Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
   4 *
   5 *  Copyright (C) 2013-2023 Eric Dumazet <edumazet@google.com>
   6 *
   7 *  Meant to be mostly used for locally generated traffic :
   8 *  Fast classification depends on skb->sk being set before reaching us.
   9 *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
  10 *  All packets belonging to a socket are considered as a 'flow'.
  11 *
  12 *  Flows are dynamically allocated and stored in a hash table of RB trees
  13 *  They are also part of one Round Robin 'queues' (new or old flows)
  14 *
  15 *  Burst avoidance (aka pacing) capability :
  16 *
  17 *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
  18 *  bunch of packets, and this packet scheduler adds delay between
  19 *  packets to respect rate limitation.
  20 *
  21 *  enqueue() :
  22 *   - lookup one RB tree (out of 1024 or more) to find the flow.
  23 *     If non existent flow, create it, add it to the tree.
  24 *     Add skb to the per flow list of skb (fifo).
  25 *   - Use a special fifo for high prio packets
  26 *
  27 *  dequeue() : serves flows in Round Robin
  28 *  Note : When a flow becomes empty, we do not immediately remove it from
  29 *  rb trees, for performance reasons (its expected to send additional packets,
  30 *  or SLAB cache will reuse socket for another flow)
  31 */
  32
  33#include <linux/module.h>
  34#include <linux/types.h>
  35#include <linux/kernel.h>
  36#include <linux/jiffies.h>
  37#include <linux/string.h>
  38#include <linux/in.h>
  39#include <linux/errno.h>
  40#include <linux/init.h>
  41#include <linux/skbuff.h>
  42#include <linux/slab.h>
  43#include <linux/rbtree.h>
  44#include <linux/hash.h>
  45#include <linux/prefetch.h>
  46#include <linux/vmalloc.h>
  47#include <net/netlink.h>
  48#include <net/pkt_sched.h>
  49#include <net/sock.h>
  50#include <net/tcp_states.h>
  51#include <net/tcp.h>
  52
  53struct fq_skb_cb {
  54	u64	time_to_send;
  55	u8	band;
  56};
  57
  58static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb)
  59{
  60	qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb));
  61	return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data;
  62}
  63
  64/*
  65 * Per flow structure, dynamically allocated.
  66 * If packets have monotically increasing time_to_send, they are placed in O(1)
  67 * in linear list (head,tail), otherwise are placed in a rbtree (t_root).
  68 */
  69struct fq_flow {
  70/* First cache line : used in fq_gc(), fq_enqueue(), fq_dequeue() */
  71	struct rb_root	t_root;
  72	struct sk_buff	*head;		/* list of skbs for this flow : first skb */
  73	union {
  74		struct sk_buff *tail;	/* last skb in the list */
  75		unsigned long  age;	/* (jiffies | 1UL) when flow was emptied, for gc */
  76	};
  77	union {
  78		struct rb_node	fq_node;	/* anchor in fq_root[] trees */
  79		/* Following field is only used for q->internal,
  80		 * because q->internal is not hashed in fq_root[]
  81		 */
  82		u64		stat_fastpath_packets;
  83	};
  84	struct sock	*sk;
  85	u32		socket_hash;	/* sk_hash */
  86	int		qlen;		/* number of packets in flow queue */
  87
  88/* Second cache line */
  89	int		credit;
  90	int		band;
  91	struct fq_flow *next;		/* next pointer in RR lists */
  92
  93	struct rb_node  rate_node;	/* anchor in q->delayed tree */
  94	u64		time_next_packet;
  95};
  96
  97struct fq_flow_head {
  98	struct fq_flow *first;
  99	struct fq_flow *last;
 100};
 101
 102struct fq_perband_flows {
 103	struct fq_flow_head new_flows;
 104	struct fq_flow_head old_flows;
 105	int		    credit;
 106	int		    quantum; /* based on band nr : 576KB, 192KB, 64KB */
 107};
 108
 109struct fq_sched_data {
 110/* Read mostly cache line */
 111
 112	u32		quantum;
 113	u32		initial_quantum;
 114	u32		flow_refill_delay;
 115	u32		flow_plimit;	/* max packets per flow */
 116	unsigned long	flow_max_rate;	/* optional max rate per flow */
 117	u64		ce_threshold;
 118	u64		horizon;	/* horizon in ns */
 119	u32		orphan_mask;	/* mask for orphaned skb */
 120	u32		low_rate_threshold;
 121	struct rb_root	*fq_root;
 122	u8		rate_enable;
 123	u8		fq_trees_log;
 124	u8		horizon_drop;
 125	u8		prio2band[(TC_PRIO_MAX + 1) >> 2];
 126	u32		timer_slack; /* hrtimer slack in ns */
 127
 128/* Read/Write fields. */
 129
 130	unsigned int band_nr; /* band being serviced in fq_dequeue() */
 131
 132	struct fq_perband_flows band_flows[FQ_BANDS];
 133
 134	struct fq_flow	internal;	/* fastpath queue. */
 135	struct rb_root	delayed;	/* for rate limited flows */
 136	u64		time_next_delayed_flow;
 137	unsigned long	unthrottle_latency_ns;
 138
 139	u32		band_pkt_count[FQ_BANDS];
 140	u32		flows;
 141	u32		inactive_flows; /* Flows with no packet to send. */
 142	u32		throttled_flows;
 143
 144	u64		stat_throttled;
 145	struct qdisc_watchdog watchdog;
 146	u64		stat_gc_flows;
 147
 148/* Seldom used fields. */
 149
 150	u64		stat_band_drops[FQ_BANDS];
 151	u64		stat_ce_mark;
 152	u64		stat_horizon_drops;
 153	u64		stat_horizon_caps;
 154	u64		stat_flows_plimit;
 155	u64		stat_pkts_too_long;
 156	u64		stat_allocation_errors;
 157};
 158
 159/* return the i-th 2-bit value ("crumb") */
 160static u8 fq_prio2band(const u8 *prio2band, unsigned int prio)
 161{
 162	return (prio2band[prio / 4] >> (2 * (prio & 0x3))) & 0x3;
 163}
 164
 165/*
 166 * f->tail and f->age share the same location.
 167 * We can use the low order bit to differentiate if this location points
 168 * to a sk_buff or contains a jiffies value, if we force this value to be odd.
 169 * This assumes f->tail low order bit must be 0 since alignof(struct sk_buff) >= 2
 170 */
 171static void fq_flow_set_detached(struct fq_flow *f)
 172{
 173	f->age = jiffies | 1UL;
 174}
 175
 176static bool fq_flow_is_detached(const struct fq_flow *f)
 177{
 178	return !!(f->age & 1UL);
 179}
 180
 181/* special value to mark a throttled flow (not on old/new list) */
 182static struct fq_flow throttled;
 183
 184static bool fq_flow_is_throttled(const struct fq_flow *f)
 185{
 186	return f->next == &throttled;
 187}
 188
 189enum new_flow {
 190	NEW_FLOW,
 191	OLD_FLOW
 192};
 193
 194static void fq_flow_add_tail(struct fq_sched_data *q, struct fq_flow *flow,
 195			     enum new_flow list_sel)
 196{
 197	struct fq_perband_flows *pband = &q->band_flows[flow->band];
 198	struct fq_flow_head *head = (list_sel == NEW_FLOW) ?
 199					&pband->new_flows :
 200					&pband->old_flows;
 201
 202	if (head->first)
 203		head->last->next = flow;
 204	else
 205		head->first = flow;
 206	head->last = flow;
 207	flow->next = NULL;
 208}
 209
 210static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
 211{
 212	rb_erase(&f->rate_node, &q->delayed);
 213	q->throttled_flows--;
 214	fq_flow_add_tail(q, f, OLD_FLOW);
 215}
 216
 217static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
 218{
 219	struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
 220
 221	while (*p) {
 222		struct fq_flow *aux;
 223
 224		parent = *p;
 225		aux = rb_entry(parent, struct fq_flow, rate_node);
 226		if (f->time_next_packet >= aux->time_next_packet)
 227			p = &parent->rb_right;
 228		else
 229			p = &parent->rb_left;
 230	}
 231	rb_link_node(&f->rate_node, parent, p);
 232	rb_insert_color(&f->rate_node, &q->delayed);
 233	q->throttled_flows++;
 234	q->stat_throttled++;
 235
 236	f->next = &throttled;
 237	if (q->time_next_delayed_flow > f->time_next_packet)
 238		q->time_next_delayed_flow = f->time_next_packet;
 239}
 240
 241
 242static struct kmem_cache *fq_flow_cachep __read_mostly;
 243
 244
 245/* limit number of collected flows per round */
 246#define FQ_GC_MAX 8
 247#define FQ_GC_AGE (3*HZ)
 248
 249static bool fq_gc_candidate(const struct fq_flow *f)
 250{
 251	return fq_flow_is_detached(f) &&
 252	       time_after(jiffies, f->age + FQ_GC_AGE);
 253}
 254
 255static void fq_gc(struct fq_sched_data *q,
 256		  struct rb_root *root,
 257		  struct sock *sk)
 258{
 259	struct rb_node **p, *parent;
 260	void *tofree[FQ_GC_MAX];
 261	struct fq_flow *f;
 262	int i, fcnt = 0;
 263
 264	p = &root->rb_node;
 265	parent = NULL;
 266	while (*p) {
 267		parent = *p;
 268
 269		f = rb_entry(parent, struct fq_flow, fq_node);
 270		if (f->sk == sk)
 271			break;
 272
 273		if (fq_gc_candidate(f)) {
 274			tofree[fcnt++] = f;
 275			if (fcnt == FQ_GC_MAX)
 276				break;
 277		}
 278
 279		if (f->sk > sk)
 280			p = &parent->rb_right;
 281		else
 282			p = &parent->rb_left;
 283	}
 284
 285	if (!fcnt)
 286		return;
 287
 288	for (i = fcnt; i > 0; ) {
 289		f = tofree[--i];
 290		rb_erase(&f->fq_node, root);
 291	}
 292	q->flows -= fcnt;
 293	q->inactive_flows -= fcnt;
 294	q->stat_gc_flows += fcnt;
 295
 296	kmem_cache_free_bulk(fq_flow_cachep, fcnt, tofree);
 297}
 298
 299/* Fast path can be used if :
 300 * 1) Packet tstamp is in the past.
 301 * 2) FQ qlen == 0   OR
 302 *   (no flow is currently eligible for transmit,
 303 *    AND fast path queue has less than 8 packets)
 304 * 3) No SO_MAX_PACING_RATE on the socket (if any).
 305 * 4) No @maxrate attribute on this qdisc,
 306 *
 307 * FQ can not use generic TCQ_F_CAN_BYPASS infrastructure.
 308 */
 309static bool fq_fastpath_check(const struct Qdisc *sch, struct sk_buff *skb,
 310			      u64 now)
 311{
 312	const struct fq_sched_data *q = qdisc_priv(sch);
 313	const struct sock *sk;
 314
 315	if (fq_skb_cb(skb)->time_to_send > now)
 316		return false;
 317
 318	if (sch->q.qlen != 0) {
 319		/* Even if some packets are stored in this qdisc,
 320		 * we can still enable fast path if all of them are
 321		 * scheduled in the future (ie no flows are eligible)
 322		 * or in the fast path queue.
 323		 */
 324		if (q->flows != q->inactive_flows + q->throttled_flows)
 325			return false;
 326
 327		/* Do not allow fast path queue to explode, we want Fair Queue mode
 328		 * under pressure.
 329		 */
 330		if (q->internal.qlen >= 8)
 331			return false;
 332	}
 333
 334	sk = skb->sk;
 335	if (sk && sk_fullsock(sk) && !sk_is_tcp(sk) &&
 336	    sk->sk_max_pacing_rate != ~0UL)
 337		return false;
 338
 339	if (q->flow_max_rate != ~0UL)
 340		return false;
 341
 342	return true;
 343}
 344
 345static struct fq_flow *fq_classify(struct Qdisc *sch, struct sk_buff *skb,
 346				   u64 now)
 347{
 348	struct fq_sched_data *q = qdisc_priv(sch);
 349	struct rb_node **p, *parent;
 350	struct sock *sk = skb->sk;
 351	struct rb_root *root;
 352	struct fq_flow *f;
 353
 354	/* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
 355	 * or a listener (SYNCOOKIE mode)
 356	 * 1) request sockets are not full blown,
 357	 *    they do not contain sk_pacing_rate
 358	 * 2) They are not part of a 'flow' yet
 359	 * 3) We do not want to rate limit them (eg SYNFLOOD attack),
 360	 *    especially if the listener set SO_MAX_PACING_RATE
 361	 * 4) We pretend they are orphaned
 362	 */
 363	if (!sk || sk_listener(sk)) {
 364		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
 365
 366		/* By forcing low order bit to 1, we make sure to not
 367		 * collide with a local flow (socket pointers are word aligned)
 368		 */
 369		sk = (struct sock *)((hash << 1) | 1UL);
 370		skb_orphan(skb);
 371	} else if (sk->sk_state == TCP_CLOSE) {
 372		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
 373		/*
 374		 * Sockets in TCP_CLOSE are non connected.
 375		 * Typical use case is UDP sockets, they can send packets
 376		 * with sendto() to many different destinations.
 377		 * We probably could use a generic bit advertising
 378		 * non connected sockets, instead of sk_state == TCP_CLOSE,
 379		 * if we care enough.
 380		 */
 381		sk = (struct sock *)((hash << 1) | 1UL);
 382	}
 383
 384	if (fq_fastpath_check(sch, skb, now)) {
 385		q->internal.stat_fastpath_packets++;
 386		if (skb->sk == sk && q->rate_enable &&
 387		    READ_ONCE(sk->sk_pacing_status) != SK_PACING_FQ)
 388			smp_store_release(&sk->sk_pacing_status,
 389					  SK_PACING_FQ);
 390		return &q->internal;
 391	}
 392
 393	root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
 394
 395	fq_gc(q, root, sk);
 396
 397	p = &root->rb_node;
 398	parent = NULL;
 399	while (*p) {
 400		parent = *p;
 401
 402		f = rb_entry(parent, struct fq_flow, fq_node);
 403		if (f->sk == sk) {
 404			/* socket might have been reallocated, so check
 405			 * if its sk_hash is the same.
 406			 * It not, we need to refill credit with
 407			 * initial quantum
 408			 */
 409			if (unlikely(skb->sk == sk &&
 410				     f->socket_hash != sk->sk_hash)) {
 411				f->credit = q->initial_quantum;
 412				f->socket_hash = sk->sk_hash;
 413				if (q->rate_enable)
 414					smp_store_release(&sk->sk_pacing_status,
 415							  SK_PACING_FQ);
 416				if (fq_flow_is_throttled(f))
 417					fq_flow_unset_throttled(q, f);
 418				f->time_next_packet = 0ULL;
 419			}
 420			return f;
 421		}
 422		if (f->sk > sk)
 423			p = &parent->rb_right;
 424		else
 425			p = &parent->rb_left;
 426	}
 427
 428	f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
 429	if (unlikely(!f)) {
 430		q->stat_allocation_errors++;
 431		return &q->internal;
 432	}
 433	/* f->t_root is already zeroed after kmem_cache_zalloc() */
 434
 435	fq_flow_set_detached(f);
 436	f->sk = sk;
 437	if (skb->sk == sk) {
 438		f->socket_hash = sk->sk_hash;
 439		if (q->rate_enable)
 440			smp_store_release(&sk->sk_pacing_status,
 441					  SK_PACING_FQ);
 442	}
 443	f->credit = q->initial_quantum;
 444
 445	rb_link_node(&f->fq_node, parent, p);
 446	rb_insert_color(&f->fq_node, root);
 447
 448	q->flows++;
 449	q->inactive_flows++;
 450	return f;
 451}
 452
 453static struct sk_buff *fq_peek(struct fq_flow *flow)
 454{
 455	struct sk_buff *skb = skb_rb_first(&flow->t_root);
 456	struct sk_buff *head = flow->head;
 457
 458	if (!skb)
 459		return head;
 460
 461	if (!head)
 462		return skb;
 463
 464	if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send)
 465		return skb;
 466	return head;
 467}
 468
 469static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow,
 470			  struct sk_buff *skb)
 471{
 472	if (skb == flow->head) {
 473		flow->head = skb->next;
 474	} else {
 475		rb_erase(&skb->rbnode, &flow->t_root);
 476		skb->dev = qdisc_dev(sch);
 477	}
 478}
 479
 480/* Remove one skb from flow queue.
 481 * This skb must be the return value of prior fq_peek().
 482 */
 483static void fq_dequeue_skb(struct Qdisc *sch, struct fq_flow *flow,
 484			   struct sk_buff *skb)
 485{
 486	fq_erase_head(sch, flow, skb);
 487	skb_mark_not_on_list(skb);
 488	qdisc_qstats_backlog_dec(sch, skb);
 489	sch->q.qlen--;
 490}
 491
 492static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
 493{
 494	struct rb_node **p, *parent;
 495	struct sk_buff *head, *aux;
 496
 497	head = flow->head;
 498	if (!head ||
 499	    fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) {
 500		if (!head)
 501			flow->head = skb;
 502		else
 503			flow->tail->next = skb;
 504		flow->tail = skb;
 505		skb->next = NULL;
 506		return;
 507	}
 508
 509	p = &flow->t_root.rb_node;
 510	parent = NULL;
 511
 512	while (*p) {
 513		parent = *p;
 514		aux = rb_to_skb(parent);
 515		if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send)
 516			p = &parent->rb_right;
 517		else
 518			p = &parent->rb_left;
 519	}
 520	rb_link_node(&skb->rbnode, parent, p);
 521	rb_insert_color(&skb->rbnode, &flow->t_root);
 522}
 523
 524static bool fq_packet_beyond_horizon(const struct sk_buff *skb,
 525				     const struct fq_sched_data *q, u64 now)
 526{
 527	return unlikely((s64)skb->tstamp > (s64)(now + q->horizon));
 528}
 529
 530static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 531		      struct sk_buff **to_free)
 532{
 533	struct fq_sched_data *q = qdisc_priv(sch);
 534	struct fq_flow *f;
 535	u64 now;
 536	u8 band;
 537
 538	band = fq_prio2band(q->prio2band, skb->priority & TC_PRIO_MAX);
 539	if (unlikely(q->band_pkt_count[band] >= sch->limit)) {
 540		q->stat_band_drops[band]++;
 541		return qdisc_drop(skb, sch, to_free);
 542	}
 543
 544	now = ktime_get_ns();
 545	if (!skb->tstamp) {
 546		fq_skb_cb(skb)->time_to_send = now;
 547	} else {
 548		/* Check if packet timestamp is too far in the future. */
 549		if (fq_packet_beyond_horizon(skb, q, now)) {
 550			if (q->horizon_drop) {
 551					q->stat_horizon_drops++;
 552					return qdisc_drop(skb, sch, to_free);
 553			}
 554			q->stat_horizon_caps++;
 555			skb->tstamp = now + q->horizon;
 556		}
 557		fq_skb_cb(skb)->time_to_send = skb->tstamp;
 558	}
 559
 560	f = fq_classify(sch, skb, now);
 561
 562	if (f != &q->internal) {
 563		if (unlikely(f->qlen >= q->flow_plimit)) {
 564			q->stat_flows_plimit++;
 565			return qdisc_drop(skb, sch, to_free);
 566		}
 567
 568		if (fq_flow_is_detached(f)) {
 569			fq_flow_add_tail(q, f, NEW_FLOW);
 570			if (time_after(jiffies, f->age + q->flow_refill_delay))
 571				f->credit = max_t(u32, f->credit, q->quantum);
 572		}
 573
 574		f->band = band;
 575		q->band_pkt_count[band]++;
 576		fq_skb_cb(skb)->band = band;
 577		if (f->qlen == 0)
 578			q->inactive_flows--;
 579	}
 580
 581	f->qlen++;
 582	/* Note: this overwrites f->age */
 583	flow_queue_add(f, skb);
 584
 585	qdisc_qstats_backlog_inc(sch, skb);
 586	sch->q.qlen++;
 587
 588	return NET_XMIT_SUCCESS;
 589}
 590
 591static void fq_check_throttled(struct fq_sched_data *q, u64 now)
 592{
 593	unsigned long sample;
 594	struct rb_node *p;
 595
 596	if (q->time_next_delayed_flow > now)
 597		return;
 598
 599	/* Update unthrottle latency EWMA.
 600	 * This is cheap and can help diagnosing timer/latency problems.
 601	 */
 602	sample = (unsigned long)(now - q->time_next_delayed_flow);
 603	q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
 604	q->unthrottle_latency_ns += sample >> 3;
 605
 606	q->time_next_delayed_flow = ~0ULL;
 607	while ((p = rb_first(&q->delayed)) != NULL) {
 608		struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
 609
 610		if (f->time_next_packet > now) {
 611			q->time_next_delayed_flow = f->time_next_packet;
 612			break;
 613		}
 614		fq_flow_unset_throttled(q, f);
 615	}
 616}
 617
 618static struct fq_flow_head *fq_pband_head_select(struct fq_perband_flows *pband)
 619{
 620	if (pband->credit <= 0)
 621		return NULL;
 622
 623	if (pband->new_flows.first)
 624		return &pband->new_flows;
 625
 626	return pband->old_flows.first ? &pband->old_flows : NULL;
 627}
 628
 629static struct sk_buff *fq_dequeue(struct Qdisc *sch)
 630{
 631	struct fq_sched_data *q = qdisc_priv(sch);
 632	struct fq_perband_flows *pband;
 633	struct fq_flow_head *head;
 634	struct sk_buff *skb;
 635	struct fq_flow *f;
 636	unsigned long rate;
 637	int retry;
 638	u32 plen;
 639	u64 now;
 640
 641	if (!sch->q.qlen)
 642		return NULL;
 643
 644	skb = fq_peek(&q->internal);
 645	if (unlikely(skb)) {
 646		q->internal.qlen--;
 647		fq_dequeue_skb(sch, &q->internal, skb);
 648		goto out;
 649	}
 650
 651	now = ktime_get_ns();
 652	fq_check_throttled(q, now);
 653	retry = 0;
 654	pband = &q->band_flows[q->band_nr];
 655begin:
 656	head = fq_pband_head_select(pband);
 657	if (!head) {
 658		while (++retry <= FQ_BANDS) {
 659			if (++q->band_nr == FQ_BANDS)
 660				q->band_nr = 0;
 661			pband = &q->band_flows[q->band_nr];
 662			pband->credit = min(pband->credit + pband->quantum,
 663					    pband->quantum);
 664			goto begin;
 665		}
 666		if (q->time_next_delayed_flow != ~0ULL)
 667			qdisc_watchdog_schedule_range_ns(&q->watchdog,
 668							q->time_next_delayed_flow,
 669							q->timer_slack);
 670		return NULL;
 671	}
 672	f = head->first;
 673	retry = 0;
 674	if (f->credit <= 0) {
 675		f->credit += q->quantum;
 676		head->first = f->next;
 677		fq_flow_add_tail(q, f, OLD_FLOW);
 678		goto begin;
 679	}
 680
 681	skb = fq_peek(f);
 682	if (skb) {
 683		u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send,
 684					     f->time_next_packet);
 685
 686		if (now < time_next_packet) {
 687			head->first = f->next;
 688			f->time_next_packet = time_next_packet;
 689			fq_flow_set_throttled(q, f);
 690			goto begin;
 691		}
 692		prefetch(&skb->end);
 693		if ((s64)(now - time_next_packet - q->ce_threshold) > 0) {
 694			INET_ECN_set_ce(skb);
 695			q->stat_ce_mark++;
 696		}
 697		if (--f->qlen == 0)
 698			q->inactive_flows++;
 699		q->band_pkt_count[fq_skb_cb(skb)->band]--;
 700		fq_dequeue_skb(sch, f, skb);
 701	} else {
 702		head->first = f->next;
 703		/* force a pass through old_flows to prevent starvation */
 704		if (head == &pband->new_flows) {
 705			fq_flow_add_tail(q, f, OLD_FLOW);
 706		} else {
 707			fq_flow_set_detached(f);
 708		}
 709		goto begin;
 710	}
 711	plen = qdisc_pkt_len(skb);
 712	f->credit -= plen;
 713	pband->credit -= plen;
 714
 715	if (!q->rate_enable)
 716		goto out;
 717
 718	rate = q->flow_max_rate;
 719
 720	/* If EDT time was provided for this skb, we need to
 721	 * update f->time_next_packet only if this qdisc enforces
 722	 * a flow max rate.
 723	 */
 724	if (!skb->tstamp) {
 725		if (skb->sk)
 726			rate = min(READ_ONCE(skb->sk->sk_pacing_rate), rate);
 727
 728		if (rate <= q->low_rate_threshold) {
 729			f->credit = 0;
 730		} else {
 731			plen = max(plen, q->quantum);
 732			if (f->credit > 0)
 733				goto out;
 734		}
 735	}
 736	if (rate != ~0UL) {
 737		u64 len = (u64)plen * NSEC_PER_SEC;
 738
 739		if (likely(rate))
 740			len = div64_ul(len, rate);
 741		/* Since socket rate can change later,
 742		 * clamp the delay to 1 second.
 743		 * Really, providers of too big packets should be fixed !
 744		 */
 745		if (unlikely(len > NSEC_PER_SEC)) {
 746			len = NSEC_PER_SEC;
 747			q->stat_pkts_too_long++;
 748		}
 749		/* Account for schedule/timers drifts.
 750		 * f->time_next_packet was set when prior packet was sent,
 751		 * and current time (@now) can be too late by tens of us.
 752		 */
 753		if (f->time_next_packet)
 754			len -= min(len/2, now - f->time_next_packet);
 755		f->time_next_packet = now + len;
 756	}
 757out:
 758	qdisc_bstats_update(sch, skb);
 759	return skb;
 760}
 761
 762static void fq_flow_purge(struct fq_flow *flow)
 763{
 764	struct rb_node *p = rb_first(&flow->t_root);
 765
 766	while (p) {
 767		struct sk_buff *skb = rb_to_skb(p);
 768
 769		p = rb_next(p);
 770		rb_erase(&skb->rbnode, &flow->t_root);
 771		rtnl_kfree_skbs(skb, skb);
 772	}
 773	rtnl_kfree_skbs(flow->head, flow->tail);
 774	flow->head = NULL;
 775	flow->qlen = 0;
 776}
 777
 778static void fq_reset(struct Qdisc *sch)
 779{
 780	struct fq_sched_data *q = qdisc_priv(sch);
 781	struct rb_root *root;
 782	struct rb_node *p;
 783	struct fq_flow *f;
 784	unsigned int idx;
 785
 786	sch->q.qlen = 0;
 787	sch->qstats.backlog = 0;
 788
 789	fq_flow_purge(&q->internal);
 790
 791	if (!q->fq_root)
 792		return;
 793
 794	for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
 795		root = &q->fq_root[idx];
 796		while ((p = rb_first(root)) != NULL) {
 797			f = rb_entry(p, struct fq_flow, fq_node);
 798			rb_erase(p, root);
 799
 800			fq_flow_purge(f);
 801
 802			kmem_cache_free(fq_flow_cachep, f);
 803		}
 804	}
 805	for (idx = 0; idx < FQ_BANDS; idx++) {
 806		q->band_flows[idx].new_flows.first = NULL;
 807		q->band_flows[idx].old_flows.first = NULL;
 808	}
 809	q->delayed		= RB_ROOT;
 810	q->flows		= 0;
 811	q->inactive_flows	= 0;
 812	q->throttled_flows	= 0;
 813}
 814
 815static void fq_rehash(struct fq_sched_data *q,
 816		      struct rb_root *old_array, u32 old_log,
 817		      struct rb_root *new_array, u32 new_log)
 818{
 819	struct rb_node *op, **np, *parent;
 820	struct rb_root *oroot, *nroot;
 821	struct fq_flow *of, *nf;
 822	int fcnt = 0;
 823	u32 idx;
 824
 825	for (idx = 0; idx < (1U << old_log); idx++) {
 826		oroot = &old_array[idx];
 827		while ((op = rb_first(oroot)) != NULL) {
 828			rb_erase(op, oroot);
 829			of = rb_entry(op, struct fq_flow, fq_node);
 830			if (fq_gc_candidate(of)) {
 831				fcnt++;
 832				kmem_cache_free(fq_flow_cachep, of);
 833				continue;
 834			}
 835			nroot = &new_array[hash_ptr(of->sk, new_log)];
 836
 837			np = &nroot->rb_node;
 838			parent = NULL;
 839			while (*np) {
 840				parent = *np;
 841
 842				nf = rb_entry(parent, struct fq_flow, fq_node);
 843				BUG_ON(nf->sk == of->sk);
 844
 845				if (nf->sk > of->sk)
 846					np = &parent->rb_right;
 847				else
 848					np = &parent->rb_left;
 849			}
 850
 851			rb_link_node(&of->fq_node, parent, np);
 852			rb_insert_color(&of->fq_node, nroot);
 853		}
 854	}
 855	q->flows -= fcnt;
 856	q->inactive_flows -= fcnt;
 857	q->stat_gc_flows += fcnt;
 858}
 859
 860static void fq_free(void *addr)
 861{
 862	kvfree(addr);
 863}
 864
 865static int fq_resize(struct Qdisc *sch, u32 log)
 866{
 867	struct fq_sched_data *q = qdisc_priv(sch);
 868	struct rb_root *array;
 869	void *old_fq_root;
 870	u32 idx;
 871
 872	if (q->fq_root && log == q->fq_trees_log)
 873		return 0;
 874
 875	/* If XPS was setup, we can allocate memory on right NUMA node */
 876	array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
 877			      netdev_queue_numa_node_read(sch->dev_queue));
 878	if (!array)
 879		return -ENOMEM;
 880
 881	for (idx = 0; idx < (1U << log); idx++)
 882		array[idx] = RB_ROOT;
 883
 884	sch_tree_lock(sch);
 885
 886	old_fq_root = q->fq_root;
 887	if (old_fq_root)
 888		fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
 889
 890	q->fq_root = array;
 891	q->fq_trees_log = log;
 892
 893	sch_tree_unlock(sch);
 894
 895	fq_free(old_fq_root);
 896
 897	return 0;
 898}
 899
 900static const struct netlink_range_validation iq_range = {
 901	.max = INT_MAX,
 902};
 903
 904static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
 905	[TCA_FQ_UNSPEC]			= { .strict_start_type = TCA_FQ_TIMER_SLACK },
 906
 907	[TCA_FQ_PLIMIT]			= { .type = NLA_U32 },
 908	[TCA_FQ_FLOW_PLIMIT]		= { .type = NLA_U32 },
 909	[TCA_FQ_QUANTUM]		= { .type = NLA_U32 },
 910	[TCA_FQ_INITIAL_QUANTUM]	= NLA_POLICY_FULL_RANGE(NLA_U32, &iq_range),
 911	[TCA_FQ_RATE_ENABLE]		= { .type = NLA_U32 },
 912	[TCA_FQ_FLOW_DEFAULT_RATE]	= { .type = NLA_U32 },
 913	[TCA_FQ_FLOW_MAX_RATE]		= { .type = NLA_U32 },
 914	[TCA_FQ_BUCKETS_LOG]		= { .type = NLA_U32 },
 915	[TCA_FQ_FLOW_REFILL_DELAY]	= { .type = NLA_U32 },
 916	[TCA_FQ_ORPHAN_MASK]		= { .type = NLA_U32 },
 917	[TCA_FQ_LOW_RATE_THRESHOLD]	= { .type = NLA_U32 },
 918	[TCA_FQ_CE_THRESHOLD]		= { .type = NLA_U32 },
 919	[TCA_FQ_TIMER_SLACK]		= { .type = NLA_U32 },
 920	[TCA_FQ_HORIZON]		= { .type = NLA_U32 },
 921	[TCA_FQ_HORIZON_DROP]		= { .type = NLA_U8 },
 922	[TCA_FQ_PRIOMAP]		= NLA_POLICY_EXACT_LEN(sizeof(struct tc_prio_qopt)),
 923	[TCA_FQ_WEIGHTS]		= NLA_POLICY_EXACT_LEN(FQ_BANDS * sizeof(s32)),
 924};
 925
 926/* compress a u8 array with all elems <= 3 to an array of 2-bit fields */
 927static void fq_prio2band_compress_crumb(const u8 *in, u8 *out)
 928{
 929	const int num_elems = TC_PRIO_MAX + 1;
 930	int i;
 931
 932	memset(out, 0, num_elems / 4);
 933	for (i = 0; i < num_elems; i++)
 934		out[i / 4] |= in[i] << (2 * (i & 0x3));
 935}
 936
 937static void fq_prio2band_decompress_crumb(const u8 *in, u8 *out)
 938{
 939	const int num_elems = TC_PRIO_MAX + 1;
 940	int i;
 941
 942	for (i = 0; i < num_elems; i++)
 943		out[i] = fq_prio2band(in, i);
 944}
 945
 946static int fq_load_weights(struct fq_sched_data *q,
 947			   const struct nlattr *attr,
 948			   struct netlink_ext_ack *extack)
 949{
 950	s32 *weights = nla_data(attr);
 951	int i;
 952
 953	for (i = 0; i < FQ_BANDS; i++) {
 954		if (weights[i] < FQ_MIN_WEIGHT) {
 955			NL_SET_ERR_MSG_FMT_MOD(extack, "Weight %d less that minimum allowed %d",
 956					       weights[i], FQ_MIN_WEIGHT);
 957			return -EINVAL;
 958		}
 959	}
 960	for (i = 0; i < FQ_BANDS; i++)
 961		q->band_flows[i].quantum = weights[i];
 962	return 0;
 963}
 964
 965static int fq_load_priomap(struct fq_sched_data *q,
 966			   const struct nlattr *attr,
 967			   struct netlink_ext_ack *extack)
 968{
 969	const struct tc_prio_qopt *map = nla_data(attr);
 970	int i;
 971
 972	if (map->bands != FQ_BANDS) {
 973		NL_SET_ERR_MSG_MOD(extack, "FQ only supports 3 bands");
 974		return -EINVAL;
 975	}
 976	for (i = 0; i < TC_PRIO_MAX + 1; i++) {
 977		if (map->priomap[i] >= FQ_BANDS) {
 978			NL_SET_ERR_MSG_FMT_MOD(extack, "FQ priomap field %d maps to a too high band %d",
 979					       i, map->priomap[i]);
 980			return -EINVAL;
 981		}
 982	}
 983	fq_prio2band_compress_crumb(map->priomap, q->prio2band);
 984	return 0;
 985}
 986
 987static int fq_change(struct Qdisc *sch, struct nlattr *opt,
 988		     struct netlink_ext_ack *extack)
 989{
 990	struct fq_sched_data *q = qdisc_priv(sch);
 991	struct nlattr *tb[TCA_FQ_MAX + 1];
 992	int err, drop_count = 0;
 993	unsigned drop_len = 0;
 994	u32 fq_log;
 995
 996	err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy,
 997					  NULL);
 998	if (err < 0)
 999		return err;
1000
1001	sch_tree_lock(sch);
1002
1003	fq_log = q->fq_trees_log;
1004
1005	if (tb[TCA_FQ_BUCKETS_LOG]) {
1006		u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
1007
1008		if (nval >= 1 && nval <= ilog2(256*1024))
1009			fq_log = nval;
1010		else
1011			err = -EINVAL;
1012	}
1013	if (tb[TCA_FQ_PLIMIT])
1014		sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
1015
1016	if (tb[TCA_FQ_FLOW_PLIMIT])
1017		q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
1018
1019	if (tb[TCA_FQ_QUANTUM]) {
1020		u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
1021
1022		if (quantum > 0 && quantum <= (1 << 20)) {
1023			q->quantum = quantum;
1024		} else {
1025			NL_SET_ERR_MSG_MOD(extack, "invalid quantum");
1026			err = -EINVAL;
1027		}
1028	}
1029
1030	if (tb[TCA_FQ_INITIAL_QUANTUM])
1031		q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
1032
1033	if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
1034		pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
1035				    nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
1036
1037	if (tb[TCA_FQ_FLOW_MAX_RATE]) {
1038		u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
1039
1040		q->flow_max_rate = (rate == ~0U) ? ~0UL : rate;
1041	}
1042	if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
1043		q->low_rate_threshold =
1044			nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
1045
1046	if (tb[TCA_FQ_RATE_ENABLE]) {
1047		u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
1048
1049		if (enable <= 1)
1050			q->rate_enable = enable;
1051		else
1052			err = -EINVAL;
1053	}
1054
1055	if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
1056		u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
1057
1058		q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
1059	}
1060
1061	if (!err && tb[TCA_FQ_PRIOMAP])
1062		err = fq_load_priomap(q, tb[TCA_FQ_PRIOMAP], extack);
1063
1064	if (!err && tb[TCA_FQ_WEIGHTS])
1065		err = fq_load_weights(q, tb[TCA_FQ_WEIGHTS], extack);
1066
1067	if (tb[TCA_FQ_ORPHAN_MASK])
1068		q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
1069
1070	if (tb[TCA_FQ_CE_THRESHOLD])
1071		q->ce_threshold = (u64)NSEC_PER_USEC *
1072				  nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]);
1073
1074	if (tb[TCA_FQ_TIMER_SLACK])
1075		q->timer_slack = nla_get_u32(tb[TCA_FQ_TIMER_SLACK]);
1076
1077	if (tb[TCA_FQ_HORIZON])
1078		q->horizon = (u64)NSEC_PER_USEC *
1079				  nla_get_u32(tb[TCA_FQ_HORIZON]);
1080
1081	if (tb[TCA_FQ_HORIZON_DROP])
1082		q->horizon_drop = nla_get_u8(tb[TCA_FQ_HORIZON_DROP]);
1083
1084	if (!err) {
1085
1086		sch_tree_unlock(sch);
1087		err = fq_resize(sch, fq_log);
1088		sch_tree_lock(sch);
1089	}
1090	while (sch->q.qlen > sch->limit) {
1091		struct sk_buff *skb = fq_dequeue(sch);
1092
1093		if (!skb)
1094			break;
1095		drop_len += qdisc_pkt_len(skb);
1096		rtnl_kfree_skbs(skb, skb);
1097		drop_count++;
1098	}
1099	qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
1100
1101	sch_tree_unlock(sch);
1102	return err;
1103}
1104
1105static void fq_destroy(struct Qdisc *sch)
1106{
1107	struct fq_sched_data *q = qdisc_priv(sch);
1108
1109	fq_reset(sch);
1110	fq_free(q->fq_root);
1111	qdisc_watchdog_cancel(&q->watchdog);
1112}
1113
1114static int fq_init(struct Qdisc *sch, struct nlattr *opt,
1115		   struct netlink_ext_ack *extack)
1116{
1117	struct fq_sched_data *q = qdisc_priv(sch);
1118	int i, err;
1119
1120	sch->limit		= 10000;
1121	q->flow_plimit		= 100;
1122	q->quantum		= 2 * psched_mtu(qdisc_dev(sch));
1123	q->initial_quantum	= 10 * psched_mtu(qdisc_dev(sch));
1124	q->flow_refill_delay	= msecs_to_jiffies(40);
1125	q->flow_max_rate	= ~0UL;
1126	q->time_next_delayed_flow = ~0ULL;
1127	q->rate_enable		= 1;
1128	for (i = 0; i < FQ_BANDS; i++) {
1129		q->band_flows[i].new_flows.first = NULL;
1130		q->band_flows[i].old_flows.first = NULL;
1131	}
1132	q->band_flows[0].quantum = 9 << 16;
1133	q->band_flows[1].quantum = 3 << 16;
1134	q->band_flows[2].quantum = 1 << 16;
1135	q->delayed		= RB_ROOT;
1136	q->fq_root		= NULL;
1137	q->fq_trees_log		= ilog2(1024);
1138	q->orphan_mask		= 1024 - 1;
1139	q->low_rate_threshold	= 550000 / 8;
1140
1141	q->timer_slack = 10 * NSEC_PER_USEC; /* 10 usec of hrtimer slack */
1142
1143	q->horizon = 10ULL * NSEC_PER_SEC; /* 10 seconds */
1144	q->horizon_drop = 1; /* by default, drop packets beyond horizon */
1145
1146	/* Default ce_threshold of 4294 seconds */
1147	q->ce_threshold		= (u64)NSEC_PER_USEC * ~0U;
1148
1149	fq_prio2band_compress_crumb(sch_default_prio2band, q->prio2band);
1150	qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);
1151
1152	if (opt)
1153		err = fq_change(sch, opt, extack);
1154	else
1155		err = fq_resize(sch, q->fq_trees_log);
1156
1157	return err;
1158}
1159
1160static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
1161{
1162	struct fq_sched_data *q = qdisc_priv(sch);
1163	u64 ce_threshold = q->ce_threshold;
1164	struct tc_prio_qopt prio = {
1165		.bands = FQ_BANDS,
1166	};
1167	u64 horizon = q->horizon;
1168	struct nlattr *opts;
1169	s32 weights[3];
1170
1171	opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
1172	if (opts == NULL)
1173		goto nla_put_failure;
1174
1175	/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
1176
1177	do_div(ce_threshold, NSEC_PER_USEC);
1178	do_div(horizon, NSEC_PER_USEC);
1179
1180	if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
1181	    nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
1182	    nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
1183	    nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
1184	    nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
1185	    nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
1186			min_t(unsigned long, q->flow_max_rate, ~0U)) ||
1187	    nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
1188			jiffies_to_usecs(q->flow_refill_delay)) ||
1189	    nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
1190	    nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
1191			q->low_rate_threshold) ||
1192	    nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
1193	    nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log) ||
1194	    nla_put_u32(skb, TCA_FQ_TIMER_SLACK, q->timer_slack) ||
1195	    nla_put_u32(skb, TCA_FQ_HORIZON, (u32)horizon) ||
1196	    nla_put_u8(skb, TCA_FQ_HORIZON_DROP, q->horizon_drop))
1197		goto nla_put_failure;
1198
1199	fq_prio2band_decompress_crumb(q->prio2band, prio.priomap);
1200	if (nla_put(skb, TCA_FQ_PRIOMAP, sizeof(prio), &prio))
1201		goto nla_put_failure;
1202
1203	weights[0] = q->band_flows[0].quantum;
1204	weights[1] = q->band_flows[1].quantum;
1205	weights[2] = q->band_flows[2].quantum;
1206	if (nla_put(skb, TCA_FQ_WEIGHTS, sizeof(weights), &weights))
1207		goto nla_put_failure;
1208
1209	return nla_nest_end(skb, opts);
1210
1211nla_put_failure:
1212	return -1;
1213}
1214
1215static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
1216{
1217	struct fq_sched_data *q = qdisc_priv(sch);
1218	struct tc_fq_qd_stats st;
1219	int i;
1220
1221	st.pad = 0;
1222
1223	sch_tree_lock(sch);
1224
1225	st.gc_flows		  = q->stat_gc_flows;
1226	st.highprio_packets	  = 0;
1227	st.fastpath_packets	  = q->internal.stat_fastpath_packets;
1228	st.tcp_retrans		  = 0;
1229	st.throttled		  = q->stat_throttled;
1230	st.flows_plimit		  = q->stat_flows_plimit;
1231	st.pkts_too_long	  = q->stat_pkts_too_long;
1232	st.allocation_errors	  = q->stat_allocation_errors;
1233	st.time_next_delayed_flow = q->time_next_delayed_flow + q->timer_slack -
1234				    ktime_get_ns();
1235	st.flows		  = q->flows;
1236	st.inactive_flows	  = q->inactive_flows;
1237	st.throttled_flows	  = q->throttled_flows;
1238	st.unthrottle_latency_ns  = min_t(unsigned long,
1239					  q->unthrottle_latency_ns, ~0U);
1240	st.ce_mark		  = q->stat_ce_mark;
1241	st.horizon_drops	  = q->stat_horizon_drops;
1242	st.horizon_caps		  = q->stat_horizon_caps;
1243	for (i = 0; i < FQ_BANDS; i++) {
1244		st.band_drops[i]  = q->stat_band_drops[i];
1245		st.band_pkt_count[i] = q->band_pkt_count[i];
1246	}
1247	sch_tree_unlock(sch);
1248
1249	return gnet_stats_copy_app(d, &st, sizeof(st));
1250}
1251
1252static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
1253	.id		=	"fq",
1254	.priv_size	=	sizeof(struct fq_sched_data),
1255
1256	.enqueue	=	fq_enqueue,
1257	.dequeue	=	fq_dequeue,
1258	.peek		=	qdisc_peek_dequeued,
1259	.init		=	fq_init,
1260	.reset		=	fq_reset,
1261	.destroy	=	fq_destroy,
1262	.change		=	fq_change,
1263	.dump		=	fq_dump,
1264	.dump_stats	=	fq_dump_stats,
1265	.owner		=	THIS_MODULE,
1266};
1267
1268static int __init fq_module_init(void)
1269{
1270	int ret;
1271
1272	fq_flow_cachep = kmem_cache_create("fq_flow_cache",
1273					   sizeof(struct fq_flow),
1274					   0, SLAB_HWCACHE_ALIGN, NULL);
1275	if (!fq_flow_cachep)
1276		return -ENOMEM;
1277
1278	ret = register_qdisc(&fq_qdisc_ops);
1279	if (ret)
1280		kmem_cache_destroy(fq_flow_cachep);
1281	return ret;
1282}
1283
1284static void __exit fq_module_exit(void)
1285{
1286	unregister_qdisc(&fq_qdisc_ops);
1287	kmem_cache_destroy(fq_flow_cachep);
1288}
1289
1290module_init(fq_module_init)
1291module_exit(fq_module_exit)
1292MODULE_AUTHOR("Eric Dumazet");
1293MODULE_LICENSE("GPL");
1294MODULE_DESCRIPTION("Fair Queue Packet Scheduler");