdev->features = features;
2823	e100_exec_cb(nic, NULL, e100_configure);
2824	return 0;
2825}
2826
2827static const struct net_device_ops e100_netdev_ops = {
2828	.ndo_open		= e100_open,
2829	.ndo_stop		= e100_close,
2830	.ndo_start_xmit		= e100_xmit_frame,
2831	.ndo_validate_addr	= eth_validate_addr,
2832	.ndo_set_rx_mode	= e100_set_multicast_list,
2833	.ndo_set_mac_address	= e100_set_mac_address,
2834	.ndo_change_mtu		= e100_change_mtu,
2835	.ndo_do_ioctl		= e100_do_ioctl,
2836	.ndo_tx_timeout		= e100_tx_timeout,
2837#ifdef CONFIG_NET_POLL_CONTROLLER
2838	.ndo_poll_controller	= e100_netpoll,
2839#endif
2840	.ndo_set_features	= e100_set_features,
2841};
2842
2843static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2844{
2845	struct net_device *netdev;
2846	struct nic *nic;
2847	int err;
2848
2849	if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2850		return -ENOMEM;
2851
2852	netdev->hw_features |= NETIF_F_RXFCS;
2853	netdev->priv_flags |= IFF_SUPP_NOFCS;
2854	netdev->hw_features |= NETIF_F_RXALL;
2855
2856	netdev->netdev_ops = &e100_netdev_ops;
2857	SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2858	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2859	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2860
2861	nic = netdev_priv(netdev);
2862	netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2863	nic->netdev = netdev;
2864	nic->pdev = pdev;
2865	nic->msg_enable = (1 << debug) - 1;
2866	nic->mdio_ctrl = mdio_ctrl_hw;
2867	pci_set_drvdata(pdev, netdev);
2868
2869	if ((err = pci_enable_device(pdev))) {
2870		netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2871		goto err_out_free_dev;
2872	}
2873
2874	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2875		netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2876		err = -ENODEV;
2877		goto err_out_disable_pdev;
2878	}
2879
2880	if ((err = pci_request_regions(pdev, DRV_NAME))) {
2881		netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2882		goto err_out_disable_pdev;
2883	}
2884
2885	if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
2886		netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2887		goto err_out_free_res;
2888	}
2889
2890	SET_NETDEV_DEV(netdev, &pdev->dev);
2891
2892	if (use_io)
2893		netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2894
2895	nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2896	if (!nic->csr) {
2897		netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2898		err = -ENOMEM;
2899		goto err_out_free_res;
2900	}
2901
2902	if (ent->driver_data)
2903		nic->flags |= ich;
2904	else
2905		nic->flags &= ~ich;
2906
2907	e100_get_defaults(nic);
2908
2909	/* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2910	if (nic->mac < mac_82558_D101_A4)
2911		netdev->features |= NETIF_F_VLAN_CHALLENGED;
2912
2913	/* locks must be initialized before calling hw_reset */
2914	spin_lock_init(&nic->cb_lock);
2915	spin_lock_init(&nic->cmd_lock);
2916	spin_lock_init(&nic->mdio_lock);
2917
2918	/* Reset the device before pci_set_master() in case device is in some
2919	 * funky state and has an interrupt pending - hint: we don't have the
2920	 * interrupt handler registered yet. */
2921	e100_hw_reset(nic);
2922
2923	pci_set_master(pdev);
2924
2925	init_timer(&nic->watchdog);
2926	nic->watchdog.function = e100_watchdog;
2927	nic->watchdog.data = (unsigned long)nic;
2928
2929	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2930
2931	if ((err = e100_alloc(nic))) {
2932		netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2933		goto err_out_iounmap;
2934	}
2935
2936	if ((err = e100_eeprom_load(nic)))
2937		goto err_out_free;
2938
2939	e100_phy_init(nic);
2940
2941	memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2942	if (!is_valid_ether_addr(netdev->dev_addr)) {
2943		if (!eeprom_bad_csum_allow) {
2944			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2945			err = -EAGAIN;
2946			goto err_out_free;
2947		} else {
2948			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2949		}
2950	}
2951
2952	/* Wol magic packet can be enabled from eeprom */
2953	if ((nic->mac >= mac_82558_D101_A4) &&
2954	   (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
2955		nic->flags |= wol_magic;
2956		device_set_wakeup_enable(&pdev->dev, true);
2957	}
2958
2959	/* ack any pending wake events, disable PME */
2960	pci_pme_active(pdev, false);
2961
2962	strcpy(netdev->name, "eth%d");
2963	if ((err = register_netdev(netdev))) {
2964		netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2965		goto err_out_free;
2966	}
2967	nic->cbs_pool = pci_pool_create(netdev->name,
2968			   nic->pdev,
2969			   nic->params.cbs.max * sizeof(struct cb),
2970			   sizeof(u32),
2971			   0);
 
 
 
 
 
2972	netif_info(nic, probe, nic->netdev,
2973		   "addr 0x%llx, irq %d, MAC addr %pM\n",
2974		   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2975		   pdev->irq, netdev->dev_addr);
2976
2977	return 0;
2978
 
 
2979err_out_free:
2980	e100_free(nic);
2981err_out_iounmap:
2982	pci_iounmap(pdev, nic->csr);
2983err_out_free_res:
2984	pci_release_regions(pdev);
2985err_out_disable_pdev:
2986	pci_disable_device(pdev);
2987err_out_free_dev:
2988	free_netdev(netdev);
2989	return err;
2990}
2991
2992static void e100_remove(struct pci_dev *pdev)
2993{
2994	struct net_device *netdev = pci_get_drvdata(pdev);
2995
2996	if (netdev) {
2997		struct nic *nic = netdev_priv(netdev);
2998		unregister_netdev(netdev);
2999		e100_free(nic);
3000		pci_iounmap(pdev, nic->csr);
3001		pci_pool_destroy(nic->cbs_pool);
3002		free_netdev(netdev);
3003		pci_release_regions(pdev);
3004		pci_disable_device(pdev);
3005	}
3006}
3007
3008#define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
3009#define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
3010#define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
3011static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
3012{
3013	struct net_device *netdev = pci_get_drvdata(pdev);
3014	struct nic *nic = netdev_priv(netdev);
3015
 
 
3016	if (netif_running(netdev))
3017		e100_down(nic);
3018	netif_device_detach(netdev);
3019
3020	pci_save_state(pdev);
3021
3022	if ((nic->flags & wol_magic) | e100_asf(nic)) {
3023		/* enable reverse auto-negotiation */
3024		if (nic->phy == phy_82552_v) {
3025			u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3026			                           E100_82552_SMARTSPEED);
3027
3028			mdio_write(netdev, nic->mii.phy_id,
3029			           E100_82552_SMARTSPEED, smartspeed |
3030			           E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3031		}
3032		*enable_wake = true;
3033	} else {
3034		*enable_wake = false;
3035	}
3036
3037	pci_clear_master(pdev);
3038}
3039
3040static int __e100_power_off(struct pci_dev *pdev, bool wake)
3041{
3042	if (wake)
3043		return pci_prepare_to_sleep(pdev);
3044
3045	pci_wake_from_d3(pdev, false);
3046	pci_set_power_state(pdev, PCI_D3hot);
3047
3048	return 0;
3049}
3050
3051#ifdef CONFIG_PM
3052static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
3053{
3054	bool wake;
3055	__e100_shutdown(pdev, &wake);
3056	return __e100_power_off(pdev, wake);
 
 
3057}
3058
3059static int e100_resume(struct pci_dev *pdev)
3060{
3061	struct net_device *netdev = pci_get_drvdata(pdev);
3062	struct nic *nic = netdev_priv(netdev);
 
3063
3064	pci_set_power_state(pdev, PCI_D0);
3065	pci_restore_state(pdev);
3066	/* ack any pending wake events, disable PME */
3067	pci_enable_wake(pdev, PCI_D0, 0);
 
 
3068
3069	/* disable reverse auto-negotiation */
3070	if (nic->phy == phy_82552_v) {
3071		u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3072		                           E100_82552_SMARTSPEED);
3073
3074		mdio_write(netdev, nic->mii.phy_id,
3075		           E100_82552_SMARTSPEED,
3076		           smartspeed & ~(E100_82552_REV_ANEG));
3077	}
3078
3079	netif_device_attach(netdev);
3080	if (netif_running(netdev))
3081		e100_up(nic);
3082
 
 
3083	return 0;
3084}
3085#endif /* CONFIG_PM */
3086
3087static void e100_shutdown(struct pci_dev *pdev)
3088{
3089	bool wake;
3090	__e100_shutdown(pdev, &wake);
3091	if (system_state == SYSTEM_POWER_OFF)
3092		__e100_power_off(pdev, wake);
3093}
3094
3095/* ------------------ PCI Error Recovery infrastructure  -------------- */
3096/**
3097 * e100_io_error_detected - called when PCI error is detected.
3098 * @pdev: Pointer to PCI device
3099 * @state: The current pci connection state
3100 */
3101static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3102{
3103	struct net_device *netdev = pci_get_drvdata(pdev);
3104	struct nic *nic = netdev_priv(netdev);
3105
3106	netif_device_detach(netdev);
3107
3108	if (state == pci_channel_io_perm_failure)
3109		return PCI_ERS_RESULT_DISCONNECT;
3110
3111	if (netif_running(netdev))
3112		e100_down(nic);
3113	pci_disable_device(pdev);
3114
3115	/* Request a slot reset. */
3116	return PCI_ERS_RESULT_NEED_RESET;
3117}
3118
3119/**
3120 * e100_io_slot_reset - called after the pci bus has been reset.
3121 * @pdev: Pointer to PCI device
3122 *
3123 * Restart the card from scratch.
3124 */
3125static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3126{
3127	struct net_device *netdev = pci_get_drvdata(pdev);
3128	struct nic *nic = netdev_priv(netdev);
3129
3130	if (pci_enable_device(pdev)) {
3131		pr_err("Cannot re-enable PCI device after reset\n");
3132		return PCI_ERS_RESULT_DISCONNECT;
3133	}
3134	pci_set_master(pdev);
3135
3136	/* Only one device per card can do a reset */
3137	if (0 != PCI_FUNC(pdev->devfn))
3138		return PCI_ERS_RESULT_RECOVERED;
3139	e100_hw_reset(nic);
3140	e100_phy_init(nic);
3141
3142	return PCI_ERS_RESULT_RECOVERED;
3143}
3144
3145/**
3146 * e100_io_resume - resume normal operations
3147 * @pdev: Pointer to PCI device
3148 *
3149 * Resume normal operations after an error recovery
3150 * sequence has been completed.
3151 */
3152static void e100_io_resume(struct pci_dev *pdev)
3153{
3154	struct net_device *netdev = pci_get_drvdata(pdev);
3155	struct nic *nic = netdev_priv(netdev);
3156
3157	/* ack any pending wake events, disable PME */
3158	pci_enable_wake(pdev, PCI_D0, 0);
3159
3160	netif_device_attach(netdev);
3161	if (netif_running(netdev)) {
3162		e100_open(netdev);
3163		mod_timer(&nic->watchdog, jiffies);
3164	}
3165}
3166
3167static const struct pci_error_handlers e100_err_handler = {
3168	.error_detected = e100_io_error_detected,
3169	.slot_reset = e100_io_slot_reset,
3170	.resume = e100_io_resume,
3171};
3172
 
 
3173static struct pci_driver e100_driver = {
3174	.name =         DRV_NAME,
3175	.id_table =     e100_id_table,
3176	.probe =        e100_probe,
3177	.remove =       e100_remove,
3178#ifdef CONFIG_PM
3179	/* Power Management hooks */
3180	.suspend =      e100_suspend,
3181	.resume =       e100_resume,
3182#endif
3183	.shutdown =     e100_shutdown,
3184	.err_handler = &e100_err_handler,
3185};
3186
3187static int __init e100_init_module(void)
3188{
3189	if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3190		pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
3191		pr_info("%s\n", DRV_COPYRIGHT);
3192	}
3193	return pci_register_driver(&e100_driver);
3194}
3195
3196static void __exit e100_cleanup_module(void)
3197{
3198	pci_unregister_driver(&e100_driver);
3199}
3200
3201module_init(e100_init_module);
3202module_exit(e100_cleanup_module);