Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
Note: File does not exist in v6.8.
  1/*
  2 * Copyright (c) 2006 Oracle.  All rights reserved.
  3 *
  4 * This software is available to you under a choice of one of two
  5 * licenses.  You may choose to be licensed under the terms of the GNU
  6 * General Public License (GPL) Version 2, available from the file
  7 * COPYING in the main directory of this source tree, or the
  8 * OpenIB.org BSD license below:
  9 *
 10 *     Redistribution and use in source and binary forms, with or
 11 *     without modification, are permitted provided that the following
 12 *     conditions are met:
 13 *
 14 *      - Redistributions of source code must retain the above
 15 *        copyright notice, this list of conditions and the following
 16 *        disclaimer.
 17 *
 18 *      - Redistributions in binary form must reproduce the above
 19 *        copyright notice, this list of conditions and the following
 20 *        disclaimer in the documentation and/or other materials
 21 *        provided with the distribution.
 22 *
 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 30 * SOFTWARE.
 31 *
 32 */
 33#include <linux/kernel.h>
 34#include <linux/slab.h>
 35#include <linux/ratelimit.h>
 36
 37#include "rds.h"
 38#include "iw.h"
 39
 40
 41/*
 42 * This is stored as mr->r_trans_private.
 43 */
 44struct rds_iw_mr {
 45	struct rds_iw_device	*device;
 46	struct rds_iw_mr_pool	*pool;
 47	struct rdma_cm_id	*cm_id;
 48
 49	struct ib_mr	*mr;
 50	struct ib_fast_reg_page_list *page_list;
 51
 52	struct rds_iw_mapping	mapping;
 53	unsigned char		remap_count;
 54};
 55
 56/*
 57 * Our own little MR pool
 58 */
 59struct rds_iw_mr_pool {
 60	struct rds_iw_device	*device;		/* back ptr to the device that owns us */
 61
 62	struct mutex		flush_lock;		/* serialize fmr invalidate */
 63	struct work_struct	flush_worker;		/* flush worker */
 64
 65	spinlock_t		list_lock;		/* protect variables below */
 66	atomic_t		item_count;		/* total # of MRs */
 67	atomic_t		dirty_count;		/* # dirty of MRs */
 68	struct list_head	dirty_list;		/* dirty mappings */
 69	struct list_head	clean_list;		/* unused & unamapped MRs */
 70	atomic_t		free_pinned;		/* memory pinned by free MRs */
 71	unsigned long		max_message_size;	/* in pages */
 72	unsigned long		max_items;
 73	unsigned long		max_items_soft;
 74	unsigned long		max_free_pinned;
 75	int			max_pages;
 76};
 77
 78static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
 79static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
 80static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
 81static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
 82			  struct rds_iw_mr *ibmr,
 83			  struct scatterlist *sg, unsigned int nents);
 84static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
 85static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
 86			struct list_head *unmap_list,
 87			struct list_head *kill_list,
 88			int *unpinned);
 89static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
 90
 91static int rds_iw_get_device(struct rds_sock *rs, struct rds_iw_device **rds_iwdev, struct rdma_cm_id **cm_id)
 92{
 93	struct rds_iw_device *iwdev;
 94	struct rds_iw_cm_id *i_cm_id;
 95
 96	*rds_iwdev = NULL;
 97	*cm_id = NULL;
 98
 99	list_for_each_entry(iwdev, &rds_iw_devices, list) {
100		spin_lock_irq(&iwdev->spinlock);
101		list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
102			struct sockaddr_in *src_addr, *dst_addr;
103
104			src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
105			dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;
106
107			rdsdebug("local ipaddr = %x port %d, "
108				 "remote ipaddr = %x port %d"
109				 "..looking for %x port %d, "
110				 "remote ipaddr = %x port %d\n",
111				src_addr->sin_addr.s_addr,
112				src_addr->sin_port,
113				dst_addr->sin_addr.s_addr,
114				dst_addr->sin_port,
115				rs->rs_bound_addr,
116				rs->rs_bound_port,
117				rs->rs_conn_addr,
118				rs->rs_conn_port);
119#ifdef WORKING_TUPLE_DETECTION
120			if (src_addr->sin_addr.s_addr == rs->rs_bound_addr &&
121			    src_addr->sin_port == rs->rs_bound_port &&
122			    dst_addr->sin_addr.s_addr == rs->rs_conn_addr &&
123			    dst_addr->sin_port == rs->rs_conn_port) {
124#else
125			/* FIXME - needs to compare the local and remote
126			 * ipaddr/port tuple, but the ipaddr is the only
127			 * available information in the rds_sock (as the rest are
128			 * zero'ed.  It doesn't appear to be properly populated
129			 * during connection setup...
130			 */
131			if (src_addr->sin_addr.s_addr == rs->rs_bound_addr) {
132#endif
133				spin_unlock_irq(&iwdev->spinlock);
134				*rds_iwdev = iwdev;
135				*cm_id = i_cm_id->cm_id;
136				return 0;
137			}
138		}
139		spin_unlock_irq(&iwdev->spinlock);
140	}
141
142	return 1;
143}
144
145static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
146{
147	struct rds_iw_cm_id *i_cm_id;
148
149	i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
150	if (!i_cm_id)
151		return -ENOMEM;
152
153	i_cm_id->cm_id = cm_id;
154
155	spin_lock_irq(&rds_iwdev->spinlock);
156	list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
157	spin_unlock_irq(&rds_iwdev->spinlock);
158
159	return 0;
160}
161
162static void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev,
163				struct rdma_cm_id *cm_id)
164{
165	struct rds_iw_cm_id *i_cm_id;
166
167	spin_lock_irq(&rds_iwdev->spinlock);
168	list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
169		if (i_cm_id->cm_id == cm_id) {
170			list_del(&i_cm_id->list);
171			kfree(i_cm_id);
172			break;
173		}
174	}
175	spin_unlock_irq(&rds_iwdev->spinlock);
176}
177
178
179int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
180{
181	struct sockaddr_in *src_addr, *dst_addr;
182	struct rds_iw_device *rds_iwdev_old;
183	struct rds_sock rs;
184	struct rdma_cm_id *pcm_id;
185	int rc;
186
187	src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
188	dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;
189
190	rs.rs_bound_addr = src_addr->sin_addr.s_addr;
191	rs.rs_bound_port = src_addr->sin_port;
192	rs.rs_conn_addr = dst_addr->sin_addr.s_addr;
193	rs.rs_conn_port = dst_addr->sin_port;
194
195	rc = rds_iw_get_device(&rs, &rds_iwdev_old, &pcm_id);
196	if (rc)
197		rds_iw_remove_cm_id(rds_iwdev, cm_id);
198
199	return rds_iw_add_cm_id(rds_iwdev, cm_id);
200}
201
202void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
203{
204	struct rds_iw_connection *ic = conn->c_transport_data;
205
206	/* conn was previously on the nodev_conns_list */
207	spin_lock_irq(&iw_nodev_conns_lock);
208	BUG_ON(list_empty(&iw_nodev_conns));
209	BUG_ON(list_empty(&ic->iw_node));
210	list_del(&ic->iw_node);
211
212	spin_lock(&rds_iwdev->spinlock);
213	list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
214	spin_unlock(&rds_iwdev->spinlock);
215	spin_unlock_irq(&iw_nodev_conns_lock);
216
217	ic->rds_iwdev = rds_iwdev;
218}
219
220void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
221{
222	struct rds_iw_connection *ic = conn->c_transport_data;
223
224	/* place conn on nodev_conns_list */
225	spin_lock(&iw_nodev_conns_lock);
226
227	spin_lock_irq(&rds_iwdev->spinlock);
228	BUG_ON(list_empty(&ic->iw_node));
229	list_del(&ic->iw_node);
230	spin_unlock_irq(&rds_iwdev->spinlock);
231
232	list_add_tail(&ic->iw_node, &iw_nodev_conns);
233
234	spin_unlock(&iw_nodev_conns_lock);
235
236	rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id);
237	ic->rds_iwdev = NULL;
238}
239
240void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock)
241{
242	struct rds_iw_connection *ic, *_ic;
243	LIST_HEAD(tmp_list);
244
245	/* avoid calling conn_destroy with irqs off */
246	spin_lock_irq(list_lock);
247	list_splice(list, &tmp_list);
248	INIT_LIST_HEAD(list);
249	spin_unlock_irq(list_lock);
250
251	list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node)
252		rds_conn_destroy(ic->conn);
253}
254
255static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
256		struct scatterlist *list, unsigned int sg_len)
257{
258	sg->list = list;
259	sg->len = sg_len;
260	sg->dma_len = 0;
261	sg->dma_npages = 0;
262	sg->bytes = 0;
263}
264
265static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
266			struct rds_iw_scatterlist *sg)
267{
268	struct ib_device *dev = rds_iwdev->dev;
269	u64 *dma_pages = NULL;
270	int i, j, ret;
271
272	WARN_ON(sg->dma_len);
273
274	sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
275	if (unlikely(!sg->dma_len)) {
276		printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
277		return ERR_PTR(-EBUSY);
278	}
279
280	sg->bytes = 0;
281	sg->dma_npages = 0;
282
283	ret = -EINVAL;
284	for (i = 0; i < sg->dma_len; ++i) {
285		unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
286		u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
287		u64 end_addr;
288
289		sg->bytes += dma_len;
290
291		end_addr = dma_addr + dma_len;
292		if (dma_addr & PAGE_MASK) {
293			if (i > 0)
294				goto out_unmap;
295			dma_addr &= ~PAGE_MASK;
296		}
297		if (end_addr & PAGE_MASK) {
298			if (i < sg->dma_len - 1)
299				goto out_unmap;
300			end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK;
301		}
302
303		sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT;
304	}
305
306	/* Now gather the dma addrs into one list */
307	if (sg->dma_npages > fastreg_message_size)
308		goto out_unmap;
309
310	dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC);
311	if (!dma_pages) {
312		ret = -ENOMEM;
313		goto out_unmap;
314	}
315
316	for (i = j = 0; i < sg->dma_len; ++i) {
317		unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
318		u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
319		u64 end_addr;
320
321		end_addr = dma_addr + dma_len;
322		dma_addr &= ~PAGE_MASK;
323		for (; dma_addr < end_addr; dma_addr += PAGE_SIZE)
324			dma_pages[j++] = dma_addr;
325		BUG_ON(j > sg->dma_npages);
326	}
327
328	return dma_pages;
329
330out_unmap:
331	ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
332	sg->dma_len = 0;
333	kfree(dma_pages);
334	return ERR_PTR(ret);
335}
336
337
338struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev)
339{
340	struct rds_iw_mr_pool *pool;
341
342	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
343	if (!pool) {
344		printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
345		return ERR_PTR(-ENOMEM);
346	}
347
348	pool->device = rds_iwdev;
349	INIT_LIST_HEAD(&pool->dirty_list);
350	INIT_LIST_HEAD(&pool->clean_list);
351	mutex_init(&pool->flush_lock);
352	spin_lock_init(&pool->list_lock);
353	INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);
354
355	pool->max_message_size = fastreg_message_size;
356	pool->max_items = fastreg_pool_size;
357	pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
358	pool->max_pages = fastreg_message_size;
359
360	/* We never allow more than max_items MRs to be allocated.
361	 * When we exceed more than max_items_soft, we start freeing
362	 * items more aggressively.
363	 * Make sure that max_items > max_items_soft > max_items / 2
364	 */
365	pool->max_items_soft = pool->max_items * 3 / 4;
366
367	return pool;
368}
369
370void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
371{
372	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
373
374	iinfo->rdma_mr_max = pool->max_items;
375	iinfo->rdma_mr_size = pool->max_pages;
376}
377
378void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool)
379{
380	flush_workqueue(rds_wq);
381	rds_iw_flush_mr_pool(pool, 1);
382	BUG_ON(atomic_read(&pool->item_count));
383	BUG_ON(atomic_read(&pool->free_pinned));
384	kfree(pool);
385}
386
387static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
388{
389	struct rds_iw_mr *ibmr = NULL;
390	unsigned long flags;
391
392	spin_lock_irqsave(&pool->list_lock, flags);
393	if (!list_empty(&pool->clean_list)) {
394		ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
395		list_del_init(&ibmr->mapping.m_list);
396	}
397	spin_unlock_irqrestore(&pool->list_lock, flags);
398
399	return ibmr;
400}
401
402static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
403{
404	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
405	struct rds_iw_mr *ibmr = NULL;
406	int err = 0, iter = 0;
407
408	while (1) {
409		ibmr = rds_iw_reuse_fmr(pool);
410		if (ibmr)
411			return ibmr;
412
413		/* No clean MRs - now we have the choice of either
414		 * allocating a fresh MR up to the limit imposed by the
415		 * driver, or flush any dirty unused MRs.
416		 * We try to avoid stalling in the send path if possible,
417		 * so we allocate as long as we're allowed to.
418		 *
419		 * We're fussy with enforcing the FMR limit, though. If the driver
420		 * tells us we can't use more than N fmrs, we shouldn't start
421		 * arguing with it */
422		if (atomic_inc_return(&pool->item_count) <= pool->max_items)
423			break;
424
425		atomic_dec(&pool->item_count);
426
427		if (++iter > 2) {
428			rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
429			return ERR_PTR(-EAGAIN);
430		}
431
432		/* We do have some empty MRs. Flush them out. */
433		rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
434		rds_iw_flush_mr_pool(pool, 0);
435	}
436
437	ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
438	if (!ibmr) {
439		err = -ENOMEM;
440		goto out_no_cigar;
441	}
442
443	spin_lock_init(&ibmr->mapping.m_lock);
444	INIT_LIST_HEAD(&ibmr->mapping.m_list);
445	ibmr->mapping.m_mr = ibmr;
446
447	err = rds_iw_init_fastreg(pool, ibmr);
448	if (err)
449		goto out_no_cigar;
450
451	rds_iw_stats_inc(s_iw_rdma_mr_alloc);
452	return ibmr;
453
454out_no_cigar:
455	if (ibmr) {
456		rds_iw_destroy_fastreg(pool, ibmr);
457		kfree(ibmr);
458	}
459	atomic_dec(&pool->item_count);
460	return ERR_PTR(err);
461}
462
463void rds_iw_sync_mr(void *trans_private, int direction)
464{
465	struct rds_iw_mr *ibmr = trans_private;
466	struct rds_iw_device *rds_iwdev = ibmr->device;
467
468	switch (direction) {
469	case DMA_FROM_DEVICE:
470		ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
471			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
472		break;
473	case DMA_TO_DEVICE:
474		ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
475			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
476		break;
477	}
478}
479
480static inline unsigned int rds_iw_flush_goal(struct rds_iw_mr_pool *pool, int free_all)
481{
482	unsigned int item_count;
483
484	item_count = atomic_read(&pool->item_count);
485	if (free_all)
486		return item_count;
487
488	return 0;
489}
490
491/*
492 * Flush our pool of MRs.
493 * At a minimum, all currently unused MRs are unmapped.
494 * If the number of MRs allocated exceeds the limit, we also try
495 * to free as many MRs as needed to get back to this limit.
496 */
497static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
498{
499	struct rds_iw_mr *ibmr, *next;
500	LIST_HEAD(unmap_list);
501	LIST_HEAD(kill_list);
502	unsigned long flags;
503	unsigned int nfreed = 0, ncleaned = 0, unpinned = 0, free_goal;
504	int ret = 0;
505
506	rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);
507
508	mutex_lock(&pool->flush_lock);
509
510	spin_lock_irqsave(&pool->list_lock, flags);
511	/* Get the list of all mappings to be destroyed */
512	list_splice_init(&pool->dirty_list, &unmap_list);
513	if (free_all)
514		list_splice_init(&pool->clean_list, &kill_list);
515	spin_unlock_irqrestore(&pool->list_lock, flags);
516
517	free_goal = rds_iw_flush_goal(pool, free_all);
518
519	/* Batched invalidate of dirty MRs.
520	 * For FMR based MRs, the mappings on the unmap list are
521	 * actually members of an ibmr (ibmr->mapping). They either
522	 * migrate to the kill_list, or have been cleaned and should be
523	 * moved to the clean_list.
524	 * For fastregs, they will be dynamically allocated, and
525	 * will be destroyed by the unmap function.
526	 */
527	if (!list_empty(&unmap_list)) {
528		ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list,
529						     &kill_list, &unpinned);
530		/* If we've been asked to destroy all MRs, move those
531		 * that were simply cleaned to the kill list */
532		if (free_all)
533			list_splice_init(&unmap_list, &kill_list);
534	}
535
536	/* Destroy any MRs that are past their best before date */
537	list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
538		rds_iw_stats_inc(s_iw_rdma_mr_free);
539		list_del(&ibmr->mapping.m_list);
540		rds_iw_destroy_fastreg(pool, ibmr);
541		kfree(ibmr);
542		nfreed++;
543	}
544
545	/* Anything that remains are laundered ibmrs, which we can add
546	 * back to the clean list. */
547	if (!list_empty(&unmap_list)) {
548		spin_lock_irqsave(&pool->list_lock, flags);
549		list_splice(&unmap_list, &pool->clean_list);
550		spin_unlock_irqrestore(&pool->list_lock, flags);
551	}
552
553	atomic_sub(unpinned, &pool->free_pinned);
554	atomic_sub(ncleaned, &pool->dirty_count);
555	atomic_sub(nfreed, &pool->item_count);
556
557	mutex_unlock(&pool->flush_lock);
558	return ret;
559}
560
561static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
562{
563	struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);
564
565	rds_iw_flush_mr_pool(pool, 0);
566}
567
568void rds_iw_free_mr(void *trans_private, int invalidate)
569{
570	struct rds_iw_mr *ibmr = trans_private;
571	struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;
572
573	rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
574	if (!pool)
575		return;
576
577	/* Return it to the pool's free list */
578	rds_iw_free_fastreg(pool, ibmr);
579
580	/* If we've pinned too many pages, request a flush */
581	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
582	    atomic_read(&pool->dirty_count) >= pool->max_items / 10)
583		queue_work(rds_wq, &pool->flush_worker);
584
585	if (invalidate) {
586		if (likely(!in_interrupt())) {
587			rds_iw_flush_mr_pool(pool, 0);
588		} else {
589			/* We get here if the user created a MR marked
590			 * as use_once and invalidate at the same time. */
591			queue_work(rds_wq, &pool->flush_worker);
592		}
593	}
594}
595
596void rds_iw_flush_mrs(void)
597{
598	struct rds_iw_device *rds_iwdev;
599
600	list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
601		struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
602
603		if (pool)
604			rds_iw_flush_mr_pool(pool, 0);
605	}
606}
607
608void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
609		    struct rds_sock *rs, u32 *key_ret)
610{
611	struct rds_iw_device *rds_iwdev;
612	struct rds_iw_mr *ibmr = NULL;
613	struct rdma_cm_id *cm_id;
614	int ret;
615
616	ret = rds_iw_get_device(rs, &rds_iwdev, &cm_id);
617	if (ret || !cm_id) {
618		ret = -ENODEV;
619		goto out;
620	}
621
622	if (!rds_iwdev->mr_pool) {
623		ret = -ENODEV;
624		goto out;
625	}
626
627	ibmr = rds_iw_alloc_mr(rds_iwdev);
628	if (IS_ERR(ibmr))
629		return ibmr;
630
631	ibmr->cm_id = cm_id;
632	ibmr->device = rds_iwdev;
633
634	ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents);
635	if (ret == 0)
636		*key_ret = ibmr->mr->rkey;
637	else
638		printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);
639
640out:
641	if (ret) {
642		if (ibmr)
643			rds_iw_free_mr(ibmr, 0);
644		ibmr = ERR_PTR(ret);
645	}
646	return ibmr;
647}
648
649/*
650 * iWARP fastreg handling
651 *
652 * The life cycle of a fastreg registration is a bit different from
653 * FMRs.
654 * The idea behind fastreg is to have one MR, to which we bind different
655 * mappings over time. To avoid stalling on the expensive map and invalidate
656 * operations, these operations are pipelined on the same send queue on
657 * which we want to send the message containing the r_key.
658 *
659 * This creates a bit of a problem for us, as we do not have the destination
660 * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
661 * RDMA to be correctly setup.  If a fastreg request is present, rds_iw_xmit
662 * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request
663 * before queuing the SEND. When completions for these arrive, they are
664 * dispatched to the MR has a bit set showing that RDMa can be performed.
665 *
666 * There is another interesting aspect that's related to invalidation.
667 * The application can request that a mapping is invalidated in FREE_MR.
668 * The expectation there is that this invalidation step includes ALL
669 * PREVIOUSLY FREED MRs.
670 */
671static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool,
672				struct rds_iw_mr *ibmr)
673{
674	struct rds_iw_device *rds_iwdev = pool->device;
675	struct ib_fast_reg_page_list *page_list = NULL;
676	struct ib_mr *mr;
677	int err;
678
679	mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size);
680	if (IS_ERR(mr)) {
681		err = PTR_ERR(mr);
682
683		printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err);
684		return err;
685	}
686
687	/* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages
688	 * is not filled in.
689	 */
690	page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size);
691	if (IS_ERR(page_list)) {
692		err = PTR_ERR(page_list);
693
694		printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err);
695		ib_dereg_mr(mr);
696		return err;
697	}
698
699	ibmr->page_list = page_list;
700	ibmr->mr = mr;
701	return 0;
702}
703
704static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping)
705{
706	struct rds_iw_mr *ibmr = mapping->m_mr;
707	struct ib_send_wr f_wr, *failed_wr;
708	int ret;
709
710	/*
711	 * Perform a WR for the fast_reg_mr. Each individual page
712	 * in the sg list is added to the fast reg page list and placed
713	 * inside the fast_reg_mr WR.  The key used is a rolling 8bit
714	 * counter, which should guarantee uniqueness.
715	 */
716	ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
717	mapping->m_rkey = ibmr->mr->rkey;
718
719	memset(&f_wr, 0, sizeof(f_wr));
720	f_wr.wr_id = RDS_IW_FAST_REG_WR_ID;
721	f_wr.opcode = IB_WR_FAST_REG_MR;
722	f_wr.wr.fast_reg.length = mapping->m_sg.bytes;
723	f_wr.wr.fast_reg.rkey = mapping->m_rkey;
724	f_wr.wr.fast_reg.page_list = ibmr->page_list;
725	f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len;
726	f_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
727	f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE |
728				IB_ACCESS_REMOTE_READ |
729				IB_ACCESS_REMOTE_WRITE;
730	f_wr.wr.fast_reg.iova_start = 0;
731	f_wr.send_flags = IB_SEND_SIGNALED;
732
733	failed_wr = &f_wr;
734	ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr);
735	BUG_ON(failed_wr != &f_wr);
736	if (ret)
737		printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
738			__func__, __LINE__, ret);
739	return ret;
740}
741
742static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
743{
744	struct ib_send_wr s_wr, *failed_wr;
745	int ret = 0;
746
747	if (!ibmr->cm_id->qp || !ibmr->mr)
748		goto out;
749
750	memset(&s_wr, 0, sizeof(s_wr));
751	s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
752	s_wr.opcode = IB_WR_LOCAL_INV;
753	s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
754	s_wr.send_flags = IB_SEND_SIGNALED;
755
756	failed_wr = &s_wr;
757	ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
758	if (ret) {
759		printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
760			__func__, __LINE__, ret);
761		goto out;
762	}
763out:
764	return ret;
765}
766
767static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
768			struct rds_iw_mr *ibmr,
769			struct scatterlist *sg,
770			unsigned int sg_len)
771{
772	struct rds_iw_device *rds_iwdev = pool->device;
773	struct rds_iw_mapping *mapping = &ibmr->mapping;
774	u64 *dma_pages;
775	int i, ret = 0;
776
777	rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);
778
779	dma_pages = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg);
780	if (IS_ERR(dma_pages)) {
781		ret = PTR_ERR(dma_pages);
782		dma_pages = NULL;
783		goto out;
784	}
785
786	if (mapping->m_sg.dma_len > pool->max_message_size) {
787		ret = -EMSGSIZE;
788		goto out;
789	}
790
791	for (i = 0; i < mapping->m_sg.dma_npages; ++i)
792		ibmr->page_list->page_list[i] = dma_pages[i];
793
794	ret = rds_iw_rdma_build_fastreg(mapping);
795	if (ret)
796		goto out;
797
798	rds_iw_stats_inc(s_iw_rdma_mr_used);
799
800out:
801	kfree(dma_pages);
802
803	return ret;
804}
805
806/*
807 * "Free" a fastreg MR.
808 */
809static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
810		struct rds_iw_mr *ibmr)
811{
812	unsigned long flags;
813	int ret;
814
815	if (!ibmr->mapping.m_sg.dma_len)
816		return;
817
818	ret = rds_iw_rdma_fastreg_inv(ibmr);
819	if (ret)
820		return;
821
822	/* Try to post the LOCAL_INV WR to the queue. */
823	spin_lock_irqsave(&pool->list_lock, flags);
824
825	list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
826	atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
827	atomic_inc(&pool->dirty_count);
828
829	spin_unlock_irqrestore(&pool->list_lock, flags);
830}
831
832static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
833				struct list_head *unmap_list,
834				struct list_head *kill_list,
835				int *unpinned)
836{
837	struct rds_iw_mapping *mapping, *next;
838	unsigned int ncleaned = 0;
839	LIST_HEAD(laundered);
840
841	/* Batched invalidation of fastreg MRs.
842	 * Why do we do it this way, even though we could pipeline unmap
843	 * and remap? The reason is the application semantics - when the
844	 * application requests an invalidation of MRs, it expects all
845	 * previously released R_Keys to become invalid.
846	 *
847	 * If we implement MR reuse naively, we risk memory corruption
848	 * (this has actually been observed). So the default behavior
849	 * requires that a MR goes through an explicit unmap operation before
850	 * we can reuse it again.
851	 *
852	 * We could probably improve on this a little, by allowing immediate
853	 * reuse of a MR on the same socket (eg you could add small
854	 * cache of unused MRs to strct rds_socket - GET_MR could grab one
855	 * of these without requiring an explicit invalidate).
856	 */
857	while (!list_empty(unmap_list)) {
858		unsigned long flags;
859
860		spin_lock_irqsave(&pool->list_lock, flags);
861		list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
862			*unpinned += mapping->m_sg.len;
863			list_move(&mapping->m_list, &laundered);
864			ncleaned++;
865		}
866		spin_unlock_irqrestore(&pool->list_lock, flags);
867	}
868
869	/* Move all laundered mappings back to the unmap list.
870	 * We do not kill any WRs right now - it doesn't seem the
871	 * fastreg API has a max_remap limit. */
872	list_splice_init(&laundered, unmap_list);
873
874	return ncleaned;
875}
876
877static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
878		struct rds_iw_mr *ibmr)
879{
880	if (ibmr->page_list)
881		ib_free_fast_reg_page_list(ibmr->page_list);
882	if (ibmr->mr)
883		ib_dereg_mr(ibmr->mr);
884}