Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  AMD CPU Microcode Update Driver for Linux
  4 *
  5 *  This driver allows to upgrade microcode on F10h AMD
  6 *  CPUs and later.
  7 *
  8 *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
  9 *	          2013-2018 Borislav Petkov <bp@alien8.de>
 10 *
 11 *  Author: Peter Oruba <peter.oruba@amd.com>
 12 *
 13 *  Based on work by:
 14 *  Tigran Aivazian <aivazian.tigran@gmail.com>
 
 
 
 
 15 *
 16 *  early loader:
 17 *  Copyright (C) 2013 Advanced Micro Devices, Inc.
 18 *
 19 *  Author: Jacob Shin <jacob.shin@amd.com>
 20 *  Fixes: Borislav Petkov <bp@suse.de>
 21 */
 22#define pr_fmt(fmt) "microcode: " fmt
 23
 24#include <linux/earlycpio.h>
 
 25#include <linux/firmware.h>
 
 26#include <linux/uaccess.h>
 27#include <linux/vmalloc.h>
 28#include <linux/initrd.h>
 29#include <linux/kernel.h>
 
 30#include <linux/pci.h>
 31
 32#include <asm/microcode.h>
 33#include <asm/processor.h>
 34#include <asm/setup.h>
 35#include <asm/cpu.h>
 36#include <asm/msr.h>
 
 37
 38#include "internal.h"
 
 
 
 
 39
 40struct ucode_patch {
 41	struct list_head plist;
 42	void *data;
 43	unsigned int size;
 44	u32 patch_id;
 45	u16 equiv_cpu;
 46};
 47
 48static LIST_HEAD(microcode_cache);
 49
 50#define UCODE_MAGIC			0x00414d44
 51#define UCODE_EQUIV_CPU_TABLE_TYPE	0x00000000
 52#define UCODE_UCODE_TYPE		0x00000001
 53
 54#define SECTION_HDR_SIZE		8
 55#define CONTAINER_HDR_SZ		12
 56
 57struct equiv_cpu_entry {
 58	u32	installed_cpu;
 59	u32	fixed_errata_mask;
 60	u32	fixed_errata_compare;
 61	u16	equiv_cpu;
 62	u16	res;
 63} __packed;
 64
 65struct microcode_header_amd {
 66	u32	data_code;
 67	u32	patch_id;
 68	u16	mc_patch_data_id;
 69	u8	mc_patch_data_len;
 70	u8	init_flag;
 71	u32	mc_patch_data_checksum;
 72	u32	nb_dev_id;
 73	u32	sb_dev_id;
 74	u16	processor_rev_id;
 75	u8	nb_rev_id;
 76	u8	sb_rev_id;
 77	u8	bios_api_rev;
 78	u8	reserved1[3];
 79	u32	match_reg[8];
 80} __packed;
 81
 82struct microcode_amd {
 83	struct microcode_header_amd	hdr;
 84	unsigned int			mpb[];
 85};
 86
 87#define PATCH_MAX_SIZE (3 * PAGE_SIZE)
 88
 89static struct equiv_cpu_table {
 90	unsigned int num_entries;
 91	struct equiv_cpu_entry *entry;
 92} equiv_table;
 93
 94/*
 95 * This points to the current valid container of microcode patches which we will
 96 * save from the initrd/builtin before jettisoning its contents. @mc is the
 97 * microcode patch we found to match.
 98 */
 99struct cont_desc {
100	struct microcode_amd *mc;
101	u32		     cpuid_1_eax;
102	u32		     psize;
103	u8		     *data;
104	size_t		     size;
105};
106
107/*
108 * Microcode patch container file is prepended to the initrd in cpio
109 * format. See Documentation/arch/x86/microcode.rst
110 */
111static const char
112ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
113
114static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
115{
116	unsigned int i;
117
118	if (!et || !et->num_entries)
119		return 0;
120
121	for (i = 0; i < et->num_entries; i++) {
122		struct equiv_cpu_entry *e = &et->entry[i];
123
124		if (sig == e->installed_cpu)
125			return e->equiv_cpu;
126	}
127	return 0;
128}
129
130/*
131 * Check whether there is a valid microcode container file at the beginning
132 * of @buf of size @buf_size.
133 */
134static bool verify_container(const u8 *buf, size_t buf_size)
135{
136	u32 cont_magic;
137
138	if (buf_size <= CONTAINER_HDR_SZ) {
139		pr_debug("Truncated microcode container header.\n");
140		return false;
141	}
142
143	cont_magic = *(const u32 *)buf;
144	if (cont_magic != UCODE_MAGIC) {
145		pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
146		return false;
147	}
148
149	return true;
150}
151
152/*
153 * Check whether there is a valid, non-truncated CPU equivalence table at the
154 * beginning of @buf of size @buf_size.
155 */
156static bool verify_equivalence_table(const u8 *buf, size_t buf_size)
157{
158	const u32 *hdr = (const u32 *)buf;
159	u32 cont_type, equiv_tbl_len;
160
161	if (!verify_container(buf, buf_size))
162		return false;
163
164	cont_type = hdr[1];
165	if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
166		pr_debug("Wrong microcode container equivalence table type: %u.\n",
167			 cont_type);
168		return false;
169	}
170
171	buf_size -= CONTAINER_HDR_SZ;
172
173	equiv_tbl_len = hdr[2];
174	if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
175	    buf_size < equiv_tbl_len) {
176		pr_debug("Truncated equivalence table.\n");
177		return false;
178	}
179
180	return true;
181}
182
183/*
184 * Check whether there is a valid, non-truncated microcode patch section at the
185 * beginning of @buf of size @buf_size.
186 *
187 * On success, @sh_psize returns the patch size according to the section header,
188 * to the caller.
189 */
190static bool
191__verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize)
192{
193	u32 p_type, p_size;
194	const u32 *hdr;
195
196	if (buf_size < SECTION_HDR_SIZE) {
197		pr_debug("Truncated patch section.\n");
198		return false;
199	}
200
201	hdr = (const u32 *)buf;
202	p_type = hdr[0];
203	p_size = hdr[1];
204
205	if (p_type != UCODE_UCODE_TYPE) {
206		pr_debug("Invalid type field (0x%x) in container file section header.\n",
207			 p_type);
208		return false;
209	}
210
211	if (p_size < sizeof(struct microcode_header_amd)) {
212		pr_debug("Patch of size %u too short.\n", p_size);
213		return false;
214	}
215
216	*sh_psize = p_size;
217
218	return true;
219}
220
221/*
222 * Check whether the passed remaining file @buf_size is large enough to contain
223 * a patch of the indicated @sh_psize (and also whether this size does not
224 * exceed the per-family maximum). @sh_psize is the size read from the section
225 * header.
226 */
227static unsigned int __verify_patch_size(u8 family, u32 sh_psize, size_t buf_size)
228{
229	u32 max_size;
230
231	if (family >= 0x15)
232		return min_t(u32, sh_psize, buf_size);
233
234#define F1XH_MPB_MAX_SIZE 2048
235#define F14H_MPB_MAX_SIZE 1824
236
237	switch (family) {
238	case 0x10 ... 0x12:
239		max_size = F1XH_MPB_MAX_SIZE;
240		break;
241	case 0x14:
242		max_size = F14H_MPB_MAX_SIZE;
243		break;
244	default:
245		WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
246		return 0;
247	}
248
249	if (sh_psize > min_t(u32, buf_size, max_size))
250		return 0;
251
252	return sh_psize;
253}
254
255/*
256 * Verify the patch in @buf.
257 *
258 * Returns:
259 * negative: on error
260 * positive: patch is not for this family, skip it
261 * 0: success
262 */
263static int
264verify_patch(u8 family, const u8 *buf, size_t buf_size, u32 *patch_size)
265{
266	struct microcode_header_amd *mc_hdr;
267	unsigned int ret;
268	u32 sh_psize;
269	u16 proc_id;
270	u8 patch_fam;
271
272	if (!__verify_patch_section(buf, buf_size, &sh_psize))
273		return -1;
274
275	/*
276	 * The section header length is not included in this indicated size
277	 * but is present in the leftover file length so we need to subtract
278	 * it before passing this value to the function below.
279	 */
280	buf_size -= SECTION_HDR_SIZE;
281
282	/*
283	 * Check if the remaining buffer is big enough to contain a patch of
284	 * size sh_psize, as the section claims.
285	 */
286	if (buf_size < sh_psize) {
287		pr_debug("Patch of size %u truncated.\n", sh_psize);
288		return -1;
289	}
290
291	ret = __verify_patch_size(family, sh_psize, buf_size);
292	if (!ret) {
293		pr_debug("Per-family patch size mismatch.\n");
294		return -1;
295	}
296
297	*patch_size = sh_psize;
298
299	mc_hdr	= (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
300	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
301		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
302		return -1;
303	}
304
305	proc_id	= mc_hdr->processor_rev_id;
306	patch_fam = 0xf + (proc_id >> 12);
307	if (patch_fam != family)
308		return 1;
309
310	return 0;
311}
312
313/*
314 * This scans the ucode blob for the proper container as we can have multiple
315 * containers glued together. Returns the equivalence ID from the equivalence
316 * table or 0 if none found.
317 * Returns the amount of bytes consumed while scanning. @desc contains all the
318 * data we're going to use in later stages of the application.
319 */
320static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
321{
322	struct equiv_cpu_table table;
323	size_t orig_size = size;
324	u32 *hdr = (u32 *)ucode;
325	u16 eq_id;
326	u8 *buf;
327
328	if (!verify_equivalence_table(ucode, size))
329		return 0;
330
331	buf = ucode;
332
333	table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
334	table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
335
336	/*
337	 * Find the equivalence ID of our CPU in this table. Even if this table
338	 * doesn't contain a patch for the CPU, scan through the whole container
339	 * so that it can be skipped in case there are other containers appended.
340	 */
341	eq_id = find_equiv_id(&table, desc->cpuid_1_eax);
342
343	buf  += hdr[2] + CONTAINER_HDR_SZ;
344	size -= hdr[2] + CONTAINER_HDR_SZ;
345
346	/*
347	 * Scan through the rest of the container to find where it ends. We do
348	 * some basic sanity-checking too.
349	 */
350	while (size > 0) {
351		struct microcode_amd *mc;
352		u32 patch_size;
353		int ret;
354
355		ret = verify_patch(x86_family(desc->cpuid_1_eax), buf, size, &patch_size);
356		if (ret < 0) {
357			/*
358			 * Patch verification failed, skip to the next container, if
359			 * there is one. Before exit, check whether that container has
360			 * found a patch already. If so, use it.
361			 */
362			goto out;
363		} else if (ret > 0) {
364			goto skip;
365		}
366
367		mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
368		if (eq_id == mc->hdr.processor_rev_id) {
369			desc->psize = patch_size;
370			desc->mc = mc;
371		}
372
373skip:
374		/* Skip patch section header too: */
375		buf  += patch_size + SECTION_HDR_SIZE;
376		size -= patch_size + SECTION_HDR_SIZE;
377	}
378
379out:
380	/*
381	 * If we have found a patch (desc->mc), it means we're looking at the
382	 * container which has a patch for this CPU so return 0 to mean, @ucode
383	 * already points to the proper container. Otherwise, we return the size
384	 * we scanned so that we can advance to the next container in the
385	 * buffer.
386	 */
387	if (desc->mc) {
388		desc->data = ucode;
389		desc->size = orig_size - size;
390
391		return 0;
392	}
393
394	return orig_size - size;
395}
396
397/*
398 * Scan the ucode blob for the proper container as we can have multiple
399 * containers glued together.
400 */
401static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
402{
403	while (size) {
404		size_t s = parse_container(ucode, size, desc);
405		if (!s)
406			return;
407
408		/* catch wraparound */
409		if (size >= s) {
410			ucode += s;
411			size  -= s;
412		} else {
413			return;
414		}
415	}
416}
417
418static int __apply_microcode_amd(struct microcode_amd *mc)
419{
420	u32 rev, dummy;
421
422	native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code);
423
424	/* verify patch application was successful */
425	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
426	if (rev != mc->hdr.patch_id)
427		return -1;
428
429	return 0;
430}
431
432/*
433 * Early load occurs before we can vmalloc(). So we look for the microcode
434 * patch container file in initrd, traverse equivalent cpu table, look for a
435 * matching microcode patch, and update, all in initrd memory in place.
436 * When vmalloc() is available for use later -- on 64-bit during first AP load,
437 * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
438 * load_microcode_amd() to save equivalent cpu table and microcode patches in
439 * kernel heap memory.
440 *
441 * Returns true if container found (sets @desc), false otherwise.
442 */
443static bool early_apply_microcode(u32 cpuid_1_eax, u32 old_rev, void *ucode, size_t size)
444{
445	struct cont_desc desc = { 0 };
446	struct microcode_amd *mc;
447	bool ret = false;
448
449	desc.cpuid_1_eax = cpuid_1_eax;
450
451	scan_containers(ucode, size, &desc);
452
453	mc = desc.mc;
454	if (!mc)
455		return ret;
456
457	/*
458	 * Allow application of the same revision to pick up SMT-specific
459	 * changes even if the revision of the other SMT thread is already
460	 * up-to-date.
461	 */
462	if (old_rev > mc->hdr.patch_id)
463		return ret;
464
465	return !__apply_microcode_amd(mc);
466}
467
468static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
469{
470	char fw_name[36] = "amd-ucode/microcode_amd.bin";
471	struct firmware fw;
472
473	if (IS_ENABLED(CONFIG_X86_32))
474		return false;
475
476	if (family >= 0x15)
477		snprintf(fw_name, sizeof(fw_name),
478			 "amd-ucode/microcode_amd_fam%02hhxh.bin", family);
479
480	if (firmware_request_builtin(&fw, fw_name)) {
481		cp->size = fw.size;
482		cp->data = (void *)fw.data;
483		return true;
484	}
485
486	return false;
487}
488
489static void __init find_blobs_in_containers(unsigned int cpuid_1_eax, struct cpio_data *ret)
490{
491	struct cpio_data cp;
492
493	if (!get_builtin_microcode(&cp, x86_family(cpuid_1_eax)))
494		cp = find_microcode_in_initrd(ucode_path);
495
496	*ret = cp;
497}
498
499void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax)
500{
501	struct cpio_data cp = { };
502	u32 dummy;
503
504	native_rdmsr(MSR_AMD64_PATCH_LEVEL, ed->old_rev, dummy);
505
506	/* Needed in load_microcode_amd() */
507	ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax;
508
509	find_blobs_in_containers(cpuid_1_eax, &cp);
510	if (!(cp.data && cp.size))
511		return;
512
513	if (early_apply_microcode(cpuid_1_eax, ed->old_rev, cp.data, cp.size))
514		native_rdmsr(MSR_AMD64_PATCH_LEVEL, ed->new_rev, dummy);
515}
516
517static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size);
518
519static int __init save_microcode_in_initrd(void)
520{
521	unsigned int cpuid_1_eax = native_cpuid_eax(1);
522	struct cpuinfo_x86 *c = &boot_cpu_data;
523	struct cont_desc desc = { 0 };
524	enum ucode_state ret;
525	struct cpio_data cp;
526
527	if (dis_ucode_ldr || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10)
528		return 0;
529
530	find_blobs_in_containers(cpuid_1_eax, &cp);
531	if (!(cp.data && cp.size))
532		return -EINVAL;
533
534	desc.cpuid_1_eax = cpuid_1_eax;
535
536	scan_containers(cp.data, cp.size, &desc);
537	if (!desc.mc)
538		return -EINVAL;
539
540	ret = load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
541	if (ret > UCODE_UPDATED)
542		return -EINVAL;
543
544	return 0;
545}
546early_initcall(save_microcode_in_initrd);
547
548/*
549 * a small, trivial cache of per-family ucode patches
550 */
551static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
552{
553	struct ucode_patch *p;
554
555	list_for_each_entry(p, &microcode_cache, plist)
556		if (p->equiv_cpu == equiv_cpu)
557			return p;
558	return NULL;
559}
560
561static void update_cache(struct ucode_patch *new_patch)
562{
563	struct ucode_patch *p;
564
565	list_for_each_entry(p, &microcode_cache, plist) {
566		if (p->equiv_cpu == new_patch->equiv_cpu) {
567			if (p->patch_id >= new_patch->patch_id) {
568				/* we already have the latest patch */
569				kfree(new_patch->data);
570				kfree(new_patch);
571				return;
572			}
573
574			list_replace(&p->plist, &new_patch->plist);
575			kfree(p->data);
576			kfree(p);
577			return;
578		}
579	}
580	/* no patch found, add it */
581	list_add_tail(&new_patch->plist, &microcode_cache);
582}
583
584static void free_cache(void)
585{
586	struct ucode_patch *p, *tmp;
587
588	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
589		__list_del(p->plist.prev, p->plist.next);
590		kfree(p->data);
591		kfree(p);
592	}
593}
594
595static struct ucode_patch *find_patch(unsigned int cpu)
596{
597	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
598	u16 equiv_id;
599
600	equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig);
601	if (!equiv_id)
602		return NULL;
603
604	return cache_find_patch(equiv_id);
605}
606
607void reload_ucode_amd(unsigned int cpu)
608{
609	u32 rev, dummy __always_unused;
610	struct microcode_amd *mc;
611	struct ucode_patch *p;
612
613	p = find_patch(cpu);
614	if (!p)
615		return;
616
617	mc = p->data;
618
619	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
620
621	if (rev < mc->hdr.patch_id) {
622		if (!__apply_microcode_amd(mc))
623			pr_info_once("reload revision: 0x%08x\n", mc->hdr.patch_id);
624	}
625}
626
627static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
628{
629	struct cpuinfo_x86 *c = &cpu_data(cpu);
630	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
631	struct ucode_patch *p;
632
633	csig->sig = cpuid_eax(0x00000001);
634	csig->rev = c->microcode;
635
636	/*
637	 * a patch could have been loaded early, set uci->mc so that
638	 * mc_bp_resume() can call apply_microcode()
639	 */
640	p = find_patch(cpu);
641	if (p && (p->patch_id == csig->rev))
642		uci->mc = p->data;
643
 
 
644	return 0;
645}
646
647static enum ucode_state apply_microcode_amd(int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
648{
649	struct cpuinfo_x86 *c = &cpu_data(cpu);
650	struct microcode_amd *mc_amd;
651	struct ucode_cpu_info *uci;
652	struct ucode_patch *p;
653	enum ucode_state ret;
654	u32 rev, dummy __always_unused;
655
656	BUG_ON(raw_smp_processor_id() != cpu);
657
658	uci = ucode_cpu_info + cpu;
659
660	p = find_patch(cpu);
661	if (!p)
662		return UCODE_NFOUND;
663
664	mc_amd  = p->data;
665	uci->mc = p->data;
666
667	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
668
669	/* need to apply patch? */
670	if (rev > mc_amd->hdr.patch_id) {
671		ret = UCODE_OK;
672		goto out;
 
673	}
674
675	if (__apply_microcode_amd(mc_amd)) {
676		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
677			cpu, mc_amd->hdr.patch_id);
678		return UCODE_ERROR;
679	}
 
 
680
681	rev = mc_amd->hdr.patch_id;
682	ret = UCODE_UPDATED;
683
684out:
685	uci->cpu_sig.rev = rev;
686	c->microcode	 = rev;
687
688	/* Update boot_cpu_data's revision too, if we're on the BSP: */
689	if (c->cpu_index == boot_cpu_data.cpu_index)
690		boot_cpu_data.microcode = rev;
691
692	return ret;
693}
694
695void load_ucode_amd_ap(unsigned int cpuid_1_eax)
696{
697	unsigned int cpu = smp_processor_id();
698
699	ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax;
700	apply_microcode_amd(cpu);
701}
702
703static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
704{
705	u32 equiv_tbl_len;
706	const u32 *hdr;
707
708	if (!verify_equivalence_table(buf, buf_size))
709		return 0;
710
711	hdr = (const u32 *)buf;
712	equiv_tbl_len = hdr[2];
 
713
714	equiv_table.entry = vmalloc(equiv_tbl_len);
715	if (!equiv_table.entry) {
716		pr_err("failed to allocate equivalent CPU table\n");
717		return 0;
718	}
719
720	memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
721	equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
722
723	/* add header length */
724	return equiv_tbl_len + CONTAINER_HDR_SZ;
725}
726
727static void free_equiv_cpu_table(void)
728{
729	vfree(equiv_table.entry);
730	memset(&equiv_table, 0, sizeof(equiv_table));
731}
732
733static void cleanup(void)
734{
735	free_equiv_cpu_table();
736	free_cache();
737}
738
739/*
740 * Return a non-negative value even if some of the checks failed so that
741 * we can skip over the next patch. If we return a negative value, we
742 * signal a grave error like a memory allocation has failed and the
743 * driver cannot continue functioning normally. In such cases, we tear
744 * down everything we've used up so far and exit.
745 */
746static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
747				unsigned int *patch_size)
748{
749	struct microcode_header_amd *mc_hdr;
750	struct ucode_patch *patch;
 
 
751	u16 proc_id;
752	int ret;
753
754	ret = verify_patch(family, fw, leftover, patch_size);
755	if (ret)
756		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
757
758	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
759	if (!patch) {
760		pr_err("Patch allocation failure.\n");
761		return -EINVAL;
762	}
763
764	patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
765	if (!patch->data) {
766		pr_err("Patch data allocation failure.\n");
767		kfree(patch);
768		return -EINVAL;
769	}
770	patch->size = *patch_size;
771
772	mc_hdr      = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
773	proc_id     = mc_hdr->processor_rev_id;
774
 
 
775	INIT_LIST_HEAD(&patch->plist);
776	patch->patch_id  = mc_hdr->patch_id;
777	patch->equiv_cpu = proc_id;
778
779	pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
780		 __func__, patch->patch_id, proc_id);
781
782	/* ... and add to cache. */
783	update_cache(patch);
784
785	return 0;
786}
787
788/* Scan the blob in @data and add microcode patches to the cache. */
789static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
790					     size_t size)
791{
 
 
792	u8 *fw = (u8 *)data;
793	size_t offset;
794
795	offset = install_equiv_cpu_table(data, size);
796	if (!offset)
797		return UCODE_ERROR;
798
799	fw   += offset;
800	size -= offset;
 
 
 
 
 
801
802	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
803		pr_err("invalid type field in container file section header\n");
804		free_equiv_cpu_table();
805		return UCODE_ERROR;
806	}
807
808	while (size > 0) {
809		unsigned int crnt_size = 0;
810		int ret;
 
811
812		ret = verify_and_add_patch(family, fw, size, &crnt_size);
813		if (ret < 0)
814			return UCODE_ERROR;
815
816		fw   +=  crnt_size + SECTION_HDR_SIZE;
817		size -= (crnt_size + SECTION_HDR_SIZE);
818	}
819
820	return UCODE_OK;
821}
822
823static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
824{
825	struct cpuinfo_x86 *c;
826	unsigned int nid, cpu;
827	struct ucode_patch *p;
828	enum ucode_state ret;
829
830	/* free old equiv table */
831	free_equiv_cpu_table();
832
833	ret = __load_microcode_amd(family, data, size);
834	if (ret != UCODE_OK) {
835		cleanup();
836		return ret;
837	}
838
839	for_each_node(nid) {
840		cpu = cpumask_first(cpumask_of_node(nid));
841		c = &cpu_data(cpu);
842
843		p = find_patch(cpu);
844		if (!p)
845			continue;
846
847		if (c->microcode >= p->patch_id)
848			continue;
849
850		ret = UCODE_NEW;
 
 
 
 
 
 
 
 
851	}
852
853	return ret;
854}
855
856/*
857 * AMD microcode firmware naming convention, up to family 15h they are in
858 * the legacy file:
859 *
860 *    amd-ucode/microcode_amd.bin
861 *
862 * This legacy file is always smaller than 2K in size.
863 *
864 * Beginning with family 15h, they are in family-specific firmware files:
865 *
866 *    amd-ucode/microcode_amd_fam15h.bin
867 *    amd-ucode/microcode_amd_fam16h.bin
868 *    ...
869 *
870 * These might be larger than 2K.
871 */
872static enum ucode_state request_microcode_amd(int cpu, struct device *device)
 
873{
874	char fw_name[36] = "amd-ucode/microcode_amd.bin";
875	struct cpuinfo_x86 *c = &cpu_data(cpu);
876	enum ucode_state ret = UCODE_NFOUND;
877	const struct firmware *fw;
878
879	if (force_minrev)
880		return UCODE_NFOUND;
 
881
882	if (c->x86 >= 0x15)
883		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
884
885	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
886		pr_debug("failed to load file %s\n", fw_name);
887		goto out;
888	}
889
890	ret = UCODE_ERROR;
891	if (!verify_container(fw->data, fw->size))
 
892		goto fw_release;
 
893
894	ret = load_microcode_amd(c->x86, fw->data, fw->size);
895
896 fw_release:
897	release_firmware(fw);
898
899 out:
900	return ret;
901}
902
 
 
 
 
 
 
903static void microcode_fini_cpu_amd(int cpu)
904{
905	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
906
907	uci->mc = NULL;
908}
909
910static struct microcode_ops microcode_amd_ops = {
911	.request_microcode_fw	= request_microcode_amd,
912	.collect_cpu_info	= collect_cpu_info_amd,
913	.apply_microcode	= apply_microcode_amd,
914	.microcode_fini_cpu	= microcode_fini_cpu_amd,
915	.nmi_safe		= true,
916};
917
918struct microcode_ops * __init init_amd_microcode(void)
919{
920	struct cpuinfo_x86 *c = &boot_cpu_data;
921
922	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
923		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
924		return NULL;
925	}
 
926	return &microcode_amd_ops;
927}
928
929void __exit exit_amd_microcode(void)
930{
931	cleanup();
932}
v3.15
 
  1/*
  2 *  AMD CPU Microcode Update Driver for Linux
 
 
 
 
  3 *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
 
  4 *
  5 *  Author: Peter Oruba <peter.oruba@amd.com>
  6 *
  7 *  Based on work by:
  8 *  Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
  9 *
 10 *  Maintainers:
 11 *  Andreas Herrmann <herrmann.der.user@googlemail.com>
 12 *  Borislav Petkov <bp@alien8.de>
 13 *
 14 *  This driver allows to upgrade microcode on F10h AMD
 15 *  CPUs and later.
 16 *
 17 *  Licensed under the terms of the GNU General Public
 18 *  License version 2. See file COPYING for details.
 19 */
 
 20
 21#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 22
 23#include <linux/firmware.h>
 24#include <linux/pci_ids.h>
 25#include <linux/uaccess.h>
 26#include <linux/vmalloc.h>
 
 27#include <linux/kernel.h>
 28#include <linux/module.h>
 29#include <linux/pci.h>
 30
 31#include <asm/microcode.h>
 32#include <asm/processor.h>
 
 
 33#include <asm/msr.h>
 34#include <asm/microcode_amd.h>
 35
 36MODULE_DESCRIPTION("AMD Microcode Update Driver");
 37MODULE_AUTHOR("Peter Oruba");
 38MODULE_LICENSE("GPL v2");
 39
 40static struct equiv_cpu_entry *equiv_cpu_table;
 41
 42struct ucode_patch {
 43	struct list_head plist;
 44	void *data;
 
 45	u32 patch_id;
 46	u16 equiv_cpu;
 47};
 48
 49static LIST_HEAD(pcache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 50
 51static u16 __find_equiv_id(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 52{
 53	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
 54	return find_equiv_id(equiv_cpu_table, uci->cpu_sig.sig);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 55}
 56
 57static u32 find_cpu_family_by_equiv_cpu(u16 equiv_cpu)
 58{
 59	int i = 0;
 
 60
 61	BUG_ON(!equiv_cpu_table);
 
 62
 63	while (equiv_cpu_table[i].equiv_cpu != 0) {
 64		if (equiv_cpu == equiv_cpu_table[i].equiv_cpu)
 65			return equiv_cpu_table[i].installed_cpu;
 66		i++;
 
 
 
 
 67	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 68	return 0;
 69}
 
 70
 71/*
 72 * a small, trivial cache of per-family ucode patches
 73 */
 74static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
 75{
 76	struct ucode_patch *p;
 77
 78	list_for_each_entry(p, &pcache, plist)
 79		if (p->equiv_cpu == equiv_cpu)
 80			return p;
 81	return NULL;
 82}
 83
 84static void update_cache(struct ucode_patch *new_patch)
 85{
 86	struct ucode_patch *p;
 87
 88	list_for_each_entry(p, &pcache, plist) {
 89		if (p->equiv_cpu == new_patch->equiv_cpu) {
 90			if (p->patch_id >= new_patch->patch_id)
 91				/* we already have the latest patch */
 
 
 92				return;
 
 93
 94			list_replace(&p->plist, &new_patch->plist);
 95			kfree(p->data);
 96			kfree(p);
 97			return;
 98		}
 99	}
100	/* no patch found, add it */
101	list_add_tail(&new_patch->plist, &pcache);
102}
103
104static void free_cache(void)
105{
106	struct ucode_patch *p, *tmp;
107
108	list_for_each_entry_safe(p, tmp, &pcache, plist) {
109		__list_del(p->plist.prev, p->plist.next);
110		kfree(p->data);
111		kfree(p);
112	}
113}
114
115static struct ucode_patch *find_patch(unsigned int cpu)
116{
 
117	u16 equiv_id;
118
119	equiv_id = __find_equiv_id(cpu);
120	if (!equiv_id)
121		return NULL;
122
123	return cache_find_patch(equiv_id);
124}
125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
127{
128	struct cpuinfo_x86 *c = &cpu_data(cpu);
129	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
130	struct ucode_patch *p;
131
132	csig->sig = cpuid_eax(0x00000001);
133	csig->rev = c->microcode;
134
135	/*
136	 * a patch could have been loaded early, set uci->mc so that
137	 * mc_bp_resume() can call apply_microcode()
138	 */
139	p = find_patch(cpu);
140	if (p && (p->patch_id == csig->rev))
141		uci->mc = p->data;
142
143	pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);
144
145	return 0;
146}
147
148static unsigned int verify_patch_size(u8 family, u32 patch_size,
149				      unsigned int size)
150{
151	u32 max_size;
152
153#define F1XH_MPB_MAX_SIZE 2048
154#define F14H_MPB_MAX_SIZE 1824
155#define F15H_MPB_MAX_SIZE 4096
156#define F16H_MPB_MAX_SIZE 3458
157
158	switch (family) {
159	case 0x14:
160		max_size = F14H_MPB_MAX_SIZE;
161		break;
162	case 0x15:
163		max_size = F15H_MPB_MAX_SIZE;
164		break;
165	case 0x16:
166		max_size = F16H_MPB_MAX_SIZE;
167		break;
168	default:
169		max_size = F1XH_MPB_MAX_SIZE;
170		break;
171	}
172
173	if (patch_size > min_t(u32, size, max_size)) {
174		pr_err("patch size mismatch\n");
175		return 0;
176	}
177
178	return patch_size;
179}
180
181int __apply_microcode_amd(struct microcode_amd *mc_amd)
182{
183	u32 rev, dummy;
184
185	native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc_amd->hdr.data_code);
186
187	/* verify patch application was successful */
188	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
189	if (rev != mc_amd->hdr.patch_id)
190		return -1;
191
192	return 0;
193}
194
195int apply_microcode_amd(int cpu)
196{
197	struct cpuinfo_x86 *c = &cpu_data(cpu);
198	struct microcode_amd *mc_amd;
199	struct ucode_cpu_info *uci;
200	struct ucode_patch *p;
201	u32 rev, dummy;
 
202
203	BUG_ON(raw_smp_processor_id() != cpu);
204
205	uci = ucode_cpu_info + cpu;
206
207	p = find_patch(cpu);
208	if (!p)
209		return 0;
210
211	mc_amd  = p->data;
212	uci->mc = p->data;
213
214	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
215
216	/* need to apply patch? */
217	if (rev >= mc_amd->hdr.patch_id) {
218		c->microcode = rev;
219		uci->cpu_sig.rev = rev;
220		return 0;
221	}
222
223	if (__apply_microcode_amd(mc_amd)) {
224		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
225			cpu, mc_amd->hdr.patch_id);
226		return -1;
227	}
228	pr_info("CPU%d: new patch_level=0x%08x\n", cpu,
229		mc_amd->hdr.patch_id);
230
231	uci->cpu_sig.rev = mc_amd->hdr.patch_id;
232	c->microcode = mc_amd->hdr.patch_id;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233
234	return 0;
 
235}
236
237static int install_equiv_cpu_table(const u8 *buf)
238{
239	unsigned int *ibuf = (unsigned int *)buf;
240	unsigned int type = ibuf[1];
241	unsigned int size = ibuf[2];
242
243	if (type != UCODE_EQUIV_CPU_TABLE_TYPE || !size) {
244		pr_err("empty section/"
245		       "invalid type field in container file section header\n");
246		return -EINVAL;
247	}
248
249	equiv_cpu_table = vmalloc(size);
250	if (!equiv_cpu_table) {
251		pr_err("failed to allocate equivalent CPU table\n");
252		return -ENOMEM;
253	}
254
255	memcpy(equiv_cpu_table, buf + CONTAINER_HDR_SZ, size);
 
256
257	/* add header length */
258	return size + CONTAINER_HDR_SZ;
259}
260
261static void free_equiv_cpu_table(void)
262{
263	vfree(equiv_cpu_table);
264	equiv_cpu_table = NULL;
265}
266
267static void cleanup(void)
268{
269	free_equiv_cpu_table();
270	free_cache();
271}
272
273/*
274 * We return the current size even if some of the checks failed so that
275 * we can skip over the next patch. If we return a negative value, we
276 * signal a grave error like a memory allocation has failed and the
277 * driver cannot continue functioning normally. In such cases, we tear
278 * down everything we've used up so far and exit.
279 */
280static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover)
 
281{
282	struct microcode_header_amd *mc_hdr;
283	struct ucode_patch *patch;
284	unsigned int patch_size, crnt_size, ret;
285	u32 proc_fam;
286	u16 proc_id;
 
287
288	patch_size  = *(u32 *)(fw + 4);
289	crnt_size   = patch_size + SECTION_HDR_SIZE;
290	mc_hdr	    = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
291	proc_id	    = mc_hdr->processor_rev_id;
292
293	proc_fam = find_cpu_family_by_equiv_cpu(proc_id);
294	if (!proc_fam) {
295		pr_err("No patch family for equiv ID: 0x%04x\n", proc_id);
296		return crnt_size;
297	}
298
299	/* check if patch is for the current family */
300	proc_fam = ((proc_fam >> 8) & 0xf) + ((proc_fam >> 20) & 0xff);
301	if (proc_fam != family)
302		return crnt_size;
303
304	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
305		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n",
306			mc_hdr->patch_id);
307		return crnt_size;
308	}
309
310	ret = verify_patch_size(family, patch_size, leftover);
311	if (!ret) {
312		pr_err("Patch-ID 0x%08x: size mismatch.\n", mc_hdr->patch_id);
313		return crnt_size;
314	}
315
316	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
317	if (!patch) {
318		pr_err("Patch allocation failure.\n");
319		return -EINVAL;
320	}
321
322	patch->data = kzalloc(patch_size, GFP_KERNEL);
323	if (!patch->data) {
324		pr_err("Patch data allocation failure.\n");
325		kfree(patch);
326		return -EINVAL;
327	}
 
 
 
 
328
329	/* All looks ok, copy patch... */
330	memcpy(patch->data, fw + SECTION_HDR_SIZE, patch_size);
331	INIT_LIST_HEAD(&patch->plist);
332	patch->patch_id  = mc_hdr->patch_id;
333	patch->equiv_cpu = proc_id;
334
335	pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
336		 __func__, patch->patch_id, proc_id);
337
338	/* ... and add to cache. */
339	update_cache(patch);
340
341	return crnt_size;
342}
343
 
344static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
345					     size_t size)
346{
347	enum ucode_state ret = UCODE_ERROR;
348	unsigned int leftover;
349	u8 *fw = (u8 *)data;
350	int crnt_size = 0;
351	int offset;
 
 
 
352
353	offset = install_equiv_cpu_table(data);
354	if (offset < 0) {
355		pr_err("failed to create equivalent cpu table\n");
356		return ret;
357	}
358	fw += offset;
359	leftover = size - offset;
360
361	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
362		pr_err("invalid type field in container file section header\n");
363		free_equiv_cpu_table();
364		return ret;
365	}
366
367	while (leftover) {
368		crnt_size = verify_and_add_patch(family, fw, leftover);
369		if (crnt_size < 0)
370			return ret;
371
372		fw	 += crnt_size;
373		leftover -= crnt_size;
 
 
 
 
374	}
375
376	return UCODE_OK;
377}
378
379enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
380{
 
 
 
381	enum ucode_state ret;
382
383	/* free old equiv table */
384	free_equiv_cpu_table();
385
386	ret = __load_microcode_amd(family, data, size);
 
 
 
 
387
388	if (ret != UCODE_OK)
389		cleanup();
 
 
 
 
 
 
 
 
390
391#if defined(CONFIG_MICROCODE_AMD_EARLY) && defined(CONFIG_X86_32)
392	/* save BSP's matching patch for early load */
393	if (cpu_data(smp_processor_id()).cpu_index == boot_cpu_data.cpu_index) {
394		struct ucode_patch *p = find_patch(smp_processor_id());
395		if (p) {
396			memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
397			memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data),
398							       PATCH_MAX_SIZE));
399		}
400	}
401#endif
402	return ret;
403}
404
405/*
406 * AMD microcode firmware naming convention, up to family 15h they are in
407 * the legacy file:
408 *
409 *    amd-ucode/microcode_amd.bin
410 *
411 * This legacy file is always smaller than 2K in size.
412 *
413 * Beginning with family 15h, they are in family-specific firmware files:
414 *
415 *    amd-ucode/microcode_amd_fam15h.bin
416 *    amd-ucode/microcode_amd_fam16h.bin
417 *    ...
418 *
419 * These might be larger than 2K.
420 */
421static enum ucode_state request_microcode_amd(int cpu, struct device *device,
422					      bool refresh_fw)
423{
424	char fw_name[36] = "amd-ucode/microcode_amd.bin";
425	struct cpuinfo_x86 *c = &cpu_data(cpu);
426	enum ucode_state ret = UCODE_NFOUND;
427	const struct firmware *fw;
428
429	/* reload ucode container only on the boot cpu */
430	if (!refresh_fw || c->cpu_index != boot_cpu_data.cpu_index)
431		return UCODE_OK;
432
433	if (c->x86 >= 0x15)
434		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
435
436	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
437		pr_debug("failed to load file %s\n", fw_name);
438		goto out;
439	}
440
441	ret = UCODE_ERROR;
442	if (*(u32 *)fw->data != UCODE_MAGIC) {
443		pr_err("invalid magic value (0x%08x)\n", *(u32 *)fw->data);
444		goto fw_release;
445	}
446
447	ret = load_microcode_amd(c->x86, fw->data, fw->size);
448
449 fw_release:
450	release_firmware(fw);
451
452 out:
453	return ret;
454}
455
456static enum ucode_state
457request_microcode_user(int cpu, const void __user *buf, size_t size)
458{
459	return UCODE_ERROR;
460}
461
462static void microcode_fini_cpu_amd(int cpu)
463{
464	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
465
466	uci->mc = NULL;
467}
468
469static struct microcode_ops microcode_amd_ops = {
470	.request_microcode_user           = request_microcode_user,
471	.request_microcode_fw             = request_microcode_amd,
472	.collect_cpu_info                 = collect_cpu_info_amd,
473	.apply_microcode                  = apply_microcode_amd,
474	.microcode_fini_cpu               = microcode_fini_cpu_amd,
475};
476
477struct microcode_ops * __init init_amd_microcode(void)
478{
479	struct cpuinfo_x86 *c = &cpu_data(0);
480
481	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
482		pr_warning("AMD CPU family 0x%x not supported\n", c->x86);
483		return NULL;
484	}
485
486	return &microcode_amd_ops;
487}
488
489void __exit exit_amd_microcode(void)
490{
491	cleanup();
492}