Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1/*
  2 * Specific bus support for PMC-TWI compliant implementation on MSP71xx.
  3 *
  4 * Copyright 2005-2007 PMC-Sierra, Inc.
  5 *
  6 *  This program is free software; you can redistribute  it and/or modify it
  7 *  under  the terms of  the GNU General  Public License as published by the
  8 *  Free Software Foundation;  either version 2 of the  License, or (at your
  9 *  option) any later version.
 10 *
 11 *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
 12 *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
 13 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
 14 *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
 15 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 16 *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
 17 *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 18 *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
 19 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 20 *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 21 *
 22 *  You should have received a copy of the  GNU General Public License along
 23 *  with this program; if not, write  to the Free Software Foundation, Inc.,
 24 *  675 Mass Ave, Cambridge, MA 02139, USA.
 25 */
 26
 27#include <linux/kernel.h>
 28#include <linux/module.h>
 29#include <linux/platform_device.h>
 30#include <linux/i2c.h>
 31#include <linux/interrupt.h>
 32#include <linux/completion.h>
 33#include <linux/mutex.h>
 34#include <linux/delay.h>
 35#include <linux/io.h>
 36
 37#define DRV_NAME	"pmcmsptwi"
 38
 39#define MSP_TWI_SF_CLK_REG_OFFSET	0x00
 40#define MSP_TWI_HS_CLK_REG_OFFSET	0x04
 41#define MSP_TWI_CFG_REG_OFFSET		0x08
 42#define MSP_TWI_CMD_REG_OFFSET		0x0c
 43#define MSP_TWI_ADD_REG_OFFSET		0x10
 44#define MSP_TWI_DAT_0_REG_OFFSET	0x14
 45#define MSP_TWI_DAT_1_REG_OFFSET	0x18
 46#define MSP_TWI_INT_STS_REG_OFFSET	0x1c
 47#define MSP_TWI_INT_MSK_REG_OFFSET	0x20
 48#define MSP_TWI_BUSY_REG_OFFSET		0x24
 49
 50#define MSP_TWI_INT_STS_DONE			(1 << 0)
 51#define MSP_TWI_INT_STS_LOST_ARBITRATION	(1 << 1)
 52#define MSP_TWI_INT_STS_NO_RESPONSE		(1 << 2)
 53#define MSP_TWI_INT_STS_DATA_COLLISION		(1 << 3)
 54#define MSP_TWI_INT_STS_BUSY			(1 << 4)
 55#define MSP_TWI_INT_STS_ALL			0x1f
 56
 57#define MSP_MAX_BYTES_PER_RW		8
 58#define MSP_MAX_POLL			5
 59#define MSP_POLL_DELAY			10
 60#define MSP_IRQ_TIMEOUT			(MSP_MAX_POLL * MSP_POLL_DELAY)
 61
 62/* IO Operation macros */
 63#define pmcmsptwi_readl		__raw_readl
 64#define pmcmsptwi_writel	__raw_writel
 65
 66/* TWI command type */
 67enum pmcmsptwi_cmd_type {
 68	MSP_TWI_CMD_WRITE	= 0,	/* Write only */
 69	MSP_TWI_CMD_READ	= 1,	/* Read only */
 70	MSP_TWI_CMD_WRITE_READ	= 2,	/* Write then Read */
 71};
 72
 73/* The possible results of the xferCmd */
 74enum pmcmsptwi_xfer_result {
 75	MSP_TWI_XFER_OK	= 0,
 76	MSP_TWI_XFER_TIMEOUT,
 77	MSP_TWI_XFER_BUSY,
 78	MSP_TWI_XFER_DATA_COLLISION,
 79	MSP_TWI_XFER_NO_RESPONSE,
 80	MSP_TWI_XFER_LOST_ARBITRATION,
 81};
 82
 83/* Corresponds to a PMCTWI clock configuration register */
 84struct pmcmsptwi_clock {
 85	u8 filter;	/* Bits 15:12,	default = 0x03 */
 86	u16 clock;	/* Bits 9:0,	default = 0x001f */
 87};
 88
 89struct pmcmsptwi_clockcfg {
 90	struct pmcmsptwi_clock standard;  /* The standard/fast clock config */
 91	struct pmcmsptwi_clock highspeed; /* The highspeed clock config */
 92};
 93
 94/* Corresponds to the main TWI configuration register */
 95struct pmcmsptwi_cfg {
 96	u8 arbf;	/* Bits 15:12,	default=0x03 */
 97	u8 nak;		/* Bits 11:8,	default=0x03 */
 98	u8 add10;	/* Bit 7,	default=0x00 */
 99	u8 mst_code;	/* Bits 6:4,	default=0x00 */
100	u8 arb;		/* Bit 1,	default=0x01 */
101	u8 highspeed;	/* Bit 0,	default=0x00 */
102};
103
104/* A single pmctwi command to issue */
105struct pmcmsptwi_cmd {
106	u16 addr;	/* The slave address (7 or 10 bits) */
107	enum pmcmsptwi_cmd_type type;	/* The command type */
108	u8 write_len;	/* Number of bytes in the write buffer */
109	u8 read_len;	/* Number of bytes in the read buffer */
110	u8 *write_data;	/* Buffer of characters to send */
111	u8 *read_data;	/* Buffer to fill with incoming data */
112};
113
114/* The private data */
115struct pmcmsptwi_data {
116	void __iomem *iobase;			/* iomapped base for IO */
117	int irq;				/* IRQ to use (0 disables) */
118	struct completion wait;			/* Completion for xfer */
119	struct mutex lock;			/* Used for threadsafeness */
120	enum pmcmsptwi_xfer_result last_result;	/* result of last xfer */
121};
122
123/* The default settings */
124static const struct pmcmsptwi_clockcfg pmcmsptwi_defclockcfg = {
125	.standard = {
126		.filter	= 0x3,
127		.clock	= 0x1f,
128	},
129	.highspeed = {
130		.filter	= 0x3,
131		.clock	= 0x1f,
132	},
133};
134
135static const struct pmcmsptwi_cfg pmcmsptwi_defcfg = {
136	.arbf		= 0x03,
137	.nak		= 0x03,
138	.add10		= 0x00,
139	.mst_code	= 0x00,
140	.arb		= 0x01,
141	.highspeed	= 0x00,
142};
143
144static struct pmcmsptwi_data pmcmsptwi_data;
145
146static struct i2c_adapter pmcmsptwi_adapter;
147
148/* inline helper functions */
149static inline u32 pmcmsptwi_clock_to_reg(
150			const struct pmcmsptwi_clock *clock)
151{
152	return ((clock->filter & 0xf) << 12) | (clock->clock & 0x03ff);
153}
154
155static inline void pmcmsptwi_reg_to_clock(
156			u32 reg, struct pmcmsptwi_clock *clock)
157{
158	clock->filter = (reg >> 12) & 0xf;
159	clock->clock = reg & 0x03ff;
160}
161
162static inline u32 pmcmsptwi_cfg_to_reg(const struct pmcmsptwi_cfg *cfg)
163{
164	return ((cfg->arbf & 0xf) << 12) |
165		((cfg->nak & 0xf) << 8) |
166		((cfg->add10 & 0x1) << 7) |
167		((cfg->mst_code & 0x7) << 4) |
168		((cfg->arb & 0x1) << 1) |
169		(cfg->highspeed & 0x1);
170}
171
172static inline void pmcmsptwi_reg_to_cfg(u32 reg, struct pmcmsptwi_cfg *cfg)
173{
174	cfg->arbf = (reg >> 12) & 0xf;
175	cfg->nak = (reg >> 8) & 0xf;
176	cfg->add10 = (reg >> 7) & 0x1;
177	cfg->mst_code = (reg >> 4) & 0x7;
178	cfg->arb = (reg >> 1) & 0x1;
179	cfg->highspeed = reg & 0x1;
180}
181
182/*
183 * Sets the current clock configuration
184 */
185static void pmcmsptwi_set_clock_config(const struct pmcmsptwi_clockcfg *cfg,
186					struct pmcmsptwi_data *data)
187{
188	mutex_lock(&data->lock);
189	pmcmsptwi_writel(pmcmsptwi_clock_to_reg(&cfg->standard),
190				data->iobase + MSP_TWI_SF_CLK_REG_OFFSET);
191	pmcmsptwi_writel(pmcmsptwi_clock_to_reg(&cfg->highspeed),
192				data->iobase + MSP_TWI_HS_CLK_REG_OFFSET);
193	mutex_unlock(&data->lock);
194}
195
196/*
197 * Gets the current TWI bus configuration
198 */
199static void pmcmsptwi_get_twi_config(struct pmcmsptwi_cfg *cfg,
200					struct pmcmsptwi_data *data)
201{
202	mutex_lock(&data->lock);
203	pmcmsptwi_reg_to_cfg(pmcmsptwi_readl(
204				data->iobase + MSP_TWI_CFG_REG_OFFSET), cfg);
205	mutex_unlock(&data->lock);
206}
207
208/*
209 * Sets the current TWI bus configuration
210 */
211static void pmcmsptwi_set_twi_config(const struct pmcmsptwi_cfg *cfg,
212					struct pmcmsptwi_data *data)
213{
214	mutex_lock(&data->lock);
215	pmcmsptwi_writel(pmcmsptwi_cfg_to_reg(cfg),
216				data->iobase + MSP_TWI_CFG_REG_OFFSET);
217	mutex_unlock(&data->lock);
218}
219
220/*
221 * Parses the 'int_sts' register and returns a well-defined error code
222 */
223static enum pmcmsptwi_xfer_result pmcmsptwi_get_result(u32 reg)
224{
225	if (reg & MSP_TWI_INT_STS_LOST_ARBITRATION) {
226		dev_dbg(&pmcmsptwi_adapter.dev,
227			"Result: Lost arbitration\n");
228		return MSP_TWI_XFER_LOST_ARBITRATION;
229	} else if (reg & MSP_TWI_INT_STS_NO_RESPONSE) {
230		dev_dbg(&pmcmsptwi_adapter.dev,
231			"Result: No response\n");
232		return MSP_TWI_XFER_NO_RESPONSE;
233	} else if (reg & MSP_TWI_INT_STS_DATA_COLLISION) {
234		dev_dbg(&pmcmsptwi_adapter.dev,
235			"Result: Data collision\n");
236		return MSP_TWI_XFER_DATA_COLLISION;
237	} else if (reg & MSP_TWI_INT_STS_BUSY) {
238		dev_dbg(&pmcmsptwi_adapter.dev,
239			"Result: Bus busy\n");
240		return MSP_TWI_XFER_BUSY;
241	}
242
243	dev_dbg(&pmcmsptwi_adapter.dev, "Result: Operation succeeded\n");
244	return MSP_TWI_XFER_OK;
245}
246
247/*
248 * In interrupt mode, handle the interrupt.
249 * NOTE: Assumes data->lock is held.
250 */
251static irqreturn_t pmcmsptwi_interrupt(int irq, void *ptr)
252{
253	struct pmcmsptwi_data *data = ptr;
254
255	u32 reason = pmcmsptwi_readl(data->iobase +
256					MSP_TWI_INT_STS_REG_OFFSET);
257	pmcmsptwi_writel(reason, data->iobase + MSP_TWI_INT_STS_REG_OFFSET);
258
259	dev_dbg(&pmcmsptwi_adapter.dev, "Got interrupt 0x%08x\n", reason);
260	if (!(reason & MSP_TWI_INT_STS_DONE))
261		return IRQ_NONE;
262
263	data->last_result = pmcmsptwi_get_result(reason);
264	complete(&data->wait);
265
266	return IRQ_HANDLED;
267}
268
269/*
270 * Probe for and register the device and return 0 if there is one.
271 */
272static int pmcmsptwi_probe(struct platform_device *pldev)
273{
274	struct resource *res;
275	int rc = -ENODEV;
276
277	/* get the static platform resources */
278	res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
279	if (!res) {
280		dev_err(&pldev->dev, "IOMEM resource not found\n");
281		goto ret_err;
282	}
283
284	/* reserve the memory region */
285	if (!request_mem_region(res->start, resource_size(res),
286				pldev->name)) {
287		dev_err(&pldev->dev,
288			"Unable to get memory/io address region 0x%08x\n",
289			res->start);
290		rc = -EBUSY;
291		goto ret_err;
292	}
293
294	/* remap the memory */
295	pmcmsptwi_data.iobase = ioremap_nocache(res->start,
296						resource_size(res));
297	if (!pmcmsptwi_data.iobase) {
298		dev_err(&pldev->dev,
299			"Unable to ioremap address 0x%08x\n", res->start);
300		rc = -EIO;
301		goto ret_unreserve;
302	}
303
304	/* request the irq */
305	pmcmsptwi_data.irq = platform_get_irq(pldev, 0);
306	if (pmcmsptwi_data.irq) {
307		rc = request_irq(pmcmsptwi_data.irq, &pmcmsptwi_interrupt,
308				 IRQF_SHARED, pldev->name, &pmcmsptwi_data);
309		if (rc == 0) {
310			/*
311			 * Enable 'DONE' interrupt only.
312			 *
313			 * If you enable all interrupts, you will get one on
314			 * error and another when the operation completes.
315			 * This way you only have to handle one interrupt,
316			 * but you can still check all result flags.
317			 */
318			pmcmsptwi_writel(MSP_TWI_INT_STS_DONE,
319					pmcmsptwi_data.iobase +
320					MSP_TWI_INT_MSK_REG_OFFSET);
321		} else {
322			dev_warn(&pldev->dev,
323				"Could not assign TWI IRQ handler "
324				"to irq %d (continuing with poll)\n",
325				pmcmsptwi_data.irq);
326			pmcmsptwi_data.irq = 0;
327		}
328	}
329
330	init_completion(&pmcmsptwi_data.wait);
331	mutex_init(&pmcmsptwi_data.lock);
332
333	pmcmsptwi_set_clock_config(&pmcmsptwi_defclockcfg, &pmcmsptwi_data);
334	pmcmsptwi_set_twi_config(&pmcmsptwi_defcfg, &pmcmsptwi_data);
335
336	printk(KERN_INFO DRV_NAME ": Registering MSP71xx I2C adapter\n");
337
338	pmcmsptwi_adapter.dev.parent = &pldev->dev;
339	platform_set_drvdata(pldev, &pmcmsptwi_adapter);
340	i2c_set_adapdata(&pmcmsptwi_adapter, &pmcmsptwi_data);
341
342	rc = i2c_add_adapter(&pmcmsptwi_adapter);
343	if (rc) {
344		dev_err(&pldev->dev, "Unable to register I2C adapter\n");
345		goto ret_unmap;
346	}
347
348	return 0;
349
350ret_unmap:
351	if (pmcmsptwi_data.irq) {
352		pmcmsptwi_writel(0,
353			pmcmsptwi_data.iobase + MSP_TWI_INT_MSK_REG_OFFSET);
354		free_irq(pmcmsptwi_data.irq, &pmcmsptwi_data);
355	}
356
357	iounmap(pmcmsptwi_data.iobase);
358
359ret_unreserve:
360	release_mem_region(res->start, resource_size(res));
361
362ret_err:
363	return rc;
364}
365
366/*
367 * Release the device and return 0 if there is one.
368 */
369static int pmcmsptwi_remove(struct platform_device *pldev)
370{
371	struct resource *res;
372
373	i2c_del_adapter(&pmcmsptwi_adapter);
374
375	if (pmcmsptwi_data.irq) {
376		pmcmsptwi_writel(0,
377			pmcmsptwi_data.iobase + MSP_TWI_INT_MSK_REG_OFFSET);
378		free_irq(pmcmsptwi_data.irq, &pmcmsptwi_data);
379	}
380
381	iounmap(pmcmsptwi_data.iobase);
382
383	res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
384	release_mem_region(res->start, resource_size(res));
385
386	return 0;
387}
388
389/*
390 * Polls the 'busy' register until the command is complete.
391 * NOTE: Assumes data->lock is held.
392 */
393static void pmcmsptwi_poll_complete(struct pmcmsptwi_data *data)
394{
395	int i;
396
397	for (i = 0; i < MSP_MAX_POLL; i++) {
398		u32 val = pmcmsptwi_readl(data->iobase +
399						MSP_TWI_BUSY_REG_OFFSET);
400		if (val == 0) {
401			u32 reason = pmcmsptwi_readl(data->iobase +
402						MSP_TWI_INT_STS_REG_OFFSET);
403			pmcmsptwi_writel(reason, data->iobase +
404						MSP_TWI_INT_STS_REG_OFFSET);
405			data->last_result = pmcmsptwi_get_result(reason);
406			return;
407		}
408		udelay(MSP_POLL_DELAY);
409	}
410
411	dev_dbg(&pmcmsptwi_adapter.dev, "Result: Poll timeout\n");
412	data->last_result = MSP_TWI_XFER_TIMEOUT;
413}
414
415/*
416 * Do the transfer (low level):
417 *   May use interrupt-driven or polling, depending on if an IRQ is
418 *   presently registered.
419 * NOTE: Assumes data->lock is held.
420 */
421static enum pmcmsptwi_xfer_result pmcmsptwi_do_xfer(
422			u32 reg, struct pmcmsptwi_data *data)
423{
424	dev_dbg(&pmcmsptwi_adapter.dev, "Writing cmd reg 0x%08x\n", reg);
425	pmcmsptwi_writel(reg, data->iobase + MSP_TWI_CMD_REG_OFFSET);
426	if (data->irq) {
427		unsigned long timeleft = wait_for_completion_timeout(
428						&data->wait, MSP_IRQ_TIMEOUT);
429		if (timeleft == 0) {
430			dev_dbg(&pmcmsptwi_adapter.dev,
431				"Result: IRQ timeout\n");
432			complete(&data->wait);
433			data->last_result = MSP_TWI_XFER_TIMEOUT;
434		}
435	} else
436		pmcmsptwi_poll_complete(data);
437
438	return data->last_result;
439}
440
441/*
442 * Helper routine, converts 'pmctwi_cmd' struct to register format
443 */
444static inline u32 pmcmsptwi_cmd_to_reg(const struct pmcmsptwi_cmd *cmd)
445{
446	return ((cmd->type & 0x3) << 8) |
447		(((cmd->write_len - 1) & 0x7) << 4) |
448		((cmd->read_len - 1) & 0x7);
449}
450
451/*
452 * Do the transfer (high level)
453 */
454static enum pmcmsptwi_xfer_result pmcmsptwi_xfer_cmd(
455			struct pmcmsptwi_cmd *cmd,
456			struct pmcmsptwi_data *data)
457{
458	enum pmcmsptwi_xfer_result retval;
459
460	if ((cmd->type == MSP_TWI_CMD_WRITE && cmd->write_len == 0) ||
461	    (cmd->type == MSP_TWI_CMD_READ && cmd->read_len == 0) ||
462	    (cmd->type == MSP_TWI_CMD_WRITE_READ &&
463	    (cmd->read_len == 0 || cmd->write_len == 0))) {
464		dev_err(&pmcmsptwi_adapter.dev,
465			"%s: Cannot transfer less than 1 byte\n",
466			__func__);
467		return -EINVAL;
468	}
469
470	if (cmd->read_len > MSP_MAX_BYTES_PER_RW ||
471	    cmd->write_len > MSP_MAX_BYTES_PER_RW) {
472		dev_err(&pmcmsptwi_adapter.dev,
473			"%s: Cannot transfer more than %d bytes\n",
474			__func__, MSP_MAX_BYTES_PER_RW);
475		return -EINVAL;
476	}
477
478	mutex_lock(&data->lock);
479	dev_dbg(&pmcmsptwi_adapter.dev,
480		"Setting address to 0x%04x\n", cmd->addr);
481	pmcmsptwi_writel(cmd->addr, data->iobase + MSP_TWI_ADD_REG_OFFSET);
482
483	if (cmd->type == MSP_TWI_CMD_WRITE ||
484	    cmd->type == MSP_TWI_CMD_WRITE_READ) {
485		u64 tmp = be64_to_cpup((__be64 *)cmd->write_data);
486		tmp >>= (MSP_MAX_BYTES_PER_RW - cmd->write_len) * 8;
487		dev_dbg(&pmcmsptwi_adapter.dev, "Writing 0x%016llx\n", tmp);
488		pmcmsptwi_writel(tmp & 0x00000000ffffffffLL,
489				data->iobase + MSP_TWI_DAT_0_REG_OFFSET);
490		if (cmd->write_len > 4)
491			pmcmsptwi_writel(tmp >> 32,
492				data->iobase + MSP_TWI_DAT_1_REG_OFFSET);
493	}
494
495	retval = pmcmsptwi_do_xfer(pmcmsptwi_cmd_to_reg(cmd), data);
496	if (retval != MSP_TWI_XFER_OK)
497		goto xfer_err;
498
499	if (cmd->type == MSP_TWI_CMD_READ ||
500	    cmd->type == MSP_TWI_CMD_WRITE_READ) {
501		int i;
502		u64 rmsk = ~(0xffffffffffffffffLL << (cmd->read_len * 8));
503		u64 tmp = (u64)pmcmsptwi_readl(data->iobase +
504					MSP_TWI_DAT_0_REG_OFFSET);
505		if (cmd->read_len > 4)
506			tmp |= (u64)pmcmsptwi_readl(data->iobase +
507					MSP_TWI_DAT_1_REG_OFFSET) << 32;
508		tmp &= rmsk;
509		dev_dbg(&pmcmsptwi_adapter.dev, "Read 0x%016llx\n", tmp);
510
511		for (i = 0; i < cmd->read_len; i++)
512			cmd->read_data[i] = tmp >> i;
513	}
514
515xfer_err:
516	mutex_unlock(&data->lock);
517
518	return retval;
519}
520
521/* -- Algorithm functions -- */
522
523/*
524 * Sends an i2c command out on the adapter
525 */
526static int pmcmsptwi_master_xfer(struct i2c_adapter *adap,
527				struct i2c_msg *msg, int num)
528{
529	struct pmcmsptwi_data *data = i2c_get_adapdata(adap);
530	struct pmcmsptwi_cmd cmd;
531	struct pmcmsptwi_cfg oldcfg, newcfg;
532	int ret;
533
534	if (num > 2) {
535		dev_dbg(&adap->dev, "%d messages unsupported\n", num);
536		return -EINVAL;
537	} else if (num == 2) {
538		/* Check for a dual write-then-read command */
539		struct i2c_msg *nextmsg = msg + 1;
540		if (!(msg->flags & I2C_M_RD) &&
541		    (nextmsg->flags & I2C_M_RD) &&
542		    msg->addr == nextmsg->addr) {
543			cmd.type = MSP_TWI_CMD_WRITE_READ;
544			cmd.write_len = msg->len;
545			cmd.write_data = msg->buf;
546			cmd.read_len = nextmsg->len;
547			cmd.read_data = nextmsg->buf;
548		} else {
549			dev_dbg(&adap->dev,
550				"Non write-read dual messages unsupported\n");
551			return -EINVAL;
552		}
553	} else if (msg->flags & I2C_M_RD) {
554		cmd.type = MSP_TWI_CMD_READ;
555		cmd.read_len = msg->len;
556		cmd.read_data = msg->buf;
557		cmd.write_len = 0;
558		cmd.write_data = NULL;
559	} else {
560		cmd.type = MSP_TWI_CMD_WRITE;
561		cmd.read_len = 0;
562		cmd.read_data = NULL;
563		cmd.write_len = msg->len;
564		cmd.write_data = msg->buf;
565	}
566
567	if (msg->len == 0) {
568		dev_err(&adap->dev, "Zero-byte messages unsupported\n");
569		return -EINVAL;
570	}
571
572	cmd.addr = msg->addr;
573
574	if (msg->flags & I2C_M_TEN) {
575		pmcmsptwi_get_twi_config(&newcfg, data);
576		memcpy(&oldcfg, &newcfg, sizeof(oldcfg));
577
578		/* Set the special 10-bit address flag */
579		newcfg.add10 = 1;
580
581		pmcmsptwi_set_twi_config(&newcfg, data);
582	}
583
584	/* Execute the command */
585	ret = pmcmsptwi_xfer_cmd(&cmd, data);
586
587	if (msg->flags & I2C_M_TEN)
588		pmcmsptwi_set_twi_config(&oldcfg, data);
589
590	dev_dbg(&adap->dev, "I2C %s of %d bytes %s\n",
591		(msg->flags & I2C_M_RD) ? "read" : "write", msg->len,
592		(ret == MSP_TWI_XFER_OK) ? "succeeded" : "failed");
593
594	if (ret != MSP_TWI_XFER_OK) {
595		/*
596		 * TODO: We could potentially loop and retry in the case
597		 * of MSP_TWI_XFER_TIMEOUT.
598		 */
599		return -1;
600	}
601
602	return 0;
603}
604
605static u32 pmcmsptwi_i2c_func(struct i2c_adapter *adapter)
606{
607	return I2C_FUNC_I2C | I2C_FUNC_10BIT_ADDR |
608		I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_BYTE_DATA |
609		I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_PROC_CALL;
610}
611
612/* -- Initialization -- */
613
614static struct i2c_algorithm pmcmsptwi_algo = {
615	.master_xfer	= pmcmsptwi_master_xfer,
616	.functionality	= pmcmsptwi_i2c_func,
617};
618
619static struct i2c_adapter pmcmsptwi_adapter = {
620	.owner		= THIS_MODULE,
621	.class		= I2C_CLASS_HWMON | I2C_CLASS_SPD,
622	.algo		= &pmcmsptwi_algo,
623	.name		= DRV_NAME,
624};
625
626static struct platform_driver pmcmsptwi_driver = {
627	.probe  = pmcmsptwi_probe,
628	.remove	= pmcmsptwi_remove,
629	.driver = {
630		.name	= DRV_NAME,
631		.owner	= THIS_MODULE,
632	},
633};
634
635module_platform_driver(pmcmsptwi_driver);
636
637MODULE_DESCRIPTION("PMC MSP TWI/SMBus/I2C driver");
638MODULE_LICENSE("GPL");
639MODULE_ALIAS("platform:" DRV_NAME);