Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * MSM 7k/8k High speed uart driver
   3 *
   4 * Copyright (c) 2007-2011, Code Aurora Forum. All rights reserved.
   5 * Copyright (c) 2008 Google Inc.
   6 * Modified: Nick Pelly <npelly@google.com>
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License
  10 * version 2 as published by the Free Software Foundation.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15 * See the GNU General Public License for more details.
  16 *
  17 * Has optional support for uart power management independent of linux
  18 * suspend/resume:
  19 *
  20 * RX wakeup.
  21 * UART wakeup can be triggered by RX activity (using a wakeup GPIO on the
  22 * UART RX pin). This should only be used if there is not a wakeup
  23 * GPIO on the UART CTS, and the first RX byte is known (for example, with the
  24 * Bluetooth Texas Instruments HCILL protocol), since the first RX byte will
  25 * always be lost. RTS will be asserted even while the UART is off in this mode
  26 * of operation. See msm_serial_hs_platform_data.rx_wakeup_irq.
  27 */
  28
  29#include <linux/module.h>
  30
  31#include <linux/serial.h>
  32#include <linux/serial_core.h>
  33#include <linux/slab.h>
  34#include <linux/init.h>
  35#include <linux/interrupt.h>
  36#include <linux/irq.h>
  37#include <linux/io.h>
  38#include <linux/ioport.h>
  39#include <linux/kernel.h>
  40#include <linux/timer.h>
  41#include <linux/clk.h>
  42#include <linux/platform_device.h>
  43#include <linux/pm_runtime.h>
  44#include <linux/dma-mapping.h>
  45#include <linux/dmapool.h>
  46#include <linux/wait.h>
  47#include <linux/workqueue.h>
  48
  49#include <linux/atomic.h>
  50#include <asm/irq.h>
  51#include <asm/system.h>
  52
  53#include <mach/hardware.h>
  54#include <mach/dma.h>
  55#include <linux/platform_data/msm_serial_hs.h>
  56
  57/* HSUART Registers */
  58#define UARTDM_MR1_ADDR 0x0
  59#define UARTDM_MR2_ADDR 0x4
  60
  61/* Data Mover result codes */
  62#define RSLT_FIFO_CNTR_BMSK (0xE << 28)
  63#define RSLT_VLD            BIT(1)
  64
  65/* write only register */
  66#define UARTDM_CSR_ADDR 0x8
  67#define UARTDM_CSR_115200 0xFF
  68#define UARTDM_CSR_57600  0xEE
  69#define UARTDM_CSR_38400  0xDD
  70#define UARTDM_CSR_28800  0xCC
  71#define UARTDM_CSR_19200  0xBB
  72#define UARTDM_CSR_14400  0xAA
  73#define UARTDM_CSR_9600   0x99
  74#define UARTDM_CSR_7200   0x88
  75#define UARTDM_CSR_4800   0x77
  76#define UARTDM_CSR_3600   0x66
  77#define UARTDM_CSR_2400   0x55
  78#define UARTDM_CSR_1200   0x44
  79#define UARTDM_CSR_600    0x33
  80#define UARTDM_CSR_300    0x22
  81#define UARTDM_CSR_150    0x11
  82#define UARTDM_CSR_75     0x00
  83
  84/* write only register */
  85#define UARTDM_TF_ADDR 0x70
  86#define UARTDM_TF2_ADDR 0x74
  87#define UARTDM_TF3_ADDR 0x78
  88#define UARTDM_TF4_ADDR 0x7C
  89
  90/* write only register */
  91#define UARTDM_CR_ADDR 0x10
  92#define UARTDM_IMR_ADDR 0x14
  93
  94#define UARTDM_IPR_ADDR 0x18
  95#define UARTDM_TFWR_ADDR 0x1c
  96#define UARTDM_RFWR_ADDR 0x20
  97#define UARTDM_HCR_ADDR 0x24
  98#define UARTDM_DMRX_ADDR 0x34
  99#define UARTDM_IRDA_ADDR 0x38
 100#define UARTDM_DMEN_ADDR 0x3c
 101
 102/* UART_DM_NO_CHARS_FOR_TX */
 103#define UARTDM_NCF_TX_ADDR 0x40
 104
 105#define UARTDM_BADR_ADDR 0x44
 106
 107#define UARTDM_SIM_CFG_ADDR 0x80
 108/* Read Only register */
 109#define UARTDM_SR_ADDR 0x8
 110
 111/* Read Only register */
 112#define UARTDM_RF_ADDR  0x70
 113#define UARTDM_RF2_ADDR 0x74
 114#define UARTDM_RF3_ADDR 0x78
 115#define UARTDM_RF4_ADDR 0x7C
 116
 117/* Read Only register */
 118#define UARTDM_MISR_ADDR 0x10
 119
 120/* Read Only register */
 121#define UARTDM_ISR_ADDR 0x14
 122#define UARTDM_RX_TOTAL_SNAP_ADDR 0x38
 123
 124#define UARTDM_RXFS_ADDR 0x50
 125
 126/* Register field Mask Mapping */
 127#define UARTDM_SR_PAR_FRAME_BMSK        BIT(5)
 128#define UARTDM_SR_OVERRUN_BMSK          BIT(4)
 129#define UARTDM_SR_TXEMT_BMSK            BIT(3)
 130#define UARTDM_SR_TXRDY_BMSK            BIT(2)
 131#define UARTDM_SR_RXRDY_BMSK            BIT(0)
 132
 133#define UARTDM_CR_TX_DISABLE_BMSK       BIT(3)
 134#define UARTDM_CR_RX_DISABLE_BMSK       BIT(1)
 135#define UARTDM_CR_TX_EN_BMSK            BIT(2)
 136#define UARTDM_CR_RX_EN_BMSK            BIT(0)
 137
 138/* UARTDM_CR channel_comman bit value (register field is bits 8:4) */
 139#define RESET_RX                0x10
 140#define RESET_TX                0x20
 141#define RESET_ERROR_STATUS      0x30
 142#define RESET_BREAK_INT         0x40
 143#define START_BREAK             0x50
 144#define STOP_BREAK              0x60
 145#define RESET_CTS               0x70
 146#define RESET_STALE_INT         0x80
 147#define RFR_LOW                 0xD0
 148#define RFR_HIGH                0xE0
 149#define CR_PROTECTION_EN        0x100
 150#define STALE_EVENT_ENABLE      0x500
 151#define STALE_EVENT_DISABLE     0x600
 152#define FORCE_STALE_EVENT       0x400
 153#define CLEAR_TX_READY          0x300
 154#define RESET_TX_ERROR          0x800
 155#define RESET_TX_DONE           0x810
 156
 157#define UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK 0xffffff00
 158#define UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK 0x3f
 159#define UARTDM_MR1_CTS_CTL_BMSK 0x40
 160#define UARTDM_MR1_RX_RDY_CTL_BMSK 0x80
 161
 162#define UARTDM_MR2_ERROR_MODE_BMSK 0x40
 163#define UARTDM_MR2_BITS_PER_CHAR_BMSK 0x30
 164
 165/* bits per character configuration */
 166#define FIVE_BPC  (0 << 4)
 167#define SIX_BPC   (1 << 4)
 168#define SEVEN_BPC (2 << 4)
 169#define EIGHT_BPC (3 << 4)
 170
 171#define UARTDM_MR2_STOP_BIT_LEN_BMSK 0xc
 172#define STOP_BIT_ONE (1 << 2)
 173#define STOP_BIT_TWO (3 << 2)
 174
 175#define UARTDM_MR2_PARITY_MODE_BMSK 0x3
 176
 177/* Parity configuration */
 178#define NO_PARITY 0x0
 179#define EVEN_PARITY 0x1
 180#define ODD_PARITY 0x2
 181#define SPACE_PARITY 0x3
 182
 183#define UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK 0xffffff80
 184#define UARTDM_IPR_STALE_LSB_BMSK 0x1f
 185
 186/* These can be used for both ISR and IMR register */
 187#define UARTDM_ISR_TX_READY_BMSK        BIT(7)
 188#define UARTDM_ISR_CURRENT_CTS_BMSK     BIT(6)
 189#define UARTDM_ISR_DELTA_CTS_BMSK       BIT(5)
 190#define UARTDM_ISR_RXLEV_BMSK           BIT(4)
 191#define UARTDM_ISR_RXSTALE_BMSK         BIT(3)
 192#define UARTDM_ISR_RXBREAK_BMSK         BIT(2)
 193#define UARTDM_ISR_RXHUNT_BMSK          BIT(1)
 194#define UARTDM_ISR_TXLEV_BMSK           BIT(0)
 195
 196/* Field definitions for UART_DM_DMEN*/
 197#define UARTDM_TX_DM_EN_BMSK 0x1
 198#define UARTDM_RX_DM_EN_BMSK 0x2
 199
 200#define UART_FIFOSIZE 64
 201#define UARTCLK 7372800
 202
 203/* Rx DMA request states */
 204enum flush_reason {
 205	FLUSH_NONE,
 206	FLUSH_DATA_READY,
 207	FLUSH_DATA_INVALID,  /* values after this indicate invalid data */
 208	FLUSH_IGNORE = FLUSH_DATA_INVALID,
 209	FLUSH_STOP,
 210	FLUSH_SHUTDOWN,
 211};
 212
 213/* UART clock states */
 214enum msm_hs_clk_states_e {
 215	MSM_HS_CLK_PORT_OFF,     /* port not in use */
 216	MSM_HS_CLK_OFF,          /* clock disabled */
 217	MSM_HS_CLK_REQUEST_OFF,  /* disable after TX and RX flushed */
 218	MSM_HS_CLK_ON,           /* clock enabled */
 219};
 220
 221/* Track the forced RXSTALE flush during clock off sequence.
 222 * These states are only valid during MSM_HS_CLK_REQUEST_OFF */
 223enum msm_hs_clk_req_off_state_e {
 224	CLK_REQ_OFF_START,
 225	CLK_REQ_OFF_RXSTALE_ISSUED,
 226	CLK_REQ_OFF_FLUSH_ISSUED,
 227	CLK_REQ_OFF_RXSTALE_FLUSHED,
 228};
 229
 230/**
 231 * struct msm_hs_tx
 232 * @tx_ready_int_en: ok to dma more tx?
 233 * @dma_in_flight: tx dma in progress
 234 * @xfer: top level DMA command pointer structure
 235 * @command_ptr: third level command struct pointer
 236 * @command_ptr_ptr: second level command list struct pointer
 237 * @mapped_cmd_ptr: DMA view of third level command struct
 238 * @mapped_cmd_ptr_ptr: DMA view of second level command list struct
 239 * @tx_count: number of bytes to transfer in DMA transfer
 240 * @dma_base: DMA view of UART xmit buffer
 241 *
 242 * This structure describes a single Tx DMA transaction. MSM DMA
 243 * commands have two levels of indirection. The top level command
 244 * ptr points to a list of command ptr which in turn points to a
 245 * single DMA 'command'. In our case each Tx transaction consists
 246 * of a single second level pointer pointing to a 'box type' command.
 247 */
 248struct msm_hs_tx {
 249	unsigned int tx_ready_int_en;
 250	unsigned int dma_in_flight;
 251	struct msm_dmov_cmd xfer;
 252	dmov_box *command_ptr;
 253	u32 *command_ptr_ptr;
 254	dma_addr_t mapped_cmd_ptr;
 255	dma_addr_t mapped_cmd_ptr_ptr;
 256	int tx_count;
 257	dma_addr_t dma_base;
 258};
 259
 260/**
 261 * struct msm_hs_rx
 262 * @flush: Rx DMA request state
 263 * @xfer: top level DMA command pointer structure
 264 * @cmdptr_dmaaddr: DMA view of second level command structure
 265 * @command_ptr: third level DMA command pointer structure
 266 * @command_ptr_ptr: second level DMA command list pointer
 267 * @mapped_cmd_ptr: DMA view of the third level command structure
 268 * @wait: wait for DMA completion before shutdown
 269 * @buffer: destination buffer for RX DMA
 270 * @rbuffer: DMA view of buffer
 271 * @pool: dma pool out of which coherent rx buffer is allocated
 272 * @tty_work: private work-queue for tty flip buffer push task
 273 *
 274 * This structure describes a single Rx DMA transaction. Rx DMA
 275 * transactions use box mode DMA commands.
 276 */
 277struct msm_hs_rx {
 278	enum flush_reason flush;
 279	struct msm_dmov_cmd xfer;
 280	dma_addr_t cmdptr_dmaaddr;
 281	dmov_box *command_ptr;
 282	u32 *command_ptr_ptr;
 283	dma_addr_t mapped_cmd_ptr;
 284	wait_queue_head_t wait;
 285	dma_addr_t rbuffer;
 286	unsigned char *buffer;
 287	struct dma_pool *pool;
 288	struct work_struct tty_work;
 289};
 290
 291/**
 292 * struct msm_hs_rx_wakeup
 293 * @irq: IRQ line to be configured as interrupt source on Rx activity
 294 * @ignore: boolean value. 1 = ignore the wakeup interrupt
 295 * @rx_to_inject: extra character to be inserted to Rx tty on wakeup
 296 * @inject_rx: 1 = insert rx_to_inject. 0 = do not insert extra character
 297 *
 298 * This is an optional structure required for UART Rx GPIO IRQ based
 299 * wakeup from low power state. UART wakeup can be triggered by RX activity
 300 * (using a wakeup GPIO on the UART RX pin). This should only be used if
 301 * there is not a wakeup GPIO on the UART CTS, and the first RX byte is
 302 * known (eg., with the Bluetooth Texas Instruments HCILL protocol),
 303 * since the first RX byte will always be lost. RTS will be asserted even
 304 * while the UART is clocked off in this mode of operation.
 305 */
 306struct msm_hs_rx_wakeup {
 307	int irq;  /* < 0 indicates low power wakeup disabled */
 308	unsigned char ignore;
 309	unsigned char inject_rx;
 310	char rx_to_inject;
 311};
 312
 313/**
 314 * struct msm_hs_port
 315 * @uport: embedded uart port structure
 316 * @imr_reg: shadow value of UARTDM_IMR
 317 * @clk: uart input clock handle
 318 * @tx: Tx transaction related data structure
 319 * @rx: Rx transaction related data structure
 320 * @dma_tx_channel: Tx DMA command channel
 321 * @dma_rx_channel Rx DMA command channel
 322 * @dma_tx_crci: Tx channel rate control interface number
 323 * @dma_rx_crci: Rx channel rate control interface number
 324 * @clk_off_timer: Timer to poll DMA event completion before clock off
 325 * @clk_off_delay: clk_off_timer poll interval
 326 * @clk_state: overall clock state
 327 * @clk_req_off_state: post flush clock states
 328 * @rx_wakeup: optional rx_wakeup feature related data
 329 * @exit_lpm_cb: optional callback to exit low power mode
 330 *
 331 * Low level serial port structure.
 332 */
 333struct msm_hs_port {
 334	struct uart_port uport;
 335	unsigned long imr_reg;
 336	struct clk *clk;
 337	struct msm_hs_tx tx;
 338	struct msm_hs_rx rx;
 339
 340	int dma_tx_channel;
 341	int dma_rx_channel;
 342	int dma_tx_crci;
 343	int dma_rx_crci;
 344
 345	struct hrtimer clk_off_timer;
 346	ktime_t clk_off_delay;
 347	enum msm_hs_clk_states_e clk_state;
 348	enum msm_hs_clk_req_off_state_e clk_req_off_state;
 349
 350	struct msm_hs_rx_wakeup rx_wakeup;
 351	void (*exit_lpm_cb)(struct uart_port *);
 352};
 353
 354#define MSM_UARTDM_BURST_SIZE 16   /* DM burst size (in bytes) */
 355#define UARTDM_TX_BUF_SIZE UART_XMIT_SIZE
 356#define UARTDM_RX_BUF_SIZE 512
 357
 358#define UARTDM_NR 2
 359
 360static struct msm_hs_port q_uart_port[UARTDM_NR];
 361static struct platform_driver msm_serial_hs_platform_driver;
 362static struct uart_driver msm_hs_driver;
 363static struct uart_ops msm_hs_ops;
 364static struct workqueue_struct *msm_hs_workqueue;
 365
 366#define UARTDM_TO_MSM(uart_port) \
 367	container_of((uart_port), struct msm_hs_port, uport)
 368
 369static unsigned int use_low_power_rx_wakeup(struct msm_hs_port
 370						   *msm_uport)
 371{
 372	return (msm_uport->rx_wakeup.irq >= 0);
 373}
 374
 375static unsigned int msm_hs_read(struct uart_port *uport,
 376				       unsigned int offset)
 377{
 378	return ioread32(uport->membase + offset);
 379}
 380
 381static void msm_hs_write(struct uart_port *uport, unsigned int offset,
 382				 unsigned int value)
 383{
 384	iowrite32(value, uport->membase + offset);
 385}
 386
 387static void msm_hs_release_port(struct uart_port *port)
 388{
 389	iounmap(port->membase);
 390}
 391
 392static int msm_hs_request_port(struct uart_port *port)
 393{
 394	port->membase = ioremap(port->mapbase, PAGE_SIZE);
 395	if (unlikely(!port->membase))
 396		return -ENOMEM;
 397
 398	/* configure the CR Protection to Enable */
 399	msm_hs_write(port, UARTDM_CR_ADDR, CR_PROTECTION_EN);
 400	return 0;
 401}
 402
 403static int __devexit msm_hs_remove(struct platform_device *pdev)
 404{
 405
 406	struct msm_hs_port *msm_uport;
 407	struct device *dev;
 408
 409	if (pdev->id < 0 || pdev->id >= UARTDM_NR) {
 410		printk(KERN_ERR "Invalid plaform device ID = %d\n", pdev->id);
 411		return -EINVAL;
 412	}
 413
 414	msm_uport = &q_uart_port[pdev->id];
 415	dev = msm_uport->uport.dev;
 416
 417	dma_unmap_single(dev, msm_uport->rx.mapped_cmd_ptr, sizeof(dmov_box),
 418			 DMA_TO_DEVICE);
 419	dma_pool_free(msm_uport->rx.pool, msm_uport->rx.buffer,
 420		      msm_uport->rx.rbuffer);
 421	dma_pool_destroy(msm_uport->rx.pool);
 422
 423	dma_unmap_single(dev, msm_uport->rx.cmdptr_dmaaddr, sizeof(u32 *),
 424			 DMA_TO_DEVICE);
 425	dma_unmap_single(dev, msm_uport->tx.mapped_cmd_ptr_ptr, sizeof(u32 *),
 426			 DMA_TO_DEVICE);
 427	dma_unmap_single(dev, msm_uport->tx.mapped_cmd_ptr, sizeof(dmov_box),
 428			 DMA_TO_DEVICE);
 429
 430	uart_remove_one_port(&msm_hs_driver, &msm_uport->uport);
 431	clk_put(msm_uport->clk);
 432
 433	/* Free the tx resources */
 434	kfree(msm_uport->tx.command_ptr);
 435	kfree(msm_uport->tx.command_ptr_ptr);
 436
 437	/* Free the rx resources */
 438	kfree(msm_uport->rx.command_ptr);
 439	kfree(msm_uport->rx.command_ptr_ptr);
 440
 441	iounmap(msm_uport->uport.membase);
 442
 443	return 0;
 444}
 445
 446static int msm_hs_init_clk_locked(struct uart_port *uport)
 447{
 448	int ret;
 449	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 450
 451	ret = clk_enable(msm_uport->clk);
 452	if (ret) {
 453		printk(KERN_ERR "Error could not turn on UART clk\n");
 454		return ret;
 455	}
 456
 457	/* Set up the MREG/NREG/DREG/MNDREG */
 458	ret = clk_set_rate(msm_uport->clk, uport->uartclk);
 459	if (ret) {
 460		printk(KERN_WARNING "Error setting clock rate on UART\n");
 461		clk_disable(msm_uport->clk);
 462		return ret;
 463	}
 464
 465	msm_uport->clk_state = MSM_HS_CLK_ON;
 466	return 0;
 467}
 468
 469/* Enable and Disable clocks  (Used for power management) */
 470static void msm_hs_pm(struct uart_port *uport, unsigned int state,
 471		      unsigned int oldstate)
 472{
 473	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 474
 475	if (use_low_power_rx_wakeup(msm_uport) ||
 476	    msm_uport->exit_lpm_cb)
 477		return;  /* ignore linux PM states,
 478			    use msm_hs_request_clock API */
 479
 480	switch (state) {
 481	case 0:
 482		clk_enable(msm_uport->clk);
 483		break;
 484	case 3:
 485		clk_disable(msm_uport->clk);
 486		break;
 487	default:
 488		dev_err(uport->dev, "msm_serial: Unknown PM state %d\n",
 489			state);
 490	}
 491}
 492
 493/*
 494 * programs the UARTDM_CSR register with correct bit rates
 495 *
 496 * Interrupts should be disabled before we are called, as
 497 * we modify Set Baud rate
 498 * Set receive stale interrupt level, dependent on Bit Rate
 499 * Goal is to have around 8 ms before indicate stale.
 500 * roundup (((Bit Rate * .008) / 10) + 1
 501 */
 502static void msm_hs_set_bps_locked(struct uart_port *uport,
 503				  unsigned int bps)
 504{
 505	unsigned long rxstale;
 506	unsigned long data;
 507	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 508
 509	switch (bps) {
 510	case 300:
 511		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_75);
 512		rxstale = 1;
 513		break;
 514	case 600:
 515		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_150);
 516		rxstale = 1;
 517		break;
 518	case 1200:
 519		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_300);
 520		rxstale = 1;
 521		break;
 522	case 2400:
 523		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_600);
 524		rxstale = 1;
 525		break;
 526	case 4800:
 527		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_1200);
 528		rxstale = 1;
 529		break;
 530	case 9600:
 531		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_2400);
 532		rxstale = 2;
 533		break;
 534	case 14400:
 535		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_3600);
 536		rxstale = 3;
 537		break;
 538	case 19200:
 539		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_4800);
 540		rxstale = 4;
 541		break;
 542	case 28800:
 543		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_7200);
 544		rxstale = 6;
 545		break;
 546	case 38400:
 547		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_9600);
 548		rxstale = 8;
 549		break;
 550	case 57600:
 551		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_14400);
 552		rxstale = 16;
 553		break;
 554	case 76800:
 555		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_19200);
 556		rxstale = 16;
 557		break;
 558	case 115200:
 559		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_28800);
 560		rxstale = 31;
 561		break;
 562	case 230400:
 563		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_57600);
 564		rxstale = 31;
 565		break;
 566	case 460800:
 567		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_115200);
 568		rxstale = 31;
 569		break;
 570	case 4000000:
 571	case 3686400:
 572	case 3200000:
 573	case 3500000:
 574	case 3000000:
 575	case 2500000:
 576	case 1500000:
 577	case 1152000:
 578	case 1000000:
 579	case 921600:
 580		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_115200);
 581		rxstale = 31;
 582		break;
 583	default:
 584		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_2400);
 585		/* default to 9600 */
 586		bps = 9600;
 587		rxstale = 2;
 588		break;
 589	}
 590	if (bps > 460800)
 591		uport->uartclk = bps * 16;
 592	else
 593		uport->uartclk = UARTCLK;
 594
 595	if (clk_set_rate(msm_uport->clk, uport->uartclk)) {
 596		printk(KERN_WARNING "Error setting clock rate on UART\n");
 597		return;
 598	}
 599
 600	data = rxstale & UARTDM_IPR_STALE_LSB_BMSK;
 601	data |= UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK & (rxstale << 2);
 602
 603	msm_hs_write(uport, UARTDM_IPR_ADDR, data);
 604}
 605
 606/*
 607 * termios :  new ktermios
 608 * oldtermios:  old ktermios previous setting
 609 *
 610 * Configure the serial port
 611 */
 612static void msm_hs_set_termios(struct uart_port *uport,
 613			       struct ktermios *termios,
 614			       struct ktermios *oldtermios)
 615{
 616	unsigned int bps;
 617	unsigned long data;
 618	unsigned long flags;
 619	unsigned int c_cflag = termios->c_cflag;
 620	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 621
 622	spin_lock_irqsave(&uport->lock, flags);
 623	clk_enable(msm_uport->clk);
 624
 625	/* 300 is the minimum baud support by the driver  */
 626	bps = uart_get_baud_rate(uport, termios, oldtermios, 200, 4000000);
 627
 628	/* Temporary remapping  200 BAUD to 3.2 mbps */
 629	if (bps == 200)
 630		bps = 3200000;
 631
 632	msm_hs_set_bps_locked(uport, bps);
 633
 634	data = msm_hs_read(uport, UARTDM_MR2_ADDR);
 635	data &= ~UARTDM_MR2_PARITY_MODE_BMSK;
 636	/* set parity */
 637	if (PARENB == (c_cflag & PARENB)) {
 638		if (PARODD == (c_cflag & PARODD))
 639			data |= ODD_PARITY;
 640		else if (CMSPAR == (c_cflag & CMSPAR))
 641			data |= SPACE_PARITY;
 642		else
 643			data |= EVEN_PARITY;
 644	}
 645
 646	/* Set bits per char */
 647	data &= ~UARTDM_MR2_BITS_PER_CHAR_BMSK;
 648
 649	switch (c_cflag & CSIZE) {
 650	case CS5:
 651		data |= FIVE_BPC;
 652		break;
 653	case CS6:
 654		data |= SIX_BPC;
 655		break;
 656	case CS7:
 657		data |= SEVEN_BPC;
 658		break;
 659	default:
 660		data |= EIGHT_BPC;
 661		break;
 662	}
 663	/* stop bits */
 664	if (c_cflag & CSTOPB) {
 665		data |= STOP_BIT_TWO;
 666	} else {
 667		/* otherwise 1 stop bit */
 668		data |= STOP_BIT_ONE;
 669	}
 670	data |= UARTDM_MR2_ERROR_MODE_BMSK;
 671	/* write parity/bits per char/stop bit configuration */
 672	msm_hs_write(uport, UARTDM_MR2_ADDR, data);
 673
 674	/* Configure HW flow control */
 675	data = msm_hs_read(uport, UARTDM_MR1_ADDR);
 676
 677	data &= ~(UARTDM_MR1_CTS_CTL_BMSK | UARTDM_MR1_RX_RDY_CTL_BMSK);
 678
 679	if (c_cflag & CRTSCTS) {
 680		data |= UARTDM_MR1_CTS_CTL_BMSK;
 681		data |= UARTDM_MR1_RX_RDY_CTL_BMSK;
 682	}
 683
 684	msm_hs_write(uport, UARTDM_MR1_ADDR, data);
 685
 686	uport->ignore_status_mask = termios->c_iflag & INPCK;
 687	uport->ignore_status_mask |= termios->c_iflag & IGNPAR;
 688	uport->read_status_mask = (termios->c_cflag & CREAD);
 689
 690	msm_hs_write(uport, UARTDM_IMR_ADDR, 0);
 691
 692	/* Set Transmit software time out */
 693	uart_update_timeout(uport, c_cflag, bps);
 694
 695	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX);
 696	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_TX);
 697
 698	if (msm_uport->rx.flush == FLUSH_NONE) {
 699		msm_uport->rx.flush = FLUSH_IGNORE;
 700		msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1);
 701	}
 702
 703	msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
 704
 705	clk_disable(msm_uport->clk);
 706	spin_unlock_irqrestore(&uport->lock, flags);
 707}
 708
 709/*
 710 *  Standard API, Transmitter
 711 *  Any character in the transmit shift register is sent
 712 */
 713static unsigned int msm_hs_tx_empty(struct uart_port *uport)
 714{
 715	unsigned int data;
 716	unsigned int ret = 0;
 717	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 718
 719	clk_enable(msm_uport->clk);
 720
 721	data = msm_hs_read(uport, UARTDM_SR_ADDR);
 722	if (data & UARTDM_SR_TXEMT_BMSK)
 723		ret = TIOCSER_TEMT;
 724
 725	clk_disable(msm_uport->clk);
 726
 727	return ret;
 728}
 729
 730/*
 731 *  Standard API, Stop transmitter.
 732 *  Any character in the transmit shift register is sent as
 733 *  well as the current data mover transfer .
 734 */
 735static void msm_hs_stop_tx_locked(struct uart_port *uport)
 736{
 737	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 738
 739	msm_uport->tx.tx_ready_int_en = 0;
 740}
 741
 742/*
 743 *  Standard API, Stop receiver as soon as possible.
 744 *
 745 *  Function immediately terminates the operation of the
 746 *  channel receiver and any incoming characters are lost. None
 747 *  of the receiver status bits are affected by this command and
 748 *  characters that are already in the receive FIFO there.
 749 */
 750static void msm_hs_stop_rx_locked(struct uart_port *uport)
 751{
 752	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 753	unsigned int data;
 754
 755	clk_enable(msm_uport->clk);
 756
 757	/* disable dlink */
 758	data = msm_hs_read(uport, UARTDM_DMEN_ADDR);
 759	data &= ~UARTDM_RX_DM_EN_BMSK;
 760	msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
 761
 762	/* Disable the receiver */
 763	if (msm_uport->rx.flush == FLUSH_NONE)
 764		msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1);
 765
 766	if (msm_uport->rx.flush != FLUSH_SHUTDOWN)
 767		msm_uport->rx.flush = FLUSH_STOP;
 768
 769	clk_disable(msm_uport->clk);
 770}
 771
 772/*  Transmit the next chunk of data */
 773static void msm_hs_submit_tx_locked(struct uart_port *uport)
 774{
 775	int left;
 776	int tx_count;
 777	dma_addr_t src_addr;
 778	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 779	struct msm_hs_tx *tx = &msm_uport->tx;
 780	struct circ_buf *tx_buf = &msm_uport->uport.state->xmit;
 781
 782	if (uart_circ_empty(tx_buf) || uport->state->port.tty->stopped) {
 783		msm_hs_stop_tx_locked(uport);
 784		return;
 785	}
 786
 787	tx->dma_in_flight = 1;
 788
 789	tx_count = uart_circ_chars_pending(tx_buf);
 790
 791	if (UARTDM_TX_BUF_SIZE < tx_count)
 792		tx_count = UARTDM_TX_BUF_SIZE;
 793
 794	left = UART_XMIT_SIZE - tx_buf->tail;
 795
 796	if (tx_count > left)
 797		tx_count = left;
 798
 799	src_addr = tx->dma_base + tx_buf->tail;
 800	dma_sync_single_for_device(uport->dev, src_addr, tx_count,
 801				   DMA_TO_DEVICE);
 802
 803	tx->command_ptr->num_rows = (((tx_count + 15) >> 4) << 16) |
 804				     ((tx_count + 15) >> 4);
 805	tx->command_ptr->src_row_addr = src_addr;
 806
 807	dma_sync_single_for_device(uport->dev, tx->mapped_cmd_ptr,
 808				   sizeof(dmov_box), DMA_TO_DEVICE);
 809
 810	*tx->command_ptr_ptr = CMD_PTR_LP | DMOV_CMD_ADDR(tx->mapped_cmd_ptr);
 811
 812	dma_sync_single_for_device(uport->dev, tx->mapped_cmd_ptr_ptr,
 813				   sizeof(u32 *), DMA_TO_DEVICE);
 814
 815	/* Save tx_count to use in Callback */
 816	tx->tx_count = tx_count;
 817	msm_hs_write(uport, UARTDM_NCF_TX_ADDR, tx_count);
 818
 819	/* Disable the tx_ready interrupt */
 820	msm_uport->imr_reg &= ~UARTDM_ISR_TX_READY_BMSK;
 821	msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
 822	msm_dmov_enqueue_cmd(msm_uport->dma_tx_channel, &tx->xfer);
 823}
 824
 825/* Start to receive the next chunk of data */
 826static void msm_hs_start_rx_locked(struct uart_port *uport)
 827{
 828	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 829
 830	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT);
 831	msm_hs_write(uport, UARTDM_DMRX_ADDR, UARTDM_RX_BUF_SIZE);
 832	msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_ENABLE);
 833	msm_uport->imr_reg |= UARTDM_ISR_RXLEV_BMSK;
 834	msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
 835
 836	msm_uport->rx.flush = FLUSH_NONE;
 837	msm_dmov_enqueue_cmd(msm_uport->dma_rx_channel, &msm_uport->rx.xfer);
 838
 839	/* might have finished RX and be ready to clock off */
 840	hrtimer_start(&msm_uport->clk_off_timer, msm_uport->clk_off_delay,
 841			HRTIMER_MODE_REL);
 842}
 843
 844/* Enable the transmitter Interrupt */
 845static void msm_hs_start_tx_locked(struct uart_port *uport)
 846{
 847	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 848
 849	clk_enable(msm_uport->clk);
 850
 851	if (msm_uport->exit_lpm_cb)
 852		msm_uport->exit_lpm_cb(uport);
 853
 854	if (msm_uport->tx.tx_ready_int_en == 0) {
 855		msm_uport->tx.tx_ready_int_en = 1;
 856		msm_hs_submit_tx_locked(uport);
 857	}
 858
 859	clk_disable(msm_uport->clk);
 860}
 861
 862/*
 863 *  This routine is called when we are done with a DMA transfer
 864 *
 865 *  This routine is registered with Data mover when we set
 866 *  up a Data Mover transfer. It is called from Data mover ISR
 867 *  when the DMA transfer is done.
 868 */
 869static void msm_hs_dmov_tx_callback(struct msm_dmov_cmd *cmd_ptr,
 870					unsigned int result,
 871					struct msm_dmov_errdata *err)
 872{
 873	unsigned long flags;
 874	struct msm_hs_port *msm_uport;
 875
 876	/* DMA did not finish properly */
 877	WARN_ON((((result & RSLT_FIFO_CNTR_BMSK) >> 28) == 1) &&
 878		!(result & RSLT_VLD));
 879
 880	msm_uport = container_of(cmd_ptr, struct msm_hs_port, tx.xfer);
 881
 882	spin_lock_irqsave(&msm_uport->uport.lock, flags);
 883	clk_enable(msm_uport->clk);
 884
 885	msm_uport->imr_reg |= UARTDM_ISR_TX_READY_BMSK;
 886	msm_hs_write(&msm_uport->uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
 887
 888	clk_disable(msm_uport->clk);
 889	spin_unlock_irqrestore(&msm_uport->uport.lock, flags);
 890}
 891
 892/*
 893 * This routine is called when we are done with a DMA transfer or the
 894 * a flush has been sent to the data mover driver.
 895 *
 896 * This routine is registered with Data mover when we set up a Data Mover
 897 *  transfer. It is called from Data mover ISR when the DMA transfer is done.
 898 */
 899static void msm_hs_dmov_rx_callback(struct msm_dmov_cmd *cmd_ptr,
 900					unsigned int result,
 901					struct msm_dmov_errdata *err)
 902{
 903	int retval;
 904	int rx_count;
 905	unsigned long status;
 906	unsigned int error_f = 0;
 907	unsigned long flags;
 908	unsigned int flush;
 909	struct tty_struct *tty;
 910	struct uart_port *uport;
 911	struct msm_hs_port *msm_uport;
 912
 913	msm_uport = container_of(cmd_ptr, struct msm_hs_port, rx.xfer);
 914	uport = &msm_uport->uport;
 915
 916	spin_lock_irqsave(&uport->lock, flags);
 917	clk_enable(msm_uport->clk);
 918
 919	tty = uport->state->port.tty;
 920
 921	msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_DISABLE);
 922
 923	status = msm_hs_read(uport, UARTDM_SR_ADDR);
 924
 925	/* overflow is not connect to data in a FIFO */
 926	if (unlikely((status & UARTDM_SR_OVERRUN_BMSK) &&
 927		     (uport->read_status_mask & CREAD))) {
 928		tty_insert_flip_char(tty, 0, TTY_OVERRUN);
 929		uport->icount.buf_overrun++;
 930		error_f = 1;
 931	}
 932
 933	if (!(uport->ignore_status_mask & INPCK))
 934		status = status & ~(UARTDM_SR_PAR_FRAME_BMSK);
 935
 936	if (unlikely(status & UARTDM_SR_PAR_FRAME_BMSK)) {
 937		/* Can not tell difference between parity & frame error */
 938		uport->icount.parity++;
 939		error_f = 1;
 940		if (uport->ignore_status_mask & IGNPAR)
 941			tty_insert_flip_char(tty, 0, TTY_PARITY);
 942	}
 943
 944	if (error_f)
 945		msm_hs_write(uport, UARTDM_CR_ADDR, RESET_ERROR_STATUS);
 946
 947	if (msm_uport->clk_req_off_state == CLK_REQ_OFF_FLUSH_ISSUED)
 948		msm_uport->clk_req_off_state = CLK_REQ_OFF_RXSTALE_FLUSHED;
 949
 950	flush = msm_uport->rx.flush;
 951	if (flush == FLUSH_IGNORE)
 952		msm_hs_start_rx_locked(uport);
 953	if (flush == FLUSH_STOP)
 954		msm_uport->rx.flush = FLUSH_SHUTDOWN;
 955	if (flush >= FLUSH_DATA_INVALID)
 956		goto out;
 957
 958	rx_count = msm_hs_read(uport, UARTDM_RX_TOTAL_SNAP_ADDR);
 959
 960	if (0 != (uport->read_status_mask & CREAD)) {
 961		retval = tty_insert_flip_string(tty, msm_uport->rx.buffer,
 962						rx_count);
 963		BUG_ON(retval != rx_count);
 964	}
 965
 966	msm_hs_start_rx_locked(uport);
 967
 968out:
 969	clk_disable(msm_uport->clk);
 970
 971	spin_unlock_irqrestore(&uport->lock, flags);
 972
 973	if (flush < FLUSH_DATA_INVALID)
 974		queue_work(msm_hs_workqueue, &msm_uport->rx.tty_work);
 975}
 976
 977static void msm_hs_tty_flip_buffer_work(struct work_struct *work)
 978{
 979	struct msm_hs_port *msm_uport =
 980			container_of(work, struct msm_hs_port, rx.tty_work);
 981	struct tty_struct *tty = msm_uport->uport.state->port.tty;
 982
 983	tty_flip_buffer_push(tty);
 984}
 985
 986/*
 987 *  Standard API, Current states of modem control inputs
 988 *
 989 * Since CTS can be handled entirely by HARDWARE we always
 990 * indicate clear to send and count on the TX FIFO to block when
 991 * it fills up.
 992 *
 993 * - TIOCM_DCD
 994 * - TIOCM_CTS
 995 * - TIOCM_DSR
 996 * - TIOCM_RI
 997 *  (Unsupported) DCD and DSR will return them high. RI will return low.
 998 */
 999static unsigned int msm_hs_get_mctrl_locked(struct uart_port *uport)
1000{
1001	return TIOCM_DSR | TIOCM_CAR | TIOCM_CTS;
1002}
1003
1004/*
1005 * True enables UART auto RFR, which indicates we are ready for data if the RX
1006 * buffer is not full. False disables auto RFR, and deasserts RFR to indicate
1007 * we are not ready for data. Must be called with UART clock on.
1008 */
1009static void set_rfr_locked(struct uart_port *uport, int auto_rfr)
1010{
1011	unsigned int data;
1012
1013	data = msm_hs_read(uport, UARTDM_MR1_ADDR);
1014
1015	if (auto_rfr) {
1016		/* enable auto ready-for-receiving */
1017		data |= UARTDM_MR1_RX_RDY_CTL_BMSK;
1018		msm_hs_write(uport, UARTDM_MR1_ADDR, data);
1019	} else {
1020		/* disable auto ready-for-receiving */
1021		data &= ~UARTDM_MR1_RX_RDY_CTL_BMSK;
1022		msm_hs_write(uport, UARTDM_MR1_ADDR, data);
1023		/* RFR is active low, set high */
1024		msm_hs_write(uport, UARTDM_CR_ADDR, RFR_HIGH);
1025	}
1026}
1027
1028/*
1029 *  Standard API, used to set or clear RFR
1030 */
1031static void msm_hs_set_mctrl_locked(struct uart_port *uport,
1032				    unsigned int mctrl)
1033{
1034	unsigned int auto_rfr;
1035	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1036
1037	clk_enable(msm_uport->clk);
1038
1039	auto_rfr = TIOCM_RTS & mctrl ? 1 : 0;
1040	set_rfr_locked(uport, auto_rfr);
1041
1042	clk_disable(msm_uport->clk);
1043}
1044
1045/* Standard API, Enable modem status (CTS) interrupt  */
1046static void msm_hs_enable_ms_locked(struct uart_port *uport)
1047{
1048	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1049
1050	clk_enable(msm_uport->clk);
1051
1052	/* Enable DELTA_CTS Interrupt */
1053	msm_uport->imr_reg |= UARTDM_ISR_DELTA_CTS_BMSK;
1054	msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1055
1056	clk_disable(msm_uport->clk);
1057
1058}
1059
1060/*
1061 *  Standard API, Break Signal
1062 *
1063 * Control the transmission of a break signal. ctl eq 0 => break
1064 * signal terminate ctl ne 0 => start break signal
1065 */
1066static void msm_hs_break_ctl(struct uart_port *uport, int ctl)
1067{
1068	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1069
1070	clk_enable(msm_uport->clk);
1071	msm_hs_write(uport, UARTDM_CR_ADDR, ctl ? START_BREAK : STOP_BREAK);
1072	clk_disable(msm_uport->clk);
1073}
1074
1075static void msm_hs_config_port(struct uart_port *uport, int cfg_flags)
1076{
1077	unsigned long flags;
1078
1079	spin_lock_irqsave(&uport->lock, flags);
1080	if (cfg_flags & UART_CONFIG_TYPE) {
1081		uport->type = PORT_MSM;
1082		msm_hs_request_port(uport);
1083	}
1084	spin_unlock_irqrestore(&uport->lock, flags);
1085}
1086
1087/*  Handle CTS changes (Called from interrupt handler) */
1088static void msm_hs_handle_delta_cts(struct uart_port *uport)
1089{
1090	unsigned long flags;
1091	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1092
1093	spin_lock_irqsave(&uport->lock, flags);
1094	clk_enable(msm_uport->clk);
1095
1096	/* clear interrupt */
1097	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_CTS);
1098	uport->icount.cts++;
1099
1100	clk_disable(msm_uport->clk);
1101	spin_unlock_irqrestore(&uport->lock, flags);
1102
1103	/* clear the IOCTL TIOCMIWAIT if called */
1104	wake_up_interruptible(&uport->state->port.delta_msr_wait);
1105}
1106
1107/* check if the TX path is flushed, and if so clock off
1108 * returns 0 did not clock off, need to retry (still sending final byte)
1109 *        -1 did not clock off, do not retry
1110 *         1 if we clocked off
1111 */
1112static int msm_hs_check_clock_off_locked(struct uart_port *uport)
1113{
1114	unsigned long sr_status;
1115	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1116	struct circ_buf *tx_buf = &uport->state->xmit;
1117
1118	/* Cancel if tx tty buffer is not empty, dma is in flight,
1119	 * or tx fifo is not empty, or rx fifo is not empty */
1120	if (msm_uport->clk_state != MSM_HS_CLK_REQUEST_OFF ||
1121	    !uart_circ_empty(tx_buf) || msm_uport->tx.dma_in_flight ||
1122	    (msm_uport->imr_reg & UARTDM_ISR_TXLEV_BMSK) ||
1123	    !(msm_uport->imr_reg & UARTDM_ISR_RXLEV_BMSK))  {
1124		return -1;
1125	}
1126
1127	/* Make sure the uart is finished with the last byte */
1128	sr_status = msm_hs_read(uport, UARTDM_SR_ADDR);
1129	if (!(sr_status & UARTDM_SR_TXEMT_BMSK))
1130		return 0;  /* retry */
1131
1132	/* Make sure forced RXSTALE flush complete */
1133	switch (msm_uport->clk_req_off_state) {
1134	case CLK_REQ_OFF_START:
1135		msm_uport->clk_req_off_state = CLK_REQ_OFF_RXSTALE_ISSUED;
1136		msm_hs_write(uport, UARTDM_CR_ADDR, FORCE_STALE_EVENT);
1137		return 0;  /* RXSTALE flush not complete - retry */
1138	case CLK_REQ_OFF_RXSTALE_ISSUED:
1139	case CLK_REQ_OFF_FLUSH_ISSUED:
1140		return 0;  /* RXSTALE flush not complete - retry */
1141	case CLK_REQ_OFF_RXSTALE_FLUSHED:
1142		break;  /* continue */
1143	}
1144
1145	if (msm_uport->rx.flush != FLUSH_SHUTDOWN) {
1146		if (msm_uport->rx.flush == FLUSH_NONE)
1147			msm_hs_stop_rx_locked(uport);
1148		return 0;  /* come back later to really clock off */
1149	}
1150
1151	/* we really want to clock off */
1152	clk_disable(msm_uport->clk);
1153	msm_uport->clk_state = MSM_HS_CLK_OFF;
1154
1155	if (use_low_power_rx_wakeup(msm_uport)) {
1156		msm_uport->rx_wakeup.ignore = 1;
1157		enable_irq(msm_uport->rx_wakeup.irq);
1158	}
1159	return 1;
1160}
1161
1162static enum hrtimer_restart msm_hs_clk_off_retry(struct hrtimer *timer)
1163{
1164	unsigned long flags;
1165	int ret = HRTIMER_NORESTART;
1166	struct msm_hs_port *msm_uport = container_of(timer, struct msm_hs_port,
1167						     clk_off_timer);
1168	struct uart_port *uport = &msm_uport->uport;
1169
1170	spin_lock_irqsave(&uport->lock, flags);
1171
1172	if (!msm_hs_check_clock_off_locked(uport)) {
1173		hrtimer_forward_now(timer, msm_uport->clk_off_delay);
1174		ret = HRTIMER_RESTART;
1175	}
1176
1177	spin_unlock_irqrestore(&uport->lock, flags);
1178
1179	return ret;
1180}
1181
1182static irqreturn_t msm_hs_isr(int irq, void *dev)
1183{
1184	unsigned long flags;
1185	unsigned long isr_status;
1186	struct msm_hs_port *msm_uport = dev;
1187	struct uart_port *uport = &msm_uport->uport;
1188	struct circ_buf *tx_buf = &uport->state->xmit;
1189	struct msm_hs_tx *tx = &msm_uport->tx;
1190	struct msm_hs_rx *rx = &msm_uport->rx;
1191
1192	spin_lock_irqsave(&uport->lock, flags);
1193
1194	isr_status = msm_hs_read(uport, UARTDM_MISR_ADDR);
1195
1196	/* Uart RX starting */
1197	if (isr_status & UARTDM_ISR_RXLEV_BMSK) {
1198		msm_uport->imr_reg &= ~UARTDM_ISR_RXLEV_BMSK;
1199		msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1200	}
1201	/* Stale rx interrupt */
1202	if (isr_status & UARTDM_ISR_RXSTALE_BMSK) {
1203		msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_DISABLE);
1204		msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT);
1205
1206		if (msm_uport->clk_req_off_state == CLK_REQ_OFF_RXSTALE_ISSUED)
1207			msm_uport->clk_req_off_state =
1208					CLK_REQ_OFF_FLUSH_ISSUED;
1209		if (rx->flush == FLUSH_NONE) {
1210			rx->flush = FLUSH_DATA_READY;
1211			msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1);
1212		}
1213	}
1214	/* tx ready interrupt */
1215	if (isr_status & UARTDM_ISR_TX_READY_BMSK) {
1216		/* Clear  TX Ready */
1217		msm_hs_write(uport, UARTDM_CR_ADDR, CLEAR_TX_READY);
1218
1219		if (msm_uport->clk_state == MSM_HS_CLK_REQUEST_OFF) {
1220			msm_uport->imr_reg |= UARTDM_ISR_TXLEV_BMSK;
1221			msm_hs_write(uport, UARTDM_IMR_ADDR,
1222				     msm_uport->imr_reg);
1223		}
1224
1225		/* Complete DMA TX transactions and submit new transactions */
1226		tx_buf->tail = (tx_buf->tail + tx->tx_count) & ~UART_XMIT_SIZE;
1227
1228		tx->dma_in_flight = 0;
1229
1230		uport->icount.tx += tx->tx_count;
1231		if (tx->tx_ready_int_en)
1232			msm_hs_submit_tx_locked(uport);
1233
1234		if (uart_circ_chars_pending(tx_buf) < WAKEUP_CHARS)
1235			uart_write_wakeup(uport);
1236	}
1237	if (isr_status & UARTDM_ISR_TXLEV_BMSK) {
1238		/* TX FIFO is empty */
1239		msm_uport->imr_reg &= ~UARTDM_ISR_TXLEV_BMSK;
1240		msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1241		if (!msm_hs_check_clock_off_locked(uport))
1242			hrtimer_start(&msm_uport->clk_off_timer,
1243				      msm_uport->clk_off_delay,
1244				      HRTIMER_MODE_REL);
1245	}
1246
1247	/* Change in CTS interrupt */
1248	if (isr_status & UARTDM_ISR_DELTA_CTS_BMSK)
1249		msm_hs_handle_delta_cts(uport);
1250
1251	spin_unlock_irqrestore(&uport->lock, flags);
1252
1253	return IRQ_HANDLED;
1254}
1255
1256void msm_hs_request_clock_off_locked(struct uart_port *uport)
1257{
1258	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1259
1260	if (msm_uport->clk_state == MSM_HS_CLK_ON) {
1261		msm_uport->clk_state = MSM_HS_CLK_REQUEST_OFF;
1262		msm_uport->clk_req_off_state = CLK_REQ_OFF_START;
1263		if (!use_low_power_rx_wakeup(msm_uport))
1264			set_rfr_locked(uport, 0);
1265		msm_uport->imr_reg |= UARTDM_ISR_TXLEV_BMSK;
1266		msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1267	}
1268}
1269
1270/**
1271 * msm_hs_request_clock_off - request to (i.e. asynchronously) turn off uart
1272 * clock once pending TX is flushed and Rx DMA command is terminated.
1273 * @uport: uart_port structure for the device instance.
1274 *
1275 * This functions puts the device into a partially active low power mode. It
1276 * waits to complete all pending tx transactions, flushes ongoing Rx DMA
1277 * command and terminates UART side Rx transaction, puts UART HW in non DMA
1278 * mode and then clocks off the device. A client calls this when no UART
1279 * data is expected. msm_request_clock_on() must be called before any further
1280 * UART can be sent or received.
1281 */
1282void msm_hs_request_clock_off(struct uart_port *uport)
1283{
1284	unsigned long flags;
1285
1286	spin_lock_irqsave(&uport->lock, flags);
1287	msm_hs_request_clock_off_locked(uport);
1288	spin_unlock_irqrestore(&uport->lock, flags);
1289}
1290
1291void msm_hs_request_clock_on_locked(struct uart_port *uport)
1292{
1293	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1294	unsigned int data;
1295
1296	switch (msm_uport->clk_state) {
1297	case MSM_HS_CLK_OFF:
1298		clk_enable(msm_uport->clk);
1299		disable_irq_nosync(msm_uport->rx_wakeup.irq);
1300		/* fall-through */
1301	case MSM_HS_CLK_REQUEST_OFF:
1302		if (msm_uport->rx.flush == FLUSH_STOP ||
1303		    msm_uport->rx.flush == FLUSH_SHUTDOWN) {
1304			msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX);
1305			data = msm_hs_read(uport, UARTDM_DMEN_ADDR);
1306			data |= UARTDM_RX_DM_EN_BMSK;
1307			msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
1308		}
1309		hrtimer_try_to_cancel(&msm_uport->clk_off_timer);
1310		if (msm_uport->rx.flush == FLUSH_SHUTDOWN)
1311			msm_hs_start_rx_locked(uport);
1312		if (!use_low_power_rx_wakeup(msm_uport))
1313			set_rfr_locked(uport, 1);
1314		if (msm_uport->rx.flush == FLUSH_STOP)
1315			msm_uport->rx.flush = FLUSH_IGNORE;
1316		msm_uport->clk_state = MSM_HS_CLK_ON;
1317		break;
1318	case MSM_HS_CLK_ON:
1319		break;
1320	case MSM_HS_CLK_PORT_OFF:
1321		break;
1322	}
1323}
1324
1325/**
1326 * msm_hs_request_clock_on - Switch the device from partially active low
1327 * power mode to fully active (i.e. clock on) mode.
1328 * @uport: uart_port structure for the device.
1329 *
1330 * This function switches on the input clock, puts UART HW into DMA mode
1331 * and enqueues an Rx DMA command if the device was in partially active
1332 * mode. It has no effect if called with the device in inactive state.
1333 */
1334void msm_hs_request_clock_on(struct uart_port *uport)
1335{
1336	unsigned long flags;
1337
1338	spin_lock_irqsave(&uport->lock, flags);
1339	msm_hs_request_clock_on_locked(uport);
1340	spin_unlock_irqrestore(&uport->lock, flags);
1341}
1342
1343static irqreturn_t msm_hs_rx_wakeup_isr(int irq, void *dev)
1344{
1345	unsigned int wakeup = 0;
1346	unsigned long flags;
1347	struct msm_hs_port *msm_uport = dev;
1348	struct uart_port *uport = &msm_uport->uport;
1349	struct tty_struct *tty = NULL;
1350
1351	spin_lock_irqsave(&uport->lock, flags);
1352	if (msm_uport->clk_state == MSM_HS_CLK_OFF) {
1353		/* ignore the first irq - it is a pending irq that occurred
1354		 * before enable_irq() */
1355		if (msm_uport->rx_wakeup.ignore)
1356			msm_uport->rx_wakeup.ignore = 0;
1357		else
1358			wakeup = 1;
1359	}
1360
1361	if (wakeup) {
1362		/* the uart was clocked off during an rx, wake up and
1363		 * optionally inject char into tty rx */
1364		msm_hs_request_clock_on_locked(uport);
1365		if (msm_uport->rx_wakeup.inject_rx) {
1366			tty = uport->state->port.tty;
1367			tty_insert_flip_char(tty,
1368					     msm_uport->rx_wakeup.rx_to_inject,
1369					     TTY_NORMAL);
1370			queue_work(msm_hs_workqueue, &msm_uport->rx.tty_work);
1371		}
1372	}
1373
1374	spin_unlock_irqrestore(&uport->lock, flags);
1375
1376	return IRQ_HANDLED;
1377}
1378
1379static const char *msm_hs_type(struct uart_port *port)
1380{
1381	return (port->type == PORT_MSM) ? "MSM_HS_UART" : NULL;
1382}
1383
1384/* Called when port is opened */
1385static int msm_hs_startup(struct uart_port *uport)
1386{
1387	int ret;
1388	int rfr_level;
1389	unsigned long flags;
1390	unsigned int data;
1391	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1392	struct circ_buf *tx_buf = &uport->state->xmit;
1393	struct msm_hs_tx *tx = &msm_uport->tx;
1394	struct msm_hs_rx *rx = &msm_uport->rx;
1395
1396	rfr_level = uport->fifosize;
1397	if (rfr_level > 16)
1398		rfr_level -= 16;
1399
1400	tx->dma_base = dma_map_single(uport->dev, tx_buf->buf, UART_XMIT_SIZE,
1401				      DMA_TO_DEVICE);
1402
1403	/* do not let tty layer execute RX in global workqueue, use a
1404	 * dedicated workqueue managed by this driver */
1405	uport->state->port.tty->low_latency = 1;
1406
1407	/* turn on uart clk */
1408	ret = msm_hs_init_clk_locked(uport);
1409	if (unlikely(ret)) {
1410		printk(KERN_ERR "Turning uartclk failed!\n");
1411		goto err_msm_hs_init_clk;
1412	}
1413
1414	/* Set auto RFR Level */
1415	data = msm_hs_read(uport, UARTDM_MR1_ADDR);
1416	data &= ~UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK;
1417	data &= ~UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK;
1418	data |= (UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK & (rfr_level << 2));
1419	data |= (UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK & rfr_level);
1420	msm_hs_write(uport, UARTDM_MR1_ADDR, data);
1421
1422	/* Make sure RXSTALE count is non-zero */
1423	data = msm_hs_read(uport, UARTDM_IPR_ADDR);
1424	if (!data) {
1425		data |= 0x1f & UARTDM_IPR_STALE_LSB_BMSK;
1426		msm_hs_write(uport, UARTDM_IPR_ADDR, data);
1427	}
1428
1429	/* Enable Data Mover Mode */
1430	data = UARTDM_TX_DM_EN_BMSK | UARTDM_RX_DM_EN_BMSK;
1431	msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
1432
1433	/* Reset TX */
1434	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_TX);
1435	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX);
1436	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_ERROR_STATUS);
1437	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_BREAK_INT);
1438	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT);
1439	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_CTS);
1440	msm_hs_write(uport, UARTDM_CR_ADDR, RFR_LOW);
1441	/* Turn on Uart Receiver */
1442	msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_RX_EN_BMSK);
1443
1444	/* Turn on Uart Transmitter */
1445	msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_TX_EN_BMSK);
1446
1447	/* Initialize the tx */
1448	tx->tx_ready_int_en = 0;
1449	tx->dma_in_flight = 0;
1450
1451	tx->xfer.complete_func = msm_hs_dmov_tx_callback;
1452	tx->xfer.execute_func = NULL;
1453
1454	tx->command_ptr->cmd = CMD_LC |
1455	    CMD_DST_CRCI(msm_uport->dma_tx_crci) | CMD_MODE_BOX;
1456
1457	tx->command_ptr->src_dst_len = (MSM_UARTDM_BURST_SIZE << 16)
1458					   | (MSM_UARTDM_BURST_SIZE);
1459
1460	tx->command_ptr->row_offset = (MSM_UARTDM_BURST_SIZE << 16);
1461
1462	tx->command_ptr->dst_row_addr =
1463	    msm_uport->uport.mapbase + UARTDM_TF_ADDR;
1464
1465
1466	/* Turn on Uart Receive */
1467	rx->xfer.complete_func = msm_hs_dmov_rx_callback;
1468	rx->xfer.execute_func = NULL;
1469
1470	rx->command_ptr->cmd = CMD_LC |
1471	    CMD_SRC_CRCI(msm_uport->dma_rx_crci) | CMD_MODE_BOX;
1472
1473	rx->command_ptr->src_dst_len = (MSM_UARTDM_BURST_SIZE << 16)
1474					   | (MSM_UARTDM_BURST_SIZE);
1475	rx->command_ptr->row_offset =  MSM_UARTDM_BURST_SIZE;
1476	rx->command_ptr->src_row_addr = uport->mapbase + UARTDM_RF_ADDR;
1477
1478
1479	msm_uport->imr_reg |= UARTDM_ISR_RXSTALE_BMSK;
1480	/* Enable reading the current CTS, no harm even if CTS is ignored */
1481	msm_uport->imr_reg |= UARTDM_ISR_CURRENT_CTS_BMSK;
1482
1483	msm_hs_write(uport, UARTDM_TFWR_ADDR, 0);  /* TXLEV on empty TX fifo */
1484
1485
1486	ret = request_irq(uport->irq, msm_hs_isr, IRQF_TRIGGER_HIGH,
1487			  "msm_hs_uart", msm_uport);
1488	if (unlikely(ret)) {
1489		printk(KERN_ERR "Request msm_hs_uart IRQ failed!\n");
1490		goto err_request_irq;
1491	}
1492	if (use_low_power_rx_wakeup(msm_uport)) {
1493		ret = request_irq(msm_uport->rx_wakeup.irq,
1494				  msm_hs_rx_wakeup_isr,
1495				  IRQF_TRIGGER_FALLING,
1496				  "msm_hs_rx_wakeup", msm_uport);
1497		if (unlikely(ret)) {
1498			printk(KERN_ERR "Request msm_hs_rx_wakeup IRQ failed!\n");
1499			free_irq(uport->irq, msm_uport);
1500			goto err_request_irq;
1501		}
1502		disable_irq(msm_uport->rx_wakeup.irq);
1503	}
1504
1505	spin_lock_irqsave(&uport->lock, flags);
1506
1507	msm_hs_write(uport, UARTDM_RFWR_ADDR, 0);
1508	msm_hs_start_rx_locked(uport);
1509
1510	spin_unlock_irqrestore(&uport->lock, flags);
1511	ret = pm_runtime_set_active(uport->dev);
1512	if (ret)
1513		dev_err(uport->dev, "set active error:%d\n", ret);
1514	pm_runtime_enable(uport->dev);
1515
1516	return 0;
1517
1518err_request_irq:
1519err_msm_hs_init_clk:
1520	dma_unmap_single(uport->dev, tx->dma_base,
1521				UART_XMIT_SIZE, DMA_TO_DEVICE);
1522	return ret;
1523}
1524
1525/* Initialize tx and rx data structures */
1526static int __devinit uartdm_init_port(struct uart_port *uport)
1527{
1528	int ret = 0;
1529	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1530	struct msm_hs_tx *tx = &msm_uport->tx;
1531	struct msm_hs_rx *rx = &msm_uport->rx;
1532
1533	/* Allocate the command pointer. Needs to be 64 bit aligned */
1534	tx->command_ptr = kmalloc(sizeof(dmov_box), GFP_KERNEL | __GFP_DMA);
1535	if (!tx->command_ptr)
1536		return -ENOMEM;
1537
1538	tx->command_ptr_ptr = kmalloc(sizeof(u32 *), GFP_KERNEL | __GFP_DMA);
1539	if (!tx->command_ptr_ptr) {
1540		ret = -ENOMEM;
1541		goto err_tx_command_ptr_ptr;
1542	}
1543
1544	tx->mapped_cmd_ptr = dma_map_single(uport->dev, tx->command_ptr,
1545					    sizeof(dmov_box), DMA_TO_DEVICE);
1546	tx->mapped_cmd_ptr_ptr = dma_map_single(uport->dev,
1547						tx->command_ptr_ptr,
1548						sizeof(u32 *), DMA_TO_DEVICE);
1549	tx->xfer.cmdptr = DMOV_CMD_ADDR(tx->mapped_cmd_ptr_ptr);
1550
1551	init_waitqueue_head(&rx->wait);
1552
1553	rx->pool = dma_pool_create("rx_buffer_pool", uport->dev,
1554				   UARTDM_RX_BUF_SIZE, 16, 0);
1555	if (!rx->pool) {
1556		pr_err("%s(): cannot allocate rx_buffer_pool", __func__);
1557		ret = -ENOMEM;
1558		goto err_dma_pool_create;
1559	}
1560
1561	rx->buffer = dma_pool_alloc(rx->pool, GFP_KERNEL, &rx->rbuffer);
1562	if (!rx->buffer) {
1563		pr_err("%s(): cannot allocate rx->buffer", __func__);
1564		ret = -ENOMEM;
1565		goto err_dma_pool_alloc;
1566	}
1567
1568	/* Allocate the command pointer. Needs to be 64 bit aligned */
1569	rx->command_ptr = kmalloc(sizeof(dmov_box), GFP_KERNEL | __GFP_DMA);
1570	if (!rx->command_ptr) {
1571		pr_err("%s(): cannot allocate rx->command_ptr", __func__);
1572		ret = -ENOMEM;
1573		goto err_rx_command_ptr;
1574	}
1575
1576	rx->command_ptr_ptr = kmalloc(sizeof(u32 *), GFP_KERNEL | __GFP_DMA);
1577	if (!rx->command_ptr_ptr) {
1578		pr_err("%s(): cannot allocate rx->command_ptr_ptr", __func__);
1579		ret = -ENOMEM;
1580		goto err_rx_command_ptr_ptr;
1581	}
1582
1583	rx->command_ptr->num_rows = ((UARTDM_RX_BUF_SIZE >> 4) << 16) |
1584					 (UARTDM_RX_BUF_SIZE >> 4);
1585
1586	rx->command_ptr->dst_row_addr = rx->rbuffer;
1587
1588	rx->mapped_cmd_ptr = dma_map_single(uport->dev, rx->command_ptr,
1589					    sizeof(dmov_box), DMA_TO_DEVICE);
1590
1591	*rx->command_ptr_ptr = CMD_PTR_LP | DMOV_CMD_ADDR(rx->mapped_cmd_ptr);
1592
1593	rx->cmdptr_dmaaddr = dma_map_single(uport->dev, rx->command_ptr_ptr,
1594					    sizeof(u32 *), DMA_TO_DEVICE);
1595	rx->xfer.cmdptr = DMOV_CMD_ADDR(rx->cmdptr_dmaaddr);
1596
1597	INIT_WORK(&rx->tty_work, msm_hs_tty_flip_buffer_work);
1598
1599	return ret;
1600
1601err_rx_command_ptr_ptr:
1602	kfree(rx->command_ptr);
1603err_rx_command_ptr:
1604	dma_pool_free(msm_uport->rx.pool, msm_uport->rx.buffer,
1605						msm_uport->rx.rbuffer);
1606err_dma_pool_alloc:
1607	dma_pool_destroy(msm_uport->rx.pool);
1608err_dma_pool_create:
1609	dma_unmap_single(uport->dev, msm_uport->tx.mapped_cmd_ptr_ptr,
1610				sizeof(u32 *), DMA_TO_DEVICE);
1611	dma_unmap_single(uport->dev, msm_uport->tx.mapped_cmd_ptr,
1612				sizeof(dmov_box), DMA_TO_DEVICE);
1613	kfree(msm_uport->tx.command_ptr_ptr);
1614err_tx_command_ptr_ptr:
1615	kfree(msm_uport->tx.command_ptr);
1616	return ret;
1617}
1618
1619static int __devinit msm_hs_probe(struct platform_device *pdev)
1620{
1621	int ret;
1622	struct uart_port *uport;
1623	struct msm_hs_port *msm_uport;
1624	struct resource *resource;
1625	const struct msm_serial_hs_platform_data *pdata =
1626						pdev->dev.platform_data;
1627
1628	if (pdev->id < 0 || pdev->id >= UARTDM_NR) {
1629		printk(KERN_ERR "Invalid plaform device ID = %d\n", pdev->id);
1630		return -EINVAL;
1631	}
1632
1633	msm_uport = &q_uart_port[pdev->id];
1634	uport = &msm_uport->uport;
1635
1636	uport->dev = &pdev->dev;
1637
1638	resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1639	if (unlikely(!resource))
1640		return -ENXIO;
1641
1642	uport->mapbase = resource->start;
1643	uport->irq = platform_get_irq(pdev, 0);
1644	if (unlikely(uport->irq < 0))
1645		return -ENXIO;
1646
1647	if (unlikely(irq_set_irq_wake(uport->irq, 1)))
1648		return -ENXIO;
1649
1650	if (pdata == NULL || pdata->rx_wakeup_irq < 0)
1651		msm_uport->rx_wakeup.irq = -1;
1652	else {
1653		msm_uport->rx_wakeup.irq = pdata->rx_wakeup_irq;
1654		msm_uport->rx_wakeup.ignore = 1;
1655		msm_uport->rx_wakeup.inject_rx = pdata->inject_rx_on_wakeup;
1656		msm_uport->rx_wakeup.rx_to_inject = pdata->rx_to_inject;
1657
1658		if (unlikely(msm_uport->rx_wakeup.irq < 0))
1659			return -ENXIO;
1660
1661		if (unlikely(irq_set_irq_wake(msm_uport->rx_wakeup.irq, 1)))
1662			return -ENXIO;
1663	}
1664
1665	if (pdata == NULL)
1666		msm_uport->exit_lpm_cb = NULL;
1667	else
1668		msm_uport->exit_lpm_cb = pdata->exit_lpm_cb;
1669
1670	resource = platform_get_resource_byname(pdev, IORESOURCE_DMA,
1671						"uartdm_channels");
1672	if (unlikely(!resource))
1673		return -ENXIO;
1674
1675	msm_uport->dma_tx_channel = resource->start;
1676	msm_uport->dma_rx_channel = resource->end;
1677
1678	resource = platform_get_resource_byname(pdev, IORESOURCE_DMA,
1679						"uartdm_crci");
1680	if (unlikely(!resource))
1681		return -ENXIO;
1682
1683	msm_uport->dma_tx_crci = resource->start;
1684	msm_uport->dma_rx_crci = resource->end;
1685
1686	uport->iotype = UPIO_MEM;
1687	uport->fifosize = UART_FIFOSIZE;
1688	uport->ops = &msm_hs_ops;
1689	uport->flags = UPF_BOOT_AUTOCONF;
1690	uport->uartclk = UARTCLK;
1691	msm_uport->imr_reg = 0x0;
1692	msm_uport->clk = clk_get(&pdev->dev, "uartdm_clk");
1693	if (IS_ERR(msm_uport->clk))
1694		return PTR_ERR(msm_uport->clk);
1695
1696	ret = uartdm_init_port(uport);
1697	if (unlikely(ret))
1698		return ret;
1699
1700	msm_uport->clk_state = MSM_HS_CLK_PORT_OFF;
1701	hrtimer_init(&msm_uport->clk_off_timer, CLOCK_MONOTONIC,
1702		     HRTIMER_MODE_REL);
1703	msm_uport->clk_off_timer.function = msm_hs_clk_off_retry;
1704	msm_uport->clk_off_delay = ktime_set(0, 1000000);  /* 1ms */
1705
1706	uport->line = pdev->id;
1707	return uart_add_one_port(&msm_hs_driver, uport);
1708}
1709
1710static int __init msm_serial_hs_init(void)
1711{
1712	int ret, i;
1713
1714	/* Init all UARTS as non-configured */
1715	for (i = 0; i < UARTDM_NR; i++)
1716		q_uart_port[i].uport.type = PORT_UNKNOWN;
1717
1718	msm_hs_workqueue = create_singlethread_workqueue("msm_serial_hs");
1719	if (unlikely(!msm_hs_workqueue))
1720		return -ENOMEM;
1721
1722	ret = uart_register_driver(&msm_hs_driver);
1723	if (unlikely(ret)) {
1724		printk(KERN_ERR "%s failed to load\n", __func__);
1725		goto err_uart_register_driver;
1726	}
1727
1728	ret = platform_driver_register(&msm_serial_hs_platform_driver);
1729	if (ret) {
1730		printk(KERN_ERR "%s failed to load\n", __func__);
1731		goto err_platform_driver_register;
1732	}
1733
1734	return ret;
1735
1736err_platform_driver_register:
1737	uart_unregister_driver(&msm_hs_driver);
1738err_uart_register_driver:
1739	destroy_workqueue(msm_hs_workqueue);
1740	return ret;
1741}
1742module_init(msm_serial_hs_init);
1743
1744/*
1745 *  Called by the upper layer when port is closed.
1746 *     - Disables the port
1747 *     - Unhook the ISR
1748 */
1749static void msm_hs_shutdown(struct uart_port *uport)
1750{
1751	unsigned long flags;
1752	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1753
1754	BUG_ON(msm_uport->rx.flush < FLUSH_STOP);
1755
1756	spin_lock_irqsave(&uport->lock, flags);
1757	clk_enable(msm_uport->clk);
1758
1759	/* Disable the transmitter */
1760	msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_TX_DISABLE_BMSK);
1761	/* Disable the receiver */
1762	msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_RX_DISABLE_BMSK);
1763
1764	pm_runtime_disable(uport->dev);
1765	pm_runtime_set_suspended(uport->dev);
1766
1767	/* Free the interrupt */
1768	free_irq(uport->irq, msm_uport);
1769	if (use_low_power_rx_wakeup(msm_uport))
1770		free_irq(msm_uport->rx_wakeup.irq, msm_uport);
1771
1772	msm_uport->imr_reg = 0;
1773	msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1774
1775	wait_event(msm_uport->rx.wait, msm_uport->rx.flush == FLUSH_SHUTDOWN);
1776
1777	clk_disable(msm_uport->clk);  /* to balance local clk_enable() */
1778	if (msm_uport->clk_state != MSM_HS_CLK_OFF)
1779		clk_disable(msm_uport->clk);  /* to balance clk_state */
1780	msm_uport->clk_state = MSM_HS_CLK_PORT_OFF;
1781
1782	dma_unmap_single(uport->dev, msm_uport->tx.dma_base,
1783			 UART_XMIT_SIZE, DMA_TO_DEVICE);
1784
1785	spin_unlock_irqrestore(&uport->lock, flags);
1786
1787	if (cancel_work_sync(&msm_uport->rx.tty_work))
1788		msm_hs_tty_flip_buffer_work(&msm_uport->rx.tty_work);
1789}
1790
1791static void __exit msm_serial_hs_exit(void)
1792{
1793	flush_workqueue(msm_hs_workqueue);
1794	destroy_workqueue(msm_hs_workqueue);
1795	platform_driver_unregister(&msm_serial_hs_platform_driver);
1796	uart_unregister_driver(&msm_hs_driver);
1797}
1798module_exit(msm_serial_hs_exit);
1799
1800#ifdef CONFIG_PM_RUNTIME
1801static int msm_hs_runtime_idle(struct device *dev)
1802{
1803	/*
1804	 * returning success from idle results in runtime suspend to be
1805	 * called
1806	 */
1807	return 0;
1808}
1809
1810static int msm_hs_runtime_resume(struct device *dev)
1811{
1812	struct platform_device *pdev = container_of(dev, struct
1813						    platform_device, dev);
1814	struct msm_hs_port *msm_uport = &q_uart_port[pdev->id];
1815
1816	msm_hs_request_clock_on(&msm_uport->uport);
1817	return 0;
1818}
1819
1820static int msm_hs_runtime_suspend(struct device *dev)
1821{
1822	struct platform_device *pdev = container_of(dev, struct
1823						    platform_device, dev);
1824	struct msm_hs_port *msm_uport = &q_uart_port[pdev->id];
1825
1826	msm_hs_request_clock_off(&msm_uport->uport);
1827	return 0;
1828}
1829#else
1830#define msm_hs_runtime_idle NULL
1831#define msm_hs_runtime_resume NULL
1832#define msm_hs_runtime_suspend NULL
1833#endif
1834
1835static const struct dev_pm_ops msm_hs_dev_pm_ops = {
1836	.runtime_suspend = msm_hs_runtime_suspend,
1837	.runtime_resume  = msm_hs_runtime_resume,
1838	.runtime_idle    = msm_hs_runtime_idle,
1839};
1840
1841static struct platform_driver msm_serial_hs_platform_driver = {
1842	.probe = msm_hs_probe,
1843	.remove = __devexit_p(msm_hs_remove),
1844	.driver = {
1845		.name = "msm_serial_hs",
1846		.owner = THIS_MODULE,
1847		.pm   = &msm_hs_dev_pm_ops,
1848	},
1849};
1850
1851static struct uart_driver msm_hs_driver = {
1852	.owner = THIS_MODULE,
1853	.driver_name = "msm_serial_hs",
1854	.dev_name = "ttyHS",
1855	.nr = UARTDM_NR,
1856	.cons = 0,
1857};
1858
1859static struct uart_ops msm_hs_ops = {
1860	.tx_empty = msm_hs_tx_empty,
1861	.set_mctrl = msm_hs_set_mctrl_locked,
1862	.get_mctrl = msm_hs_get_mctrl_locked,
1863	.stop_tx = msm_hs_stop_tx_locked,
1864	.start_tx = msm_hs_start_tx_locked,
1865	.stop_rx = msm_hs_stop_rx_locked,
1866	.enable_ms = msm_hs_enable_ms_locked,
1867	.break_ctl = msm_hs_break_ctl,
1868	.startup = msm_hs_startup,
1869	.shutdown = msm_hs_shutdown,
1870	.set_termios = msm_hs_set_termios,
1871	.pm = msm_hs_pm,
1872	.type = msm_hs_type,
1873	.config_port = msm_hs_config_port,
1874	.release_port = msm_hs_release_port,
1875	.request_port = msm_hs_request_port,
1876};
1877
1878MODULE_DESCRIPTION("High Speed UART Driver for the MSM chipset");
1879MODULE_VERSION("1.2");
1880MODULE_LICENSE("GPL v2");