Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.1.
   1/* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
   2/*
   3 * core.h - DesignWare HS OTG Controller common declarations
   4 *
   5 * Copyright (C) 2004-2013 Synopsys, Inc.
   6 */
   7
   8#ifndef __DWC2_CORE_H__
   9#define __DWC2_CORE_H__
  10
  11#include <linux/acpi.h>
  12#include <linux/phy/phy.h>
  13#include <linux/regulator/consumer.h>
  14#include <linux/usb/gadget.h>
  15#include <linux/usb/otg.h>
  16#include <linux/usb/phy.h>
  17#include "hw.h"
  18
  19/*
  20 * Suggested defines for tracers:
  21 * - no_printk:    Disable tracing
  22 * - pr_info:      Print this info to the console
  23 * - trace_printk: Print this info to trace buffer (good for verbose logging)
  24 */
  25
  26#define DWC2_TRACE_SCHEDULER		no_printk
  27#define DWC2_TRACE_SCHEDULER_VB		no_printk
  28
  29/* Detailed scheduler tracing, but won't overwhelm console */
  30#define dwc2_sch_dbg(hsotg, fmt, ...)					\
  31	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
  32			     dev_name(hsotg->dev), ##__VA_ARGS__)
  33
  34/* Verbose scheduler tracing */
  35#define dwc2_sch_vdbg(hsotg, fmt, ...)					\
  36	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
  37				dev_name(hsotg->dev), ##__VA_ARGS__)
  38
  39/* Maximum number of Endpoints/HostChannels */
  40#define MAX_EPS_CHANNELS	16
  41
  42/* dwc2-hsotg declarations */
  43static const char * const dwc2_hsotg_supply_names[] = {
  44	"vusb_d",               /* digital USB supply, 1.2V */
  45	"vusb_a",               /* analog USB supply, 1.1V */
  46};
  47
  48#define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
  49
  50/*
  51 * EP0_MPS_LIMIT
  52 *
  53 * Unfortunately there seems to be a limit of the amount of data that can
  54 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
  55 * packets (which practically means 1 packet and 63 bytes of data) when the
  56 * MPS is set to 64.
  57 *
  58 * This means if we are wanting to move >127 bytes of data, we need to
  59 * split the transactions up, but just doing one packet at a time does
  60 * not work (this may be an implicit DATA0 PID on first packet of the
  61 * transaction) and doing 2 packets is outside the controller's limits.
  62 *
  63 * If we try to lower the MPS size for EP0, then no transfers work properly
  64 * for EP0, and the system will fail basic enumeration. As no cause for this
  65 * has currently been found, we cannot support any large IN transfers for
  66 * EP0.
  67 */
  68#define EP0_MPS_LIMIT   64
  69
  70struct dwc2_hsotg;
  71struct dwc2_hsotg_req;
  72
  73/**
  74 * struct dwc2_hsotg_ep - driver endpoint definition.
  75 * @ep: The gadget layer representation of the endpoint.
  76 * @name: The driver generated name for the endpoint.
  77 * @queue: Queue of requests for this endpoint.
  78 * @parent: Reference back to the parent device structure.
  79 * @req: The current request that the endpoint is processing. This is
  80 *       used to indicate an request has been loaded onto the endpoint
  81 *       and has yet to be completed (maybe due to data move, or simply
  82 *       awaiting an ack from the core all the data has been completed).
  83 * @debugfs: File entry for debugfs file for this endpoint.
  84 * @dir_in: Set to true if this endpoint is of the IN direction, which
  85 *          means that it is sending data to the Host.
  86 * @map_dir: Set to the value of dir_in when the DMA buffer is mapped.
  87 * @index: The index for the endpoint registers.
  88 * @mc: Multi Count - number of transactions per microframe
  89 * @interval: Interval for periodic endpoints, in frames or microframes.
  90 * @name: The name array passed to the USB core.
  91 * @halted: Set if the endpoint has been halted.
  92 * @periodic: Set if this is a periodic ep, such as Interrupt
  93 * @isochronous: Set if this is a isochronous ep
  94 * @send_zlp: Set if we need to send a zero-length packet.
  95 * @wedged: Set if ep is wedged.
  96 * @desc_list_dma: The DMA address of descriptor chain currently in use.
  97 * @desc_list: Pointer to descriptor DMA chain head currently in use.
  98 * @desc_count: Count of entries within the DMA descriptor chain of EP.
  99 * @next_desc: index of next free descriptor in the ISOC chain under SW control.
 100 * @compl_desc: index of next descriptor to be completed by xFerComplete
 101 * @total_data: The total number of data bytes done.
 102 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
 103 * @fifo_index: For Dedicated FIFO operation, only FIFO0 can be used for EP0.
 104 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
 105 * @last_load: The offset of data for the last start of request.
 106 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
 107 * @target_frame: Targeted frame num to setup next ISOC transfer
 108 * @frame_overrun: Indicates SOF number overrun in DSTS
 109 *
 110 * This is the driver's state for each registered endpoint, allowing it
 111 * to keep track of transactions that need doing. Each endpoint has a
 112 * lock to protect the state, to try and avoid using an overall lock
 113 * for the host controller as much as possible.
 114 *
 115 * For periodic IN endpoints, we have fifo_size and fifo_load to try
 116 * and keep track of the amount of data in the periodic FIFO for each
 117 * of these as we don't have a status register that tells us how much
 118 * is in each of them. (note, this may actually be useless information
 119 * as in shared-fifo mode periodic in acts like a single-frame packet
 120 * buffer than a fifo)
 121 */
 122struct dwc2_hsotg_ep {
 123	struct usb_ep           ep;
 124	struct list_head        queue;
 125	struct dwc2_hsotg       *parent;
 126	struct dwc2_hsotg_req    *req;
 127	struct dentry           *debugfs;
 128
 129	unsigned long           total_data;
 130	unsigned int            size_loaded;
 131	unsigned int            last_load;
 132	unsigned int            fifo_load;
 133	unsigned short          fifo_size;
 134	unsigned short		fifo_index;
 135
 136	unsigned char           dir_in;
 137	unsigned char           map_dir;
 138	unsigned char           index;
 139	unsigned char           mc;
 140	u16                     interval;
 141
 142	unsigned int            halted:1;
 143	unsigned int            periodic:1;
 144	unsigned int            isochronous:1;
 145	unsigned int            send_zlp:1;
 146	unsigned int            wedged:1;
 147	unsigned int            target_frame;
 148#define TARGET_FRAME_INITIAL   0xFFFFFFFF
 149	bool			frame_overrun;
 150
 151	dma_addr_t		desc_list_dma;
 152	struct dwc2_dma_desc	*desc_list;
 153	u8			desc_count;
 154
 155	unsigned int		next_desc;
 156	unsigned int		compl_desc;
 157
 158	char                    name[10];
 159};
 160
 161/**
 162 * struct dwc2_hsotg_req - data transfer request
 163 * @req: The USB gadget request
 164 * @queue: The list of requests for the endpoint this is queued for.
 165 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
 166 */
 167struct dwc2_hsotg_req {
 168	struct usb_request      req;
 169	struct list_head        queue;
 170	void *saved_req_buf;
 171};
 172
 173#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
 174	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
 175#define call_gadget(_hs, _entry) \
 176do { \
 177	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
 178		(_hs)->driver && (_hs)->driver->_entry) { \
 179		spin_unlock(&_hs->lock); \
 180		(_hs)->driver->_entry(&(_hs)->gadget); \
 181		spin_lock(&_hs->lock); \
 182	} \
 183} while (0)
 184#else
 185#define call_gadget(_hs, _entry)	do {} while (0)
 186#endif
 187
 188struct dwc2_hsotg;
 189struct dwc2_host_chan;
 190
 191/* Device States */
 192enum dwc2_lx_state {
 193	DWC2_L0,	/* On state */
 194	DWC2_L1,	/* LPM sleep state */
 195	DWC2_L2,	/* USB suspend state */
 196	DWC2_L3,	/* Off state */
 197};
 198
 199/* Gadget ep0 states */
 200enum dwc2_ep0_state {
 201	DWC2_EP0_SETUP,
 202	DWC2_EP0_DATA_IN,
 203	DWC2_EP0_DATA_OUT,
 204	DWC2_EP0_STATUS_IN,
 205	DWC2_EP0_STATUS_OUT,
 206};
 207
 208/**
 209 * struct dwc2_core_params - Parameters for configuring the core
 210 *
 211 * @otg_caps:           Specifies the OTG capabilities. OTG caps from the platform parameters,
 212 *                      used to setup the:
 213 *                       - HNP and SRP capable
 214 *                       - SRP Only capable
 215 *                       - No HNP/SRP capable (always available)
 216 *                       Defaults to best available option
 217 *                       - OTG revision number the device is compliant with, in binary-coded
 218 *                         decimal (i.e. 2.0 is 0200H). (see struct usb_otg_caps)
 219 * @host_dma:           Specifies whether to use slave or DMA mode for accessing
 220 *                      the data FIFOs. The driver will automatically detect the
 221 *                      value for this parameter if none is specified.
 222 *                       0 - Slave (always available)
 223 *                       1 - DMA (default, if available)
 224 * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
 225 *                      address DMA mode or descriptor DMA mode for accessing
 226 *                      the data FIFOs. The driver will automatically detect the
 227 *                      value for this if none is specified.
 228 *                       0 - Address DMA
 229 *                       1 - Descriptor DMA (default, if available)
 230 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
 231 *                      address DMA mode or descriptor DMA mode for accessing
 232 *                      the data FIFOs in Full Speed mode only. The driver
 233 *                      will automatically detect the value for this if none is
 234 *                      specified.
 235 *                       0 - Address DMA
 236 *                       1 - Descriptor DMA in FS (default, if available)
 237 * @speed:              Specifies the maximum speed of operation in host and
 238 *                      device mode. The actual speed depends on the speed of
 239 *                      the attached device and the value of phy_type.
 240 *                       0 - High Speed
 241 *                           (default when phy_type is UTMI+ or ULPI)
 242 *                       1 - Full Speed
 243 *                           (default when phy_type is Full Speed)
 244 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
 245 *                       1 - Allow dynamic FIFO sizing (default, if available)
 246 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
 247 *                      are enabled for non-periodic IN endpoints in device
 248 *                      mode.
 249 * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
 250 *                      dynamic FIFO sizing is enabled
 251 *                       16 to 32768
 252 *                      Actual maximum value is autodetected and also
 253 *                      the default.
 254 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
 255 *                      in host mode when dynamic FIFO sizing is enabled
 256 *                       16 to 32768
 257 *                      Actual maximum value is autodetected and also
 258 *                      the default.
 259 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
 260 *                      host mode when dynamic FIFO sizing is enabled
 261 *                       16 to 32768
 262 *                      Actual maximum value is autodetected and also
 263 *                      the default.
 264 * @max_transfer_size:  The maximum transfer size supported, in bytes
 265 *                       2047 to 65,535
 266 *                      Actual maximum value is autodetected and also
 267 *                      the default.
 268 * @max_packet_count:   The maximum number of packets in a transfer
 269 *                       15 to 511
 270 *                      Actual maximum value is autodetected and also
 271 *                      the default.
 272 * @host_channels:      The number of host channel registers to use
 273 *                       1 to 16
 274 *                      Actual maximum value is autodetected and also
 275 *                      the default.
 276 * @phy_type:           Specifies the type of PHY interface to use. By default,
 277 *                      the driver will automatically detect the phy_type.
 278 *                       0 - Full Speed Phy
 279 *                       1 - UTMI+ Phy
 280 *                       2 - ULPI Phy
 281 *                      Defaults to best available option (2, 1, then 0)
 282 * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
 283 *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
 284 *                      ULPI phy_type, this parameter indicates the data width
 285 *                      between the MAC and the ULPI Wrapper.) Also, this
 286 *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
 287 *                      parameter was set to "8 and 16 bits", meaning that the
 288 *                      core has been configured to work at either data path
 289 *                      width.
 290 *                       8 or 16 (default 16 if available)
 291 * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
 292 *                      data rate. This parameter is only applicable if phy_type
 293 *                      is ULPI.
 294 *                       0 - single data rate ULPI interface with 8 bit wide
 295 *                           data bus (default)
 296 *                       1 - double data rate ULPI interface with 4 bit wide
 297 *                           data bus
 298 * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
 299 *                      external supply to drive the VBus
 300 *                       0 - Internal supply (default)
 301 *                       1 - External supply
 302 * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
 303 *                      speed PHY. This parameter is only applicable if phy_type
 304 *                      is FS.
 305 *                       0 - No (default)
 306 *                       1 - Yes
 307 * @ipg_isoc_en:        Indicates the IPG supports is enabled or disabled.
 308 *                       0 - Disable (default)
 309 *                       1 - Enable
 310 * @acg_enable:		For enabling Active Clock Gating in the controller
 311 *                       0 - No
 312 *                       1 - Yes
 313 * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
 314 *                       0 - No (default)
 315 *                       1 - Yes
 316 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
 317 *                      when attached to a Full Speed or Low Speed device in
 318 *                      host mode.
 319 *                       0 - Don't support low power mode (default)
 320 *                       1 - Support low power mode
 321 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
 322 *                      when connected to a Low Speed device in host
 323 *                      mode. This parameter is applicable only if
 324 *                      host_support_fs_ls_low_power is enabled.
 325 *                       0 - 48 MHz
 326 *                           (default when phy_type is UTMI+ or ULPI)
 327 *                       1 - 6 MHz
 328 *                           (default when phy_type is Full Speed)
 329 * @oc_disable:		Flag to disable overcurrent condition.
 330 *			0 - Allow overcurrent condition to get detected
 331 *			1 - Disable overcurrent condtion to get detected
 332 * @ts_dline:           Enable Term Select Dline pulsing
 333 *                       0 - No (default)
 334 *                       1 - Yes
 335 * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
 336 *                       0 - No (default for core < 2.92a)
 337 *                       1 - Yes (default for core >= 2.92a)
 338 * @ahbcfg:             This field allows the default value of the GAHBCFG
 339 *                      register to be overridden
 340 *                       -1         - GAHBCFG value will be set to 0x06
 341 *                                    (INCR, default)
 342 *                       all others - GAHBCFG value will be overridden with
 343 *                                    this value
 344 *                      Not all bits can be controlled like this, the
 345 *                      bits defined by GAHBCFG_CTRL_MASK are controlled
 346 *                      by the driver and are ignored in this
 347 *                      configuration value.
 348 * @uframe_sched:       True to enable the microframe scheduler
 349 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
 350 *                      Disable CONIDSTSCHNG controller interrupt in such
 351 *                      case.
 352 *                      0 - No (default)
 353 *                      1 - Yes
 354 * @power_down:         Specifies whether the controller support power_down.
 355 *			If power_down is enabled, the controller will enter
 356 *			power_down in both peripheral and host mode when
 357 *			needed.
 358 *			0 - No (default)
 359 *			1 - Partial power down
 360 *			2 - Hibernation
 361 * @no_clock_gating:	Specifies whether to avoid clock gating feature.
 362 *			0 - No (use clock gating)
 363 *			1 - Yes (avoid it)
 364 * @lpm:		Enable LPM support.
 365 *			0 - No
 366 *			1 - Yes
 367 * @lpm_clock_gating:		Enable core PHY clock gating.
 368 *			0 - No
 369 *			1 - Yes
 370 * @besl:		Enable LPM Errata support.
 371 *			0 - No
 372 *			1 - Yes
 373 * @hird_threshold_en:	HIRD or HIRD Threshold enable.
 374 *			0 - No
 375 *			1 - Yes
 376 * @hird_threshold:	Value of BESL or HIRD Threshold.
 377 * @ref_clk_per:        Indicates in terms of pico seconds the period
 378 *                      of ref_clk.
 379 *			62500 - 16MHz
 380 *                      58823 - 17MHz
 381 *                      52083 - 19.2MHz
 382 *			50000 - 20MHz
 383 *			41666 - 24MHz
 384 *			33333 - 30MHz (default)
 385 *			25000 - 40MHz
 386 * @sof_cnt_wkup_alert: Indicates in term of number of SOF's after which
 387 *                      the controller should generate an interrupt if the
 388 *                      device had been in L1 state until that period.
 389 *                      This is used by SW to initiate Remote WakeUp in the
 390 *                      controller so as to sync to the uF number from the host.
 391 * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
 392 *			register.
 393 *			0 - Deactivate the transceiver (default)
 394 *			1 - Activate the transceiver
 395 * @activate_stm_id_vb_detection: Activate external ID pin and Vbus level
 396 *			detection using GGPIO register.
 397 *			0 - Deactivate the external level detection (default)
 398 *			1 - Activate the external level detection
 399 * @activate_ingenic_overcurrent_detection: Activate Ingenic overcurrent
 400 *			detection.
 401 *			0 - Deactivate the overcurrent detection
 402 *			1 - Activate the overcurrent detection (default)
 403 * @g_dma:              Enables gadget dma usage (default: autodetect).
 404 * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
 405 * @g_rx_fifo_size:	The periodic rx fifo size for the device, in
 406 *			DWORDS from 16-32768 (default: 2048 if
 407 *			possible, otherwise autodetect).
 408 * @g_np_tx_fifo_size:	The non-periodic tx fifo size for the device in
 409 *			DWORDS from 16-32768 (default: 1024 if
 410 *			possible, otherwise autodetect).
 411 * @g_tx_fifo_size:	An array of TX fifo sizes in dedicated fifo
 412 *			mode. Each value corresponds to one EP
 413 *			starting from EP1 (max 15 values). Sizes are
 414 *			in DWORDS with possible values from
 415 *			16-32768 (default: 256, 256, 256, 256, 768,
 416 *			768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
 417 * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
 418 *                      while full&low speed device connect. And change speed
 419 *                      back to DWC2_SPEED_PARAM_HIGH while device is gone.
 420 *			0 - No (default)
 421 *			1 - Yes
 422 * @service_interval:   Enable service interval based scheduling.
 423 *                      0 - No
 424 *                      1 - Yes
 425 *
 426 * The following parameters may be specified when starting the module. These
 427 * parameters define how the DWC_otg controller should be configured. A
 428 * value of -1 (or any other out of range value) for any parameter means
 429 * to read the value from hardware (if possible) or use the builtin
 430 * default described above.
 431 */
 432struct dwc2_core_params {
 433	struct usb_otg_caps otg_caps;
 434	u8 phy_type;
 435#define DWC2_PHY_TYPE_PARAM_FS		0
 436#define DWC2_PHY_TYPE_PARAM_UTMI	1
 437#define DWC2_PHY_TYPE_PARAM_ULPI	2
 438
 439	u8 speed;
 440#define DWC2_SPEED_PARAM_HIGH	0
 441#define DWC2_SPEED_PARAM_FULL	1
 442#define DWC2_SPEED_PARAM_LOW	2
 443
 444	u8 phy_utmi_width;
 445	bool phy_ulpi_ddr;
 446	bool phy_ulpi_ext_vbus;
 447	bool enable_dynamic_fifo;
 448	bool en_multiple_tx_fifo;
 449	bool i2c_enable;
 450	bool acg_enable;
 451	bool ulpi_fs_ls;
 452	bool ts_dline;
 453	bool reload_ctl;
 454	bool uframe_sched;
 455	bool external_id_pin_ctl;
 456
 457	int power_down;
 458#define DWC2_POWER_DOWN_PARAM_NONE		0
 459#define DWC2_POWER_DOWN_PARAM_PARTIAL		1
 460#define DWC2_POWER_DOWN_PARAM_HIBERNATION	2
 461	bool no_clock_gating;
 462
 463	bool lpm;
 464	bool lpm_clock_gating;
 465	bool besl;
 466	bool hird_threshold_en;
 467	bool service_interval;
 468	u8 hird_threshold;
 469	bool activate_stm_fs_transceiver;
 470	bool activate_stm_id_vb_detection;
 471	bool activate_ingenic_overcurrent_detection;
 472	bool ipg_isoc_en;
 473	u16 max_packet_count;
 474	u32 max_transfer_size;
 475	u32 ahbcfg;
 476
 477	/* GREFCLK parameters */
 478	u32 ref_clk_per;
 479	u16 sof_cnt_wkup_alert;
 480
 481	/* Host parameters */
 482	bool host_dma;
 483	bool dma_desc_enable;
 484	bool dma_desc_fs_enable;
 485	bool host_support_fs_ls_low_power;
 486	bool host_ls_low_power_phy_clk;
 487	bool oc_disable;
 488
 489	u8 host_channels;
 490	u16 host_rx_fifo_size;
 491	u16 host_nperio_tx_fifo_size;
 492	u16 host_perio_tx_fifo_size;
 493
 494	/* Gadget parameters */
 495	bool g_dma;
 496	bool g_dma_desc;
 497	u32 g_rx_fifo_size;
 498	u32 g_np_tx_fifo_size;
 499	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
 500
 501	bool change_speed_quirk;
 502};
 503
 504/**
 505 * struct dwc2_hw_params - Autodetected parameters.
 506 *
 507 * These parameters are the various parameters read from hardware
 508 * registers during initialization. They typically contain the best
 509 * supported or maximum value that can be configured in the
 510 * corresponding dwc2_core_params value.
 511 *
 512 * The values that are not in dwc2_core_params are documented below.
 513 *
 514 * @op_mode:             Mode of Operation
 515 *                       0 - HNP- and SRP-Capable OTG (Host & Device)
 516 *                       1 - SRP-Capable OTG (Host & Device)
 517 *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
 518 *                       3 - SRP-Capable Device
 519 *                       4 - Non-OTG Device
 520 *                       5 - SRP-Capable Host
 521 *                       6 - Non-OTG Host
 522 * @arch:                Architecture
 523 *                       0 - Slave only
 524 *                       1 - External DMA
 525 *                       2 - Internal DMA
 526 * @ipg_isoc_en:        This feature indicates that the controller supports
 527 *                      the worst-case scenario of Rx followed by Rx
 528 *                      Interpacket Gap (IPG) (32 bitTimes) as per the utmi
 529 *                      specification for any token following ISOC OUT token.
 530 *                       0 - Don't support
 531 *                       1 - Support
 532 * @power_optimized:    Are power optimizations enabled?
 533 * @num_dev_ep:         Number of device endpoints available
 534 * @num_dev_in_eps:     Number of device IN endpoints available
 535 * @num_dev_perio_in_ep: Number of device periodic IN endpoints
 536 *                       available
 537 * @dev_token_q_depth:  Device Mode IN Token Sequence Learning Queue
 538 *                      Depth
 539 *                       0 to 30
 540 * @host_perio_tx_q_depth:
 541 *                      Host Mode Periodic Request Queue Depth
 542 *                       2, 4 or 8
 543 * @nperio_tx_q_depth:
 544 *                      Non-Periodic Request Queue Depth
 545 *                       2, 4 or 8
 546 * @hs_phy_type:         High-speed PHY interface type
 547 *                       0 - High-speed interface not supported
 548 *                       1 - UTMI+
 549 *                       2 - ULPI
 550 *                       3 - UTMI+ and ULPI
 551 * @fs_phy_type:         Full-speed PHY interface type
 552 *                       0 - Full speed interface not supported
 553 *                       1 - Dedicated full speed interface
 554 *                       2 - FS pins shared with UTMI+ pins
 555 *                       3 - FS pins shared with ULPI pins
 556 * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
 557 * @hibernation:	Is hibernation enabled?
 558 * @utmi_phy_data_width: UTMI+ PHY data width
 559 *                       0 - 8 bits
 560 *                       1 - 16 bits
 561 *                       2 - 8 or 16 bits
 562 * @snpsid:             Value from SNPSID register
 563 * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
 564 * @g_tx_fifo_size:	Power-on values of TxFIFO sizes
 565 * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
 566 *                      address DMA mode or descriptor DMA mode for accessing
 567 *                      the data FIFOs. The driver will automatically detect the
 568 *                      value for this if none is specified.
 569 *                       0 - Address DMA
 570 *                       1 - Descriptor DMA (default, if available)
 571 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
 572 *                       1 - Allow dynamic FIFO sizing (default, if available)
 573 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
 574 *                      are enabled for non-periodic IN endpoints in device
 575 *                      mode.
 576 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
 577 *                      in host mode when dynamic FIFO sizing is enabled
 578 *                       16 to 32768
 579 *                      Actual maximum value is autodetected and also
 580 *                      the default.
 581 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
 582 *                      host mode when dynamic FIFO sizing is enabled
 583 *                       16 to 32768
 584 *                      Actual maximum value is autodetected and also
 585 *                      the default.
 586 * @max_transfer_size:  The maximum transfer size supported, in bytes
 587 *                       2047 to 65,535
 588 *                      Actual maximum value is autodetected and also
 589 *                      the default.
 590 * @max_packet_count:   The maximum number of packets in a transfer
 591 *                       15 to 511
 592 *                      Actual maximum value is autodetected and also
 593 *                      the default.
 594 * @host_channels:      The number of host channel registers to use
 595 *                       1 to 16
 596 *                      Actual maximum value is autodetected and also
 597 *                      the default.
 598 * @dev_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
 599 *			     in device mode when dynamic FIFO sizing is enabled
 600 *			     16 to 32768
 601 *			     Actual maximum value is autodetected and also
 602 *			     the default.
 603 * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
 604 *                      speed PHY. This parameter is only applicable if phy_type
 605 *                      is FS.
 606 *                       0 - No (default)
 607 *                       1 - Yes
 608 * @acg_enable:		For enabling Active Clock Gating in the controller
 609 *                       0 - Disable
 610 *                       1 - Enable
 611 * @lpm_mode:		For enabling Link Power Management in the controller
 612 *                       0 - Disable
 613 *                       1 - Enable
 614 * @rx_fifo_size:	Number of 4-byte words in the  Rx FIFO when dynamic
 615 *			FIFO sizing is enabled 16 to 32768
 616 *			Actual maximum value is autodetected and also
 617 *			the default.
 618 * @service_interval_mode: For enabling service interval based scheduling in the
 619 *                         controller.
 620 *                           0 - Disable
 621 *                           1 - Enable
 622 */
 623struct dwc2_hw_params {
 624	unsigned op_mode:3;
 625	unsigned arch:2;
 626	unsigned dma_desc_enable:1;
 627	unsigned enable_dynamic_fifo:1;
 628	unsigned en_multiple_tx_fifo:1;
 629	unsigned rx_fifo_size:16;
 630	unsigned host_nperio_tx_fifo_size:16;
 631	unsigned dev_nperio_tx_fifo_size:16;
 632	unsigned host_perio_tx_fifo_size:16;
 633	unsigned nperio_tx_q_depth:3;
 634	unsigned host_perio_tx_q_depth:3;
 635	unsigned dev_token_q_depth:5;
 636	unsigned max_transfer_size:26;
 637	unsigned max_packet_count:11;
 638	unsigned host_channels:5;
 639	unsigned hs_phy_type:2;
 640	unsigned fs_phy_type:2;
 641	unsigned i2c_enable:1;
 642	unsigned acg_enable:1;
 643	unsigned num_dev_ep:4;
 644	unsigned num_dev_in_eps : 4;
 645	unsigned num_dev_perio_in_ep:4;
 646	unsigned total_fifo_size:16;
 647	unsigned power_optimized:1;
 648	unsigned hibernation:1;
 649	unsigned utmi_phy_data_width:2;
 650	unsigned lpm_mode:1;
 651	unsigned ipg_isoc_en:1;
 652	unsigned service_interval_mode:1;
 653	u32 snpsid;
 654	u32 dev_ep_dirs;
 655	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
 656};
 657
 658/* Size of control and EP0 buffers */
 659#define DWC2_CTRL_BUFF_SIZE 8
 660
 661/**
 662 * struct dwc2_gregs_backup - Holds global registers state before
 663 * entering partial power down
 664 * @gotgctl:		Backup of GOTGCTL register
 665 * @gintmsk:		Backup of GINTMSK register
 666 * @gahbcfg:		Backup of GAHBCFG register
 667 * @gusbcfg:		Backup of GUSBCFG register
 668 * @grxfsiz:		Backup of GRXFSIZ register
 669 * @gnptxfsiz:		Backup of GNPTXFSIZ register
 670 * @gi2cctl:		Backup of GI2CCTL register
 671 * @glpmcfg:		Backup of GLPMCFG register
 672 * @gdfifocfg:		Backup of GDFIFOCFG register
 673 * @pcgcctl:		Backup of PCGCCTL register
 674 * @pcgcctl1:		Backup of PCGCCTL1 register
 675 * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
 676 * @gpwrdn:		Backup of GPWRDN register
 677 * @valid:		True if registers values backuped.
 678 */
 679struct dwc2_gregs_backup {
 680	u32 gotgctl;
 681	u32 gintmsk;
 682	u32 gahbcfg;
 683	u32 gusbcfg;
 684	u32 grxfsiz;
 685	u32 gnptxfsiz;
 686	u32 gi2cctl;
 687	u32 glpmcfg;
 688	u32 pcgcctl;
 689	u32 pcgcctl1;
 690	u32 gdfifocfg;
 691	u32 gpwrdn;
 692	bool valid;
 693};
 694
 695/**
 696 * struct dwc2_dregs_backup - Holds device registers state before
 697 * entering partial power down
 698 * @dcfg:		Backup of DCFG register
 699 * @dctl:		Backup of DCTL register
 700 * @daintmsk:		Backup of DAINTMSK register
 701 * @diepmsk:		Backup of DIEPMSK register
 702 * @doepmsk:		Backup of DOEPMSK register
 703 * @diepctl:		Backup of DIEPCTL register
 704 * @dieptsiz:		Backup of DIEPTSIZ register
 705 * @diepdma:		Backup of DIEPDMA register
 706 * @doepctl:		Backup of DOEPCTL register
 707 * @doeptsiz:		Backup of DOEPTSIZ register
 708 * @doepdma:		Backup of DOEPDMA register
 709 * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
 710 * @valid:      True if registers values backuped.
 711 */
 712struct dwc2_dregs_backup {
 713	u32 dcfg;
 714	u32 dctl;
 715	u32 daintmsk;
 716	u32 diepmsk;
 717	u32 doepmsk;
 718	u32 diepctl[MAX_EPS_CHANNELS];
 719	u32 dieptsiz[MAX_EPS_CHANNELS];
 720	u32 diepdma[MAX_EPS_CHANNELS];
 721	u32 doepctl[MAX_EPS_CHANNELS];
 722	u32 doeptsiz[MAX_EPS_CHANNELS];
 723	u32 doepdma[MAX_EPS_CHANNELS];
 724	u32 dtxfsiz[MAX_EPS_CHANNELS];
 725	bool valid;
 726};
 727
 728/**
 729 * struct dwc2_hregs_backup - Holds host registers state before
 730 * entering partial power down
 731 * @hcfg:		Backup of HCFG register
 732 * @haintmsk:		Backup of HAINTMSK register
 733 * @hcintmsk:		Backup of HCINTMSK register
 734 * @hprt0:		Backup of HPTR0 register
 735 * @hfir:		Backup of HFIR register
 736 * @hptxfsiz:		Backup of HPTXFSIZ register
 737 * @valid:      True if registers values backuped.
 738 */
 739struct dwc2_hregs_backup {
 740	u32 hcfg;
 741	u32 haintmsk;
 742	u32 hcintmsk[MAX_EPS_CHANNELS];
 743	u32 hprt0;
 744	u32 hfir;
 745	u32 hptxfsiz;
 746	bool valid;
 747};
 748
 749/*
 750 * Constants related to high speed periodic scheduling
 751 *
 752 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
 753 * reservation point of view it's assumed that the schedule goes right back to
 754 * the beginning after the end of the schedule.
 755 *
 756 * What does that mean for scheduling things with a long interval?  It means
 757 * we'll reserve time for them in every possible microframe that they could
 758 * ever be scheduled in.  ...but we'll still only actually schedule them as
 759 * often as they were requested.
 760 *
 761 * We keep our schedule in a "bitmap" structure.  This simplifies having
 762 * to keep track of and merge intervals: we just let the bitmap code do most
 763 * of the heavy lifting.  In a way scheduling is much like memory allocation.
 764 *
 765 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
 766 * supposed to schedule for periodic transfers).  That's according to spec.
 767 *
 768 * Note that though we only schedule 80% of each microframe, the bitmap that we
 769 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
 770 * space for each uFrame).
 771 *
 772 * Requirements:
 773 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
 774 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
 775 *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
 776 *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
 777 */
 778#define DWC2_US_PER_UFRAME		125
 779#define DWC2_HS_PERIODIC_US_PER_UFRAME	100
 780
 781#define DWC2_HS_SCHEDULE_UFRAMES	8
 782#define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
 783					 DWC2_HS_PERIODIC_US_PER_UFRAME)
 784
 785/*
 786 * Constants related to low speed scheduling
 787 *
 788 * For high speed we schedule every 1us.  For low speed that's a bit overkill,
 789 * so we make up a unit called a "slice" that's worth 25us.  There are 40
 790 * slices in a full frame and we can schedule 36 of those (90%) for periodic
 791 * transfers.
 792 *
 793 * Our low speed schedule can be as short as 1 frame or could be longer.  When
 794 * we only schedule 1 frame it means that we'll need to reserve a time every
 795 * frame even for things that only transfer very rarely, so something that runs
 796 * every 2048 frames will get time reserved in every frame.  Our low speed
 797 * schedule can be longer and we'll be able to handle more overlap, but that
 798 * will come at increased memory cost and increased time to schedule.
 799 *
 800 * Note: one other advantage of a short low speed schedule is that if we mess
 801 * up and miss scheduling we can jump in and use any of the slots that we
 802 * happened to reserve.
 803 *
 804 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
 805 * the schedule.  There will be one schedule per TT.
 806 *
 807 * Requirements:
 808 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
 809 */
 810#define DWC2_US_PER_SLICE	25
 811#define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
 812
 813#define DWC2_ROUND_US_TO_SLICE(us) \
 814				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
 815				 DWC2_US_PER_SLICE)
 816
 817#define DWC2_LS_PERIODIC_US_PER_FRAME \
 818				900
 819#define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
 820				(DWC2_LS_PERIODIC_US_PER_FRAME / \
 821				 DWC2_US_PER_SLICE)
 822
 823#define DWC2_LS_SCHEDULE_FRAMES	1
 824#define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
 825				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
 826
 827/**
 828 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
 829 * and periodic schedules
 830 *
 831 * These are common for both host and peripheral modes:
 832 *
 833 * @dev:                The struct device pointer
 834 * @regs:		Pointer to controller regs
 835 * @hw_params:          Parameters that were autodetected from the
 836 *                      hardware registers
 837 * @params:	Parameters that define how the core should be configured
 838 * @op_state:           The operational State, during transitions (a_host=>
 839 *                      a_peripheral and b_device=>b_host) this may not match
 840 *                      the core, but allows the software to determine
 841 *                      transitions
 842 * @dr_mode:            Requested mode of operation, one of following:
 843 *                      - USB_DR_MODE_PERIPHERAL
 844 *                      - USB_DR_MODE_HOST
 845 *                      - USB_DR_MODE_OTG
 846 * @role_sw:		usb_role_switch handle
 847 * @role_sw_default_mode: default operation mode of controller while usb role
 848 *			is USB_ROLE_NONE
 849 * @hcd_enabled:	Host mode sub-driver initialization indicator.
 850 * @gadget_enabled:	Peripheral mode sub-driver initialization indicator.
 851 * @ll_hw_enabled:	Status of low-level hardware resources.
 852 * @hibernated:		True if core is hibernated
 853 * @in_ppd:		True if core is partial power down mode.
 854 * @bus_suspended:	True if bus is suspended
 855 * @reset_phy_on_wake:	Quirk saying that we should assert PHY reset on a
 856 *			remote wakeup.
 857 * @phy_off_for_suspend: Status of whether we turned the PHY off at suspend.
 858 * @need_phy_for_wake:	Quirk saying that we should keep the PHY on at
 859 *			suspend if we need USB to wake us up.
 860 * @frame_number:       Frame number read from the core. For both device
 861 *			and host modes. The value ranges are from 0
 862 *			to HFNUM_MAX_FRNUM.
 863 * @phy:                The otg phy transceiver structure for phy control.
 864 * @uphy:               The otg phy transceiver structure for old USB phy
 865 *                      control.
 866 * @plat:               The platform specific configuration data. This can be
 867 *                      removed once all SoCs support usb transceiver.
 868 * @supplies:           Definition of USB power supplies
 869 * @vbus_supply:        Regulator supplying vbus.
 870 * @usb33d:		Optional 3.3v regulator used on some stm32 devices to
 871 *			supply ID and VBUS detection hardware.
 872 * @lock:		Spinlock that protects all the driver data structures
 873 * @priv:		Stores a pointer to the struct usb_hcd
 874 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
 875 *                      transfer are in process of being queued
 876 * @srp_success:        Stores status of SRP request in the case of a FS PHY
 877 *                      with an I2C interface
 878 * @wq_otg:             Workqueue object used for handling of some interrupts
 879 * @wf_otg:             Work object for handling Connector ID Status Change
 880 *                      interrupt
 881 * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
 882 * @lx_state:           Lx state of connected device
 883 * @gr_backup: Backup of global registers during suspend
 884 * @dr_backup: Backup of device registers during suspend
 885 * @hr_backup: Backup of host registers during suspend
 886 * @needs_byte_swap:		Specifies whether the opposite endianness.
 887 *
 888 * These are for host mode:
 889 *
 890 * @flags:              Flags for handling root port state changes
 891 * @flags.d32:          Contain all root port flags
 892 * @flags.b:            Separate root port flags from each other
 893 * @flags.b.port_connect_status_change: True if root port connect status
 894 *                      changed
 895 * @flags.b.port_connect_status: True if device connected to root port
 896 * @flags.b.port_reset_change: True if root port reset status changed
 897 * @flags.b.port_enable_change: True if root port enable status changed
 898 * @flags.b.port_suspend_change: True if root port suspend status changed
 899 * @flags.b.port_over_current_change: True if root port over current state
 900 *                       changed.
 901 * @flags.b.port_l1_change: True if root port l1 status changed
 902 * @flags.b.reserved:   Reserved bits of root port register
 903 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
 904 *                      Transfers associated with these QHs are not currently
 905 *                      assigned to a host channel.
 906 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
 907 *                      Transfers associated with these QHs are currently
 908 *                      assigned to a host channel.
 909 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
 910 *                      non-periodic schedule
 911 * @non_periodic_sched_waiting: Waiting QHs in the non-periodic schedule.
 912 *                      Transfers associated with these QHs are not currently
 913 *                      assigned to a host channel.
 914 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
 915 *                      list of QHs for periodic transfers that are _not_
 916 *                      scheduled for the next frame. Each QH in the list has an
 917 *                      interval counter that determines when it needs to be
 918 *                      scheduled for execution. This scheduling mechanism
 919 *                      allows only a simple calculation for periodic bandwidth
 920 *                      used (i.e. must assume that all periodic transfers may
 921 *                      need to execute in the same frame). However, it greatly
 922 *                      simplifies scheduling and should be sufficient for the
 923 *                      vast majority of OTG hosts, which need to connect to a
 924 *                      small number of peripherals at one time. Items move from
 925 *                      this list to periodic_sched_ready when the QH interval
 926 *                      counter is 0 at SOF.
 927 * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
 928 *                      the next frame, but have not yet been assigned to host
 929 *                      channels. Items move from this list to
 930 *                      periodic_sched_assigned as host channels become
 931 *                      available during the current frame.
 932 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
 933 *                      frame that are assigned to host channels. Items move
 934 *                      from this list to periodic_sched_queued as the
 935 *                      transactions for the QH are queued to the DWC_otg
 936 *                      controller.
 937 * @periodic_sched_queued: List of periodic QHs that have been queued for
 938 *                      execution. Items move from this list to either
 939 *                      periodic_sched_inactive or periodic_sched_ready when the
 940 *                      channel associated with the transfer is released. If the
 941 *                      interval for the QH is 1, the item moves to
 942 *                      periodic_sched_ready because it must be rescheduled for
 943 *                      the next frame. Otherwise, the item moves to
 944 *                      periodic_sched_inactive.
 945 * @split_order:        List keeping track of channels doing splits, in order.
 946 * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
 947 *                      This value is in microseconds per (micro)frame. The
 948 *                      assumption is that all periodic transfers may occur in
 949 *                      the same (micro)frame.
 950 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
 951 *                      host is in high speed mode; low speed schedules are
 952 *                      stored elsewhere since we need one per TT.
 953 * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
 954 *                      SOF enable/disable.
 955 * @free_hc_list:       Free host channels in the controller. This is a list of
 956 *                      struct dwc2_host_chan items.
 957 * @periodic_channels:  Number of host channels assigned to periodic transfers.
 958 *                      Currently assuming that there is a dedicated host
 959 *                      channel for each periodic transaction and at least one
 960 *                      host channel is available for non-periodic transactions.
 961 * @non_periodic_channels: Number of host channels assigned to non-periodic
 962 *                      transfers
 963 * @available_host_channels: Number of host channels available for the
 964 *			     microframe scheduler to use
 965 * @hc_ptr_array:       Array of pointers to the host channel descriptors.
 966 *                      Allows accessing a host channel descriptor given the
 967 *                      host channel number. This is useful in interrupt
 968 *                      handlers.
 969 * @status_buf:         Buffer used for data received during the status phase of
 970 *                      a control transfer.
 971 * @status_buf_dma:     DMA address for status_buf
 972 * @start_work:         Delayed work for handling host A-cable connection
 973 * @reset_work:         Delayed work for handling a port reset
 974 * @phy_reset_work:     Work structure for doing a PHY reset
 975 * @otg_port:           OTG port number
 976 * @frame_list:         Frame list
 977 * @frame_list_dma:     Frame list DMA address
 978 * @frame_list_sz:      Frame list size
 979 * @desc_gen_cache:     Kmem cache for generic descriptors
 980 * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
 981 * @unaligned_cache:    Kmem cache for DMA mode to handle non-aligned buf
 982 *
 983 * These are for peripheral mode:
 984 *
 985 * @driver:             USB gadget driver
 986 * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
 987 * @num_of_eps:         Number of available EPs (excluding EP0)
 988 * @debug_root:         Root directrory for debugfs.
 989 * @ep0_reply:          Request used for ep0 reply.
 990 * @ep0_buff:           Buffer for EP0 reply data, if needed.
 991 * @ctrl_buff:          Buffer for EP0 control requests.
 992 * @ctrl_req:           Request for EP0 control packets.
 993 * @ep0_state:          EP0 control transfers state
 994 * @delayed_status:		true when gadget driver asks for delayed status
 995 * @test_mode:          USB test mode requested by the host
 996 * @remote_wakeup_allowed: True if device is allowed to wake-up host by
 997 *                      remote-wakeup signalling
 998 * @setup_desc_dma:	EP0 setup stage desc chain DMA address
 999 * @setup_desc:		EP0 setup stage desc chain pointer
1000 * @ctrl_in_desc_dma:	EP0 IN data phase desc chain DMA address
1001 * @ctrl_in_desc:	EP0 IN data phase desc chain pointer
1002 * @ctrl_out_desc_dma:	EP0 OUT data phase desc chain DMA address
1003 * @ctrl_out_desc:	EP0 OUT data phase desc chain pointer
1004 * @irq:		Interrupt request line number
1005 * @clk:		Pointer to otg clock
1006 * @utmi_clk:		Pointer to utmi_clk clock
1007 * @reset:		Pointer to dwc2 reset controller
1008 * @reset_ecc:          Pointer to dwc2 optional reset controller in Stratix10.
1009 * @regset:		A pointer to a struct debugfs_regset32, which contains
1010 *			a pointer to an array of register definitions, the
1011 *			array size and the base address where the register bank
1012 *			is to be found.
1013 * @last_frame_num:	Number of last frame. Range from 0 to  32768
1014 * @frame_num_array:    Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1015 *			defined, for missed SOFs tracking. Array holds that
1016 *			frame numbers, which not equal to last_frame_num +1
1017 * @last_frame_num_array:   Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1018 *			    defined, for missed SOFs tracking.
1019 *			    If current_frame_number != last_frame_num+1
1020 *			    then last_frame_num added to this array
1021 * @frame_num_idx:	Actual size of frame_num_array and last_frame_num_array
1022 * @dumped_frame_num_array:	1 - if missed SOFs frame numbers dumbed
1023 *				0 - if missed SOFs frame numbers not dumbed
1024 * @fifo_mem:			Total internal RAM for FIFOs (bytes)
1025 * @fifo_map:		Each bit intend for concrete fifo. If that bit is set,
1026 *			then that fifo is used
1027 * @gadget:		Represents a usb gadget device
1028 * @connected:		Used in slave mode. True if device connected with host
1029 * @eps_in:		The IN endpoints being supplied to the gadget framework
1030 * @eps_out:		The OUT endpoints being supplied to the gadget framework
1031 * @new_connection:	Used in host mode. True if there are new connected
1032 *			device
1033 * @enabled:		Indicates the enabling state of controller
1034 *
1035 */
1036struct dwc2_hsotg {
1037	struct device *dev;
1038	void __iomem *regs;
1039	/** Params detected from hardware */
1040	struct dwc2_hw_params hw_params;
1041	/** Params to actually use */
1042	struct dwc2_core_params params;
1043	enum usb_otg_state op_state;
1044	enum usb_dr_mode dr_mode;
1045	struct usb_role_switch *role_sw;
1046	enum usb_dr_mode role_sw_default_mode;
1047	unsigned int hcd_enabled:1;
1048	unsigned int gadget_enabled:1;
1049	unsigned int ll_hw_enabled:1;
1050	unsigned int hibernated:1;
1051	unsigned int in_ppd:1;
1052	bool bus_suspended;
1053	unsigned int reset_phy_on_wake:1;
1054	unsigned int need_phy_for_wake:1;
1055	unsigned int phy_off_for_suspend:1;
1056	u16 frame_number;
1057
1058	struct phy *phy;
1059	struct usb_phy *uphy;
1060	struct dwc2_hsotg_plat *plat;
1061	struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
1062	struct regulator *vbus_supply;
1063	struct regulator *usb33d;
1064
1065	spinlock_t lock;
1066	void *priv;
1067	int     irq;
1068	struct clk *clk;
1069	struct clk *utmi_clk;
1070	struct reset_control *reset;
1071	struct reset_control *reset_ecc;
1072
1073	unsigned int queuing_high_bandwidth:1;
1074	unsigned int srp_success:1;
1075
1076	struct workqueue_struct *wq_otg;
1077	struct work_struct wf_otg;
1078	struct timer_list wkp_timer;
1079	enum dwc2_lx_state lx_state;
1080	struct dwc2_gregs_backup gr_backup;
1081	struct dwc2_dregs_backup dr_backup;
1082	struct dwc2_hregs_backup hr_backup;
1083
1084	struct dentry *debug_root;
1085	struct debugfs_regset32 *regset;
1086	bool needs_byte_swap;
1087
1088	/* DWC OTG HW Release versions */
1089#define DWC2_CORE_REV_2_71a	0x4f54271a
1090#define DWC2_CORE_REV_2_72a     0x4f54272a
1091#define DWC2_CORE_REV_2_80a	0x4f54280a
1092#define DWC2_CORE_REV_2_90a	0x4f54290a
1093#define DWC2_CORE_REV_2_91a	0x4f54291a
1094#define DWC2_CORE_REV_2_92a	0x4f54292a
1095#define DWC2_CORE_REV_2_94a	0x4f54294a
1096#define DWC2_CORE_REV_3_00a	0x4f54300a
1097#define DWC2_CORE_REV_3_10a	0x4f54310a
1098#define DWC2_CORE_REV_4_00a	0x4f54400a
1099#define DWC2_CORE_REV_4_20a	0x4f54420a
1100#define DWC2_FS_IOT_REV_1_00a	0x5531100a
1101#define DWC2_HS_IOT_REV_1_00a	0x5532100a
1102#define DWC2_CORE_REV_MASK	0x0000ffff
1103
1104	/* DWC OTG HW Core ID */
1105#define DWC2_OTG_ID		0x4f540000
1106#define DWC2_FS_IOT_ID		0x55310000
1107#define DWC2_HS_IOT_ID		0x55320000
1108
1109#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1110	union dwc2_hcd_internal_flags {
1111		u32 d32;
1112		struct {
1113			unsigned port_connect_status_change:1;
1114			unsigned port_connect_status:1;
1115			unsigned port_reset_change:1;
1116			unsigned port_enable_change:1;
1117			unsigned port_suspend_change:1;
1118			unsigned port_over_current_change:1;
1119			unsigned port_l1_change:1;
1120			unsigned reserved:25;
1121		} b;
1122	} flags;
1123
1124	struct list_head non_periodic_sched_inactive;
1125	struct list_head non_periodic_sched_waiting;
1126	struct list_head non_periodic_sched_active;
1127	struct list_head *non_periodic_qh_ptr;
1128	struct list_head periodic_sched_inactive;
1129	struct list_head periodic_sched_ready;
1130	struct list_head periodic_sched_assigned;
1131	struct list_head periodic_sched_queued;
1132	struct list_head split_order;
1133	u16 periodic_usecs;
1134	DECLARE_BITMAP(hs_periodic_bitmap, DWC2_HS_SCHEDULE_US);
1135	u16 periodic_qh_count;
1136	bool new_connection;
1137
1138	u16 last_frame_num;
1139
1140#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
1141#define FRAME_NUM_ARRAY_SIZE 1000
1142	u16 *frame_num_array;
1143	u16 *last_frame_num_array;
1144	int frame_num_idx;
1145	int dumped_frame_num_array;
1146#endif
1147
1148	struct list_head free_hc_list;
1149	int periodic_channels;
1150	int non_periodic_channels;
1151	int available_host_channels;
1152	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1153	u8 *status_buf;
1154	dma_addr_t status_buf_dma;
1155#define DWC2_HCD_STATUS_BUF_SIZE 64
1156
1157	struct delayed_work start_work;
1158	struct delayed_work reset_work;
1159	struct work_struct phy_reset_work;
1160	u8 otg_port;
1161	u32 *frame_list;
1162	dma_addr_t frame_list_dma;
1163	u32 frame_list_sz;
1164	struct kmem_cache *desc_gen_cache;
1165	struct kmem_cache *desc_hsisoc_cache;
1166	struct kmem_cache *unaligned_cache;
1167#define DWC2_KMEM_UNALIGNED_BUF_SIZE 1024
1168
1169#endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1170
1171#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1172	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1173	/* Gadget structures */
1174	struct usb_gadget_driver *driver;
1175	int fifo_mem;
1176	unsigned int dedicated_fifos:1;
1177	unsigned char num_of_eps;
1178	u32 fifo_map;
1179
1180	struct usb_request *ep0_reply;
1181	struct usb_request *ctrl_req;
1182	void *ep0_buff;
1183	void *ctrl_buff;
1184	enum dwc2_ep0_state ep0_state;
1185	unsigned delayed_status : 1;
1186	u8 test_mode;
1187
1188	dma_addr_t setup_desc_dma[2];
1189	struct dwc2_dma_desc *setup_desc[2];
1190	dma_addr_t ctrl_in_desc_dma;
1191	struct dwc2_dma_desc *ctrl_in_desc;
1192	dma_addr_t ctrl_out_desc_dma;
1193	struct dwc2_dma_desc *ctrl_out_desc;
1194
1195	struct usb_gadget gadget;
1196	unsigned int enabled:1;
1197	unsigned int connected:1;
1198	unsigned int remote_wakeup_allowed:1;
1199	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1200	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1201#endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1202};
1203
1204/* Normal architectures just use readl/write */
1205static inline u32 dwc2_readl(struct dwc2_hsotg *hsotg, u32 offset)
1206{
1207	u32 val;
1208
1209	val = readl(hsotg->regs + offset);
1210	if (hsotg->needs_byte_swap)
1211		return swab32(val);
1212	else
1213		return val;
1214}
1215
1216static inline void dwc2_writel(struct dwc2_hsotg *hsotg, u32 value, u32 offset)
1217{
1218	if (hsotg->needs_byte_swap)
1219		writel(swab32(value), hsotg->regs + offset);
1220	else
1221		writel(value, hsotg->regs + offset);
1222
1223#ifdef DWC2_LOG_WRITES
1224	pr_info("info:: wrote %08x to %p\n", value, hsotg->regs + offset);
1225#endif
1226}
1227
1228static inline void dwc2_readl_rep(struct dwc2_hsotg *hsotg, u32 offset,
1229				  void *buffer, unsigned int count)
1230{
1231	if (count) {
1232		u32 *buf = buffer;
1233
1234		do {
1235			u32 x = dwc2_readl(hsotg, offset);
1236			*buf++ = x;
1237		} while (--count);
1238	}
1239}
1240
1241static inline void dwc2_writel_rep(struct dwc2_hsotg *hsotg, u32 offset,
1242				   const void *buffer, unsigned int count)
1243{
1244	if (count) {
1245		const u32 *buf = buffer;
1246
1247		do {
1248			dwc2_writel(hsotg, *buf++, offset);
1249		} while (--count);
1250	}
1251}
1252
1253/* Reasons for halting a host channel */
1254enum dwc2_halt_status {
1255	DWC2_HC_XFER_NO_HALT_STATUS,
1256	DWC2_HC_XFER_COMPLETE,
1257	DWC2_HC_XFER_URB_COMPLETE,
1258	DWC2_HC_XFER_ACK,
1259	DWC2_HC_XFER_NAK,
1260	DWC2_HC_XFER_NYET,
1261	DWC2_HC_XFER_STALL,
1262	DWC2_HC_XFER_XACT_ERR,
1263	DWC2_HC_XFER_FRAME_OVERRUN,
1264	DWC2_HC_XFER_BABBLE_ERR,
1265	DWC2_HC_XFER_DATA_TOGGLE_ERR,
1266	DWC2_HC_XFER_AHB_ERR,
1267	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1268	DWC2_HC_XFER_URB_DEQUEUE,
1269};
1270
1271/* Core version information */
1272static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1273{
1274	return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1275}
1276
1277static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1278{
1279	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1280}
1281
1282static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1283{
1284	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1285}
1286
1287/*
1288 * The following functions support initialization of the core driver component
1289 * and the DWC_otg controller
1290 */
1291int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
1292int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1293int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, int rem_wakeup,
1294				 bool restore);
1295int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host);
1296int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
1297		int reset, int is_host);
1298void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg);
1299int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy);
1300
1301void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host);
1302void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1303
1304bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1305
1306int dwc2_check_core_version(struct dwc2_hsotg *hsotg);
1307
1308/*
1309 * Common core Functions.
1310 * The following functions support managing the DWC_otg controller in either
1311 * device or host mode.
1312 */
1313void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1314void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1315void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1316
1317void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1318void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1319
1320void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup,
1321			     int is_host);
1322int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg);
1323int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg);
1324
1325void dwc2_enable_acg(struct dwc2_hsotg *hsotg);
1326
1327/* This function should be called on every hardware interrupt. */
1328irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1329
1330/* The device ID match table */
1331extern const struct of_device_id dwc2_of_match_table[];
1332extern const struct acpi_device_id dwc2_acpi_match[];
1333extern const struct pci_device_id dwc2_pci_ids[];
1334
1335int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1336int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1337
1338/* Common polling functions */
1339int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1340			    u32 timeout);
1341int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1342			      u32 timeout);
1343/* Parameters */
1344int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1345int dwc2_init_params(struct dwc2_hsotg *hsotg);
1346
1347/*
1348 * The following functions check the controller's OTG operation mode
1349 * capability (GHWCFG2.OTG_MODE).
1350 *
1351 * These functions can be used before the internal hsotg->hw_params
1352 * are read in and cached so they always read directly from the
1353 * GHWCFG2 register.
1354 */
1355unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
1356bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1357bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1358bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1359
1360/*
1361 * Returns the mode of operation, host or device
1362 */
1363static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1364{
1365	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1366}
1367
1368static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1369{
1370	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1371}
1372
1373int dwc2_drd_init(struct dwc2_hsotg *hsotg);
1374void dwc2_drd_suspend(struct dwc2_hsotg *hsotg);
1375void dwc2_drd_resume(struct dwc2_hsotg *hsotg);
1376void dwc2_drd_exit(struct dwc2_hsotg *hsotg);
1377
1378/*
1379 * Dump core registers and SPRAM
1380 */
1381void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1382void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1383void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1384
1385/* Gadget defines */
1386#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1387	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1388int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1389int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1390int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1391int dwc2_gadget_init(struct dwc2_hsotg *hsotg);
1392void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1393				       bool reset);
1394void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg);
1395void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1396void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1397int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1398#define dwc2_is_device_connected(hsotg) (hsotg->connected)
1399#define dwc2_is_device_enabled(hsotg) (hsotg->enabled)
1400int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1401int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup);
1402int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg);
1403int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1404				 int rem_wakeup, int reset);
1405int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1406int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1407					bool restore);
1408void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg);
1409void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
1410				   int rem_wakeup);
1411int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
1412int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
1413int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
1414void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg);
1415void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg);
1416static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg)
1417{ hsotg->fifo_map = 0; }
1418#else
1419static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1420{ return 0; }
1421static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1422{ return 0; }
1423static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1424{ return 0; }
1425static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
1426{ return 0; }
1427static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1428						     bool reset) {}
1429static inline void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) {}
1430static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1431static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1432static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1433					   int testmode)
1434{ return 0; }
1435#define dwc2_is_device_connected(hsotg) (0)
1436#define dwc2_is_device_enabled(hsotg) (0)
1437static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1438{ return 0; }
1439static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg,
1440						int remote_wakeup)
1441{ return 0; }
1442static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
1443{ return 0; }
1444static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1445					       int rem_wakeup, int reset)
1446{ return 0; }
1447static inline int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
1448{ return 0; }
1449static inline int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1450						      bool restore)
1451{ return 0; }
1452static inline void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
1453static inline void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
1454						 int rem_wakeup) {}
1455static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
1456{ return 0; }
1457static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
1458{ return 0; }
1459static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
1460{ return 0; }
1461static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {}
1462static inline void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) {}
1463static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg) {}
1464#endif
1465
1466#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1467int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1468int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1469void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1470void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1471void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1472int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup);
1473int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex);
1474int dwc2_port_resume(struct dwc2_hsotg *hsotg);
1475int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1476int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1477int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg);
1478int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1479			       int rem_wakeup, int reset);
1480int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1481int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1482				      int rem_wakeup, bool restore);
1483void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg);
1484void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup);
1485bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2);
1486static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg)
1487{ schedule_work(&hsotg->phy_reset_work); }
1488#else
1489static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1490{ return 0; }
1491static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1492						   int us)
1493{ return 0; }
1494static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1495static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1496static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1497static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1498static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
1499{ return 0; }
1500static inline int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
1501{ return 0; }
1502static inline int dwc2_port_resume(struct dwc2_hsotg *hsotg)
1503{ return 0; }
1504static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
1505{ return 0; }
1506static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1507{ return 0; }
1508static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1509{ return 0; }
1510static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
1511{ return 0; }
1512static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1513					     int rem_wakeup, int reset)
1514{ return 0; }
1515static inline int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
1516{ return 0; }
1517static inline int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1518						    int rem_wakeup, bool restore)
1519{ return 0; }
1520static inline void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
1521static inline void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg,
1522					       int rem_wakeup) {}
1523static inline bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
1524{ return false; }
1525static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) {}
1526
1527#endif
1528
1529#endif /* __DWC2_CORE_H__ */