Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * 64-bit Periodic Interval Timer driver
  4 *
  5 * Copyright (C) 2019 Microchip Technology Inc. and its subsidiaries
  6 *
  7 * Author: Claudiu Beznea <claudiu.beznea@microchip.com>
  8 */
  9
 10#include <linux/clk.h>
 11#include <linux/clockchips.h>
 12#include <linux/delay.h>
 13#include <linux/interrupt.h>
 14#include <linux/of_address.h>
 15#include <linux/of_irq.h>
 16#include <linux/sched_clock.h>
 17#include <linux/slab.h>
 18
 19#define MCHP_PIT64B_CR			0x00	/* Control Register */
 20#define MCHP_PIT64B_CR_START		BIT(0)
 21#define MCHP_PIT64B_CR_SWRST		BIT(8)
 22
 23#define MCHP_PIT64B_MR			0x04	/* Mode Register */
 24#define MCHP_PIT64B_MR_CONT		BIT(0)
 25#define MCHP_PIT64B_MR_ONE_SHOT		(0)
 26#define MCHP_PIT64B_MR_SGCLK		BIT(3)
 27#define MCHP_PIT64B_MR_PRES		GENMASK(11, 8)
 28
 29#define MCHP_PIT64B_LSB_PR		0x08	/* LSB Period Register */
 30
 31#define MCHP_PIT64B_MSB_PR		0x0C	/* MSB Period Register */
 32
 33#define MCHP_PIT64B_IER			0x10	/* Interrupt Enable Register */
 34#define MCHP_PIT64B_IER_PERIOD		BIT(0)
 35
 36#define MCHP_PIT64B_ISR			0x1C	/* Interrupt Status Register */
 37
 38#define MCHP_PIT64B_TLSBR		0x20	/* Timer LSB Register */
 39
 40#define MCHP_PIT64B_TMSBR		0x24	/* Timer MSB Register */
 41
 42#define MCHP_PIT64B_PRES_MAX		0x10
 43#define MCHP_PIT64B_LSBMASK		GENMASK_ULL(31, 0)
 44#define MCHP_PIT64B_PRES_TO_MODE(p)	(MCHP_PIT64B_MR_PRES & ((p) << 8))
 45#define MCHP_PIT64B_MODE_TO_PRES(m)	((MCHP_PIT64B_MR_PRES & (m)) >> 8)
 46#define MCHP_PIT64B_DEF_FREQ		5000000UL	/* 5 MHz */
 47
 48#define MCHP_PIT64B_NAME		"pit64b"
 49
 50/**
 51 * struct mchp_pit64b_timer - PIT64B timer data structure
 52 * @base: base address of PIT64B hardware block
 53 * @pclk: PIT64B's peripheral clock
 54 * @gclk: PIT64B's generic clock
 55 * @mode: precomputed value for mode register
 56 */
 57struct mchp_pit64b_timer {
 58	void __iomem	*base;
 59	struct clk	*pclk;
 60	struct clk	*gclk;
 61	u32		mode;
 62};
 63
 64/**
 65 * struct mchp_pit64b_clkevt - PIT64B clockevent data structure
 66 * @timer: PIT64B timer
 67 * @clkevt: clockevent
 68 */
 69struct mchp_pit64b_clkevt {
 70	struct mchp_pit64b_timer	timer;
 71	struct clock_event_device	clkevt;
 72};
 73
 74#define clkevt_to_mchp_pit64b_timer(x) \
 75	((struct mchp_pit64b_timer *)container_of(x,\
 76		struct mchp_pit64b_clkevt, clkevt))
 77
 78/**
 79 * struct mchp_pit64b_clksrc - PIT64B clocksource data structure
 80 * @timer: PIT64B timer
 81 * @clksrc: clocksource
 82 */
 83struct mchp_pit64b_clksrc {
 84	struct mchp_pit64b_timer	timer;
 85	struct clocksource		clksrc;
 86};
 87
 88#define clksrc_to_mchp_pit64b_timer(x) \
 89	((struct mchp_pit64b_timer *)container_of(x,\
 90		struct mchp_pit64b_clksrc, clksrc))
 91
 92/* Base address for clocksource timer. */
 93static void __iomem *mchp_pit64b_cs_base;
 94/* Default cycles for clockevent timer. */
 95static u64 mchp_pit64b_ce_cycles;
 96/* Delay timer. */
 97static struct delay_timer mchp_pit64b_dt;
 98
 99static inline u64 mchp_pit64b_cnt_read(void __iomem *base)
100{
101	unsigned long	flags;
102	u32		low, high;
103
104	raw_local_irq_save(flags);
105
106	/*
107	 * When using a 64 bit period TLSB must be read first, followed by the
108	 * read of TMSB. This sequence generates an atomic read of the 64 bit
109	 * timer value whatever the lapse of time between the accesses.
110	 */
111	low = readl_relaxed(base + MCHP_PIT64B_TLSBR);
112	high = readl_relaxed(base + MCHP_PIT64B_TMSBR);
113
114	raw_local_irq_restore(flags);
115
116	return (((u64)high << 32) | low);
117}
118
119static inline void mchp_pit64b_reset(struct mchp_pit64b_timer *timer,
120				     u64 cycles, u32 mode, u32 irqs)
121{
122	u32 low, high;
123
124	low = cycles & MCHP_PIT64B_LSBMASK;
125	high = cycles >> 32;
126
127	writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
128	writel_relaxed(mode | timer->mode, timer->base + MCHP_PIT64B_MR);
129	writel_relaxed(high, timer->base + MCHP_PIT64B_MSB_PR);
130	writel_relaxed(low, timer->base + MCHP_PIT64B_LSB_PR);
131	writel_relaxed(irqs, timer->base + MCHP_PIT64B_IER);
132	writel_relaxed(MCHP_PIT64B_CR_START, timer->base + MCHP_PIT64B_CR);
133}
134
135static void mchp_pit64b_suspend(struct mchp_pit64b_timer *timer)
136{
137	writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
138	if (timer->mode & MCHP_PIT64B_MR_SGCLK)
139		clk_disable_unprepare(timer->gclk);
140	clk_disable_unprepare(timer->pclk);
141}
142
143static void mchp_pit64b_resume(struct mchp_pit64b_timer *timer)
144{
145	clk_prepare_enable(timer->pclk);
146	if (timer->mode & MCHP_PIT64B_MR_SGCLK)
147		clk_prepare_enable(timer->gclk);
148}
149
150static void mchp_pit64b_clksrc_suspend(struct clocksource *cs)
151{
152	struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs);
153
154	mchp_pit64b_suspend(timer);
155}
156
157static void mchp_pit64b_clksrc_resume(struct clocksource *cs)
158{
159	struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs);
160
161	mchp_pit64b_resume(timer);
162	mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0);
163}
164
165static u64 mchp_pit64b_clksrc_read(struct clocksource *cs)
166{
167	return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
168}
169
170static u64 notrace mchp_pit64b_sched_read_clk(void)
171{
172	return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
173}
174
175static unsigned long notrace mchp_pit64b_dt_read(void)
176{
177	return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
178}
179
180static int mchp_pit64b_clkevt_shutdown(struct clock_event_device *cedev)
181{
182	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
183
184	if (!clockevent_state_detached(cedev))
185		mchp_pit64b_suspend(timer);
186
187	return 0;
188}
189
190static int mchp_pit64b_clkevt_set_periodic(struct clock_event_device *cedev)
191{
192	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
193
194	if (clockevent_state_shutdown(cedev))
195		mchp_pit64b_resume(timer);
196
197	mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_CONT,
198			  MCHP_PIT64B_IER_PERIOD);
199
200	return 0;
201}
202
203static int mchp_pit64b_clkevt_set_oneshot(struct clock_event_device *cedev)
204{
205	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
206
207	if (clockevent_state_shutdown(cedev))
208		mchp_pit64b_resume(timer);
209
210	mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_ONE_SHOT,
211			  MCHP_PIT64B_IER_PERIOD);
212
213	return 0;
214}
215
216static int mchp_pit64b_clkevt_set_next_event(unsigned long evt,
217					     struct clock_event_device *cedev)
218{
219	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
220
221	mchp_pit64b_reset(timer, evt, MCHP_PIT64B_MR_ONE_SHOT,
222			  MCHP_PIT64B_IER_PERIOD);
223
224	return 0;
225}
226
227static irqreturn_t mchp_pit64b_interrupt(int irq, void *dev_id)
228{
229	struct mchp_pit64b_clkevt *irq_data = dev_id;
230
231	/* Need to clear the interrupt. */
232	readl_relaxed(irq_data->timer.base + MCHP_PIT64B_ISR);
233
234	irq_data->clkevt.event_handler(&irq_data->clkevt);
235
236	return IRQ_HANDLED;
237}
238
239static void __init mchp_pit64b_pres_compute(u32 *pres, u32 clk_rate,
240					    u32 max_rate)
241{
242	u32 tmp;
243
244	for (*pres = 0; *pres < MCHP_PIT64B_PRES_MAX; (*pres)++) {
245		tmp = clk_rate / (*pres + 1);
246		if (tmp <= max_rate)
247			break;
248	}
249
250	/* Use the biggest prescaler if we didn't match one. */
251	if (*pres == MCHP_PIT64B_PRES_MAX)
252		*pres = MCHP_PIT64B_PRES_MAX - 1;
253}
254
255/**
256 * mchp_pit64b_init_mode() - prepare PIT64B mode register value to be used at
257 *			     runtime; this includes prescaler and SGCLK bit
258 * @timer: pointer to pit64b timer to init
259 * @max_rate: maximum rate that timer's clock could use
260 *
261 * PIT64B timer may be fed by gclk or pclk. When gclk is used its rate has to
262 * be at least 3 times lower that pclk's rate. pclk rate is fixed, gclk rate
263 * could be changed via clock APIs. The chosen clock (pclk or gclk) could be
264 * divided by the internal PIT64B's divider.
265 *
266 * This function, first tries to use GCLK by requesting the desired rate from
267 * PMC and then using the internal PIT64B prescaler, if any, to reach the
268 * requested rate. If PCLK/GCLK < 3 (condition requested by PIT64B hardware)
269 * then the function falls back on using PCLK as clock source for PIT64B timer
270 * choosing the highest prescaler in case it doesn't locate one to match the
271 * requested frequency.
272 *
273 * Below is presented the PIT64B block in relation with PMC:
274 *
275 *                                PIT64B
276 *  PMC             +------------------------------------+
277 * +----+           |   +-----+                          |
278 * |    |-->gclk -->|-->|     |    +---------+  +-----+  |
279 * |    |           |   | MUX |--->| Divider |->|timer|  |
280 * |    |-->pclk -->|-->|     |    +---------+  +-----+  |
281 * +----+           |   +-----+                          |
282 *                  |      ^                             |
283 *                  |     sel                            |
284 *                  +------------------------------------+
285 *
286 * Where:
287 *	- gclk rate <= pclk rate/3
288 *	- gclk rate could be requested from PMC
289 *	- pclk rate is fixed (cannot be requested from PMC)
290 */
291static int __init mchp_pit64b_init_mode(struct mchp_pit64b_timer *timer,
292					unsigned long max_rate)
293{
294	unsigned long pclk_rate, diff = 0, best_diff = ULONG_MAX;
295	long gclk_round = 0;
296	u32 pres, best_pres = 0;
297
298	pclk_rate = clk_get_rate(timer->pclk);
299	if (!pclk_rate)
300		return -EINVAL;
301
302	timer->mode = 0;
303
304	/* Try using GCLK. */
305	gclk_round = clk_round_rate(timer->gclk, max_rate);
306	if (gclk_round < 0)
307		goto pclk;
308
309	if (pclk_rate / gclk_round < 3)
310		goto pclk;
311
312	mchp_pit64b_pres_compute(&pres, gclk_round, max_rate);
313	best_diff = abs(gclk_round / (pres + 1) - max_rate);
314	best_pres = pres;
315
316	if (!best_diff) {
317		timer->mode |= MCHP_PIT64B_MR_SGCLK;
318		clk_set_rate(timer->gclk, gclk_round);
319		goto done;
320	}
321
322pclk:
323	/* Check if requested rate could be obtained using PCLK. */
324	mchp_pit64b_pres_compute(&pres, pclk_rate, max_rate);
325	diff = abs(pclk_rate / (pres + 1) - max_rate);
326
327	if (best_diff > diff) {
328		/* Use PCLK. */
329		best_pres = pres;
330	} else {
331		/* Use GCLK. */
332		timer->mode |= MCHP_PIT64B_MR_SGCLK;
333		clk_set_rate(timer->gclk, gclk_round);
334	}
335
336done:
337	timer->mode |= MCHP_PIT64B_PRES_TO_MODE(best_pres);
338
339	pr_info("PIT64B: using clk=%s with prescaler %u, freq=%lu [Hz]\n",
340		timer->mode & MCHP_PIT64B_MR_SGCLK ? "gclk" : "pclk", best_pres,
341		timer->mode & MCHP_PIT64B_MR_SGCLK ?
342		gclk_round / (best_pres + 1) : pclk_rate / (best_pres + 1));
343
344	return 0;
345}
346
347static int __init mchp_pit64b_init_clksrc(struct mchp_pit64b_timer *timer,
348					  u32 clk_rate)
349{
350	struct mchp_pit64b_clksrc *cs;
351	int ret;
352
353	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
354	if (!cs)
355		return -ENOMEM;
356
357	mchp_pit64b_resume(timer);
358	mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0);
359
360	mchp_pit64b_cs_base = timer->base;
361
362	cs->timer.base = timer->base;
363	cs->timer.pclk = timer->pclk;
364	cs->timer.gclk = timer->gclk;
365	cs->timer.mode = timer->mode;
366	cs->clksrc.name = MCHP_PIT64B_NAME;
367	cs->clksrc.mask = CLOCKSOURCE_MASK(64);
368	cs->clksrc.flags = CLOCK_SOURCE_IS_CONTINUOUS;
369	cs->clksrc.rating = 210;
370	cs->clksrc.read = mchp_pit64b_clksrc_read;
371	cs->clksrc.suspend = mchp_pit64b_clksrc_suspend;
372	cs->clksrc.resume = mchp_pit64b_clksrc_resume;
373
374	ret = clocksource_register_hz(&cs->clksrc, clk_rate);
375	if (ret) {
376		pr_debug("clksrc: Failed to register PIT64B clocksource!\n");
377
378		/* Stop timer. */
379		mchp_pit64b_suspend(timer);
380		kfree(cs);
381
382		return ret;
383	}
384
385	sched_clock_register(mchp_pit64b_sched_read_clk, 64, clk_rate);
386
387	mchp_pit64b_dt.read_current_timer = mchp_pit64b_dt_read;
388	mchp_pit64b_dt.freq = clk_rate;
389	register_current_timer_delay(&mchp_pit64b_dt);
390
391	return 0;
392}
393
394static int __init mchp_pit64b_init_clkevt(struct mchp_pit64b_timer *timer,
395					  u32 clk_rate, u32 irq)
396{
397	struct mchp_pit64b_clkevt *ce;
398	int ret;
399
400	ce = kzalloc(sizeof(*ce), GFP_KERNEL);
401	if (!ce)
402		return -ENOMEM;
403
404	mchp_pit64b_ce_cycles = DIV_ROUND_CLOSEST(clk_rate, HZ);
405
406	ce->timer.base = timer->base;
407	ce->timer.pclk = timer->pclk;
408	ce->timer.gclk = timer->gclk;
409	ce->timer.mode = timer->mode;
410	ce->clkevt.name = MCHP_PIT64B_NAME;
411	ce->clkevt.features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC;
412	ce->clkevt.rating = 150;
413	ce->clkevt.set_state_shutdown = mchp_pit64b_clkevt_shutdown;
414	ce->clkevt.set_state_periodic = mchp_pit64b_clkevt_set_periodic;
415	ce->clkevt.set_state_oneshot = mchp_pit64b_clkevt_set_oneshot;
416	ce->clkevt.set_next_event = mchp_pit64b_clkevt_set_next_event;
417	ce->clkevt.cpumask = cpumask_of(0);
418	ce->clkevt.irq = irq;
419
420	ret = request_irq(irq, mchp_pit64b_interrupt, IRQF_TIMER,
421			  "pit64b_tick", ce);
422	if (ret) {
423		pr_debug("clkevt: Failed to setup PIT64B IRQ\n");
424		kfree(ce);
425		return ret;
426	}
427
428	clockevents_config_and_register(&ce->clkevt, clk_rate, 1, ULONG_MAX);
429
430	return 0;
431}
432
433static int __init mchp_pit64b_dt_init_timer(struct device_node *node,
434					    bool clkevt)
435{
436	struct mchp_pit64b_timer timer;
437	unsigned long clk_rate;
438	u32 irq = 0;
439	int ret;
440
441	/* Parse DT node. */
442	timer.pclk = of_clk_get_by_name(node, "pclk");
443	if (IS_ERR(timer.pclk))
444		return PTR_ERR(timer.pclk);
445
446	timer.gclk = of_clk_get_by_name(node, "gclk");
447	if (IS_ERR(timer.gclk))
448		return PTR_ERR(timer.gclk);
449
450	timer.base = of_iomap(node, 0);
451	if (!timer.base)
452		return -ENXIO;
453
454	if (clkevt) {
455		irq = irq_of_parse_and_map(node, 0);
456		if (!irq) {
457			ret = -ENODEV;
458			goto io_unmap;
459		}
460	}
461
462	/* Initialize mode (prescaler + SGCK bit). To be used at runtime. */
463	ret = mchp_pit64b_init_mode(&timer, MCHP_PIT64B_DEF_FREQ);
464	if (ret)
465		goto irq_unmap;
466
467	if (timer.mode & MCHP_PIT64B_MR_SGCLK)
468		clk_rate = clk_get_rate(timer.gclk);
469	else
470		clk_rate = clk_get_rate(timer.pclk);
471	clk_rate = clk_rate / (MCHP_PIT64B_MODE_TO_PRES(timer.mode) + 1);
472
473	if (clkevt)
474		ret = mchp_pit64b_init_clkevt(&timer, clk_rate, irq);
475	else
476		ret = mchp_pit64b_init_clksrc(&timer, clk_rate);
477
478	if (ret)
479		goto irq_unmap;
480
481	return 0;
482
483irq_unmap:
484	irq_dispose_mapping(irq);
485io_unmap:
486	iounmap(timer.base);
487
488	return ret;
489}
490
491static int __init mchp_pit64b_dt_init(struct device_node *node)
492{
493	static int inits;
494
495	switch (inits++) {
496	case 0:
497		/* 1st request, register clockevent. */
498		return mchp_pit64b_dt_init_timer(node, true);
499	case 1:
500		/* 2nd request, register clocksource. */
501		return mchp_pit64b_dt_init_timer(node, false);
502	}
503
504	/* The rest, don't care. */
505	return -EINVAL;
506}
507
508TIMER_OF_DECLARE(mchp_pit64b, "microchip,sam9x60-pit64b", mchp_pit64b_dt_init);