Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
   4 * Copyright (C) 2010 Red Hat, Inc.
   5 * All Rights Reserved.
   6 */
   7#include "xfs.h"
   8#include "xfs_fs.h"
   9#include "xfs_shared.h"
  10#include "xfs_format.h"
  11#include "xfs_log_format.h"
  12#include "xfs_trans_resv.h"
  13#include "xfs_mount.h"
  14#include "xfs_da_format.h"
  15#include "xfs_da_btree.h"
  16#include "xfs_inode.h"
  17#include "xfs_bmap_btree.h"
  18#include "xfs_quota.h"
  19#include "xfs_trans.h"
  20#include "xfs_qm.h"
  21#include "xfs_trans_space.h"
  22#include "xfs_rtbitmap.h"
  23
  24#define _ALLOC	true
  25#define _FREE	false
  26
  27/*
  28 * A buffer has a format structure overhead in the log in addition
  29 * to the data, so we need to take this into account when reserving
  30 * space in a transaction for a buffer.  Round the space required up
  31 * to a multiple of 128 bytes so that we don't change the historical
  32 * reservation that has been used for this overhead.
  33 */
  34STATIC uint
  35xfs_buf_log_overhead(void)
  36{
  37	return round_up(sizeof(struct xlog_op_header) +
  38			sizeof(struct xfs_buf_log_format), 128);
  39}
  40
  41/*
  42 * Calculate out transaction log reservation per item in bytes.
  43 *
  44 * The nbufs argument is used to indicate the number of items that
  45 * will be changed in a transaction.  size is used to tell how many
  46 * bytes should be reserved per item.
  47 */
  48STATIC uint
  49xfs_calc_buf_res(
  50	uint		nbufs,
  51	uint		size)
  52{
  53	return nbufs * (size + xfs_buf_log_overhead());
  54}
  55
  56/*
  57 * Per-extent log reservation for the btree changes involved in freeing or
  58 * allocating an extent.  In classic XFS there were two trees that will be
  59 * modified (bnobt + cntbt).  With rmap enabled, there are three trees
  60 * (rmapbt).  The number of blocks reserved is based on the formula:
  61 *
  62 * num trees * ((2 blocks/level * max depth) - 1)
  63 *
  64 * Keep in mind that max depth is calculated separately for each type of tree.
  65 */
  66uint
  67xfs_allocfree_block_count(
  68	struct xfs_mount *mp,
  69	uint		num_ops)
  70{
  71	uint		blocks;
  72
  73	blocks = num_ops * 2 * (2 * mp->m_alloc_maxlevels - 1);
  74	if (xfs_has_rmapbt(mp))
  75		blocks += num_ops * (2 * mp->m_rmap_maxlevels - 1);
  76
  77	return blocks;
  78}
  79
  80/*
  81 * Per-extent log reservation for refcount btree changes.  These are never done
  82 * in the same transaction as an allocation or a free, so we compute them
  83 * separately.
  84 */
  85static unsigned int
  86xfs_refcountbt_block_count(
  87	struct xfs_mount	*mp,
  88	unsigned int		num_ops)
  89{
  90	return num_ops * (2 * mp->m_refc_maxlevels - 1);
  91}
  92
  93/*
  94 * Logging inodes is really tricksy. They are logged in memory format,
  95 * which means that what we write into the log doesn't directly translate into
  96 * the amount of space they use on disk.
  97 *
  98 * Case in point - btree format forks in memory format use more space than the
  99 * on-disk format. In memory, the buffer contains a normal btree block header so
 100 * the btree code can treat it as though it is just another generic buffer.
 101 * However, when we write it to the inode fork, we don't write all of this
 102 * header as it isn't needed. e.g. the root is only ever in the inode, so
 103 * there's no need for sibling pointers which would waste 16 bytes of space.
 104 *
 105 * Hence when we have an inode with a maximally sized btree format fork, then
 106 * amount of information we actually log is greater than the size of the inode
 107 * on disk. Hence we need an inode reservation function that calculates all this
 108 * correctly. So, we log:
 109 *
 110 * - 4 log op headers for object
 111 *	- for the ilf, the inode core and 2 forks
 112 * - inode log format object
 113 * - the inode core
 114 * - two inode forks containing bmap btree root blocks.
 115 *	- the btree data contained by both forks will fit into the inode size,
 116 *	  hence when combined with the inode core above, we have a total of the
 117 *	  actual inode size.
 118 *	- the BMBT headers need to be accounted separately, as they are
 119 *	  additional to the records and pointers that fit inside the inode
 120 *	  forks.
 121 */
 122STATIC uint
 123xfs_calc_inode_res(
 124	struct xfs_mount	*mp,
 125	uint			ninodes)
 126{
 127	return ninodes *
 128		(4 * sizeof(struct xlog_op_header) +
 129		 sizeof(struct xfs_inode_log_format) +
 130		 mp->m_sb.sb_inodesize +
 131		 2 * XFS_BMBT_BLOCK_LEN(mp));
 132}
 133
 134/*
 135 * Inode btree record insertion/removal modifies the inode btree and free space
 136 * btrees (since the inobt does not use the agfl). This requires the following
 137 * reservation:
 138 *
 139 * the inode btree: max depth * blocksize
 140 * the allocation btrees: 2 trees * (max depth - 1) * block size
 141 *
 142 * The caller must account for SB and AG header modifications, etc.
 143 */
 144STATIC uint
 145xfs_calc_inobt_res(
 146	struct xfs_mount	*mp)
 147{
 148	return xfs_calc_buf_res(M_IGEO(mp)->inobt_maxlevels,
 149			XFS_FSB_TO_B(mp, 1)) +
 150				xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
 151			XFS_FSB_TO_B(mp, 1));
 152}
 153
 154/*
 155 * The free inode btree is a conditional feature. The behavior differs slightly
 156 * from that of the traditional inode btree in that the finobt tracks records
 157 * for inode chunks with at least one free inode. A record can be removed from
 158 * the tree during individual inode allocation. Therefore the finobt
 159 * reservation is unconditional for both the inode chunk allocation and
 160 * individual inode allocation (modify) cases.
 161 *
 162 * Behavior aside, the reservation for finobt modification is equivalent to the
 163 * traditional inobt: cover a full finobt shape change plus block allocation.
 164 */
 165STATIC uint
 166xfs_calc_finobt_res(
 167	struct xfs_mount	*mp)
 168{
 169	if (!xfs_has_finobt(mp))
 170		return 0;
 171
 172	return xfs_calc_inobt_res(mp);
 173}
 174
 175/*
 176 * Calculate the reservation required to allocate or free an inode chunk. This
 177 * includes:
 178 *
 179 * the allocation btrees: 2 trees * (max depth - 1) * block size
 180 * the inode chunk: m_ino_geo.ialloc_blks * N
 181 *
 182 * The size N of the inode chunk reservation depends on whether it is for
 183 * allocation or free and which type of create transaction is in use. An inode
 184 * chunk free always invalidates the buffers and only requires reservation for
 185 * headers (N == 0). An inode chunk allocation requires a chunk sized
 186 * reservation on v4 and older superblocks to initialize the chunk. No chunk
 187 * reservation is required for allocation on v5 supers, which use ordered
 188 * buffers to initialize.
 189 */
 190STATIC uint
 191xfs_calc_inode_chunk_res(
 192	struct xfs_mount	*mp,
 193	bool			alloc)
 194{
 195	uint			res, size = 0;
 196
 197	res = xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
 198			       XFS_FSB_TO_B(mp, 1));
 199	if (alloc) {
 200		/* icreate tx uses ordered buffers */
 201		if (xfs_has_v3inodes(mp))
 202			return res;
 203		size = XFS_FSB_TO_B(mp, 1);
 204	}
 205
 206	res += xfs_calc_buf_res(M_IGEO(mp)->ialloc_blks, size);
 207	return res;
 208}
 209
 210/*
 211 * Per-extent log reservation for the btree changes involved in freeing or
 212 * allocating a realtime extent.  We have to be able to log as many rtbitmap
 213 * blocks as needed to mark inuse XFS_BMBT_MAX_EXTLEN blocks' worth of realtime
 214 * extents, as well as the realtime summary block.
 215 */
 216static unsigned int
 217xfs_rtalloc_block_count(
 218	struct xfs_mount	*mp,
 219	unsigned int		num_ops)
 220{
 221	unsigned int		rtbmp_blocks;
 222	xfs_rtxlen_t		rtxlen;
 223
 224	rtxlen = xfs_extlen_to_rtxlen(mp, XFS_MAX_BMBT_EXTLEN);
 225	rtbmp_blocks = xfs_rtbitmap_blockcount(mp, rtxlen);
 226	return (rtbmp_blocks + 1) * num_ops;
 227}
 228
 229/*
 230 * Various log reservation values.
 231 *
 232 * These are based on the size of the file system block because that is what
 233 * most transactions manipulate.  Each adds in an additional 128 bytes per
 234 * item logged to try to account for the overhead of the transaction mechanism.
 235 *
 236 * Note:  Most of the reservations underestimate the number of allocation
 237 * groups into which they could free extents in the xfs_defer_finish() call.
 238 * This is because the number in the worst case is quite high and quite
 239 * unusual.  In order to fix this we need to change xfs_defer_finish() to free
 240 * extents in only a single AG at a time.  This will require changes to the
 241 * EFI code as well, however, so that the EFI for the extents not freed is
 242 * logged again in each transaction.  See SGI PV #261917.
 243 *
 244 * Reservation functions here avoid a huge stack in xfs_trans_init due to
 245 * register overflow from temporaries in the calculations.
 246 */
 247
 248/*
 249 * Compute the log reservation required to handle the refcount update
 250 * transaction.  Refcount updates are always done via deferred log items.
 251 *
 252 * This is calculated as:
 253 * Data device refcount updates (t1):
 254 *    the agfs of the ags containing the blocks: nr_ops * sector size
 255 *    the refcount btrees: nr_ops * 1 trees * (2 * max depth - 1) * block size
 256 */
 257static unsigned int
 258xfs_calc_refcountbt_reservation(
 259	struct xfs_mount	*mp,
 260	unsigned int		nr_ops)
 261{
 262	unsigned int		blksz = XFS_FSB_TO_B(mp, 1);
 263
 264	if (!xfs_has_reflink(mp))
 265		return 0;
 266
 267	return xfs_calc_buf_res(nr_ops, mp->m_sb.sb_sectsize) +
 268	       xfs_calc_buf_res(xfs_refcountbt_block_count(mp, nr_ops), blksz);
 269}
 270
 271/*
 272 * In a write transaction we can allocate a maximum of 2
 273 * extents.  This gives (t1):
 274 *    the inode getting the new extents: inode size
 275 *    the inode's bmap btree: max depth * block size
 276 *    the agfs of the ags from which the extents are allocated: 2 * sector
 277 *    the superblock free block counter: sector size
 278 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
 279 * Or, if we're writing to a realtime file (t2):
 280 *    the inode getting the new extents: inode size
 281 *    the inode's bmap btree: max depth * block size
 282 *    the agfs of the ags from which the extents are allocated: 2 * sector
 283 *    the superblock free block counter: sector size
 284 *    the realtime bitmap: ((XFS_BMBT_MAX_EXTLEN / rtextsize) / NBBY) bytes
 285 *    the realtime summary: 1 block
 286 *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
 287 * And the bmap_finish transaction can free bmap blocks in a join (t3):
 288 *    the agfs of the ags containing the blocks: 2 * sector size
 289 *    the agfls of the ags containing the blocks: 2 * sector size
 290 *    the super block free block counter: sector size
 291 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
 292 * And any refcount updates that happen in a separate transaction (t4).
 293 */
 294STATIC uint
 295xfs_calc_write_reservation(
 296	struct xfs_mount	*mp,
 297	bool			for_minlogsize)
 298{
 299	unsigned int		t1, t2, t3, t4;
 300	unsigned int		blksz = XFS_FSB_TO_B(mp, 1);
 301
 302	t1 = xfs_calc_inode_res(mp, 1) +
 303	     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), blksz) +
 304	     xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
 305	     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2), blksz);
 306
 307	if (xfs_has_realtime(mp)) {
 308		t2 = xfs_calc_inode_res(mp, 1) +
 309		     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
 310				     blksz) +
 311		     xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
 312		     xfs_calc_buf_res(xfs_rtalloc_block_count(mp, 1), blksz) +
 313		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1), blksz);
 314	} else {
 315		t2 = 0;
 316	}
 317
 318	t3 = xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
 319	     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2), blksz);
 320
 321	/*
 322	 * In the early days of reflink, we included enough reservation to log
 323	 * two refcountbt splits for each transaction.  The codebase runs
 324	 * refcountbt updates in separate transactions now, so to compute the
 325	 * minimum log size, add the refcountbtree splits back to t1 and t3 and
 326	 * do not account them separately as t4.  Reflink did not support
 327	 * realtime when the reservations were established, so no adjustment to
 328	 * t2 is needed.
 329	 */
 330	if (for_minlogsize) {
 331		unsigned int	adj = 0;
 332
 333		if (xfs_has_reflink(mp))
 334			adj = xfs_calc_buf_res(
 335					xfs_refcountbt_block_count(mp, 2),
 336					blksz);
 337		t1 += adj;
 338		t3 += adj;
 339		return XFS_DQUOT_LOGRES(mp) + max3(t1, t2, t3);
 340	}
 341
 342	t4 = xfs_calc_refcountbt_reservation(mp, 1);
 343	return XFS_DQUOT_LOGRES(mp) + max(t4, max3(t1, t2, t3));
 344}
 345
 346unsigned int
 347xfs_calc_write_reservation_minlogsize(
 348	struct xfs_mount	*mp)
 349{
 350	return xfs_calc_write_reservation(mp, true);
 351}
 352
 353/*
 354 * In truncating a file we free up to two extents at once.  We can modify (t1):
 355 *    the inode being truncated: inode size
 356 *    the inode's bmap btree: (max depth + 1) * block size
 357 * And the bmap_finish transaction can free the blocks and bmap blocks (t2):
 358 *    the agf for each of the ags: 4 * sector size
 359 *    the agfl for each of the ags: 4 * sector size
 360 *    the super block to reflect the freed blocks: sector size
 361 *    worst case split in allocation btrees per extent assuming 4 extents:
 362 *		4 exts * 2 trees * (2 * max depth - 1) * block size
 363 * Or, if it's a realtime file (t3):
 364 *    the agf for each of the ags: 2 * sector size
 365 *    the agfl for each of the ags: 2 * sector size
 366 *    the super block to reflect the freed blocks: sector size
 367 *    the realtime bitmap:
 368 *		2 exts * ((XFS_BMBT_MAX_EXTLEN / rtextsize) / NBBY) bytes
 369 *    the realtime summary: 2 exts * 1 block
 370 *    worst case split in allocation btrees per extent assuming 2 extents:
 371 *		2 exts * 2 trees * (2 * max depth - 1) * block size
 372 * And any refcount updates that happen in a separate transaction (t4).
 373 */
 374STATIC uint
 375xfs_calc_itruncate_reservation(
 376	struct xfs_mount	*mp,
 377	bool			for_minlogsize)
 378{
 379	unsigned int		t1, t2, t3, t4;
 380	unsigned int		blksz = XFS_FSB_TO_B(mp, 1);
 381
 382	t1 = xfs_calc_inode_res(mp, 1) +
 383	     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1, blksz);
 384
 385	t2 = xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
 386	     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 4), blksz);
 387
 388	if (xfs_has_realtime(mp)) {
 389		t3 = xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
 390		     xfs_calc_buf_res(xfs_rtalloc_block_count(mp, 2), blksz) +
 391		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2), blksz);
 392	} else {
 393		t3 = 0;
 394	}
 395
 396	/*
 397	 * In the early days of reflink, we included enough reservation to log
 398	 * four refcountbt splits in the same transaction as bnobt/cntbt
 399	 * updates.  The codebase runs refcountbt updates in separate
 400	 * transactions now, so to compute the minimum log size, add the
 401	 * refcount btree splits back here and do not compute them separately
 402	 * as t4.  Reflink did not support realtime when the reservations were
 403	 * established, so do not adjust t3.
 404	 */
 405	if (for_minlogsize) {
 406		if (xfs_has_reflink(mp))
 407			t2 += xfs_calc_buf_res(
 408					xfs_refcountbt_block_count(mp, 4),
 409					blksz);
 410
 411		return XFS_DQUOT_LOGRES(mp) + max3(t1, t2, t3);
 412	}
 413
 414	t4 = xfs_calc_refcountbt_reservation(mp, 2);
 415	return XFS_DQUOT_LOGRES(mp) + max(t4, max3(t1, t2, t3));
 416}
 417
 418unsigned int
 419xfs_calc_itruncate_reservation_minlogsize(
 420	struct xfs_mount	*mp)
 421{
 422	return xfs_calc_itruncate_reservation(mp, true);
 423}
 424
 425/*
 426 * In renaming a files we can modify:
 427 *    the five inodes involved: 5 * inode size
 428 *    the two directory btrees: 2 * (max depth + v2) * dir block size
 429 *    the two directory bmap btrees: 2 * max depth * block size
 430 * And the bmap_finish transaction can free dir and bmap blocks (two sets
 431 *	of bmap blocks) giving:
 432 *    the agf for the ags in which the blocks live: 3 * sector size
 433 *    the agfl for the ags in which the blocks live: 3 * sector size
 434 *    the superblock for the free block count: sector size
 435 *    the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
 436 */
 437STATIC uint
 438xfs_calc_rename_reservation(
 439	struct xfs_mount	*mp)
 440{
 441	return XFS_DQUOT_LOGRES(mp) +
 442		max((xfs_calc_inode_res(mp, 5) +
 443		     xfs_calc_buf_res(2 * XFS_DIROP_LOG_COUNT(mp),
 444				      XFS_FSB_TO_B(mp, 1))),
 445		    (xfs_calc_buf_res(7, mp->m_sb.sb_sectsize) +
 446		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 3),
 447				      XFS_FSB_TO_B(mp, 1))));
 448}
 449
 450/*
 451 * For removing an inode from unlinked list at first, we can modify:
 452 *    the agi hash list and counters: sector size
 453 *    the on disk inode before ours in the agi hash list: inode cluster size
 454 *    the on disk inode in the agi hash list: inode cluster size
 455 */
 456STATIC uint
 457xfs_calc_iunlink_remove_reservation(
 458	struct xfs_mount        *mp)
 459{
 460	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
 461	       2 * M_IGEO(mp)->inode_cluster_size;
 462}
 463
 464/*
 465 * For creating a link to an inode:
 466 *    the parent directory inode: inode size
 467 *    the linked inode: inode size
 468 *    the directory btree could split: (max depth + v2) * dir block size
 469 *    the directory bmap btree could join or split: (max depth + v2) * blocksize
 470 * And the bmap_finish transaction can free some bmap blocks giving:
 471 *    the agf for the ag in which the blocks live: sector size
 472 *    the agfl for the ag in which the blocks live: sector size
 473 *    the superblock for the free block count: sector size
 474 *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
 475 */
 476STATIC uint
 477xfs_calc_link_reservation(
 478	struct xfs_mount	*mp)
 479{
 480	return XFS_DQUOT_LOGRES(mp) +
 481		xfs_calc_iunlink_remove_reservation(mp) +
 482		max((xfs_calc_inode_res(mp, 2) +
 483		     xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
 484				      XFS_FSB_TO_B(mp, 1))),
 485		    (xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
 486		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
 487				      XFS_FSB_TO_B(mp, 1))));
 488}
 489
 490/*
 491 * For adding an inode to unlinked list we can modify:
 492 *    the agi hash list: sector size
 493 *    the on disk inode: inode cluster size
 494 */
 495STATIC uint
 496xfs_calc_iunlink_add_reservation(xfs_mount_t *mp)
 497{
 498	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
 499			M_IGEO(mp)->inode_cluster_size;
 500}
 501
 502/*
 503 * For removing a directory entry we can modify:
 504 *    the parent directory inode: inode size
 505 *    the removed inode: inode size
 506 *    the directory btree could join: (max depth + v2) * dir block size
 507 *    the directory bmap btree could join or split: (max depth + v2) * blocksize
 508 * And the bmap_finish transaction can free the dir and bmap blocks giving:
 509 *    the agf for the ag in which the blocks live: 2 * sector size
 510 *    the agfl for the ag in which the blocks live: 2 * sector size
 511 *    the superblock for the free block count: sector size
 512 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
 513 */
 514STATIC uint
 515xfs_calc_remove_reservation(
 516	struct xfs_mount	*mp)
 517{
 518	return XFS_DQUOT_LOGRES(mp) +
 519		xfs_calc_iunlink_add_reservation(mp) +
 520		max((xfs_calc_inode_res(mp, 2) +
 521		     xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
 522				      XFS_FSB_TO_B(mp, 1))),
 523		    (xfs_calc_buf_res(4, mp->m_sb.sb_sectsize) +
 524		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2),
 525				      XFS_FSB_TO_B(mp, 1))));
 526}
 527
 528/*
 529 * For create, break it in to the two cases that the transaction
 530 * covers. We start with the modify case - allocation done by modification
 531 * of the state of existing inodes - and the allocation case.
 532 */
 533
 534/*
 535 * For create we can modify:
 536 *    the parent directory inode: inode size
 537 *    the new inode: inode size
 538 *    the inode btree entry: block size
 539 *    the superblock for the nlink flag: sector size
 540 *    the directory btree: (max depth + v2) * dir block size
 541 *    the directory inode's bmap btree: (max depth + v2) * block size
 542 *    the finobt (record modification and allocation btrees)
 543 */
 544STATIC uint
 545xfs_calc_create_resv_modify(
 546	struct xfs_mount	*mp)
 547{
 548	return xfs_calc_inode_res(mp, 2) +
 549		xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
 550		(uint)XFS_FSB_TO_B(mp, 1) +
 551		xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp), XFS_FSB_TO_B(mp, 1)) +
 552		xfs_calc_finobt_res(mp);
 553}
 554
 555/*
 556 * For icreate we can allocate some inodes giving:
 557 *    the agi and agf of the ag getting the new inodes: 2 * sectorsize
 558 *    the superblock for the nlink flag: sector size
 559 *    the inode chunk (allocation, optional init)
 560 *    the inobt (record insertion)
 561 *    the finobt (optional, record insertion)
 562 */
 563STATIC uint
 564xfs_calc_icreate_resv_alloc(
 565	struct xfs_mount	*mp)
 566{
 567	return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
 568		mp->m_sb.sb_sectsize +
 569		xfs_calc_inode_chunk_res(mp, _ALLOC) +
 570		xfs_calc_inobt_res(mp) +
 571		xfs_calc_finobt_res(mp);
 572}
 573
 574STATIC uint
 575xfs_calc_icreate_reservation(xfs_mount_t *mp)
 576{
 577	return XFS_DQUOT_LOGRES(mp) +
 578		max(xfs_calc_icreate_resv_alloc(mp),
 579		    xfs_calc_create_resv_modify(mp));
 580}
 581
 582STATIC uint
 583xfs_calc_create_tmpfile_reservation(
 584	struct xfs_mount        *mp)
 585{
 586	uint	res = XFS_DQUOT_LOGRES(mp);
 587
 588	res += xfs_calc_icreate_resv_alloc(mp);
 589	return res + xfs_calc_iunlink_add_reservation(mp);
 590}
 591
 592/*
 593 * Making a new directory is the same as creating a new file.
 594 */
 595STATIC uint
 596xfs_calc_mkdir_reservation(
 597	struct xfs_mount	*mp)
 598{
 599	return xfs_calc_icreate_reservation(mp);
 600}
 601
 602
 603/*
 604 * Making a new symplink is the same as creating a new file, but
 605 * with the added blocks for remote symlink data which can be up to 1kB in
 606 * length (XFS_SYMLINK_MAXLEN).
 607 */
 608STATIC uint
 609xfs_calc_symlink_reservation(
 610	struct xfs_mount	*mp)
 611{
 612	return xfs_calc_icreate_reservation(mp) +
 613	       xfs_calc_buf_res(1, XFS_SYMLINK_MAXLEN);
 614}
 615
 616/*
 617 * In freeing an inode we can modify:
 618 *    the inode being freed: inode size
 619 *    the super block free inode counter, AGF and AGFL: sector size
 620 *    the on disk inode (agi unlinked list removal)
 621 *    the inode chunk (invalidated, headers only)
 622 *    the inode btree
 623 *    the finobt (record insertion, removal or modification)
 624 *
 625 * Note that the inode chunk res. includes an allocfree res. for freeing of the
 626 * inode chunk. This is technically extraneous because the inode chunk free is
 627 * deferred (it occurs after a transaction roll). Include the extra reservation
 628 * anyways since we've had reports of ifree transaction overruns due to too many
 629 * agfl fixups during inode chunk frees.
 630 */
 631STATIC uint
 632xfs_calc_ifree_reservation(
 633	struct xfs_mount	*mp)
 634{
 635	return XFS_DQUOT_LOGRES(mp) +
 636		xfs_calc_inode_res(mp, 1) +
 637		xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
 638		xfs_calc_iunlink_remove_reservation(mp) +
 639		xfs_calc_inode_chunk_res(mp, _FREE) +
 640		xfs_calc_inobt_res(mp) +
 641		xfs_calc_finobt_res(mp);
 642}
 643
 644/*
 645 * When only changing the inode we log the inode and possibly the superblock
 646 * We also add a bit of slop for the transaction stuff.
 647 */
 648STATIC uint
 649xfs_calc_ichange_reservation(
 650	struct xfs_mount	*mp)
 651{
 652	return XFS_DQUOT_LOGRES(mp) +
 653		xfs_calc_inode_res(mp, 1) +
 654		xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
 655
 656}
 657
 658/*
 659 * Growing the data section of the filesystem.
 660 *	superblock
 661 *	agi and agf
 662 *	allocation btrees
 663 */
 664STATIC uint
 665xfs_calc_growdata_reservation(
 666	struct xfs_mount	*mp)
 667{
 668	return xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
 669		xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
 670				 XFS_FSB_TO_B(mp, 1));
 671}
 672
 673/*
 674 * Growing the rt section of the filesystem.
 675 * In the first set of transactions (ALLOC) we allocate space to the
 676 * bitmap or summary files.
 677 *	superblock: sector size
 678 *	agf of the ag from which the extent is allocated: sector size
 679 *	bmap btree for bitmap/summary inode: max depth * blocksize
 680 *	bitmap/summary inode: inode size
 681 *	allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
 682 */
 683STATIC uint
 684xfs_calc_growrtalloc_reservation(
 685	struct xfs_mount	*mp)
 686{
 687	return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
 688		xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
 689				 XFS_FSB_TO_B(mp, 1)) +
 690		xfs_calc_inode_res(mp, 1) +
 691		xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
 692				 XFS_FSB_TO_B(mp, 1));
 693}
 694
 695/*
 696 * Growing the rt section of the filesystem.
 697 * In the second set of transactions (ZERO) we zero the new metadata blocks.
 698 *	one bitmap/summary block: blocksize
 699 */
 700STATIC uint
 701xfs_calc_growrtzero_reservation(
 702	struct xfs_mount	*mp)
 703{
 704	return xfs_calc_buf_res(1, mp->m_sb.sb_blocksize);
 705}
 706
 707/*
 708 * Growing the rt section of the filesystem.
 709 * In the third set of transactions (FREE) we update metadata without
 710 * allocating any new blocks.
 711 *	superblock: sector size
 712 *	bitmap inode: inode size
 713 *	summary inode: inode size
 714 *	one bitmap block: blocksize
 715 *	summary blocks: new summary size
 716 */
 717STATIC uint
 718xfs_calc_growrtfree_reservation(
 719	struct xfs_mount	*mp)
 720{
 721	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
 722		xfs_calc_inode_res(mp, 2) +
 723		xfs_calc_buf_res(1, mp->m_sb.sb_blocksize) +
 724		xfs_calc_buf_res(1, mp->m_rsumsize);
 725}
 726
 727/*
 728 * Logging the inode modification timestamp on a synchronous write.
 729 *	inode
 730 */
 731STATIC uint
 732xfs_calc_swrite_reservation(
 733	struct xfs_mount	*mp)
 734{
 735	return xfs_calc_inode_res(mp, 1);
 736}
 737
 738/*
 739 * Logging the inode mode bits when writing a setuid/setgid file
 740 *	inode
 741 */
 742STATIC uint
 743xfs_calc_writeid_reservation(
 744	struct xfs_mount	*mp)
 745{
 746	return xfs_calc_inode_res(mp, 1);
 747}
 748
 749/*
 750 * Converting the inode from non-attributed to attributed.
 751 *	the inode being converted: inode size
 752 *	agf block and superblock (for block allocation)
 753 *	the new block (directory sized)
 754 *	bmap blocks for the new directory block
 755 *	allocation btrees
 756 */
 757STATIC uint
 758xfs_calc_addafork_reservation(
 759	struct xfs_mount	*mp)
 760{
 761	return XFS_DQUOT_LOGRES(mp) +
 762		xfs_calc_inode_res(mp, 1) +
 763		xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
 764		xfs_calc_buf_res(1, mp->m_dir_geo->blksize) +
 765		xfs_calc_buf_res(XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1,
 766				 XFS_FSB_TO_B(mp, 1)) +
 767		xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
 768				 XFS_FSB_TO_B(mp, 1));
 769}
 770
 771/*
 772 * Removing the attribute fork of a file
 773 *    the inode being truncated: inode size
 774 *    the inode's bmap btree: max depth * block size
 775 * And the bmap_finish transaction can free the blocks and bmap blocks:
 776 *    the agf for each of the ags: 4 * sector size
 777 *    the agfl for each of the ags: 4 * sector size
 778 *    the super block to reflect the freed blocks: sector size
 779 *    worst case split in allocation btrees per extent assuming 4 extents:
 780 *		4 exts * 2 trees * (2 * max depth - 1) * block size
 781 */
 782STATIC uint
 783xfs_calc_attrinval_reservation(
 784	struct xfs_mount	*mp)
 785{
 786	return max((xfs_calc_inode_res(mp, 1) +
 787		    xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
 788				     XFS_FSB_TO_B(mp, 1))),
 789		   (xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
 790		    xfs_calc_buf_res(xfs_allocfree_block_count(mp, 4),
 791				     XFS_FSB_TO_B(mp, 1))));
 792}
 793
 794/*
 795 * Setting an attribute at mount time.
 796 *	the inode getting the attribute
 797 *	the superblock for allocations
 798 *	the agfs extents are allocated from
 799 *	the attribute btree * max depth
 800 *	the inode allocation btree
 801 * Since attribute transaction space is dependent on the size of the attribute,
 802 * the calculation is done partially at mount time and partially at runtime(see
 803 * below).
 804 */
 805STATIC uint
 806xfs_calc_attrsetm_reservation(
 807	struct xfs_mount	*mp)
 808{
 809	return XFS_DQUOT_LOGRES(mp) +
 810		xfs_calc_inode_res(mp, 1) +
 811		xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
 812		xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH, XFS_FSB_TO_B(mp, 1));
 813}
 814
 815/*
 816 * Setting an attribute at runtime, transaction space unit per block.
 817 * 	the superblock for allocations: sector size
 818 *	the inode bmap btree could join or split: max depth * block size
 819 * Since the runtime attribute transaction space is dependent on the total
 820 * blocks needed for the 1st bmap, here we calculate out the space unit for
 821 * one block so that the caller could figure out the total space according
 822 * to the attibute extent length in blocks by:
 823 *	ext * M_RES(mp)->tr_attrsetrt.tr_logres
 824 */
 825STATIC uint
 826xfs_calc_attrsetrt_reservation(
 827	struct xfs_mount	*mp)
 828{
 829	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
 830		xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
 831				 XFS_FSB_TO_B(mp, 1));
 832}
 833
 834/*
 835 * Removing an attribute.
 836 *    the inode: inode size
 837 *    the attribute btree could join: max depth * block size
 838 *    the inode bmap btree could join or split: max depth * block size
 839 * And the bmap_finish transaction can free the attr blocks freed giving:
 840 *    the agf for the ag in which the blocks live: 2 * sector size
 841 *    the agfl for the ag in which the blocks live: 2 * sector size
 842 *    the superblock for the free block count: sector size
 843 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
 844 */
 845STATIC uint
 846xfs_calc_attrrm_reservation(
 847	struct xfs_mount	*mp)
 848{
 849	return XFS_DQUOT_LOGRES(mp) +
 850		max((xfs_calc_inode_res(mp, 1) +
 851		     xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH,
 852				      XFS_FSB_TO_B(mp, 1)) +
 853		     (uint)XFS_FSB_TO_B(mp,
 854					XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
 855		     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), 0)),
 856		    (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
 857		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2),
 858				      XFS_FSB_TO_B(mp, 1))));
 859}
 860
 861/*
 862 * Clearing a bad agino number in an agi hash bucket.
 863 */
 864STATIC uint
 865xfs_calc_clear_agi_bucket_reservation(
 866	struct xfs_mount	*mp)
 867{
 868	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
 869}
 870
 871/*
 872 * Adjusting quota limits.
 873 *    the disk quota buffer: sizeof(struct xfs_disk_dquot)
 874 */
 875STATIC uint
 876xfs_calc_qm_setqlim_reservation(void)
 877{
 878	return xfs_calc_buf_res(1, sizeof(struct xfs_disk_dquot));
 879}
 880
 881/*
 882 * Allocating quota on disk if needed.
 883 *	the write transaction log space for quota file extent allocation
 884 *	the unit of quota allocation: one system block size
 885 */
 886STATIC uint
 887xfs_calc_qm_dqalloc_reservation(
 888	struct xfs_mount	*mp,
 889	bool			for_minlogsize)
 890{
 891	return xfs_calc_write_reservation(mp, for_minlogsize) +
 892		xfs_calc_buf_res(1,
 893			XFS_FSB_TO_B(mp, XFS_DQUOT_CLUSTER_SIZE_FSB) - 1);
 894}
 895
 896unsigned int
 897xfs_calc_qm_dqalloc_reservation_minlogsize(
 898	struct xfs_mount	*mp)
 899{
 900	return xfs_calc_qm_dqalloc_reservation(mp, true);
 901}
 902
 903/*
 904 * Syncing the incore super block changes to disk.
 905 *     the super block to reflect the changes: sector size
 906 */
 907STATIC uint
 908xfs_calc_sb_reservation(
 909	struct xfs_mount	*mp)
 910{
 911	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
 912}
 913
 914void
 915xfs_trans_resv_calc(
 916	struct xfs_mount	*mp,
 917	struct xfs_trans_resv	*resp)
 918{
 919	int			logcount_adj = 0;
 920
 921	/*
 922	 * The following transactions are logged in physical format and
 923	 * require a permanent reservation on space.
 924	 */
 925	resp->tr_write.tr_logres = xfs_calc_write_reservation(mp, false);
 926	resp->tr_write.tr_logcount = XFS_WRITE_LOG_COUNT;
 927	resp->tr_write.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 928
 929	resp->tr_itruncate.tr_logres = xfs_calc_itruncate_reservation(mp, false);
 930	resp->tr_itruncate.tr_logcount = XFS_ITRUNCATE_LOG_COUNT;
 931	resp->tr_itruncate.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 932
 933	resp->tr_rename.tr_logres = xfs_calc_rename_reservation(mp);
 934	resp->tr_rename.tr_logcount = XFS_RENAME_LOG_COUNT;
 935	resp->tr_rename.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 936
 937	resp->tr_link.tr_logres = xfs_calc_link_reservation(mp);
 938	resp->tr_link.tr_logcount = XFS_LINK_LOG_COUNT;
 939	resp->tr_link.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 940
 941	resp->tr_remove.tr_logres = xfs_calc_remove_reservation(mp);
 942	resp->tr_remove.tr_logcount = XFS_REMOVE_LOG_COUNT;
 943	resp->tr_remove.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 944
 945	resp->tr_symlink.tr_logres = xfs_calc_symlink_reservation(mp);
 946	resp->tr_symlink.tr_logcount = XFS_SYMLINK_LOG_COUNT;
 947	resp->tr_symlink.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 948
 949	resp->tr_create.tr_logres = xfs_calc_icreate_reservation(mp);
 950	resp->tr_create.tr_logcount = XFS_CREATE_LOG_COUNT;
 951	resp->tr_create.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 952
 953	resp->tr_create_tmpfile.tr_logres =
 954			xfs_calc_create_tmpfile_reservation(mp);
 955	resp->tr_create_tmpfile.tr_logcount = XFS_CREATE_TMPFILE_LOG_COUNT;
 956	resp->tr_create_tmpfile.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 957
 958	resp->tr_mkdir.tr_logres = xfs_calc_mkdir_reservation(mp);
 959	resp->tr_mkdir.tr_logcount = XFS_MKDIR_LOG_COUNT;
 960	resp->tr_mkdir.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 961
 962	resp->tr_ifree.tr_logres = xfs_calc_ifree_reservation(mp);
 963	resp->tr_ifree.tr_logcount = XFS_INACTIVE_LOG_COUNT;
 964	resp->tr_ifree.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 965
 966	resp->tr_addafork.tr_logres = xfs_calc_addafork_reservation(mp);
 967	resp->tr_addafork.tr_logcount = XFS_ADDAFORK_LOG_COUNT;
 968	resp->tr_addafork.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 969
 970	resp->tr_attrinval.tr_logres = xfs_calc_attrinval_reservation(mp);
 971	resp->tr_attrinval.tr_logcount = XFS_ATTRINVAL_LOG_COUNT;
 972	resp->tr_attrinval.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 973
 974	resp->tr_attrsetm.tr_logres = xfs_calc_attrsetm_reservation(mp);
 975	resp->tr_attrsetm.tr_logcount = XFS_ATTRSET_LOG_COUNT;
 976	resp->tr_attrsetm.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 977
 978	resp->tr_attrrm.tr_logres = xfs_calc_attrrm_reservation(mp);
 979	resp->tr_attrrm.tr_logcount = XFS_ATTRRM_LOG_COUNT;
 980	resp->tr_attrrm.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 981
 982	resp->tr_growrtalloc.tr_logres = xfs_calc_growrtalloc_reservation(mp);
 983	resp->tr_growrtalloc.tr_logcount = XFS_DEFAULT_PERM_LOG_COUNT;
 984	resp->tr_growrtalloc.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 985
 986	resp->tr_qm_dqalloc.tr_logres = xfs_calc_qm_dqalloc_reservation(mp,
 987			false);
 988	resp->tr_qm_dqalloc.tr_logcount = XFS_WRITE_LOG_COUNT;
 989	resp->tr_qm_dqalloc.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 990
 991	/*
 992	 * The following transactions are logged in logical format with
 993	 * a default log count.
 994	 */
 995	resp->tr_qm_setqlim.tr_logres = xfs_calc_qm_setqlim_reservation();
 996	resp->tr_qm_setqlim.tr_logcount = XFS_DEFAULT_LOG_COUNT;
 997
 998	resp->tr_sb.tr_logres = xfs_calc_sb_reservation(mp);
 999	resp->tr_sb.tr_logcount = XFS_DEFAULT_LOG_COUNT;
1000
1001	/* growdata requires permanent res; it can free space to the last AG */
1002	resp->tr_growdata.tr_logres = xfs_calc_growdata_reservation(mp);
1003	resp->tr_growdata.tr_logcount = XFS_DEFAULT_PERM_LOG_COUNT;
1004	resp->tr_growdata.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
1005
1006	/* The following transaction are logged in logical format */
1007	resp->tr_ichange.tr_logres = xfs_calc_ichange_reservation(mp);
1008	resp->tr_fsyncts.tr_logres = xfs_calc_swrite_reservation(mp);
1009	resp->tr_writeid.tr_logres = xfs_calc_writeid_reservation(mp);
1010	resp->tr_attrsetrt.tr_logres = xfs_calc_attrsetrt_reservation(mp);
1011	resp->tr_clearagi.tr_logres = xfs_calc_clear_agi_bucket_reservation(mp);
1012	resp->tr_growrtzero.tr_logres = xfs_calc_growrtzero_reservation(mp);
1013	resp->tr_growrtfree.tr_logres = xfs_calc_growrtfree_reservation(mp);
1014
1015	/*
1016	 * Add one logcount for BUI items that appear with rmap or reflink,
1017	 * one logcount for refcount intent items, and one logcount for rmap
1018	 * intent items.
1019	 */
1020	if (xfs_has_reflink(mp) || xfs_has_rmapbt(mp))
1021		logcount_adj++;
1022	if (xfs_has_reflink(mp))
1023		logcount_adj++;
1024	if (xfs_has_rmapbt(mp))
1025		logcount_adj++;
1026
1027	resp->tr_itruncate.tr_logcount += logcount_adj;
1028	resp->tr_write.tr_logcount += logcount_adj;
1029	resp->tr_qm_dqalloc.tr_logcount += logcount_adj;
1030}