Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
Note: File does not exist in v6.8.
   1/*
   2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
   3 * Author: Joerg Roedel <joerg.roedel@amd.com>
   4 *         Leo Duran <leo.duran@amd.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  18 */
  19
  20#include <linux/ratelimit.h>
  21#include <linux/pci.h>
  22#include <linux/pci-ats.h>
  23#include <linux/bitmap.h>
  24#include <linux/slab.h>
  25#include <linux/debugfs.h>
  26#include <linux/scatterlist.h>
  27#include <linux/dma-mapping.h>
  28#include <linux/iommu-helper.h>
  29#include <linux/iommu.h>
  30#include <linux/delay.h>
  31#include <linux/amd-iommu.h>
  32#include <linux/notifier.h>
  33#include <linux/export.h>
  34#include <linux/irq.h>
  35#include <linux/msi.h>
  36#include <asm/irq_remapping.h>
  37#include <asm/io_apic.h>
  38#include <asm/apic.h>
  39#include <asm/hw_irq.h>
  40#include <asm/msidef.h>
  41#include <asm/proto.h>
  42#include <asm/iommu.h>
  43#include <asm/gart.h>
  44#include <asm/dma.h>
  45
  46#include "amd_iommu_proto.h"
  47#include "amd_iommu_types.h"
  48#include "irq_remapping.h"
  49#include "pci.h"
  50
  51#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  52
  53#define LOOP_TIMEOUT	100000
  54
  55/*
  56 * This bitmap is used to advertise the page sizes our hardware support
  57 * to the IOMMU core, which will then use this information to split
  58 * physically contiguous memory regions it is mapping into page sizes
  59 * that we support.
  60 *
  61 * 512GB Pages are not supported due to a hardware bug
  62 */
  63#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
  64
  65static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  66
  67/* A list of preallocated protection domains */
  68static LIST_HEAD(iommu_pd_list);
  69static DEFINE_SPINLOCK(iommu_pd_list_lock);
  70
  71/* List of all available dev_data structures */
  72static LIST_HEAD(dev_data_list);
  73static DEFINE_SPINLOCK(dev_data_list_lock);
  74
  75LIST_HEAD(ioapic_map);
  76LIST_HEAD(hpet_map);
  77
  78/*
  79 * Domain for untranslated devices - only allocated
  80 * if iommu=pt passed on kernel cmd line.
  81 */
  82static struct protection_domain *pt_domain;
  83
  84static struct iommu_ops amd_iommu_ops;
  85
  86static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
  87int amd_iommu_max_glx_val = -1;
  88
  89static struct dma_map_ops amd_iommu_dma_ops;
  90
  91/*
  92 * general struct to manage commands send to an IOMMU
  93 */
  94struct iommu_cmd {
  95	u32 data[4];
  96};
  97
  98struct kmem_cache *amd_iommu_irq_cache;
  99
 100static void update_domain(struct protection_domain *domain);
 101static int __init alloc_passthrough_domain(void);
 102
 103/****************************************************************************
 104 *
 105 * Helper functions
 106 *
 107 ****************************************************************************/
 108
 109static struct iommu_dev_data *alloc_dev_data(u16 devid)
 110{
 111	struct iommu_dev_data *dev_data;
 112	unsigned long flags;
 113
 114	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
 115	if (!dev_data)
 116		return NULL;
 117
 118	dev_data->devid = devid;
 119	atomic_set(&dev_data->bind, 0);
 120
 121	spin_lock_irqsave(&dev_data_list_lock, flags);
 122	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
 123	spin_unlock_irqrestore(&dev_data_list_lock, flags);
 124
 125	return dev_data;
 126}
 127
 128static void free_dev_data(struct iommu_dev_data *dev_data)
 129{
 130	unsigned long flags;
 131
 132	spin_lock_irqsave(&dev_data_list_lock, flags);
 133	list_del(&dev_data->dev_data_list);
 134	spin_unlock_irqrestore(&dev_data_list_lock, flags);
 135
 136	if (dev_data->group)
 137		iommu_group_put(dev_data->group);
 138
 139	kfree(dev_data);
 140}
 141
 142static struct iommu_dev_data *search_dev_data(u16 devid)
 143{
 144	struct iommu_dev_data *dev_data;
 145	unsigned long flags;
 146
 147	spin_lock_irqsave(&dev_data_list_lock, flags);
 148	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
 149		if (dev_data->devid == devid)
 150			goto out_unlock;
 151	}
 152
 153	dev_data = NULL;
 154
 155out_unlock:
 156	spin_unlock_irqrestore(&dev_data_list_lock, flags);
 157
 158	return dev_data;
 159}
 160
 161static struct iommu_dev_data *find_dev_data(u16 devid)
 162{
 163	struct iommu_dev_data *dev_data;
 164
 165	dev_data = search_dev_data(devid);
 166
 167	if (dev_data == NULL)
 168		dev_data = alloc_dev_data(devid);
 169
 170	return dev_data;
 171}
 172
 173static inline u16 get_device_id(struct device *dev)
 174{
 175	struct pci_dev *pdev = to_pci_dev(dev);
 176
 177	return PCI_DEVID(pdev->bus->number, pdev->devfn);
 178}
 179
 180static struct iommu_dev_data *get_dev_data(struct device *dev)
 181{
 182	return dev->archdata.iommu;
 183}
 184
 185static bool pci_iommuv2_capable(struct pci_dev *pdev)
 186{
 187	static const int caps[] = {
 188		PCI_EXT_CAP_ID_ATS,
 189		PCI_EXT_CAP_ID_PRI,
 190		PCI_EXT_CAP_ID_PASID,
 191	};
 192	int i, pos;
 193
 194	for (i = 0; i < 3; ++i) {
 195		pos = pci_find_ext_capability(pdev, caps[i]);
 196		if (pos == 0)
 197			return false;
 198	}
 199
 200	return true;
 201}
 202
 203static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
 204{
 205	struct iommu_dev_data *dev_data;
 206
 207	dev_data = get_dev_data(&pdev->dev);
 208
 209	return dev_data->errata & (1 << erratum) ? true : false;
 210}
 211
 212/*
 213 * In this function the list of preallocated protection domains is traversed to
 214 * find the domain for a specific device
 215 */
 216static struct dma_ops_domain *find_protection_domain(u16 devid)
 217{
 218	struct dma_ops_domain *entry, *ret = NULL;
 219	unsigned long flags;
 220	u16 alias = amd_iommu_alias_table[devid];
 221
 222	if (list_empty(&iommu_pd_list))
 223		return NULL;
 224
 225	spin_lock_irqsave(&iommu_pd_list_lock, flags);
 226
 227	list_for_each_entry(entry, &iommu_pd_list, list) {
 228		if (entry->target_dev == devid ||
 229		    entry->target_dev == alias) {
 230			ret = entry;
 231			break;
 232		}
 233	}
 234
 235	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
 236
 237	return ret;
 238}
 239
 240/*
 241 * This function checks if the driver got a valid device from the caller to
 242 * avoid dereferencing invalid pointers.
 243 */
 244static bool check_device(struct device *dev)
 245{
 246	u16 devid;
 247
 248	if (!dev || !dev->dma_mask)
 249		return false;
 250
 251	/* No PCI device */
 252	if (!dev_is_pci(dev))
 253		return false;
 254
 255	devid = get_device_id(dev);
 256
 257	/* Out of our scope? */
 258	if (devid > amd_iommu_last_bdf)
 259		return false;
 260
 261	if (amd_iommu_rlookup_table[devid] == NULL)
 262		return false;
 263
 264	return true;
 265}
 266
 267static struct pci_bus *find_hosted_bus(struct pci_bus *bus)
 268{
 269	while (!bus->self) {
 270		if (!pci_is_root_bus(bus))
 271			bus = bus->parent;
 272		else
 273			return ERR_PTR(-ENODEV);
 274	}
 275
 276	return bus;
 277}
 278
 279#define REQ_ACS_FLAGS	(PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
 280
 281static struct pci_dev *get_isolation_root(struct pci_dev *pdev)
 282{
 283	struct pci_dev *dma_pdev = pdev;
 284
 285	/* Account for quirked devices */
 286	swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
 287
 288	/*
 289	 * If it's a multifunction device that does not support our
 290	 * required ACS flags, add to the same group as lowest numbered
 291	 * function that also does not suport the required ACS flags.
 292	 */
 293	if (dma_pdev->multifunction &&
 294	    !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)) {
 295		u8 i, slot = PCI_SLOT(dma_pdev->devfn);
 296
 297		for (i = 0; i < 8; i++) {
 298			struct pci_dev *tmp;
 299
 300			tmp = pci_get_slot(dma_pdev->bus, PCI_DEVFN(slot, i));
 301			if (!tmp)
 302				continue;
 303
 304			if (!pci_acs_enabled(tmp, REQ_ACS_FLAGS)) {
 305				swap_pci_ref(&dma_pdev, tmp);
 306				break;
 307			}
 308			pci_dev_put(tmp);
 309		}
 310	}
 311
 312	/*
 313	 * Devices on the root bus go through the iommu.  If that's not us,
 314	 * find the next upstream device and test ACS up to the root bus.
 315	 * Finding the next device may require skipping virtual buses.
 316	 */
 317	while (!pci_is_root_bus(dma_pdev->bus)) {
 318		struct pci_bus *bus = find_hosted_bus(dma_pdev->bus);
 319		if (IS_ERR(bus))
 320			break;
 321
 322		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
 323			break;
 324
 325		swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
 326	}
 327
 328	return dma_pdev;
 329}
 330
 331static int use_pdev_iommu_group(struct pci_dev *pdev, struct device *dev)
 332{
 333	struct iommu_group *group = iommu_group_get(&pdev->dev);
 334	int ret;
 335
 336	if (!group) {
 337		group = iommu_group_alloc();
 338		if (IS_ERR(group))
 339			return PTR_ERR(group);
 340
 341		WARN_ON(&pdev->dev != dev);
 342	}
 343
 344	ret = iommu_group_add_device(group, dev);
 345	iommu_group_put(group);
 346	return ret;
 347}
 348
 349static int use_dev_data_iommu_group(struct iommu_dev_data *dev_data,
 350				    struct device *dev)
 351{
 352	if (!dev_data->group) {
 353		struct iommu_group *group = iommu_group_alloc();
 354		if (IS_ERR(group))
 355			return PTR_ERR(group);
 356
 357		dev_data->group = group;
 358	}
 359
 360	return iommu_group_add_device(dev_data->group, dev);
 361}
 362
 363static int init_iommu_group(struct device *dev)
 364{
 365	struct iommu_dev_data *dev_data;
 366	struct iommu_group *group;
 367	struct pci_dev *dma_pdev;
 368	int ret;
 369
 370	group = iommu_group_get(dev);
 371	if (group) {
 372		iommu_group_put(group);
 373		return 0;
 374	}
 375
 376	dev_data = find_dev_data(get_device_id(dev));
 377	if (!dev_data)
 378		return -ENOMEM;
 379
 380	if (dev_data->alias_data) {
 381		u16 alias;
 382		struct pci_bus *bus;
 383
 384		if (dev_data->alias_data->group)
 385			goto use_group;
 386
 387		/*
 388		 * If the alias device exists, it's effectively just a first
 389		 * level quirk for finding the DMA source.
 390		 */
 391		alias = amd_iommu_alias_table[dev_data->devid];
 392		dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
 393		if (dma_pdev) {
 394			dma_pdev = get_isolation_root(dma_pdev);
 395			goto use_pdev;
 396		}
 397
 398		/*
 399		 * If the alias is virtual, try to find a parent device
 400		 * and test whether the IOMMU group is actualy rooted above
 401		 * the alias.  Be careful to also test the parent device if
 402		 * we think the alias is the root of the group.
 403		 */
 404		bus = pci_find_bus(0, alias >> 8);
 405		if (!bus)
 406			goto use_group;
 407
 408		bus = find_hosted_bus(bus);
 409		if (IS_ERR(bus) || !bus->self)
 410			goto use_group;
 411
 412		dma_pdev = get_isolation_root(pci_dev_get(bus->self));
 413		if (dma_pdev != bus->self || (dma_pdev->multifunction &&
 414		    !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)))
 415			goto use_pdev;
 416
 417		pci_dev_put(dma_pdev);
 418		goto use_group;
 419	}
 420
 421	dma_pdev = get_isolation_root(pci_dev_get(to_pci_dev(dev)));
 422use_pdev:
 423	ret = use_pdev_iommu_group(dma_pdev, dev);
 424	pci_dev_put(dma_pdev);
 425	return ret;
 426use_group:
 427	return use_dev_data_iommu_group(dev_data->alias_data, dev);
 428}
 429
 430static int iommu_init_device(struct device *dev)
 431{
 432	struct pci_dev *pdev = to_pci_dev(dev);
 433	struct iommu_dev_data *dev_data;
 434	u16 alias;
 435	int ret;
 436
 437	if (dev->archdata.iommu)
 438		return 0;
 439
 440	dev_data = find_dev_data(get_device_id(dev));
 441	if (!dev_data)
 442		return -ENOMEM;
 443
 444	alias = amd_iommu_alias_table[dev_data->devid];
 445	if (alias != dev_data->devid) {
 446		struct iommu_dev_data *alias_data;
 447
 448		alias_data = find_dev_data(alias);
 449		if (alias_data == NULL) {
 450			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
 451					dev_name(dev));
 452			free_dev_data(dev_data);
 453			return -ENOTSUPP;
 454		}
 455		dev_data->alias_data = alias_data;
 456	}
 457
 458	ret = init_iommu_group(dev);
 459	if (ret) {
 460		free_dev_data(dev_data);
 461		return ret;
 462	}
 463
 464	if (pci_iommuv2_capable(pdev)) {
 465		struct amd_iommu *iommu;
 466
 467		iommu              = amd_iommu_rlookup_table[dev_data->devid];
 468		dev_data->iommu_v2 = iommu->is_iommu_v2;
 469	}
 470
 471	dev->archdata.iommu = dev_data;
 472
 473	return 0;
 474}
 475
 476static void iommu_ignore_device(struct device *dev)
 477{
 478	u16 devid, alias;
 479
 480	devid = get_device_id(dev);
 481	alias = amd_iommu_alias_table[devid];
 482
 483	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
 484	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
 485
 486	amd_iommu_rlookup_table[devid] = NULL;
 487	amd_iommu_rlookup_table[alias] = NULL;
 488}
 489
 490static void iommu_uninit_device(struct device *dev)
 491{
 492	iommu_group_remove_device(dev);
 493
 494	/*
 495	 * Nothing to do here - we keep dev_data around for unplugged devices
 496	 * and reuse it when the device is re-plugged - not doing so would
 497	 * introduce a ton of races.
 498	 */
 499}
 500
 501void __init amd_iommu_uninit_devices(void)
 502{
 503	struct iommu_dev_data *dev_data, *n;
 504	struct pci_dev *pdev = NULL;
 505
 506	for_each_pci_dev(pdev) {
 507
 508		if (!check_device(&pdev->dev))
 509			continue;
 510
 511		iommu_uninit_device(&pdev->dev);
 512	}
 513
 514	/* Free all of our dev_data structures */
 515	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
 516		free_dev_data(dev_data);
 517}
 518
 519int __init amd_iommu_init_devices(void)
 520{
 521	struct pci_dev *pdev = NULL;
 522	int ret = 0;
 523
 524	for_each_pci_dev(pdev) {
 525
 526		if (!check_device(&pdev->dev))
 527			continue;
 528
 529		ret = iommu_init_device(&pdev->dev);
 530		if (ret == -ENOTSUPP)
 531			iommu_ignore_device(&pdev->dev);
 532		else if (ret)
 533			goto out_free;
 534	}
 535
 536	return 0;
 537
 538out_free:
 539
 540	amd_iommu_uninit_devices();
 541
 542	return ret;
 543}
 544#ifdef CONFIG_AMD_IOMMU_STATS
 545
 546/*
 547 * Initialization code for statistics collection
 548 */
 549
 550DECLARE_STATS_COUNTER(compl_wait);
 551DECLARE_STATS_COUNTER(cnt_map_single);
 552DECLARE_STATS_COUNTER(cnt_unmap_single);
 553DECLARE_STATS_COUNTER(cnt_map_sg);
 554DECLARE_STATS_COUNTER(cnt_unmap_sg);
 555DECLARE_STATS_COUNTER(cnt_alloc_coherent);
 556DECLARE_STATS_COUNTER(cnt_free_coherent);
 557DECLARE_STATS_COUNTER(cross_page);
 558DECLARE_STATS_COUNTER(domain_flush_single);
 559DECLARE_STATS_COUNTER(domain_flush_all);
 560DECLARE_STATS_COUNTER(alloced_io_mem);
 561DECLARE_STATS_COUNTER(total_map_requests);
 562DECLARE_STATS_COUNTER(complete_ppr);
 563DECLARE_STATS_COUNTER(invalidate_iotlb);
 564DECLARE_STATS_COUNTER(invalidate_iotlb_all);
 565DECLARE_STATS_COUNTER(pri_requests);
 566
 567static struct dentry *stats_dir;
 568static struct dentry *de_fflush;
 569
 570static void amd_iommu_stats_add(struct __iommu_counter *cnt)
 571{
 572	if (stats_dir == NULL)
 573		return;
 574
 575	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
 576				       &cnt->value);
 577}
 578
 579static void amd_iommu_stats_init(void)
 580{
 581	stats_dir = debugfs_create_dir("amd-iommu", NULL);
 582	if (stats_dir == NULL)
 583		return;
 584
 585	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
 586					 &amd_iommu_unmap_flush);
 587
 588	amd_iommu_stats_add(&compl_wait);
 589	amd_iommu_stats_add(&cnt_map_single);
 590	amd_iommu_stats_add(&cnt_unmap_single);
 591	amd_iommu_stats_add(&cnt_map_sg);
 592	amd_iommu_stats_add(&cnt_unmap_sg);
 593	amd_iommu_stats_add(&cnt_alloc_coherent);
 594	amd_iommu_stats_add(&cnt_free_coherent);
 595	amd_iommu_stats_add(&cross_page);
 596	amd_iommu_stats_add(&domain_flush_single);
 597	amd_iommu_stats_add(&domain_flush_all);
 598	amd_iommu_stats_add(&alloced_io_mem);
 599	amd_iommu_stats_add(&total_map_requests);
 600	amd_iommu_stats_add(&complete_ppr);
 601	amd_iommu_stats_add(&invalidate_iotlb);
 602	amd_iommu_stats_add(&invalidate_iotlb_all);
 603	amd_iommu_stats_add(&pri_requests);
 604}
 605
 606#endif
 607
 608/****************************************************************************
 609 *
 610 * Interrupt handling functions
 611 *
 612 ****************************************************************************/
 613
 614static void dump_dte_entry(u16 devid)
 615{
 616	int i;
 617
 618	for (i = 0; i < 4; ++i)
 619		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
 620			amd_iommu_dev_table[devid].data[i]);
 621}
 622
 623static void dump_command(unsigned long phys_addr)
 624{
 625	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
 626	int i;
 627
 628	for (i = 0; i < 4; ++i)
 629		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
 630}
 631
 632static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
 633{
 634	int type, devid, domid, flags;
 635	volatile u32 *event = __evt;
 636	int count = 0;
 637	u64 address;
 638
 639retry:
 640	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
 641	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
 642	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
 643	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
 644	address = (u64)(((u64)event[3]) << 32) | event[2];
 645
 646	if (type == 0) {
 647		/* Did we hit the erratum? */
 648		if (++count == LOOP_TIMEOUT) {
 649			pr_err("AMD-Vi: No event written to event log\n");
 650			return;
 651		}
 652		udelay(1);
 653		goto retry;
 654	}
 655
 656	printk(KERN_ERR "AMD-Vi: Event logged [");
 657
 658	switch (type) {
 659	case EVENT_TYPE_ILL_DEV:
 660		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
 661		       "address=0x%016llx flags=0x%04x]\n",
 662		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 663		       address, flags);
 664		dump_dte_entry(devid);
 665		break;
 666	case EVENT_TYPE_IO_FAULT:
 667		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
 668		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 669		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 670		       domid, address, flags);
 671		break;
 672	case EVENT_TYPE_DEV_TAB_ERR:
 673		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
 674		       "address=0x%016llx flags=0x%04x]\n",
 675		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 676		       address, flags);
 677		break;
 678	case EVENT_TYPE_PAGE_TAB_ERR:
 679		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
 680		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 681		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 682		       domid, address, flags);
 683		break;
 684	case EVENT_TYPE_ILL_CMD:
 685		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
 686		dump_command(address);
 687		break;
 688	case EVENT_TYPE_CMD_HARD_ERR:
 689		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
 690		       "flags=0x%04x]\n", address, flags);
 691		break;
 692	case EVENT_TYPE_IOTLB_INV_TO:
 693		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
 694		       "address=0x%016llx]\n",
 695		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 696		       address);
 697		break;
 698	case EVENT_TYPE_INV_DEV_REQ:
 699		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
 700		       "address=0x%016llx flags=0x%04x]\n",
 701		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 702		       address, flags);
 703		break;
 704	default:
 705		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
 706	}
 707
 708	memset(__evt, 0, 4 * sizeof(u32));
 709}
 710
 711static void iommu_poll_events(struct amd_iommu *iommu)
 712{
 713	u32 head, tail;
 714
 715	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 716	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
 717
 718	while (head != tail) {
 719		iommu_print_event(iommu, iommu->evt_buf + head);
 720		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
 721	}
 722
 723	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 724}
 725
 726static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
 727{
 728	struct amd_iommu_fault fault;
 729
 730	INC_STATS_COUNTER(pri_requests);
 731
 732	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
 733		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
 734		return;
 735	}
 736
 737	fault.address   = raw[1];
 738	fault.pasid     = PPR_PASID(raw[0]);
 739	fault.device_id = PPR_DEVID(raw[0]);
 740	fault.tag       = PPR_TAG(raw[0]);
 741	fault.flags     = PPR_FLAGS(raw[0]);
 742
 743	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
 744}
 745
 746static void iommu_poll_ppr_log(struct amd_iommu *iommu)
 747{
 748	u32 head, tail;
 749
 750	if (iommu->ppr_log == NULL)
 751		return;
 752
 753	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 754	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
 755
 756	while (head != tail) {
 757		volatile u64 *raw;
 758		u64 entry[2];
 759		int i;
 760
 761		raw = (u64 *)(iommu->ppr_log + head);
 762
 763		/*
 764		 * Hardware bug: Interrupt may arrive before the entry is
 765		 * written to memory. If this happens we need to wait for the
 766		 * entry to arrive.
 767		 */
 768		for (i = 0; i < LOOP_TIMEOUT; ++i) {
 769			if (PPR_REQ_TYPE(raw[0]) != 0)
 770				break;
 771			udelay(1);
 772		}
 773
 774		/* Avoid memcpy function-call overhead */
 775		entry[0] = raw[0];
 776		entry[1] = raw[1];
 777
 778		/*
 779		 * To detect the hardware bug we need to clear the entry
 780		 * back to zero.
 781		 */
 782		raw[0] = raw[1] = 0UL;
 783
 784		/* Update head pointer of hardware ring-buffer */
 785		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
 786		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 787
 788		/* Handle PPR entry */
 789		iommu_handle_ppr_entry(iommu, entry);
 790
 791		/* Refresh ring-buffer information */
 792		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 793		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
 794	}
 795}
 796
 797irqreturn_t amd_iommu_int_thread(int irq, void *data)
 798{
 799	struct amd_iommu *iommu = (struct amd_iommu *) data;
 800	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
 801
 802	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
 803		/* Enable EVT and PPR interrupts again */
 804		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
 805			iommu->mmio_base + MMIO_STATUS_OFFSET);
 806
 807		if (status & MMIO_STATUS_EVT_INT_MASK) {
 808			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
 809			iommu_poll_events(iommu);
 810		}
 811
 812		if (status & MMIO_STATUS_PPR_INT_MASK) {
 813			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
 814			iommu_poll_ppr_log(iommu);
 815		}
 816
 817		/*
 818		 * Hardware bug: ERBT1312
 819		 * When re-enabling interrupt (by writing 1
 820		 * to clear the bit), the hardware might also try to set
 821		 * the interrupt bit in the event status register.
 822		 * In this scenario, the bit will be set, and disable
 823		 * subsequent interrupts.
 824		 *
 825		 * Workaround: The IOMMU driver should read back the
 826		 * status register and check if the interrupt bits are cleared.
 827		 * If not, driver will need to go through the interrupt handler
 828		 * again and re-clear the bits
 829		 */
 830		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
 831	}
 832	return IRQ_HANDLED;
 833}
 834
 835irqreturn_t amd_iommu_int_handler(int irq, void *data)
 836{
 837	return IRQ_WAKE_THREAD;
 838}
 839
 840/****************************************************************************
 841 *
 842 * IOMMU command queuing functions
 843 *
 844 ****************************************************************************/
 845
 846static int wait_on_sem(volatile u64 *sem)
 847{
 848	int i = 0;
 849
 850	while (*sem == 0 && i < LOOP_TIMEOUT) {
 851		udelay(1);
 852		i += 1;
 853	}
 854
 855	if (i == LOOP_TIMEOUT) {
 856		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
 857		return -EIO;
 858	}
 859
 860	return 0;
 861}
 862
 863static void copy_cmd_to_buffer(struct amd_iommu *iommu,
 864			       struct iommu_cmd *cmd,
 865			       u32 tail)
 866{
 867	u8 *target;
 868
 869	target = iommu->cmd_buf + tail;
 870	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
 871
 872	/* Copy command to buffer */
 873	memcpy(target, cmd, sizeof(*cmd));
 874
 875	/* Tell the IOMMU about it */
 876	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
 877}
 878
 879static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
 880{
 881	WARN_ON(address & 0x7ULL);
 882
 883	memset(cmd, 0, sizeof(*cmd));
 884	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
 885	cmd->data[1] = upper_32_bits(__pa(address));
 886	cmd->data[2] = 1;
 887	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
 888}
 889
 890static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
 891{
 892	memset(cmd, 0, sizeof(*cmd));
 893	cmd->data[0] = devid;
 894	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
 895}
 896
 897static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
 898				  size_t size, u16 domid, int pde)
 899{
 900	u64 pages;
 901	int s;
 902
 903	pages = iommu_num_pages(address, size, PAGE_SIZE);
 904	s     = 0;
 905
 906	if (pages > 1) {
 907		/*
 908		 * If we have to flush more than one page, flush all
 909		 * TLB entries for this domain
 910		 */
 911		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 912		s = 1;
 913	}
 914
 915	address &= PAGE_MASK;
 916
 917	memset(cmd, 0, sizeof(*cmd));
 918	cmd->data[1] |= domid;
 919	cmd->data[2]  = lower_32_bits(address);
 920	cmd->data[3]  = upper_32_bits(address);
 921	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 922	if (s) /* size bit - we flush more than one 4kb page */
 923		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 924	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
 925		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 926}
 927
 928static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
 929				  u64 address, size_t size)
 930{
 931	u64 pages;
 932	int s;
 933
 934	pages = iommu_num_pages(address, size, PAGE_SIZE);
 935	s     = 0;
 936
 937	if (pages > 1) {
 938		/*
 939		 * If we have to flush more than one page, flush all
 940		 * TLB entries for this domain
 941		 */
 942		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 943		s = 1;
 944	}
 945
 946	address &= PAGE_MASK;
 947
 948	memset(cmd, 0, sizeof(*cmd));
 949	cmd->data[0]  = devid;
 950	cmd->data[0] |= (qdep & 0xff) << 24;
 951	cmd->data[1]  = devid;
 952	cmd->data[2]  = lower_32_bits(address);
 953	cmd->data[3]  = upper_32_bits(address);
 954	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 955	if (s)
 956		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 957}
 958
 959static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
 960				  u64 address, bool size)
 961{
 962	memset(cmd, 0, sizeof(*cmd));
 963
 964	address &= ~(0xfffULL);
 965
 966	cmd->data[0]  = pasid;
 967	cmd->data[1]  = domid;
 968	cmd->data[2]  = lower_32_bits(address);
 969	cmd->data[3]  = upper_32_bits(address);
 970	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 971	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
 972	if (size)
 973		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 974	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 975}
 976
 977static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
 978				  int qdep, u64 address, bool size)
 979{
 980	memset(cmd, 0, sizeof(*cmd));
 981
 982	address &= ~(0xfffULL);
 983
 984	cmd->data[0]  = devid;
 985	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
 986	cmd->data[0] |= (qdep  & 0xff) << 24;
 987	cmd->data[1]  = devid;
 988	cmd->data[1] |= (pasid & 0xff) << 16;
 989	cmd->data[2]  = lower_32_bits(address);
 990	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
 991	cmd->data[3]  = upper_32_bits(address);
 992	if (size)
 993		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 994	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 995}
 996
 997static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
 998			       int status, int tag, bool gn)
 999{
1000	memset(cmd, 0, sizeof(*cmd));
1001
1002	cmd->data[0]  = devid;
1003	if (gn) {
1004		cmd->data[1]  = pasid;
1005		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
1006	}
1007	cmd->data[3]  = tag & 0x1ff;
1008	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1009
1010	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1011}
1012
1013static void build_inv_all(struct iommu_cmd *cmd)
1014{
1015	memset(cmd, 0, sizeof(*cmd));
1016	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1017}
1018
1019static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1020{
1021	memset(cmd, 0, sizeof(*cmd));
1022	cmd->data[0] = devid;
1023	CMD_SET_TYPE(cmd, CMD_INV_IRT);
1024}
1025
1026/*
1027 * Writes the command to the IOMMUs command buffer and informs the
1028 * hardware about the new command.
1029 */
1030static int iommu_queue_command_sync(struct amd_iommu *iommu,
1031				    struct iommu_cmd *cmd,
1032				    bool sync)
1033{
1034	u32 left, tail, head, next_tail;
1035	unsigned long flags;
1036
1037	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
1038
1039again:
1040	spin_lock_irqsave(&iommu->lock, flags);
1041
1042	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
1043	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1044	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
1045	left      = (head - next_tail) % iommu->cmd_buf_size;
1046
1047	if (left <= 2) {
1048		struct iommu_cmd sync_cmd;
1049		volatile u64 sem = 0;
1050		int ret;
1051
1052		build_completion_wait(&sync_cmd, (u64)&sem);
1053		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1054
1055		spin_unlock_irqrestore(&iommu->lock, flags);
1056
1057		if ((ret = wait_on_sem(&sem)) != 0)
1058			return ret;
1059
1060		goto again;
1061	}
1062
1063	copy_cmd_to_buffer(iommu, cmd, tail);
1064
1065	/* We need to sync now to make sure all commands are processed */
1066	iommu->need_sync = sync;
1067
1068	spin_unlock_irqrestore(&iommu->lock, flags);
1069
1070	return 0;
1071}
1072
1073static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1074{
1075	return iommu_queue_command_sync(iommu, cmd, true);
1076}
1077
1078/*
1079 * This function queues a completion wait command into the command
1080 * buffer of an IOMMU
1081 */
1082static int iommu_completion_wait(struct amd_iommu *iommu)
1083{
1084	struct iommu_cmd cmd;
1085	volatile u64 sem = 0;
1086	int ret;
1087
1088	if (!iommu->need_sync)
1089		return 0;
1090
1091	build_completion_wait(&cmd, (u64)&sem);
1092
1093	ret = iommu_queue_command_sync(iommu, &cmd, false);
1094	if (ret)
1095		return ret;
1096
1097	return wait_on_sem(&sem);
1098}
1099
1100static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1101{
1102	struct iommu_cmd cmd;
1103
1104	build_inv_dte(&cmd, devid);
1105
1106	return iommu_queue_command(iommu, &cmd);
1107}
1108
1109static void iommu_flush_dte_all(struct amd_iommu *iommu)
1110{
1111	u32 devid;
1112
1113	for (devid = 0; devid <= 0xffff; ++devid)
1114		iommu_flush_dte(iommu, devid);
1115
1116	iommu_completion_wait(iommu);
1117}
1118
1119/*
1120 * This function uses heavy locking and may disable irqs for some time. But
1121 * this is no issue because it is only called during resume.
1122 */
1123static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1124{
1125	u32 dom_id;
1126
1127	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1128		struct iommu_cmd cmd;
1129		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1130				      dom_id, 1);
1131		iommu_queue_command(iommu, &cmd);
1132	}
1133
1134	iommu_completion_wait(iommu);
1135}
1136
1137static void iommu_flush_all(struct amd_iommu *iommu)
1138{
1139	struct iommu_cmd cmd;
1140
1141	build_inv_all(&cmd);
1142
1143	iommu_queue_command(iommu, &cmd);
1144	iommu_completion_wait(iommu);
1145}
1146
1147static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1148{
1149	struct iommu_cmd cmd;
1150
1151	build_inv_irt(&cmd, devid);
1152
1153	iommu_queue_command(iommu, &cmd);
1154}
1155
1156static void iommu_flush_irt_all(struct amd_iommu *iommu)
1157{
1158	u32 devid;
1159
1160	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1161		iommu_flush_irt(iommu, devid);
1162
1163	iommu_completion_wait(iommu);
1164}
1165
1166void iommu_flush_all_caches(struct amd_iommu *iommu)
1167{
1168	if (iommu_feature(iommu, FEATURE_IA)) {
1169		iommu_flush_all(iommu);
1170	} else {
1171		iommu_flush_dte_all(iommu);
1172		iommu_flush_irt_all(iommu);
1173		iommu_flush_tlb_all(iommu);
1174	}
1175}
1176
1177/*
1178 * Command send function for flushing on-device TLB
1179 */
1180static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1181			      u64 address, size_t size)
1182{
1183	struct amd_iommu *iommu;
1184	struct iommu_cmd cmd;
1185	int qdep;
1186
1187	qdep     = dev_data->ats.qdep;
1188	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1189
1190	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1191
1192	return iommu_queue_command(iommu, &cmd);
1193}
1194
1195/*
1196 * Command send function for invalidating a device table entry
1197 */
1198static int device_flush_dte(struct iommu_dev_data *dev_data)
1199{
1200	struct amd_iommu *iommu;
1201	int ret;
1202
1203	iommu = amd_iommu_rlookup_table[dev_data->devid];
1204
1205	ret = iommu_flush_dte(iommu, dev_data->devid);
1206	if (ret)
1207		return ret;
1208
1209	if (dev_data->ats.enabled)
1210		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1211
1212	return ret;
1213}
1214
1215/*
1216 * TLB invalidation function which is called from the mapping functions.
1217 * It invalidates a single PTE if the range to flush is within a single
1218 * page. Otherwise it flushes the whole TLB of the IOMMU.
1219 */
1220static void __domain_flush_pages(struct protection_domain *domain,
1221				 u64 address, size_t size, int pde)
1222{
1223	struct iommu_dev_data *dev_data;
1224	struct iommu_cmd cmd;
1225	int ret = 0, i;
1226
1227	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1228
1229	for (i = 0; i < amd_iommus_present; ++i) {
1230		if (!domain->dev_iommu[i])
1231			continue;
1232
1233		/*
1234		 * Devices of this domain are behind this IOMMU
1235		 * We need a TLB flush
1236		 */
1237		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1238	}
1239
1240	list_for_each_entry(dev_data, &domain->dev_list, list) {
1241
1242		if (!dev_data->ats.enabled)
1243			continue;
1244
1245		ret |= device_flush_iotlb(dev_data, address, size);
1246	}
1247
1248	WARN_ON(ret);
1249}
1250
1251static void domain_flush_pages(struct protection_domain *domain,
1252			       u64 address, size_t size)
1253{
1254	__domain_flush_pages(domain, address, size, 0);
1255}
1256
1257/* Flush the whole IO/TLB for a given protection domain */
1258static void domain_flush_tlb(struct protection_domain *domain)
1259{
1260	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1261}
1262
1263/* Flush the whole IO/TLB for a given protection domain - including PDE */
1264static void domain_flush_tlb_pde(struct protection_domain *domain)
1265{
1266	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1267}
1268
1269static void domain_flush_complete(struct protection_domain *domain)
1270{
1271	int i;
1272
1273	for (i = 0; i < amd_iommus_present; ++i) {
1274		if (!domain->dev_iommu[i])
1275			continue;
1276
1277		/*
1278		 * Devices of this domain are behind this IOMMU
1279		 * We need to wait for completion of all commands.
1280		 */
1281		iommu_completion_wait(amd_iommus[i]);
1282	}
1283}
1284
1285
1286/*
1287 * This function flushes the DTEs for all devices in domain
1288 */
1289static void domain_flush_devices(struct protection_domain *domain)
1290{
1291	struct iommu_dev_data *dev_data;
1292
1293	list_for_each_entry(dev_data, &domain->dev_list, list)
1294		device_flush_dte(dev_data);
1295}
1296
1297/****************************************************************************
1298 *
1299 * The functions below are used the create the page table mappings for
1300 * unity mapped regions.
1301 *
1302 ****************************************************************************/
1303
1304/*
1305 * This function is used to add another level to an IO page table. Adding
1306 * another level increases the size of the address space by 9 bits to a size up
1307 * to 64 bits.
1308 */
1309static bool increase_address_space(struct protection_domain *domain,
1310				   gfp_t gfp)
1311{
1312	u64 *pte;
1313
1314	if (domain->mode == PAGE_MODE_6_LEVEL)
1315		/* address space already 64 bit large */
1316		return false;
1317
1318	pte = (void *)get_zeroed_page(gfp);
1319	if (!pte)
1320		return false;
1321
1322	*pte             = PM_LEVEL_PDE(domain->mode,
1323					virt_to_phys(domain->pt_root));
1324	domain->pt_root  = pte;
1325	domain->mode    += 1;
1326	domain->updated  = true;
1327
1328	return true;
1329}
1330
1331static u64 *alloc_pte(struct protection_domain *domain,
1332		      unsigned long address,
1333		      unsigned long page_size,
1334		      u64 **pte_page,
1335		      gfp_t gfp)
1336{
1337	int level, end_lvl;
1338	u64 *pte, *page;
1339
1340	BUG_ON(!is_power_of_2(page_size));
1341
1342	while (address > PM_LEVEL_SIZE(domain->mode))
1343		increase_address_space(domain, gfp);
1344
1345	level   = domain->mode - 1;
1346	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1347	address = PAGE_SIZE_ALIGN(address, page_size);
1348	end_lvl = PAGE_SIZE_LEVEL(page_size);
1349
1350	while (level > end_lvl) {
1351		if (!IOMMU_PTE_PRESENT(*pte)) {
1352			page = (u64 *)get_zeroed_page(gfp);
1353			if (!page)
1354				return NULL;
1355			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1356		}
1357
1358		/* No level skipping support yet */
1359		if (PM_PTE_LEVEL(*pte) != level)
1360			return NULL;
1361
1362		level -= 1;
1363
1364		pte = IOMMU_PTE_PAGE(*pte);
1365
1366		if (pte_page && level == end_lvl)
1367			*pte_page = pte;
1368
1369		pte = &pte[PM_LEVEL_INDEX(level, address)];
1370	}
1371
1372	return pte;
1373}
1374
1375/*
1376 * This function checks if there is a PTE for a given dma address. If
1377 * there is one, it returns the pointer to it.
1378 */
1379static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1380{
1381	int level;
1382	u64 *pte;
1383
1384	if (address > PM_LEVEL_SIZE(domain->mode))
1385		return NULL;
1386
1387	level   =  domain->mode - 1;
1388	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1389
1390	while (level > 0) {
1391
1392		/* Not Present */
1393		if (!IOMMU_PTE_PRESENT(*pte))
1394			return NULL;
1395
1396		/* Large PTE */
1397		if (PM_PTE_LEVEL(*pte) == 0x07) {
1398			unsigned long pte_mask, __pte;
1399
1400			/*
1401			 * If we have a series of large PTEs, make
1402			 * sure to return a pointer to the first one.
1403			 */
1404			pte_mask = PTE_PAGE_SIZE(*pte);
1405			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1406			__pte    = ((unsigned long)pte) & pte_mask;
1407
1408			return (u64 *)__pte;
1409		}
1410
1411		/* No level skipping support yet */
1412		if (PM_PTE_LEVEL(*pte) != level)
1413			return NULL;
1414
1415		level -= 1;
1416
1417		/* Walk to the next level */
1418		pte = IOMMU_PTE_PAGE(*pte);
1419		pte = &pte[PM_LEVEL_INDEX(level, address)];
1420	}
1421
1422	return pte;
1423}
1424
1425/*
1426 * Generic mapping functions. It maps a physical address into a DMA
1427 * address space. It allocates the page table pages if necessary.
1428 * In the future it can be extended to a generic mapping function
1429 * supporting all features of AMD IOMMU page tables like level skipping
1430 * and full 64 bit address spaces.
1431 */
1432static int iommu_map_page(struct protection_domain *dom,
1433			  unsigned long bus_addr,
1434			  unsigned long phys_addr,
1435			  int prot,
1436			  unsigned long page_size)
1437{
1438	u64 __pte, *pte;
1439	int i, count;
1440
1441	if (!(prot & IOMMU_PROT_MASK))
1442		return -EINVAL;
1443
1444	bus_addr  = PAGE_ALIGN(bus_addr);
1445	phys_addr = PAGE_ALIGN(phys_addr);
1446	count     = PAGE_SIZE_PTE_COUNT(page_size);
1447	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1448
1449	for (i = 0; i < count; ++i)
1450		if (IOMMU_PTE_PRESENT(pte[i]))
1451			return -EBUSY;
1452
1453	if (page_size > PAGE_SIZE) {
1454		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
1455		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1456	} else
1457		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1458
1459	if (prot & IOMMU_PROT_IR)
1460		__pte |= IOMMU_PTE_IR;
1461	if (prot & IOMMU_PROT_IW)
1462		__pte |= IOMMU_PTE_IW;
1463
1464	for (i = 0; i < count; ++i)
1465		pte[i] = __pte;
1466
1467	update_domain(dom);
1468
1469	return 0;
1470}
1471
1472static unsigned long iommu_unmap_page(struct protection_domain *dom,
1473				      unsigned long bus_addr,
1474				      unsigned long page_size)
1475{
1476	unsigned long long unmap_size, unmapped;
1477	u64 *pte;
1478
1479	BUG_ON(!is_power_of_2(page_size));
1480
1481	unmapped = 0;
1482
1483	while (unmapped < page_size) {
1484
1485		pte = fetch_pte(dom, bus_addr);
1486
1487		if (!pte) {
1488			/*
1489			 * No PTE for this address
1490			 * move forward in 4kb steps
1491			 */
1492			unmap_size = PAGE_SIZE;
1493		} else if (PM_PTE_LEVEL(*pte) == 0) {
1494			/* 4kb PTE found for this address */
1495			unmap_size = PAGE_SIZE;
1496			*pte       = 0ULL;
1497		} else {
1498			int count, i;
1499
1500			/* Large PTE found which maps this address */
1501			unmap_size = PTE_PAGE_SIZE(*pte);
1502
1503			/* Only unmap from the first pte in the page */
1504			if ((unmap_size - 1) & bus_addr)
1505				break;
1506			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
1507			for (i = 0; i < count; i++)
1508				pte[i] = 0ULL;
1509		}
1510
1511		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1512		unmapped += unmap_size;
1513	}
1514
1515	BUG_ON(unmapped && !is_power_of_2(unmapped));
1516
1517	return unmapped;
1518}
1519
1520/*
1521 * This function checks if a specific unity mapping entry is needed for
1522 * this specific IOMMU.
1523 */
1524static int iommu_for_unity_map(struct amd_iommu *iommu,
1525			       struct unity_map_entry *entry)
1526{
1527	u16 bdf, i;
1528
1529	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1530		bdf = amd_iommu_alias_table[i];
1531		if (amd_iommu_rlookup_table[bdf] == iommu)
1532			return 1;
1533	}
1534
1535	return 0;
1536}
1537
1538/*
1539 * This function actually applies the mapping to the page table of the
1540 * dma_ops domain.
1541 */
1542static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1543			     struct unity_map_entry *e)
1544{
1545	u64 addr;
1546	int ret;
1547
1548	for (addr = e->address_start; addr < e->address_end;
1549	     addr += PAGE_SIZE) {
1550		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1551				     PAGE_SIZE);
1552		if (ret)
1553			return ret;
1554		/*
1555		 * if unity mapping is in aperture range mark the page
1556		 * as allocated in the aperture
1557		 */
1558		if (addr < dma_dom->aperture_size)
1559			__set_bit(addr >> PAGE_SHIFT,
1560				  dma_dom->aperture[0]->bitmap);
1561	}
1562
1563	return 0;
1564}
1565
1566/*
1567 * Init the unity mappings for a specific IOMMU in the system
1568 *
1569 * Basically iterates over all unity mapping entries and applies them to
1570 * the default domain DMA of that IOMMU if necessary.
1571 */
1572static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1573{
1574	struct unity_map_entry *entry;
1575	int ret;
1576
1577	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1578		if (!iommu_for_unity_map(iommu, entry))
1579			continue;
1580		ret = dma_ops_unity_map(iommu->default_dom, entry);
1581		if (ret)
1582			return ret;
1583	}
1584
1585	return 0;
1586}
1587
1588/*
1589 * Inits the unity mappings required for a specific device
1590 */
1591static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1592					  u16 devid)
1593{
1594	struct unity_map_entry *e;
1595	int ret;
1596
1597	list_for_each_entry(e, &amd_iommu_unity_map, list) {
1598		if (!(devid >= e->devid_start && devid <= e->devid_end))
1599			continue;
1600		ret = dma_ops_unity_map(dma_dom, e);
1601		if (ret)
1602			return ret;
1603	}
1604
1605	return 0;
1606}
1607
1608/****************************************************************************
1609 *
1610 * The next functions belong to the address allocator for the dma_ops
1611 * interface functions. They work like the allocators in the other IOMMU
1612 * drivers. Its basically a bitmap which marks the allocated pages in
1613 * the aperture. Maybe it could be enhanced in the future to a more
1614 * efficient allocator.
1615 *
1616 ****************************************************************************/
1617
1618/*
1619 * The address allocator core functions.
1620 *
1621 * called with domain->lock held
1622 */
1623
1624/*
1625 * Used to reserve address ranges in the aperture (e.g. for exclusion
1626 * ranges.
1627 */
1628static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1629				      unsigned long start_page,
1630				      unsigned int pages)
1631{
1632	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1633
1634	if (start_page + pages > last_page)
1635		pages = last_page - start_page;
1636
1637	for (i = start_page; i < start_page + pages; ++i) {
1638		int index = i / APERTURE_RANGE_PAGES;
1639		int page  = i % APERTURE_RANGE_PAGES;
1640		__set_bit(page, dom->aperture[index]->bitmap);
1641	}
1642}
1643
1644/*
1645 * This function is used to add a new aperture range to an existing
1646 * aperture in case of dma_ops domain allocation or address allocation
1647 * failure.
1648 */
1649static int alloc_new_range(struct dma_ops_domain *dma_dom,
1650			   bool populate, gfp_t gfp)
1651{
1652	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1653	struct amd_iommu *iommu;
1654	unsigned long i, old_size;
1655
1656#ifdef CONFIG_IOMMU_STRESS
1657	populate = false;
1658#endif
1659
1660	if (index >= APERTURE_MAX_RANGES)
1661		return -ENOMEM;
1662
1663	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1664	if (!dma_dom->aperture[index])
1665		return -ENOMEM;
1666
1667	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1668	if (!dma_dom->aperture[index]->bitmap)
1669		goto out_free;
1670
1671	dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1672
1673	if (populate) {
1674		unsigned long address = dma_dom->aperture_size;
1675		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1676		u64 *pte, *pte_page;
1677
1678		for (i = 0; i < num_ptes; ++i) {
1679			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1680					&pte_page, gfp);
1681			if (!pte)
1682				goto out_free;
1683
1684			dma_dom->aperture[index]->pte_pages[i] = pte_page;
1685
1686			address += APERTURE_RANGE_SIZE / 64;
1687		}
1688	}
1689
1690	old_size                = dma_dom->aperture_size;
1691	dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1692
1693	/* Reserve address range used for MSI messages */
1694	if (old_size < MSI_ADDR_BASE_LO &&
1695	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1696		unsigned long spage;
1697		int pages;
1698
1699		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1700		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1701
1702		dma_ops_reserve_addresses(dma_dom, spage, pages);
1703	}
1704
1705	/* Initialize the exclusion range if necessary */
1706	for_each_iommu(iommu) {
1707		if (iommu->exclusion_start &&
1708		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
1709		    && iommu->exclusion_start < dma_dom->aperture_size) {
1710			unsigned long startpage;
1711			int pages = iommu_num_pages(iommu->exclusion_start,
1712						    iommu->exclusion_length,
1713						    PAGE_SIZE);
1714			startpage = iommu->exclusion_start >> PAGE_SHIFT;
1715			dma_ops_reserve_addresses(dma_dom, startpage, pages);
1716		}
1717	}
1718
1719	/*
1720	 * Check for areas already mapped as present in the new aperture
1721	 * range and mark those pages as reserved in the allocator. Such
1722	 * mappings may already exist as a result of requested unity
1723	 * mappings for devices.
1724	 */
1725	for (i = dma_dom->aperture[index]->offset;
1726	     i < dma_dom->aperture_size;
1727	     i += PAGE_SIZE) {
1728		u64 *pte = fetch_pte(&dma_dom->domain, i);
1729		if (!pte || !IOMMU_PTE_PRESENT(*pte))
1730			continue;
1731
1732		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1733	}
1734
1735	update_domain(&dma_dom->domain);
1736
1737	return 0;
1738
1739out_free:
1740	update_domain(&dma_dom->domain);
1741
1742	free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1743
1744	kfree(dma_dom->aperture[index]);
1745	dma_dom->aperture[index] = NULL;
1746
1747	return -ENOMEM;
1748}
1749
1750static unsigned long dma_ops_area_alloc(struct device *dev,
1751					struct dma_ops_domain *dom,
1752					unsigned int pages,
1753					unsigned long align_mask,
1754					u64 dma_mask,
1755					unsigned long start)
1756{
1757	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1758	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1759	int i = start >> APERTURE_RANGE_SHIFT;
1760	unsigned long boundary_size;
1761	unsigned long address = -1;
1762	unsigned long limit;
1763
1764	next_bit >>= PAGE_SHIFT;
1765
1766	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1767			PAGE_SIZE) >> PAGE_SHIFT;
1768
1769	for (;i < max_index; ++i) {
1770		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1771
1772		if (dom->aperture[i]->offset >= dma_mask)
1773			break;
1774
1775		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1776					       dma_mask >> PAGE_SHIFT);
1777
1778		address = iommu_area_alloc(dom->aperture[i]->bitmap,
1779					   limit, next_bit, pages, 0,
1780					    boundary_size, align_mask);
1781		if (address != -1) {
1782			address = dom->aperture[i]->offset +
1783				  (address << PAGE_SHIFT);
1784			dom->next_address = address + (pages << PAGE_SHIFT);
1785			break;
1786		}
1787
1788		next_bit = 0;
1789	}
1790
1791	return address;
1792}
1793
1794static unsigned long dma_ops_alloc_addresses(struct device *dev,
1795					     struct dma_ops_domain *dom,
1796					     unsigned int pages,
1797					     unsigned long align_mask,
1798					     u64 dma_mask)
1799{
1800	unsigned long address;
1801
1802#ifdef CONFIG_IOMMU_STRESS
1803	dom->next_address = 0;
1804	dom->need_flush = true;
1805#endif
1806
1807	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1808				     dma_mask, dom->next_address);
1809
1810	if (address == -1) {
1811		dom->next_address = 0;
1812		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1813					     dma_mask, 0);
1814		dom->need_flush = true;
1815	}
1816
1817	if (unlikely(address == -1))
1818		address = DMA_ERROR_CODE;
1819
1820	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1821
1822	return address;
1823}
1824
1825/*
1826 * The address free function.
1827 *
1828 * called with domain->lock held
1829 */
1830static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1831				   unsigned long address,
1832				   unsigned int pages)
1833{
1834	unsigned i = address >> APERTURE_RANGE_SHIFT;
1835	struct aperture_range *range = dom->aperture[i];
1836
1837	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1838
1839#ifdef CONFIG_IOMMU_STRESS
1840	if (i < 4)
1841		return;
1842#endif
1843
1844	if (address >= dom->next_address)
1845		dom->need_flush = true;
1846
1847	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1848
1849	bitmap_clear(range->bitmap, address, pages);
1850
1851}
1852
1853/****************************************************************************
1854 *
1855 * The next functions belong to the domain allocation. A domain is
1856 * allocated for every IOMMU as the default domain. If device isolation
1857 * is enabled, every device get its own domain. The most important thing
1858 * about domains is the page table mapping the DMA address space they
1859 * contain.
1860 *
1861 ****************************************************************************/
1862
1863/*
1864 * This function adds a protection domain to the global protection domain list
1865 */
1866static void add_domain_to_list(struct protection_domain *domain)
1867{
1868	unsigned long flags;
1869
1870	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1871	list_add(&domain->list, &amd_iommu_pd_list);
1872	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1873}
1874
1875/*
1876 * This function removes a protection domain to the global
1877 * protection domain list
1878 */
1879static void del_domain_from_list(struct protection_domain *domain)
1880{
1881	unsigned long flags;
1882
1883	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1884	list_del(&domain->list);
1885	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1886}
1887
1888static u16 domain_id_alloc(void)
1889{
1890	unsigned long flags;
1891	int id;
1892
1893	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1894	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1895	BUG_ON(id == 0);
1896	if (id > 0 && id < MAX_DOMAIN_ID)
1897		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1898	else
1899		id = 0;
1900	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1901
1902	return id;
1903}
1904
1905static void domain_id_free(int id)
1906{
1907	unsigned long flags;
1908
1909	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1910	if (id > 0 && id < MAX_DOMAIN_ID)
1911		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1912	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1913}
1914
1915#define DEFINE_FREE_PT_FN(LVL, FN)				\
1916static void free_pt_##LVL (unsigned long __pt)			\
1917{								\
1918	unsigned long p;					\
1919	u64 *pt;						\
1920	int i;							\
1921								\
1922	pt = (u64 *)__pt;					\
1923								\
1924	for (i = 0; i < 512; ++i) {				\
1925		if (!IOMMU_PTE_PRESENT(pt[i]))			\
1926			continue;				\
1927								\
1928		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
1929		FN(p);						\
1930	}							\
1931	free_page((unsigned long)pt);				\
1932}
1933
1934DEFINE_FREE_PT_FN(l2, free_page)
1935DEFINE_FREE_PT_FN(l3, free_pt_l2)
1936DEFINE_FREE_PT_FN(l4, free_pt_l3)
1937DEFINE_FREE_PT_FN(l5, free_pt_l4)
1938DEFINE_FREE_PT_FN(l6, free_pt_l5)
1939
1940static void free_pagetable(struct protection_domain *domain)
1941{
1942	unsigned long root = (unsigned long)domain->pt_root;
1943
1944	switch (domain->mode) {
1945	case PAGE_MODE_NONE:
1946		break;
1947	case PAGE_MODE_1_LEVEL:
1948		free_page(root);
1949		break;
1950	case PAGE_MODE_2_LEVEL:
1951		free_pt_l2(root);
1952		break;
1953	case PAGE_MODE_3_LEVEL:
1954		free_pt_l3(root);
1955		break;
1956	case PAGE_MODE_4_LEVEL:
1957		free_pt_l4(root);
1958		break;
1959	case PAGE_MODE_5_LEVEL:
1960		free_pt_l5(root);
1961		break;
1962	case PAGE_MODE_6_LEVEL:
1963		free_pt_l6(root);
1964		break;
1965	default:
1966		BUG();
1967	}
1968}
1969
1970static void free_gcr3_tbl_level1(u64 *tbl)
1971{
1972	u64 *ptr;
1973	int i;
1974
1975	for (i = 0; i < 512; ++i) {
1976		if (!(tbl[i] & GCR3_VALID))
1977			continue;
1978
1979		ptr = __va(tbl[i] & PAGE_MASK);
1980
1981		free_page((unsigned long)ptr);
1982	}
1983}
1984
1985static void free_gcr3_tbl_level2(u64 *tbl)
1986{
1987	u64 *ptr;
1988	int i;
1989
1990	for (i = 0; i < 512; ++i) {
1991		if (!(tbl[i] & GCR3_VALID))
1992			continue;
1993
1994		ptr = __va(tbl[i] & PAGE_MASK);
1995
1996		free_gcr3_tbl_level1(ptr);
1997	}
1998}
1999
2000static void free_gcr3_table(struct protection_domain *domain)
2001{
2002	if (domain->glx == 2)
2003		free_gcr3_tbl_level2(domain->gcr3_tbl);
2004	else if (domain->glx == 1)
2005		free_gcr3_tbl_level1(domain->gcr3_tbl);
2006	else if (domain->glx != 0)
2007		BUG();
2008
2009	free_page((unsigned long)domain->gcr3_tbl);
2010}
2011
2012/*
2013 * Free a domain, only used if something went wrong in the
2014 * allocation path and we need to free an already allocated page table
2015 */
2016static void dma_ops_domain_free(struct dma_ops_domain *dom)
2017{
2018	int i;
2019
2020	if (!dom)
2021		return;
2022
2023	del_domain_from_list(&dom->domain);
2024
2025	free_pagetable(&dom->domain);
2026
2027	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
2028		if (!dom->aperture[i])
2029			continue;
2030		free_page((unsigned long)dom->aperture[i]->bitmap);
2031		kfree(dom->aperture[i]);
2032	}
2033
2034	kfree(dom);
2035}
2036
2037/*
2038 * Allocates a new protection domain usable for the dma_ops functions.
2039 * It also initializes the page table and the address allocator data
2040 * structures required for the dma_ops interface
2041 */
2042static struct dma_ops_domain *dma_ops_domain_alloc(void)
2043{
2044	struct dma_ops_domain *dma_dom;
2045
2046	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
2047	if (!dma_dom)
2048		return NULL;
2049
2050	spin_lock_init(&dma_dom->domain.lock);
2051
2052	dma_dom->domain.id = domain_id_alloc();
2053	if (dma_dom->domain.id == 0)
2054		goto free_dma_dom;
2055	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
2056	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2057	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2058	dma_dom->domain.flags = PD_DMA_OPS_MASK;
2059	dma_dom->domain.priv = dma_dom;
2060	if (!dma_dom->domain.pt_root)
2061		goto free_dma_dom;
2062
2063	dma_dom->need_flush = false;
2064	dma_dom->target_dev = 0xffff;
2065
2066	add_domain_to_list(&dma_dom->domain);
2067
2068	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2069		goto free_dma_dom;
2070
2071	/*
2072	 * mark the first page as allocated so we never return 0 as
2073	 * a valid dma-address. So we can use 0 as error value
2074	 */
2075	dma_dom->aperture[0]->bitmap[0] = 1;
2076	dma_dom->next_address = 0;
2077
2078
2079	return dma_dom;
2080
2081free_dma_dom:
2082	dma_ops_domain_free(dma_dom);
2083
2084	return NULL;
2085}
2086
2087/*
2088 * little helper function to check whether a given protection domain is a
2089 * dma_ops domain
2090 */
2091static bool dma_ops_domain(struct protection_domain *domain)
2092{
2093	return domain->flags & PD_DMA_OPS_MASK;
2094}
2095
2096static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2097{
2098	u64 pte_root = 0;
2099	u64 flags = 0;
2100
2101	if (domain->mode != PAGE_MODE_NONE)
2102		pte_root = virt_to_phys(domain->pt_root);
2103
2104	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2105		    << DEV_ENTRY_MODE_SHIFT;
2106	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2107
2108	flags = amd_iommu_dev_table[devid].data[1];
2109
2110	if (ats)
2111		flags |= DTE_FLAG_IOTLB;
2112
2113	if (domain->flags & PD_IOMMUV2_MASK) {
2114		u64 gcr3 = __pa(domain->gcr3_tbl);
2115		u64 glx  = domain->glx;
2116		u64 tmp;
2117
2118		pte_root |= DTE_FLAG_GV;
2119		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2120
2121		/* First mask out possible old values for GCR3 table */
2122		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2123		flags    &= ~tmp;
2124
2125		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2126		flags    &= ~tmp;
2127
2128		/* Encode GCR3 table into DTE */
2129		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2130		pte_root |= tmp;
2131
2132		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2133		flags    |= tmp;
2134
2135		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2136		flags    |= tmp;
2137	}
2138
2139	flags &= ~(0xffffUL);
2140	flags |= domain->id;
2141
2142	amd_iommu_dev_table[devid].data[1]  = flags;
2143	amd_iommu_dev_table[devid].data[0]  = pte_root;
2144}
2145
2146static void clear_dte_entry(u16 devid)
2147{
2148	/* remove entry from the device table seen by the hardware */
2149	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2150	amd_iommu_dev_table[devid].data[1] = 0;
2151
2152	amd_iommu_apply_erratum_63(devid);
2153}
2154
2155static void do_attach(struct iommu_dev_data *dev_data,
2156		      struct protection_domain *domain)
2157{
2158	struct amd_iommu *iommu;
2159	bool ats;
2160
2161	iommu = amd_iommu_rlookup_table[dev_data->devid];
2162	ats   = dev_data->ats.enabled;
2163
2164	/* Update data structures */
2165	dev_data->domain = domain;
2166	list_add(&dev_data->list, &domain->dev_list);
2167	set_dte_entry(dev_data->devid, domain, ats);
2168
2169	/* Do reference counting */
2170	domain->dev_iommu[iommu->index] += 1;
2171	domain->dev_cnt                 += 1;
2172
2173	/* Flush the DTE entry */
2174	device_flush_dte(dev_data);
2175}
2176
2177static void do_detach(struct iommu_dev_data *dev_data)
2178{
2179	struct amd_iommu *iommu;
2180
2181	iommu = amd_iommu_rlookup_table[dev_data->devid];
2182
2183	/* decrease reference counters */
2184	dev_data->domain->dev_iommu[iommu->index] -= 1;
2185	dev_data->domain->dev_cnt                 -= 1;
2186
2187	/* Update data structures */
2188	dev_data->domain = NULL;
2189	list_del(&dev_data->list);
2190	clear_dte_entry(dev_data->devid);
2191
2192	/* Flush the DTE entry */
2193	device_flush_dte(dev_data);
2194}
2195
2196/*
2197 * If a device is not yet associated with a domain, this function does
2198 * assigns it visible for the hardware
2199 */
2200static int __attach_device(struct iommu_dev_data *dev_data,
2201			   struct protection_domain *domain)
2202{
2203	int ret;
2204
2205	/* lock domain */
2206	spin_lock(&domain->lock);
2207
2208	if (dev_data->alias_data != NULL) {
2209		struct iommu_dev_data *alias_data = dev_data->alias_data;
2210
2211		/* Some sanity checks */
2212		ret = -EBUSY;
2213		if (alias_data->domain != NULL &&
2214				alias_data->domain != domain)
2215			goto out_unlock;
2216
2217		if (dev_data->domain != NULL &&
2218				dev_data->domain != domain)
2219			goto out_unlock;
2220
2221		/* Do real assignment */
2222		if (alias_data->domain == NULL)
2223			do_attach(alias_data, domain);
2224
2225		atomic_inc(&alias_data->bind);
2226	}
2227
2228	if (dev_data->domain == NULL)
2229		do_attach(dev_data, domain);
2230
2231	atomic_inc(&dev_data->bind);
2232
2233	ret = 0;
2234
2235out_unlock:
2236
2237	/* ready */
2238	spin_unlock(&domain->lock);
2239
2240	return ret;
2241}
2242
2243
2244static void pdev_iommuv2_disable(struct pci_dev *pdev)
2245{
2246	pci_disable_ats(pdev);
2247	pci_disable_pri(pdev);
2248	pci_disable_pasid(pdev);
2249}
2250
2251/* FIXME: Change generic reset-function to do the same */
2252static int pri_reset_while_enabled(struct pci_dev *pdev)
2253{
2254	u16 control;
2255	int pos;
2256
2257	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2258	if (!pos)
2259		return -EINVAL;
2260
2261	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2262	control |= PCI_PRI_CTRL_RESET;
2263	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2264
2265	return 0;
2266}
2267
2268static int pdev_iommuv2_enable(struct pci_dev *pdev)
2269{
2270	bool reset_enable;
2271	int reqs, ret;
2272
2273	/* FIXME: Hardcode number of outstanding requests for now */
2274	reqs = 32;
2275	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2276		reqs = 1;
2277	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2278
2279	/* Only allow access to user-accessible pages */
2280	ret = pci_enable_pasid(pdev, 0);
2281	if (ret)
2282		goto out_err;
2283
2284	/* First reset the PRI state of the device */
2285	ret = pci_reset_pri(pdev);
2286	if (ret)
2287		goto out_err;
2288
2289	/* Enable PRI */
2290	ret = pci_enable_pri(pdev, reqs);
2291	if (ret)
2292		goto out_err;
2293
2294	if (reset_enable) {
2295		ret = pri_reset_while_enabled(pdev);
2296		if (ret)
2297			goto out_err;
2298	}
2299
2300	ret = pci_enable_ats(pdev, PAGE_SHIFT);
2301	if (ret)
2302		goto out_err;
2303
2304	return 0;
2305
2306out_err:
2307	pci_disable_pri(pdev);
2308	pci_disable_pasid(pdev);
2309
2310	return ret;
2311}
2312
2313/* FIXME: Move this to PCI code */
2314#define PCI_PRI_TLP_OFF		(1 << 15)
2315
2316static bool pci_pri_tlp_required(struct pci_dev *pdev)
2317{
2318	u16 status;
2319	int pos;
2320
2321	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2322	if (!pos)
2323		return false;
2324
2325	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2326
2327	return (status & PCI_PRI_TLP_OFF) ? true : false;
2328}
2329
2330/*
2331 * If a device is not yet associated with a domain, this function
2332 * assigns it visible for the hardware
2333 */
2334static int attach_device(struct device *dev,
2335			 struct protection_domain *domain)
2336{
2337	struct pci_dev *pdev = to_pci_dev(dev);
2338	struct iommu_dev_data *dev_data;
2339	unsigned long flags;
2340	int ret;
2341
2342	dev_data = get_dev_data(dev);
2343
2344	if (domain->flags & PD_IOMMUV2_MASK) {
2345		if (!dev_data->iommu_v2 || !dev_data->passthrough)
2346			return -EINVAL;
2347
2348		if (pdev_iommuv2_enable(pdev) != 0)
2349			return -EINVAL;
2350
2351		dev_data->ats.enabled = true;
2352		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2353		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2354	} else if (amd_iommu_iotlb_sup &&
2355		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2356		dev_data->ats.enabled = true;
2357		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2358	}
2359
2360	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2361	ret = __attach_device(dev_data, domain);
2362	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2363
2364	/*
2365	 * We might boot into a crash-kernel here. The crashed kernel
2366	 * left the caches in the IOMMU dirty. So we have to flush
2367	 * here to evict all dirty stuff.
2368	 */
2369	domain_flush_tlb_pde(domain);
2370
2371	return ret;
2372}
2373
2374/*
2375 * Removes a device from a protection domain (unlocked)
2376 */
2377static void __detach_device(struct iommu_dev_data *dev_data)
2378{
2379	struct protection_domain *domain;
2380	unsigned long flags;
2381
2382	BUG_ON(!dev_data->domain);
2383
2384	domain = dev_data->domain;
2385
2386	spin_lock_irqsave(&domain->lock, flags);
2387
2388	if (dev_data->alias_data != NULL) {
2389		struct iommu_dev_data *alias_data = dev_data->alias_data;
2390
2391		if (atomic_dec_and_test(&alias_data->bind))
2392			do_detach(alias_data);
2393	}
2394
2395	if (atomic_dec_and_test(&dev_data->bind))
2396		do_detach(dev_data);
2397
2398	spin_unlock_irqrestore(&domain->lock, flags);
2399
2400	/*
2401	 * If we run in passthrough mode the device must be assigned to the
2402	 * passthrough domain if it is detached from any other domain.
2403	 * Make sure we can deassign from the pt_domain itself.
2404	 */
2405	if (dev_data->passthrough &&
2406	    (dev_data->domain == NULL && domain != pt_domain))
2407		__attach_device(dev_data, pt_domain);
2408}
2409
2410/*
2411 * Removes a device from a protection domain (with devtable_lock held)
2412 */
2413static void detach_device(struct device *dev)
2414{
2415	struct protection_domain *domain;
2416	struct iommu_dev_data *dev_data;
2417	unsigned long flags;
2418
2419	dev_data = get_dev_data(dev);
2420	domain   = dev_data->domain;
2421
2422	/* lock device table */
2423	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2424	__detach_device(dev_data);
2425	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2426
2427	if (domain->flags & PD_IOMMUV2_MASK)
2428		pdev_iommuv2_disable(to_pci_dev(dev));
2429	else if (dev_data->ats.enabled)
2430		pci_disable_ats(to_pci_dev(dev));
2431
2432	dev_data->ats.enabled = false;
2433}
2434
2435/*
2436 * Find out the protection domain structure for a given PCI device. This
2437 * will give us the pointer to the page table root for example.
2438 */
2439static struct protection_domain *domain_for_device(struct device *dev)
2440{
2441	struct iommu_dev_data *dev_data;
2442	struct protection_domain *dom = NULL;
2443	unsigned long flags;
2444
2445	dev_data   = get_dev_data(dev);
2446
2447	if (dev_data->domain)
2448		return dev_data->domain;
2449
2450	if (dev_data->alias_data != NULL) {
2451		struct iommu_dev_data *alias_data = dev_data->alias_data;
2452
2453		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2454		if (alias_data->domain != NULL) {
2455			__attach_device(dev_data, alias_data->domain);
2456			dom = alias_data->domain;
2457		}
2458		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2459	}
2460
2461	return dom;
2462}
2463
2464static int device_change_notifier(struct notifier_block *nb,
2465				  unsigned long action, void *data)
2466{
2467	struct dma_ops_domain *dma_domain;
2468	struct protection_domain *domain;
2469	struct iommu_dev_data *dev_data;
2470	struct device *dev = data;
2471	struct amd_iommu *iommu;
2472	unsigned long flags;
2473	u16 devid;
2474
2475	if (!check_device(dev))
2476		return 0;
2477
2478	devid    = get_device_id(dev);
2479	iommu    = amd_iommu_rlookup_table[devid];
2480	dev_data = get_dev_data(dev);
2481
2482	switch (action) {
2483	case BUS_NOTIFY_UNBOUND_DRIVER:
2484
2485		domain = domain_for_device(dev);
2486
2487		if (!domain)
2488			goto out;
2489		if (dev_data->passthrough)
2490			break;
2491		detach_device(dev);
2492		break;
2493	case BUS_NOTIFY_ADD_DEVICE:
2494
2495		iommu_init_device(dev);
2496
2497		/*
2498		 * dev_data is still NULL and
2499		 * got initialized in iommu_init_device
2500		 */
2501		dev_data = get_dev_data(dev);
2502
2503		if (iommu_pass_through || dev_data->iommu_v2) {
2504			dev_data->passthrough = true;
2505			attach_device(dev, pt_domain);
2506			break;
2507		}
2508
2509		domain = domain_for_device(dev);
2510
2511		/* allocate a protection domain if a device is added */
2512		dma_domain = find_protection_domain(devid);
2513		if (!dma_domain) {
2514			dma_domain = dma_ops_domain_alloc();
2515			if (!dma_domain)
2516				goto out;
2517			dma_domain->target_dev = devid;
2518
2519			spin_lock_irqsave(&iommu_pd_list_lock, flags);
2520			list_add_tail(&dma_domain->list, &iommu_pd_list);
2521			spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2522		}
2523
2524		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2525
2526		break;
2527	case BUS_NOTIFY_DEL_DEVICE:
2528
2529		iommu_uninit_device(dev);
2530
2531	default:
2532		goto out;
2533	}
2534
2535	iommu_completion_wait(iommu);
2536
2537out:
2538	return 0;
2539}
2540
2541static struct notifier_block device_nb = {
2542	.notifier_call = device_change_notifier,
2543};
2544
2545void amd_iommu_init_notifier(void)
2546{
2547	bus_register_notifier(&pci_bus_type, &device_nb);
2548}
2549
2550/*****************************************************************************
2551 *
2552 * The next functions belong to the dma_ops mapping/unmapping code.
2553 *
2554 *****************************************************************************/
2555
2556/*
2557 * In the dma_ops path we only have the struct device. This function
2558 * finds the corresponding IOMMU, the protection domain and the
2559 * requestor id for a given device.
2560 * If the device is not yet associated with a domain this is also done
2561 * in this function.
2562 */
2563static struct protection_domain *get_domain(struct device *dev)
2564{
2565	struct protection_domain *domain;
2566	struct dma_ops_domain *dma_dom;
2567	u16 devid = get_device_id(dev);
2568
2569	if (!check_device(dev))
2570		return ERR_PTR(-EINVAL);
2571
2572	domain = domain_for_device(dev);
2573	if (domain != NULL && !dma_ops_domain(domain))
2574		return ERR_PTR(-EBUSY);
2575
2576	if (domain != NULL)
2577		return domain;
2578
2579	/* Device not bound yet - bind it */
2580	dma_dom = find_protection_domain(devid);
2581	if (!dma_dom)
2582		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2583	attach_device(dev, &dma_dom->domain);
2584	DUMP_printk("Using protection domain %d for device %s\n",
2585		    dma_dom->domain.id, dev_name(dev));
2586
2587	return &dma_dom->domain;
2588}
2589
2590static void update_device_table(struct protection_domain *domain)
2591{
2592	struct iommu_dev_data *dev_data;
2593
2594	list_for_each_entry(dev_data, &domain->dev_list, list)
2595		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2596}
2597
2598static void update_domain(struct protection_domain *domain)
2599{
2600	if (!domain->updated)
2601		return;
2602
2603	update_device_table(domain);
2604
2605	domain_flush_devices(domain);
2606	domain_flush_tlb_pde(domain);
2607
2608	domain->updated = false;
2609}
2610
2611/*
2612 * This function fetches the PTE for a given address in the aperture
2613 */
2614static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2615			    unsigned long address)
2616{
2617	struct aperture_range *aperture;
2618	u64 *pte, *pte_page;
2619
2620	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2621	if (!aperture)
2622		return NULL;
2623
2624	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2625	if (!pte) {
2626		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2627				GFP_ATOMIC);
2628		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2629	} else
2630		pte += PM_LEVEL_INDEX(0, address);
2631
2632	update_domain(&dom->domain);
2633
2634	return pte;
2635}
2636
2637/*
2638 * This is the generic map function. It maps one 4kb page at paddr to
2639 * the given address in the DMA address space for the domain.
2640 */
2641static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2642				     unsigned long address,
2643				     phys_addr_t paddr,
2644				     int direction)
2645{
2646	u64 *pte, __pte;
2647
2648	WARN_ON(address > dom->aperture_size);
2649
2650	paddr &= PAGE_MASK;
2651
2652	pte  = dma_ops_get_pte(dom, address);
2653	if (!pte)
2654		return DMA_ERROR_CODE;
2655
2656	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2657
2658	if (direction == DMA_TO_DEVICE)
2659		__pte |= IOMMU_PTE_IR;
2660	else if (direction == DMA_FROM_DEVICE)
2661		__pte |= IOMMU_PTE_IW;
2662	else if (direction == DMA_BIDIRECTIONAL)
2663		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2664
2665	WARN_ON(*pte);
2666
2667	*pte = __pte;
2668
2669	return (dma_addr_t)address;
2670}
2671
2672/*
2673 * The generic unmapping function for on page in the DMA address space.
2674 */
2675static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2676				 unsigned long address)
2677{
2678	struct aperture_range *aperture;
2679	u64 *pte;
2680
2681	if (address >= dom->aperture_size)
2682		return;
2683
2684	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2685	if (!aperture)
2686		return;
2687
2688	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2689	if (!pte)
2690		return;
2691
2692	pte += PM_LEVEL_INDEX(0, address);
2693
2694	WARN_ON(!*pte);
2695
2696	*pte = 0ULL;
2697}
2698
2699/*
2700 * This function contains common code for mapping of a physically
2701 * contiguous memory region into DMA address space. It is used by all
2702 * mapping functions provided with this IOMMU driver.
2703 * Must be called with the domain lock held.
2704 */
2705static dma_addr_t __map_single(struct device *dev,
2706			       struct dma_ops_domain *dma_dom,
2707			       phys_addr_t paddr,
2708			       size_t size,
2709			       int dir,
2710			       bool align,
2711			       u64 dma_mask)
2712{
2713	dma_addr_t offset = paddr & ~PAGE_MASK;
2714	dma_addr_t address, start, ret;
2715	unsigned int pages;
2716	unsigned long align_mask = 0;
2717	int i;
2718
2719	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2720	paddr &= PAGE_MASK;
2721
2722	INC_STATS_COUNTER(total_map_requests);
2723
2724	if (pages > 1)
2725		INC_STATS_COUNTER(cross_page);
2726
2727	if (align)
2728		align_mask = (1UL << get_order(size)) - 1;
2729
2730retry:
2731	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2732					  dma_mask);
2733	if (unlikely(address == DMA_ERROR_CODE)) {
2734		/*
2735		 * setting next_address here will let the address
2736		 * allocator only scan the new allocated range in the
2737		 * first run. This is a small optimization.
2738		 */
2739		dma_dom->next_address = dma_dom->aperture_size;
2740
2741		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2742			goto out;
2743
2744		/*
2745		 * aperture was successfully enlarged by 128 MB, try
2746		 * allocation again
2747		 */
2748		goto retry;
2749	}
2750
2751	start = address;
2752	for (i = 0; i < pages; ++i) {
2753		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2754		if (ret == DMA_ERROR_CODE)
2755			goto out_unmap;
2756
2757		paddr += PAGE_SIZE;
2758		start += PAGE_SIZE;
2759	}
2760	address += offset;
2761
2762	ADD_STATS_COUNTER(alloced_io_mem, size);
2763
2764	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2765		domain_flush_tlb(&dma_dom->domain);
2766		dma_dom->need_flush = false;
2767	} else if (unlikely(amd_iommu_np_cache))
2768		domain_flush_pages(&dma_dom->domain, address, size);
2769
2770out:
2771	return address;
2772
2773out_unmap:
2774
2775	for (--i; i >= 0; --i) {
2776		start -= PAGE_SIZE;
2777		dma_ops_domain_unmap(dma_dom, start);
2778	}
2779
2780	dma_ops_free_addresses(dma_dom, address, pages);
2781
2782	return DMA_ERROR_CODE;
2783}
2784
2785/*
2786 * Does the reverse of the __map_single function. Must be called with
2787 * the domain lock held too
2788 */
2789static void __unmap_single(struct dma_ops_domain *dma_dom,
2790			   dma_addr_t dma_addr,
2791			   size_t size,
2792			   int dir)
2793{
2794	dma_addr_t flush_addr;
2795	dma_addr_t i, start;
2796	unsigned int pages;
2797
2798	if ((dma_addr == DMA_ERROR_CODE) ||
2799	    (dma_addr + size > dma_dom->aperture_size))
2800		return;
2801
2802	flush_addr = dma_addr;
2803	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2804	dma_addr &= PAGE_MASK;
2805	start = dma_addr;
2806
2807	for (i = 0; i < pages; ++i) {
2808		dma_ops_domain_unmap(dma_dom, start);
2809		start += PAGE_SIZE;
2810	}
2811
2812	SUB_STATS_COUNTER(alloced_io_mem, size);
2813
2814	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2815
2816	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2817		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2818		dma_dom->need_flush = false;
2819	}
2820}
2821
2822/*
2823 * The exported map_single function for dma_ops.
2824 */
2825static dma_addr_t map_page(struct device *dev, struct page *page,
2826			   unsigned long offset, size_t size,
2827			   enum dma_data_direction dir,
2828			   struct dma_attrs *attrs)
2829{
2830	unsigned long flags;
2831	struct protection_domain *domain;
2832	dma_addr_t addr;
2833	u64 dma_mask;
2834	phys_addr_t paddr = page_to_phys(page) + offset;
2835
2836	INC_STATS_COUNTER(cnt_map_single);
2837
2838	domain = get_domain(dev);
2839	if (PTR_ERR(domain) == -EINVAL)
2840		return (dma_addr_t)paddr;
2841	else if (IS_ERR(domain))
2842		return DMA_ERROR_CODE;
2843
2844	dma_mask = *dev->dma_mask;
2845
2846	spin_lock_irqsave(&domain->lock, flags);
2847
2848	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2849			    dma_mask);
2850	if (addr == DMA_ERROR_CODE)
2851		goto out;
2852
2853	domain_flush_complete(domain);
2854
2855out:
2856	spin_unlock_irqrestore(&domain->lock, flags);
2857
2858	return addr;
2859}
2860
2861/*
2862 * The exported unmap_single function for dma_ops.
2863 */
2864static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2865		       enum dma_data_direction dir, struct dma_attrs *attrs)
2866{
2867	unsigned long flags;
2868	struct protection_domain *domain;
2869
2870	INC_STATS_COUNTER(cnt_unmap_single);
2871
2872	domain = get_domain(dev);
2873	if (IS_ERR(domain))
2874		return;
2875
2876	spin_lock_irqsave(&domain->lock, flags);
2877
2878	__unmap_single(domain->priv, dma_addr, size, dir);
2879
2880	domain_flush_complete(domain);
2881
2882	spin_unlock_irqrestore(&domain->lock, flags);
2883}
2884
2885/*
2886 * The exported map_sg function for dma_ops (handles scatter-gather
2887 * lists).
2888 */
2889static int map_sg(struct device *dev, struct scatterlist *sglist,
2890		  int nelems, enum dma_data_direction dir,
2891		  struct dma_attrs *attrs)
2892{
2893	unsigned long flags;
2894	struct protection_domain *domain;
2895	int i;
2896	struct scatterlist *s;
2897	phys_addr_t paddr;
2898	int mapped_elems = 0;
2899	u64 dma_mask;
2900
2901	INC_STATS_COUNTER(cnt_map_sg);
2902
2903	domain = get_domain(dev);
2904	if (IS_ERR(domain))
2905		return 0;
2906
2907	dma_mask = *dev->dma_mask;
2908
2909	spin_lock_irqsave(&domain->lock, flags);
2910
2911	for_each_sg(sglist, s, nelems, i) {
2912		paddr = sg_phys(s);
2913
2914		s->dma_address = __map_single(dev, domain->priv,
2915					      paddr, s->length, dir, false,
2916					      dma_mask);
2917
2918		if (s->dma_address) {
2919			s->dma_length = s->length;
2920			mapped_elems++;
2921		} else
2922			goto unmap;
2923	}
2924
2925	domain_flush_complete(domain);
2926
2927out:
2928	spin_unlock_irqrestore(&domain->lock, flags);
2929
2930	return mapped_elems;
2931unmap:
2932	for_each_sg(sglist, s, mapped_elems, i) {
2933		if (s->dma_address)
2934			__unmap_single(domain->priv, s->dma_address,
2935				       s->dma_length, dir);
2936		s->dma_address = s->dma_length = 0;
2937	}
2938
2939	mapped_elems = 0;
2940
2941	goto out;
2942}
2943
2944/*
2945 * The exported map_sg function for dma_ops (handles scatter-gather
2946 * lists).
2947 */
2948static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2949		     int nelems, enum dma_data_direction dir,
2950		     struct dma_attrs *attrs)
2951{
2952	unsigned long flags;
2953	struct protection_domain *domain;
2954	struct scatterlist *s;
2955	int i;
2956
2957	INC_STATS_COUNTER(cnt_unmap_sg);
2958
2959	domain = get_domain(dev);
2960	if (IS_ERR(domain))
2961		return;
2962
2963	spin_lock_irqsave(&domain->lock, flags);
2964
2965	for_each_sg(sglist, s, nelems, i) {
2966		__unmap_single(domain->priv, s->dma_address,
2967			       s->dma_length, dir);
2968		s->dma_address = s->dma_length = 0;
2969	}
2970
2971	domain_flush_complete(domain);
2972
2973	spin_unlock_irqrestore(&domain->lock, flags);
2974}
2975
2976/*
2977 * The exported alloc_coherent function for dma_ops.
2978 */
2979static void *alloc_coherent(struct device *dev, size_t size,
2980			    dma_addr_t *dma_addr, gfp_t flag,
2981			    struct dma_attrs *attrs)
2982{
2983	unsigned long flags;
2984	void *virt_addr;
2985	struct protection_domain *domain;
2986	phys_addr_t paddr;
2987	u64 dma_mask = dev->coherent_dma_mask;
2988
2989	INC_STATS_COUNTER(cnt_alloc_coherent);
2990
2991	domain = get_domain(dev);
2992	if (PTR_ERR(domain) == -EINVAL) {
2993		virt_addr = (void *)__get_free_pages(flag, get_order(size));
2994		*dma_addr = __pa(virt_addr);
2995		return virt_addr;
2996	} else if (IS_ERR(domain))
2997		return NULL;
2998
2999	dma_mask  = dev->coherent_dma_mask;
3000	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
3001	flag     |= __GFP_ZERO;
3002
3003	virt_addr = (void *)__get_free_pages(flag, get_order(size));
3004	if (!virt_addr)
3005		return NULL;
3006
3007	paddr = virt_to_phys(virt_addr);
3008
3009	if (!dma_mask)
3010		dma_mask = *dev->dma_mask;
3011
3012	spin_lock_irqsave(&domain->lock, flags);
3013
3014	*dma_addr = __map_single(dev, domain->priv, paddr,
3015				 size, DMA_BIDIRECTIONAL, true, dma_mask);
3016
3017	if (*dma_addr == DMA_ERROR_CODE) {
3018		spin_unlock_irqrestore(&domain->lock, flags);
3019		goto out_free;
3020	}
3021
3022	domain_flush_complete(domain);
3023
3024	spin_unlock_irqrestore(&domain->lock, flags);
3025
3026	return virt_addr;
3027
3028out_free:
3029
3030	free_pages((unsigned long)virt_addr, get_order(size));
3031
3032	return NULL;
3033}
3034
3035/*
3036 * The exported free_coherent function for dma_ops.
3037 */
3038static void free_coherent(struct device *dev, size_t size,
3039			  void *virt_addr, dma_addr_t dma_addr,
3040			  struct dma_attrs *attrs)
3041{
3042	unsigned long flags;
3043	struct protection_domain *domain;
3044
3045	INC_STATS_COUNTER(cnt_free_coherent);
3046
3047	domain = get_domain(dev);
3048	if (IS_ERR(domain))
3049		goto free_mem;
3050
3051	spin_lock_irqsave(&domain->lock, flags);
3052
3053	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
3054
3055	domain_flush_complete(domain);
3056
3057	spin_unlock_irqrestore(&domain->lock, flags);
3058
3059free_mem:
3060	free_pages((unsigned long)virt_addr, get_order(size));
3061}
3062
3063/*
3064 * This function is called by the DMA layer to find out if we can handle a
3065 * particular device. It is part of the dma_ops.
3066 */
3067static int amd_iommu_dma_supported(struct device *dev, u64 mask)
3068{
3069	return check_device(dev);
3070}
3071
3072/*
3073 * The function for pre-allocating protection domains.
3074 *
3075 * If the driver core informs the DMA layer if a driver grabs a device
3076 * we don't need to preallocate the protection domains anymore.
3077 * For now we have to.
3078 */
3079static void __init prealloc_protection_domains(void)
3080{
3081	struct iommu_dev_data *dev_data;
3082	struct dma_ops_domain *dma_dom;
3083	struct pci_dev *dev = NULL;
3084	u16 devid;
3085
3086	for_each_pci_dev(dev) {
3087
3088		/* Do we handle this device? */
3089		if (!check_device(&dev->dev))
3090			continue;
3091
3092		dev_data = get_dev_data(&dev->dev);
3093		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
3094			/* Make sure passthrough domain is allocated */
3095			alloc_passthrough_domain();
3096			dev_data->passthrough = true;
3097			attach_device(&dev->dev, pt_domain);
3098			pr_info("AMD-Vi: Using passthrough domain for device %s\n",
3099				dev_name(&dev->dev));
3100		}
3101
3102		/* Is there already any domain for it? */
3103		if (domain_for_device(&dev->dev))
3104			continue;
3105
3106		devid = get_device_id(&dev->dev);
3107
3108		dma_dom = dma_ops_domain_alloc();
3109		if (!dma_dom)
3110			continue;
3111		init_unity_mappings_for_device(dma_dom, devid);
3112		dma_dom->target_dev = devid;
3113
3114		attach_device(&dev->dev, &dma_dom->domain);
3115
3116		list_add_tail(&dma_dom->list, &iommu_pd_list);
3117	}
3118}
3119
3120static struct dma_map_ops amd_iommu_dma_ops = {
3121	.alloc = alloc_coherent,
3122	.free = free_coherent,
3123	.map_page = map_page,
3124	.unmap_page = unmap_page,
3125	.map_sg = map_sg,
3126	.unmap_sg = unmap_sg,
3127	.dma_supported = amd_iommu_dma_supported,
3128};
3129
3130static unsigned device_dma_ops_init(void)
3131{
3132	struct iommu_dev_data *dev_data;
3133	struct pci_dev *pdev = NULL;
3134	unsigned unhandled = 0;
3135
3136	for_each_pci_dev(pdev) {
3137		if (!check_device(&pdev->dev)) {
3138
3139			iommu_ignore_device(&pdev->dev);
3140
3141			unhandled += 1;
3142			continue;
3143		}
3144
3145		dev_data = get_dev_data(&pdev->dev);
3146
3147		if (!dev_data->passthrough)
3148			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
3149		else
3150			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3151	}
3152
3153	return unhandled;
3154}
3155
3156/*
3157 * The function which clues the AMD IOMMU driver into dma_ops.
3158 */
3159
3160void __init amd_iommu_init_api(void)
3161{
3162	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3163}
3164
3165int __init amd_iommu_init_dma_ops(void)
3166{
3167	struct amd_iommu *iommu;
3168	int ret, unhandled;
3169
3170	/*
3171	 * first allocate a default protection domain for every IOMMU we
3172	 * found in the system. Devices not assigned to any other
3173	 * protection domain will be assigned to the default one.
3174	 */
3175	for_each_iommu(iommu) {
3176		iommu->default_dom = dma_ops_domain_alloc();
3177		if (iommu->default_dom == NULL)
3178			return -ENOMEM;
3179		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3180		ret = iommu_init_unity_mappings(iommu);
3181		if (ret)
3182			goto free_domains;
3183	}
3184
3185	/*
3186	 * Pre-allocate the protection domains for each device.
3187	 */
3188	prealloc_protection_domains();
3189
3190	iommu_detected = 1;
3191	swiotlb = 0;
3192
3193	/* Make the driver finally visible to the drivers */
3194	unhandled = device_dma_ops_init();
3195	if (unhandled && max_pfn > MAX_DMA32_PFN) {
3196		/* There are unhandled devices - initialize swiotlb for them */
3197		swiotlb = 1;
3198	}
3199
3200	amd_iommu_stats_init();
3201
3202	if (amd_iommu_unmap_flush)
3203		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3204	else
3205		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3206
3207	return 0;
3208
3209free_domains:
3210
3211	for_each_iommu(iommu) {
3212		dma_ops_domain_free(iommu->default_dom);
3213	}
3214
3215	return ret;
3216}
3217
3218/*****************************************************************************
3219 *
3220 * The following functions belong to the exported interface of AMD IOMMU
3221 *
3222 * This interface allows access to lower level functions of the IOMMU
3223 * like protection domain handling and assignement of devices to domains
3224 * which is not possible with the dma_ops interface.
3225 *
3226 *****************************************************************************/
3227
3228static void cleanup_domain(struct protection_domain *domain)
3229{
3230	struct iommu_dev_data *dev_data, *next;
3231	unsigned long flags;
3232
3233	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3234
3235	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
3236		__detach_device(dev_data);
3237		atomic_set(&dev_data->bind, 0);
3238	}
3239
3240	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3241}
3242
3243static void protection_domain_free(struct protection_domain *domain)
3244{
3245	if (!domain)
3246		return;
3247
3248	del_domain_from_list(domain);
3249
3250	if (domain->id)
3251		domain_id_free(domain->id);
3252
3253	kfree(domain);
3254}
3255
3256static struct protection_domain *protection_domain_alloc(void)
3257{
3258	struct protection_domain *domain;
3259
3260	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3261	if (!domain)
3262		return NULL;
3263
3264	spin_lock_init(&domain->lock);
3265	mutex_init(&domain->api_lock);
3266	domain->id = domain_id_alloc();
3267	if (!domain->id)
3268		goto out_err;
3269	INIT_LIST_HEAD(&domain->dev_list);
3270
3271	add_domain_to_list(domain);
3272
3273	return domain;
3274
3275out_err:
3276	kfree(domain);
3277
3278	return NULL;
3279}
3280
3281static int __init alloc_passthrough_domain(void)
3282{
3283	if (pt_domain != NULL)
3284		return 0;
3285
3286	/* allocate passthrough domain */
3287	pt_domain = protection_domain_alloc();
3288	if (!pt_domain)
3289		return -ENOMEM;
3290
3291	pt_domain->mode = PAGE_MODE_NONE;
3292
3293	return 0;
3294}
3295static int amd_iommu_domain_init(struct iommu_domain *dom)
3296{
3297	struct protection_domain *domain;
3298
3299	domain = protection_domain_alloc();
3300	if (!domain)
3301		goto out_free;
3302
3303	domain->mode    = PAGE_MODE_3_LEVEL;
3304	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3305	if (!domain->pt_root)
3306		goto out_free;
3307
3308	domain->iommu_domain = dom;
3309
3310	dom->priv = domain;
3311
3312	dom->geometry.aperture_start = 0;
3313	dom->geometry.aperture_end   = ~0ULL;
3314	dom->geometry.force_aperture = true;
3315
3316	return 0;
3317
3318out_free:
3319	protection_domain_free(domain);
3320
3321	return -ENOMEM;
3322}
3323
3324static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3325{
3326	struct protection_domain *domain = dom->priv;
3327
3328	if (!domain)
3329		return;
3330
3331	if (domain->dev_cnt > 0)
3332		cleanup_domain(domain);
3333
3334	BUG_ON(domain->dev_cnt != 0);
3335
3336	if (domain->mode != PAGE_MODE_NONE)
3337		free_pagetable(domain);
3338
3339	if (domain->flags & PD_IOMMUV2_MASK)
3340		free_gcr3_table(domain);
3341
3342	protection_domain_free(domain);
3343
3344	dom->priv = NULL;
3345}
3346
3347static void amd_iommu_detach_device(struct iommu_domain *dom,
3348				    struct device *dev)
3349{
3350	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3351	struct amd_iommu *iommu;
3352	u16 devid;
3353
3354	if (!check_device(dev))
3355		return;
3356
3357	devid = get_device_id(dev);
3358
3359	if (dev_data->domain != NULL)
3360		detach_device(dev);
3361
3362	iommu = amd_iommu_rlookup_table[devid];
3363	if (!iommu)
3364		return;
3365
3366	iommu_completion_wait(iommu);
3367}
3368
3369static int amd_iommu_attach_device(struct iommu_domain *dom,
3370				   struct device *dev)
3371{
3372	struct protection_domain *domain = dom->priv;
3373	struct iommu_dev_data *dev_data;
3374	struct amd_iommu *iommu;
3375	int ret;
3376
3377	if (!check_device(dev))
3378		return -EINVAL;
3379
3380	dev_data = dev->archdata.iommu;
3381
3382	iommu = amd_iommu_rlookup_table[dev_data->devid];
3383	if (!iommu)
3384		return -EINVAL;
3385
3386	if (dev_data->domain)
3387		detach_device(dev);
3388
3389	ret = attach_device(dev, domain);
3390
3391	iommu_completion_wait(iommu);
3392
3393	return ret;
3394}
3395
3396static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3397			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3398{
3399	struct protection_domain *domain = dom->priv;
3400	int prot = 0;
3401	int ret;
3402
3403	if (domain->mode == PAGE_MODE_NONE)
3404		return -EINVAL;
3405
3406	if (iommu_prot & IOMMU_READ)
3407		prot |= IOMMU_PROT_IR;
3408	if (iommu_prot & IOMMU_WRITE)
3409		prot |= IOMMU_PROT_IW;
3410
3411	mutex_lock(&domain->api_lock);
3412	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3413	mutex_unlock(&domain->api_lock);
3414
3415	return ret;
3416}
3417
3418static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3419			   size_t page_size)
3420{
3421	struct protection_domain *domain = dom->priv;
3422	size_t unmap_size;
3423
3424	if (domain->mode == PAGE_MODE_NONE)
3425		return -EINVAL;
3426
3427	mutex_lock(&domain->api_lock);
3428	unmap_size = iommu_unmap_page(domain, iova, page_size);
3429	mutex_unlock(&domain->api_lock);
3430
3431	domain_flush_tlb_pde(domain);
3432
3433	return unmap_size;
3434}
3435
3436static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3437					  dma_addr_t iova)
3438{
3439	struct protection_domain *domain = dom->priv;
3440	unsigned long offset_mask;
3441	phys_addr_t paddr;
3442	u64 *pte, __pte;
3443
3444	if (domain->mode == PAGE_MODE_NONE)
3445		return iova;
3446
3447	pte = fetch_pte(domain, iova);
3448
3449	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3450		return 0;
3451
3452	if (PM_PTE_LEVEL(*pte) == 0)
3453		offset_mask = PAGE_SIZE - 1;
3454	else
3455		offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3456
3457	__pte = *pte & PM_ADDR_MASK;
3458	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3459
3460	return paddr;
3461}
3462
3463static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3464				    unsigned long cap)
3465{
3466	switch (cap) {
3467	case IOMMU_CAP_CACHE_COHERENCY:
3468		return 1;
3469	case IOMMU_CAP_INTR_REMAP:
3470		return irq_remapping_enabled;
3471	}
3472
3473	return 0;
3474}
3475
3476static struct iommu_ops amd_iommu_ops = {
3477	.domain_init = amd_iommu_domain_init,
3478	.domain_destroy = amd_iommu_domain_destroy,
3479	.attach_dev = amd_iommu_attach_device,
3480	.detach_dev = amd_iommu_detach_device,
3481	.map = amd_iommu_map,
3482	.unmap = amd_iommu_unmap,
3483	.iova_to_phys = amd_iommu_iova_to_phys,
3484	.domain_has_cap = amd_iommu_domain_has_cap,
3485	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3486};
3487
3488/*****************************************************************************
3489 *
3490 * The next functions do a basic initialization of IOMMU for pass through
3491 * mode
3492 *
3493 * In passthrough mode the IOMMU is initialized and enabled but not used for
3494 * DMA-API translation.
3495 *
3496 *****************************************************************************/
3497
3498int __init amd_iommu_init_passthrough(void)
3499{
3500	struct iommu_dev_data *dev_data;
3501	struct pci_dev *dev = NULL;
3502	struct amd_iommu *iommu;
3503	u16 devid;
3504	int ret;
3505
3506	ret = alloc_passthrough_domain();
3507	if (ret)
3508		return ret;
3509
3510	for_each_pci_dev(dev) {
3511		if (!check_device(&dev->dev))
3512			continue;
3513
3514		dev_data = get_dev_data(&dev->dev);
3515		dev_data->passthrough = true;
3516
3517		devid = get_device_id(&dev->dev);
3518
3519		iommu = amd_iommu_rlookup_table[devid];
3520		if (!iommu)
3521			continue;
3522
3523		attach_device(&dev->dev, pt_domain);
3524	}
3525
3526	amd_iommu_stats_init();
3527
3528	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3529
3530	return 0;
3531}
3532
3533/* IOMMUv2 specific functions */
3534int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3535{
3536	return atomic_notifier_chain_register(&ppr_notifier, nb);
3537}
3538EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3539
3540int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3541{
3542	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3543}
3544EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3545
3546void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3547{
3548	struct protection_domain *domain = dom->priv;
3549	unsigned long flags;
3550
3551	spin_lock_irqsave(&domain->lock, flags);
3552
3553	/* Update data structure */
3554	domain->mode    = PAGE_MODE_NONE;
3555	domain->updated = true;
3556
3557	/* Make changes visible to IOMMUs */
3558	update_domain(domain);
3559
3560	/* Page-table is not visible to IOMMU anymore, so free it */
3561	free_pagetable(domain);
3562
3563	spin_unlock_irqrestore(&domain->lock, flags);
3564}
3565EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3566
3567int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3568{
3569	struct protection_domain *domain = dom->priv;
3570	unsigned long flags;
3571	int levels, ret;
3572
3573	if (pasids <= 0 || pasids > (PASID_MASK + 1))
3574		return -EINVAL;
3575
3576	/* Number of GCR3 table levels required */
3577	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3578		levels += 1;
3579
3580	if (levels > amd_iommu_max_glx_val)
3581		return -EINVAL;
3582
3583	spin_lock_irqsave(&domain->lock, flags);
3584
3585	/*
3586	 * Save us all sanity checks whether devices already in the
3587	 * domain support IOMMUv2. Just force that the domain has no
3588	 * devices attached when it is switched into IOMMUv2 mode.
3589	 */
3590	ret = -EBUSY;
3591	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3592		goto out;
3593
3594	ret = -ENOMEM;
3595	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3596	if (domain->gcr3_tbl == NULL)
3597		goto out;
3598
3599	domain->glx      = levels;
3600	domain->flags   |= PD_IOMMUV2_MASK;
3601	domain->updated  = true;
3602
3603	update_domain(domain);
3604
3605	ret = 0;
3606
3607out:
3608	spin_unlock_irqrestore(&domain->lock, flags);
3609
3610	return ret;
3611}
3612EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3613
3614static int __flush_pasid(struct protection_domain *domain, int pasid,
3615			 u64 address, bool size)
3616{
3617	struct iommu_dev_data *dev_data;
3618	struct iommu_cmd cmd;
3619	int i, ret;
3620
3621	if (!(domain->flags & PD_IOMMUV2_MASK))
3622		return -EINVAL;
3623
3624	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3625
3626	/*
3627	 * IOMMU TLB needs to be flushed before Device TLB to
3628	 * prevent device TLB refill from IOMMU TLB
3629	 */
3630	for (i = 0; i < amd_iommus_present; ++i) {
3631		if (domain->dev_iommu[i] == 0)
3632			continue;
3633
3634		ret = iommu_queue_command(amd_iommus[i], &cmd);
3635		if (ret != 0)
3636			goto out;
3637	}
3638
3639	/* Wait until IOMMU TLB flushes are complete */
3640	domain_flush_complete(domain);
3641
3642	/* Now flush device TLBs */
3643	list_for_each_entry(dev_data, &domain->dev_list, list) {
3644		struct amd_iommu *iommu;
3645		int qdep;
3646
3647		BUG_ON(!dev_data->ats.enabled);
3648
3649		qdep  = dev_data->ats.qdep;
3650		iommu = amd_iommu_rlookup_table[dev_data->devid];
3651
3652		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3653				      qdep, address, size);
3654
3655		ret = iommu_queue_command(iommu, &cmd);
3656		if (ret != 0)
3657			goto out;
3658	}
3659
3660	/* Wait until all device TLBs are flushed */
3661	domain_flush_complete(domain);
3662
3663	ret = 0;
3664
3665out:
3666
3667	return ret;
3668}
3669
3670static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3671				  u64 address)
3672{
3673	INC_STATS_COUNTER(invalidate_iotlb);
3674
3675	return __flush_pasid(domain, pasid, address, false);
3676}
3677
3678int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3679			 u64 address)
3680{
3681	struct protection_domain *domain = dom->priv;
3682	unsigned long flags;
3683	int ret;
3684
3685	spin_lock_irqsave(&domain->lock, flags);
3686	ret = __amd_iommu_flush_page(domain, pasid, address);
3687	spin_unlock_irqrestore(&domain->lock, flags);
3688
3689	return ret;
3690}
3691EXPORT_SYMBOL(amd_iommu_flush_page);
3692
3693static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3694{
3695	INC_STATS_COUNTER(invalidate_iotlb_all);
3696
3697	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3698			     true);
3699}
3700
3701int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3702{
3703	struct protection_domain *domain = dom->priv;
3704	unsigned long flags;
3705	int ret;
3706
3707	spin_lock_irqsave(&domain->lock, flags);
3708	ret = __amd_iommu_flush_tlb(domain, pasid);
3709	spin_unlock_irqrestore(&domain->lock, flags);
3710
3711	return ret;
3712}
3713EXPORT_SYMBOL(amd_iommu_flush_tlb);
3714
3715static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3716{
3717	int index;
3718	u64 *pte;
3719
3720	while (true) {
3721
3722		index = (pasid >> (9 * level)) & 0x1ff;
3723		pte   = &root[index];
3724
3725		if (level == 0)
3726			break;
3727
3728		if (!(*pte & GCR3_VALID)) {
3729			if (!alloc)
3730				return NULL;
3731
3732			root = (void *)get_zeroed_page(GFP_ATOMIC);
3733			if (root == NULL)
3734				return NULL;
3735
3736			*pte = __pa(root) | GCR3_VALID;
3737		}
3738
3739		root = __va(*pte & PAGE_MASK);
3740
3741		level -= 1;
3742	}
3743
3744	return pte;
3745}
3746
3747static int __set_gcr3(struct protection_domain *domain, int pasid,
3748		      unsigned long cr3)
3749{
3750	u64 *pte;
3751
3752	if (domain->mode != PAGE_MODE_NONE)
3753		return -EINVAL;
3754
3755	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3756	if (pte == NULL)
3757		return -ENOMEM;
3758
3759	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3760
3761	return __amd_iommu_flush_tlb(domain, pasid);
3762}
3763
3764static int __clear_gcr3(struct protection_domain *domain, int pasid)
3765{
3766	u64 *pte;
3767
3768	if (domain->mode != PAGE_MODE_NONE)
3769		return -EINVAL;
3770
3771	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3772	if (pte == NULL)
3773		return 0;
3774
3775	*pte = 0;
3776
3777	return __amd_iommu_flush_tlb(domain, pasid);
3778}
3779
3780int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3781			      unsigned long cr3)
3782{
3783	struct protection_domain *domain = dom->priv;
3784	unsigned long flags;
3785	int ret;
3786
3787	spin_lock_irqsave(&domain->lock, flags);
3788	ret = __set_gcr3(domain, pasid, cr3);
3789	spin_unlock_irqrestore(&domain->lock, flags);
3790
3791	return ret;
3792}
3793EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3794
3795int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3796{
3797	struct protection_domain *domain = dom->priv;
3798	unsigned long flags;
3799	int ret;
3800
3801	spin_lock_irqsave(&domain->lock, flags);
3802	ret = __clear_gcr3(domain, pasid);
3803	spin_unlock_irqrestore(&domain->lock, flags);
3804
3805	return ret;
3806}
3807EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3808
3809int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3810			   int status, int tag)
3811{
3812	struct iommu_dev_data *dev_data;
3813	struct amd_iommu *iommu;
3814	struct iommu_cmd cmd;
3815
3816	INC_STATS_COUNTER(complete_ppr);
3817
3818	dev_data = get_dev_data(&pdev->dev);
3819	iommu    = amd_iommu_rlookup_table[dev_data->devid];
3820
3821	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3822			   tag, dev_data->pri_tlp);
3823
3824	return iommu_queue_command(iommu, &cmd);
3825}
3826EXPORT_SYMBOL(amd_iommu_complete_ppr);
3827
3828struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3829{
3830	struct protection_domain *domain;
3831
3832	domain = get_domain(&pdev->dev);
3833	if (IS_ERR(domain))
3834		return NULL;
3835
3836	/* Only return IOMMUv2 domains */
3837	if (!(domain->flags & PD_IOMMUV2_MASK))
3838		return NULL;
3839
3840	return domain->iommu_domain;
3841}
3842EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3843
3844void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3845{
3846	struct iommu_dev_data *dev_data;
3847
3848	if (!amd_iommu_v2_supported())
3849		return;
3850
3851	dev_data = get_dev_data(&pdev->dev);
3852	dev_data->errata |= (1 << erratum);
3853}
3854EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3855
3856int amd_iommu_device_info(struct pci_dev *pdev,
3857                          struct amd_iommu_device_info *info)
3858{
3859	int max_pasids;
3860	int pos;
3861
3862	if (pdev == NULL || info == NULL)
3863		return -EINVAL;
3864
3865	if (!amd_iommu_v2_supported())
3866		return -EINVAL;
3867
3868	memset(info, 0, sizeof(*info));
3869
3870	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3871	if (pos)
3872		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3873
3874	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3875	if (pos)
3876		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3877
3878	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3879	if (pos) {
3880		int features;
3881
3882		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3883		max_pasids = min(max_pasids, (1 << 20));
3884
3885		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3886		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3887
3888		features = pci_pasid_features(pdev);
3889		if (features & PCI_PASID_CAP_EXEC)
3890			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3891		if (features & PCI_PASID_CAP_PRIV)
3892			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3893	}
3894
3895	return 0;
3896}
3897EXPORT_SYMBOL(amd_iommu_device_info);
3898
3899#ifdef CONFIG_IRQ_REMAP
3900
3901/*****************************************************************************
3902 *
3903 * Interrupt Remapping Implementation
3904 *
3905 *****************************************************************************/
3906
3907union irte {
3908	u32 val;
3909	struct {
3910		u32 valid	: 1,
3911		    no_fault	: 1,
3912		    int_type	: 3,
3913		    rq_eoi	: 1,
3914		    dm		: 1,
3915		    rsvd_1	: 1,
3916		    destination	: 8,
3917		    vector	: 8,
3918		    rsvd_2	: 8;
3919	} fields;
3920};
3921
3922#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
3923#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
3924#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
3925#define DTE_IRQ_REMAP_ENABLE    1ULL
3926
3927static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3928{
3929	u64 dte;
3930
3931	dte	= amd_iommu_dev_table[devid].data[2];
3932	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3933	dte	|= virt_to_phys(table->table);
3934	dte	|= DTE_IRQ_REMAP_INTCTL;
3935	dte	|= DTE_IRQ_TABLE_LEN;
3936	dte	|= DTE_IRQ_REMAP_ENABLE;
3937
3938	amd_iommu_dev_table[devid].data[2] = dte;
3939}
3940
3941#define IRTE_ALLOCATED (~1U)
3942
3943static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3944{
3945	struct irq_remap_table *table = NULL;
3946	struct amd_iommu *iommu;
3947	unsigned long flags;
3948	u16 alias;
3949
3950	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3951
3952	iommu = amd_iommu_rlookup_table[devid];
3953	if (!iommu)
3954		goto out_unlock;
3955
3956	table = irq_lookup_table[devid];
3957	if (table)
3958		goto out;
3959
3960	alias = amd_iommu_alias_table[devid];
3961	table = irq_lookup_table[alias];
3962	if (table) {
3963		irq_lookup_table[devid] = table;
3964		set_dte_irq_entry(devid, table);
3965		iommu_flush_dte(iommu, devid);
3966		goto out;
3967	}
3968
3969	/* Nothing there yet, allocate new irq remapping table */
3970	table = kzalloc(sizeof(*table), GFP_ATOMIC);
3971	if (!table)
3972		goto out;
3973
3974	/* Initialize table spin-lock */
3975	spin_lock_init(&table->lock);
3976
3977	if (ioapic)
3978		/* Keep the first 32 indexes free for IOAPIC interrupts */
3979		table->min_index = 32;
3980
3981	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3982	if (!table->table) {
3983		kfree(table);
3984		table = NULL;
3985		goto out;
3986	}
3987
3988	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3989
3990	if (ioapic) {
3991		int i;
3992
3993		for (i = 0; i < 32; ++i)
3994			table->table[i] = IRTE_ALLOCATED;
3995	}
3996
3997	irq_lookup_table[devid] = table;
3998	set_dte_irq_entry(devid, table);
3999	iommu_flush_dte(iommu, devid);
4000	if (devid != alias) {
4001		irq_lookup_table[alias] = table;
4002		set_dte_irq_entry(alias, table);
4003		iommu_flush_dte(iommu, alias);
4004	}
4005
4006out:
4007	iommu_completion_wait(iommu);
4008
4009out_unlock:
4010	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
4011
4012	return table;
4013}
4014
4015static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
4016{
4017	struct irq_remap_table *table;
4018	unsigned long flags;
4019	int index, c;
4020
4021	table = get_irq_table(devid, false);
4022	if (!table)
4023		return -ENODEV;
4024
4025	spin_lock_irqsave(&table->lock, flags);
4026
4027	/* Scan table for free entries */
4028	for (c = 0, index = table->min_index;
4029	     index < MAX_IRQS_PER_TABLE;
4030	     ++index) {
4031		if (table->table[index] == 0)
4032			c += 1;
4033		else
4034			c = 0;
4035
4036		if (c == count)	{
4037			struct irq_2_irte *irte_info;
4038
4039			for (; c != 0; --c)
4040				table->table[index - c + 1] = IRTE_ALLOCATED;
4041
4042			index -= count - 1;
4043
4044			cfg->remapped	      = 1;
4045			irte_info             = &cfg->irq_2_irte;
4046			irte_info->devid      = devid;
4047			irte_info->index      = index;
4048
4049			goto out;
4050		}
4051	}
4052
4053	index = -ENOSPC;
4054
4055out:
4056	spin_unlock_irqrestore(&table->lock, flags);
4057
4058	return index;
4059}
4060
4061static int get_irte(u16 devid, int index, union irte *irte)
4062{
4063	struct irq_remap_table *table;
4064	unsigned long flags;
4065
4066	table = get_irq_table(devid, false);
4067	if (!table)
4068		return -ENOMEM;
4069
4070	spin_lock_irqsave(&table->lock, flags);
4071	irte->val = table->table[index];
4072	spin_unlock_irqrestore(&table->lock, flags);
4073
4074	return 0;
4075}
4076
4077static int modify_irte(u16 devid, int index, union irte irte)
4078{
4079	struct irq_remap_table *table;
4080	struct amd_iommu *iommu;
4081	unsigned long flags;
4082
4083	iommu = amd_iommu_rlookup_table[devid];
4084	if (iommu == NULL)
4085		return -EINVAL;
4086
4087	table = get_irq_table(devid, false);
4088	if (!table)
4089		return -ENOMEM;
4090
4091	spin_lock_irqsave(&table->lock, flags);
4092	table->table[index] = irte.val;
4093	spin_unlock_irqrestore(&table->lock, flags);
4094
4095	iommu_flush_irt(iommu, devid);
4096	iommu_completion_wait(iommu);
4097
4098	return 0;
4099}
4100
4101static void free_irte(u16 devid, int index)
4102{
4103	struct irq_remap_table *table;
4104	struct amd_iommu *iommu;
4105	unsigned long flags;
4106
4107	iommu = amd_iommu_rlookup_table[devid];
4108	if (iommu == NULL)
4109		return;
4110
4111	table = get_irq_table(devid, false);
4112	if (!table)
4113		return;
4114
4115	spin_lock_irqsave(&table->lock, flags);
4116	table->table[index] = 0;
4117	spin_unlock_irqrestore(&table->lock, flags);
4118
4119	iommu_flush_irt(iommu, devid);
4120	iommu_completion_wait(iommu);
4121}
4122
4123static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
4124			      unsigned int destination, int vector,
4125			      struct io_apic_irq_attr *attr)
4126{
4127	struct irq_remap_table *table;
4128	struct irq_2_irte *irte_info;
4129	struct irq_cfg *cfg;
4130	union irte irte;
4131	int ioapic_id;
4132	int index;
4133	int devid;
4134	int ret;
4135
4136	cfg = irq_get_chip_data(irq);
4137	if (!cfg)
4138		return -EINVAL;
4139
4140	irte_info = &cfg->irq_2_irte;
4141	ioapic_id = mpc_ioapic_id(attr->ioapic);
4142	devid     = get_ioapic_devid(ioapic_id);
4143
4144	if (devid < 0)
4145		return devid;
4146
4147	table = get_irq_table(devid, true);
4148	if (table == NULL)
4149		return -ENOMEM;
4150
4151	index = attr->ioapic_pin;
4152
4153	/* Setup IRQ remapping info */
4154	cfg->remapped	      = 1;
4155	irte_info->devid      = devid;
4156	irte_info->index      = index;
4157
4158	/* Setup IRTE for IOMMU */
4159	irte.val		= 0;
4160	irte.fields.vector      = vector;
4161	irte.fields.int_type    = apic->irq_delivery_mode;
4162	irte.fields.destination = destination;
4163	irte.fields.dm          = apic->irq_dest_mode;
4164	irte.fields.valid       = 1;
4165
4166	ret = modify_irte(devid, index, irte);
4167	if (ret)
4168		return ret;
4169
4170	/* Setup IOAPIC entry */
4171	memset(entry, 0, sizeof(*entry));
4172
4173	entry->vector        = index;
4174	entry->mask          = 0;
4175	entry->trigger       = attr->trigger;
4176	entry->polarity      = attr->polarity;
4177
4178	/*
4179	 * Mask level triggered irqs.
4180	 */
4181	if (attr->trigger)
4182		entry->mask = 1;
4183
4184	return 0;
4185}
4186
4187static int set_affinity(struct irq_data *data, const struct cpumask *mask,
4188			bool force)
4189{
4190	struct irq_2_irte *irte_info;
4191	unsigned int dest, irq;
4192	struct irq_cfg *cfg;
4193	union irte irte;
4194	int err;
4195
4196	if (!config_enabled(CONFIG_SMP))
4197		return -1;
4198
4199	cfg       = data->chip_data;
4200	irq       = data->irq;
4201	irte_info = &cfg->irq_2_irte;
4202
4203	if (!cpumask_intersects(mask, cpu_online_mask))
4204		return -EINVAL;
4205
4206	if (get_irte(irte_info->devid, irte_info->index, &irte))
4207		return -EBUSY;
4208
4209	if (assign_irq_vector(irq, cfg, mask))
4210		return -EBUSY;
4211
4212	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
4213	if (err) {
4214		if (assign_irq_vector(irq, cfg, data->affinity))
4215			pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
4216		return err;
4217	}
4218
4219	irte.fields.vector      = cfg->vector;
4220	irte.fields.destination = dest;
4221
4222	modify_irte(irte_info->devid, irte_info->index, irte);
4223
4224	if (cfg->move_in_progress)
4225		send_cleanup_vector(cfg);
4226
4227	cpumask_copy(data->affinity, mask);
4228
4229	return 0;
4230}
4231
4232static int free_irq(int irq)
4233{
4234	struct irq_2_irte *irte_info;
4235	struct irq_cfg *cfg;
4236
4237	cfg = irq_get_chip_data(irq);
4238	if (!cfg)
4239		return -EINVAL;
4240
4241	irte_info = &cfg->irq_2_irte;
4242
4243	free_irte(irte_info->devid, irte_info->index);
4244
4245	return 0;
4246}
4247
4248static void compose_msi_msg(struct pci_dev *pdev,
4249			    unsigned int irq, unsigned int dest,
4250			    struct msi_msg *msg, u8 hpet_id)
4251{
4252	struct irq_2_irte *irte_info;
4253	struct irq_cfg *cfg;
4254	union irte irte;
4255
4256	cfg = irq_get_chip_data(irq);
4257	if (!cfg)
4258		return;
4259
4260	irte_info = &cfg->irq_2_irte;
4261
4262	irte.val		= 0;
4263	irte.fields.vector	= cfg->vector;
4264	irte.fields.int_type    = apic->irq_delivery_mode;
4265	irte.fields.destination	= dest;
4266	irte.fields.dm		= apic->irq_dest_mode;
4267	irte.fields.valid	= 1;
4268
4269	modify_irte(irte_info->devid, irte_info->index, irte);
4270
4271	msg->address_hi = MSI_ADDR_BASE_HI;
4272	msg->address_lo = MSI_ADDR_BASE_LO;
4273	msg->data       = irte_info->index;
4274}
4275
4276static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
4277{
4278	struct irq_cfg *cfg;
4279	int index;
4280	u16 devid;
4281
4282	if (!pdev)
4283		return -EINVAL;
4284
4285	cfg = irq_get_chip_data(irq);
4286	if (!cfg)
4287		return -EINVAL;
4288
4289	devid = get_device_id(&pdev->dev);
4290	index = alloc_irq_index(cfg, devid, nvec);
4291
4292	return index < 0 ? MAX_IRQS_PER_TABLE : index;
4293}
4294
4295static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
4296			 int index, int offset)
4297{
4298	struct irq_2_irte *irte_info;
4299	struct irq_cfg *cfg;
4300	u16 devid;
4301
4302	if (!pdev)
4303		return -EINVAL;
4304
4305	cfg = irq_get_chip_data(irq);
4306	if (!cfg)
4307		return -EINVAL;
4308
4309	if (index >= MAX_IRQS_PER_TABLE)
4310		return 0;
4311
4312	devid		= get_device_id(&pdev->dev);
4313	irte_info	= &cfg->irq_2_irte;
4314
4315	cfg->remapped	      = 1;
4316	irte_info->devid      = devid;
4317	irte_info->index      = index + offset;
4318
4319	return 0;
4320}
4321
4322static int setup_hpet_msi(unsigned int irq, unsigned int id)
4323{
4324	struct irq_2_irte *irte_info;
4325	struct irq_cfg *cfg;
4326	int index, devid;
4327
4328	cfg = irq_get_chip_data(irq);
4329	if (!cfg)
4330		return -EINVAL;
4331
4332	irte_info = &cfg->irq_2_irte;
4333	devid     = get_hpet_devid(id);
4334	if (devid < 0)
4335		return devid;
4336
4337	index = alloc_irq_index(cfg, devid, 1);
4338	if (index < 0)
4339		return index;
4340
4341	cfg->remapped	      = 1;
4342	irte_info->devid      = devid;
4343	irte_info->index      = index;
4344
4345	return 0;
4346}
4347
4348struct irq_remap_ops amd_iommu_irq_ops = {
4349	.supported		= amd_iommu_supported,
4350	.prepare		= amd_iommu_prepare,
4351	.enable			= amd_iommu_enable,
4352	.disable		= amd_iommu_disable,
4353	.reenable		= amd_iommu_reenable,
4354	.enable_faulting	= amd_iommu_enable_faulting,
4355	.setup_ioapic_entry	= setup_ioapic_entry,
4356	.set_affinity		= set_affinity,
4357	.free_irq		= free_irq,
4358	.compose_msi_msg	= compose_msi_msg,
4359	.msi_alloc_irq		= msi_alloc_irq,
4360	.msi_setup_irq		= msi_setup_irq,
4361	.setup_hpet_msi		= setup_hpet_msi,
4362};
4363#endif