Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * This file is provided under a dual BSD/GPLv2 license.  When using or
   3 * redistributing this file, you may do so under either license.
   4 *
   5 * GPL LICENSE SUMMARY
   6 *
   7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  21 * The full GNU General Public License is included in this distribution
  22 * in the file called LICENSE.GPL.
  23 *
  24 * BSD LICENSE
  25 *
  26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
  27 * All rights reserved.
  28 *
  29 * Redistribution and use in source and binary forms, with or without
  30 * modification, are permitted provided that the following conditions
  31 * are met:
  32 *
  33 *   * Redistributions of source code must retain the above copyright
  34 *     notice, this list of conditions and the following disclaimer.
  35 *   * Redistributions in binary form must reproduce the above copyright
  36 *     notice, this list of conditions and the following disclaimer in
  37 *     the documentation and/or other materials provided with the
  38 *     distribution.
  39 *   * Neither the name of Intel Corporation nor the names of its
  40 *     contributors may be used to endorse or promote products derived
  41 *     from this software without specific prior written permission.
  42 *
  43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  54 */
  55
  56#include "isci.h"
  57#include "host.h"
  58#include "phy.h"
  59#include "scu_event_codes.h"
  60#include "probe_roms.h"
  61
  62#undef C
  63#define C(a) (#a)
  64static const char *phy_state_name(enum sci_phy_states state)
  65{
  66	static const char * const strings[] = PHY_STATES;
  67
  68	return strings[state];
  69}
  70#undef C
  71
  72/* Maximum arbitration wait time in micro-seconds */
  73#define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME  (700)
  74
  75enum sas_linkrate sci_phy_linkrate(struct isci_phy *iphy)
  76{
  77	return iphy->max_negotiated_speed;
  78}
  79
  80static struct isci_host *phy_to_host(struct isci_phy *iphy)
  81{
  82	struct isci_phy *table = iphy - iphy->phy_index;
  83	struct isci_host *ihost = container_of(table, typeof(*ihost), phys[0]);
  84
  85	return ihost;
  86}
  87
  88static struct device *sciphy_to_dev(struct isci_phy *iphy)
  89{
  90	return &phy_to_host(iphy)->pdev->dev;
  91}
  92
  93static enum sci_status
  94sci_phy_transport_layer_initialization(struct isci_phy *iphy,
  95				       struct scu_transport_layer_registers __iomem *reg)
  96{
  97	u32 tl_control;
  98
  99	iphy->transport_layer_registers = reg;
 100
 101	writel(SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX,
 102		&iphy->transport_layer_registers->stp_rni);
 103
 104	/*
 105	 * Hardware team recommends that we enable the STP prefetch for all
 106	 * transports
 107	 */
 108	tl_control = readl(&iphy->transport_layer_registers->control);
 109	tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH);
 110	writel(tl_control, &iphy->transport_layer_registers->control);
 111
 112	return SCI_SUCCESS;
 113}
 114
 115static enum sci_status
 116sci_phy_link_layer_initialization(struct isci_phy *iphy,
 117				  struct scu_link_layer_registers __iomem *llr)
 118{
 119	struct isci_host *ihost = iphy->owning_port->owning_controller;
 120	struct sci_phy_user_params *phy_user;
 121	struct sci_phy_oem_params *phy_oem;
 122	int phy_idx = iphy->phy_index;
 123	struct sci_phy_cap phy_cap;
 
 
 124	u32 phy_configuration;
 
 125	u32 parity_check = 0;
 126	u32 parity_count = 0;
 127	u32 llctl, link_rate;
 128	u32 clksm_value = 0;
 129	u32 sp_timeouts = 0;
 130
 131	phy_user = &ihost->user_parameters.phys[phy_idx];
 132	phy_oem = &ihost->oem_parameters.phys[phy_idx];
 133	iphy->link_layer_registers = llr;
 134
 135	/* Set our IDENTIFY frame data */
 136	#define SCI_END_DEVICE 0x01
 137
 138	writel(SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR) |
 139	       SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR) |
 140	       SCU_SAS_TIID_GEN_BIT(STP_INITIATOR) |
 141	       SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST) |
 142	       SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE),
 143	       &llr->transmit_identification);
 144
 145	/* Write the device SAS Address */
 146	writel(0xFEDCBA98, &llr->sas_device_name_high);
 147	writel(phy_idx, &llr->sas_device_name_low);
 
 148
 149	/* Write the source SAS Address */
 150	writel(phy_oem->sas_address.high, &llr->source_sas_address_high);
 151	writel(phy_oem->sas_address.low, &llr->source_sas_address_low);
 
 
 152
 153	/* Clear and Set the PHY Identifier */
 154	writel(0, &llr->identify_frame_phy_id);
 155	writel(SCU_SAS_TIPID_GEN_VALUE(ID, phy_idx), &llr->identify_frame_phy_id);
 
 156
 157	/* Change the initial state of the phy configuration register */
 158	phy_configuration = readl(&llr->phy_configuration);
 
 159
 160	/* Hold OOB state machine in reset */
 161	phy_configuration |=  SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
 162	writel(phy_configuration, &llr->phy_configuration);
 
 163
 164	/* Configure the SNW capabilities */
 165	phy_cap.all = 0;
 166	phy_cap.start = 1;
 167	phy_cap.gen3_no_ssc = 1;
 168	phy_cap.gen2_no_ssc = 1;
 169	phy_cap.gen1_no_ssc = 1;
 170	if (ihost->oem_parameters.controller.do_enable_ssc) {
 171		struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
 172		struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_idx];
 173		struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
 174		bool en_sas = false;
 175		bool en_sata = false;
 176		u32 sas_type = 0;
 177		u32 sata_spread = 0x2;
 178		u32 sas_spread = 0x2;
 179
 180		phy_cap.gen3_ssc = 1;
 181		phy_cap.gen2_ssc = 1;
 182		phy_cap.gen1_ssc = 1;
 183
 184		if (pci_info->orom->hdr.version < ISCI_ROM_VER_1_1)
 185			en_sas = en_sata = true;
 186		else {
 187			sata_spread = ihost->oem_parameters.controller.ssc_sata_tx_spread_level;
 188			sas_spread = ihost->oem_parameters.controller.ssc_sas_tx_spread_level;
 189
 190			if (sata_spread)
 191				en_sata = true;
 192
 193			if (sas_spread) {
 194				en_sas = true;
 195				sas_type = ihost->oem_parameters.controller.ssc_sas_tx_type;
 196			}
 197
 198		}
 199
 200		if (en_sas) {
 201			u32 reg;
 202
 203			reg = readl(&xcvr->afe_xcvr_control0);
 204			reg |= (0x00100000 | (sas_type << 19));
 205			writel(reg, &xcvr->afe_xcvr_control0);
 206
 207			reg = readl(&xcvr->afe_tx_ssc_control);
 208			reg |= sas_spread << 8;
 209			writel(reg, &xcvr->afe_tx_ssc_control);
 210		}
 211
 212		if (en_sata) {
 213			u32 reg;
 214
 215			reg = readl(&xcvr->afe_tx_ssc_control);
 216			reg |= sata_spread;
 217			writel(reg, &xcvr->afe_tx_ssc_control);
 218
 219			reg = readl(&llr->stp_control);
 220			reg |= 1 << 12;
 221			writel(reg, &llr->stp_control);
 222		}
 223	}
 224
 225	/* The SAS specification indicates that the phy_capabilities that
 226	 * are transmitted shall have an even parity.  Calculate the parity.
 227	 */
 228	parity_check = phy_cap.all;
 229	while (parity_check != 0) {
 230		if (parity_check & 0x1)
 231			parity_count++;
 232		parity_check >>= 1;
 233	}
 234
 235	/* If parity indicates there are an odd number of bits set, then
 236	 * set the parity bit to 1 in the phy capabilities.
 237	 */
 238	if ((parity_count % 2) != 0)
 239		phy_cap.parity = 1;
 240
 241	writel(phy_cap.all, &llr->phy_capabilities);
 242
 243	/* Set the enable spinup period but disable the ability to send
 244	 * notify enable spinup
 245	 */
 246	writel(SCU_ENSPINUP_GEN_VAL(COUNT,
 247			phy_user->notify_enable_spin_up_insertion_frequency),
 248		&llr->notify_enable_spinup_control);
 249
 250	/* Write the ALIGN Insertion Ferequency for connected phy and
 251	 * inpendent of connected state
 252	 */
 253	clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(CONNECTED,
 254			phy_user->in_connection_align_insertion_frequency);
 255
 256	clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(GENERAL,
 257			phy_user->align_insertion_frequency);
 258
 259	writel(clksm_value, &llr->clock_skew_management);
 260
 261	if (is_c0(ihost->pdev) || is_c1(ihost->pdev)) {
 262		writel(0x04210400, &llr->afe_lookup_table_control);
 263		writel(0x020A7C05, &llr->sas_primitive_timeout);
 264	} else
 265		writel(0x02108421, &llr->afe_lookup_table_control);
 266
 267	llctl = SCU_SAS_LLCTL_GEN_VAL(NO_OUTBOUND_TASK_TIMEOUT,
 268		(u8)ihost->user_parameters.no_outbound_task_timeout);
 269
 270	switch (phy_user->max_speed_generation) {
 271	case SCIC_SDS_PARM_GEN3_SPEED:
 272		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3;
 273		break;
 274	case SCIC_SDS_PARM_GEN2_SPEED:
 275		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2;
 276		break;
 277	default:
 278		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1;
 279		break;
 280	}
 281	llctl |= SCU_SAS_LLCTL_GEN_VAL(MAX_LINK_RATE, link_rate);
 282	writel(llctl, &llr->link_layer_control);
 283
 284	sp_timeouts = readl(&llr->sas_phy_timeouts);
 285
 286	/* Clear the default 0x36 (54us) RATE_CHANGE timeout value. */
 287	sp_timeouts &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF);
 288
 289	/* Set RATE_CHANGE timeout value to 0x3B (59us).  This ensures SCU can
 290	 * lock with 3Gb drive when SCU max rate is set to 1.5Gb.
 291	 */
 292	sp_timeouts |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B);
 293
 294	writel(sp_timeouts, &llr->sas_phy_timeouts);
 295
 296	if (is_a2(ihost->pdev)) {
 297		/* Program the max ARB time for the PHY to 700us so we
 298		 * inter-operate with the PMC expander which shuts down
 299		 * PHYs if the expander PHY generates too many breaks.
 300		 * This time value will guarantee that the initiator PHY
 301		 * will generate the break.
 302		 */
 303		writel(SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME,
 304		       &llr->maximum_arbitration_wait_timer_timeout);
 305	}
 306
 307	/* Disable link layer hang detection, rely on the OS timeout for
 308	 * I/O timeouts.
 309	 */
 310	writel(0, &llr->link_layer_hang_detection_timeout);
 311
 312	/* We can exit the initial state to the stopped state */
 313	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
 314
 315	return SCI_SUCCESS;
 316}
 317
 318static void phy_sata_timeout(struct timer_list *t)
 319{
 320	struct sci_timer *tmr = from_timer(tmr, t, timer);
 321	struct isci_phy *iphy = container_of(tmr, typeof(*iphy), sata_timer);
 322	struct isci_host *ihost = iphy->owning_port->owning_controller;
 323	unsigned long flags;
 324
 325	spin_lock_irqsave(&ihost->scic_lock, flags);
 326
 327	if (tmr->cancel)
 328		goto done;
 329
 330	dev_dbg(sciphy_to_dev(iphy),
 331		 "%s: SCIC SDS Phy 0x%p did not receive signature fis before "
 332		 "timeout.\n",
 333		 __func__,
 334		 iphy);
 335
 336	sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 337done:
 338	spin_unlock_irqrestore(&ihost->scic_lock, flags);
 339}
 340
 341/**
 342 * phy_get_non_dummy_port() - This method returns the port currently containing
 343 * this phy. If the phy is currently contained by the dummy port, then the phy
 344 * is considered to not be part of a port.
 345 *
 346 * @iphy: This parameter specifies the phy for which to retrieve the
 347 *    containing port.
 348 *
 349 * This method returns a handle to a port that contains the supplied phy.
 350 * NULL This value is returned if the phy is not part of a real
 351 * port (i.e. it's contained in the dummy port). !NULL All other
 352 * values indicate a handle/pointer to the port containing the phy.
 353 */
 354struct isci_port *phy_get_non_dummy_port(struct isci_phy *iphy)
 355{
 356	struct isci_port *iport = iphy->owning_port;
 357
 358	if (iport->physical_port_index == SCIC_SDS_DUMMY_PORT)
 359		return NULL;
 360
 361	return iphy->owning_port;
 362}
 363
 364/*
 365 * sci_phy_set_port() - This method will assign a port to the phy object.
 
 
 
 
 366 */
 367void sci_phy_set_port(
 368	struct isci_phy *iphy,
 369	struct isci_port *iport)
 370{
 371	iphy->owning_port = iport;
 372
 373	if (iphy->bcn_received_while_port_unassigned) {
 374		iphy->bcn_received_while_port_unassigned = false;
 375		sci_port_broadcast_change_received(iphy->owning_port, iphy);
 376	}
 377}
 378
 379enum sci_status sci_phy_initialize(struct isci_phy *iphy,
 380				   struct scu_transport_layer_registers __iomem *tl,
 381				   struct scu_link_layer_registers __iomem *ll)
 382{
 383	/* Perfrom the initialization of the TL hardware */
 384	sci_phy_transport_layer_initialization(iphy, tl);
 385
 386	/* Perofrm the initialization of the PE hardware */
 387	sci_phy_link_layer_initialization(iphy, ll);
 388
 389	/* There is nothing that needs to be done in this state just
 390	 * transition to the stopped state
 391	 */
 392	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
 393
 394	return SCI_SUCCESS;
 395}
 396
 397/**
 398 * sci_phy_setup_transport() - This method assigns the direct attached device ID for this phy.
 399 *
 400 * @iphy: The phy for which the direct attached device id is to
 401 *       be assigned.
 402 * @device_id: The direct attached device ID to assign to the phy.
 403 *       This will either be the RNi for the device or an invalid RNi if there
 404 *       is no current device assigned to the phy.
 405 */
 406void sci_phy_setup_transport(struct isci_phy *iphy, u32 device_id)
 407{
 408	u32 tl_control;
 409
 410	writel(device_id, &iphy->transport_layer_registers->stp_rni);
 411
 412	/*
 413	 * The read should guarantee that the first write gets posted
 414	 * before the next write
 415	 */
 416	tl_control = readl(&iphy->transport_layer_registers->control);
 417	tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE);
 418	writel(tl_control, &iphy->transport_layer_registers->control);
 419}
 420
 421static void sci_phy_suspend(struct isci_phy *iphy)
 422{
 423	u32 scu_sas_pcfg_value;
 424
 425	scu_sas_pcfg_value =
 426		readl(&iphy->link_layer_registers->phy_configuration);
 427	scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
 428	writel(scu_sas_pcfg_value,
 429		&iphy->link_layer_registers->phy_configuration);
 430
 431	sci_phy_setup_transport(iphy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX);
 432}
 433
 434void sci_phy_resume(struct isci_phy *iphy)
 435{
 436	u32 scu_sas_pcfg_value;
 437
 438	scu_sas_pcfg_value =
 439		readl(&iphy->link_layer_registers->phy_configuration);
 440	scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
 441	writel(scu_sas_pcfg_value,
 442		&iphy->link_layer_registers->phy_configuration);
 443}
 444
 445void sci_phy_get_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
 446{
 447	sas->high = readl(&iphy->link_layer_registers->source_sas_address_high);
 448	sas->low = readl(&iphy->link_layer_registers->source_sas_address_low);
 449}
 450
 451void sci_phy_get_attached_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
 452{
 453	struct sas_identify_frame *iaf;
 454
 455	iaf = &iphy->frame_rcvd.iaf;
 456	memcpy(sas, iaf->sas_addr, SAS_ADDR_SIZE);
 457}
 458
 459void sci_phy_get_protocols(struct isci_phy *iphy, struct sci_phy_proto *proto)
 460{
 461	proto->all = readl(&iphy->link_layer_registers->transmit_identification);
 462}
 463
 464enum sci_status sci_phy_start(struct isci_phy *iphy)
 465{
 466	enum sci_phy_states state = iphy->sm.current_state_id;
 467
 468	if (state != SCI_PHY_STOPPED) {
 469		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
 470			__func__, phy_state_name(state));
 471		return SCI_FAILURE_INVALID_STATE;
 472	}
 473
 474	sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 475	return SCI_SUCCESS;
 476}
 477
 478enum sci_status sci_phy_stop(struct isci_phy *iphy)
 479{
 480	enum sci_phy_states state = iphy->sm.current_state_id;
 481
 482	switch (state) {
 483	case SCI_PHY_SUB_INITIAL:
 484	case SCI_PHY_SUB_AWAIT_OSSP_EN:
 485	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
 486	case SCI_PHY_SUB_AWAIT_SAS_POWER:
 487	case SCI_PHY_SUB_AWAIT_SATA_POWER:
 488	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
 489	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
 490	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
 491	case SCI_PHY_SUB_FINAL:
 492	case SCI_PHY_READY:
 493		break;
 494	default:
 495		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
 496			__func__, phy_state_name(state));
 497		return SCI_FAILURE_INVALID_STATE;
 498	}
 499
 500	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
 501	return SCI_SUCCESS;
 502}
 503
 504enum sci_status sci_phy_reset(struct isci_phy *iphy)
 505{
 506	enum sci_phy_states state = iphy->sm.current_state_id;
 507
 508	if (state != SCI_PHY_READY) {
 509		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
 510			__func__, phy_state_name(state));
 511		return SCI_FAILURE_INVALID_STATE;
 512	}
 513
 514	sci_change_state(&iphy->sm, SCI_PHY_RESETTING);
 515	return SCI_SUCCESS;
 516}
 517
 518enum sci_status sci_phy_consume_power_handler(struct isci_phy *iphy)
 519{
 520	enum sci_phy_states state = iphy->sm.current_state_id;
 521
 522	switch (state) {
 523	case SCI_PHY_SUB_AWAIT_SAS_POWER: {
 524		u32 enable_spinup;
 525
 526		enable_spinup = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
 527		enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE);
 528		writel(enable_spinup, &iphy->link_layer_registers->notify_enable_spinup_control);
 529
 530		/* Change state to the final state this substate machine has run to completion */
 531		sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
 532
 533		return SCI_SUCCESS;
 534	}
 535	case SCI_PHY_SUB_AWAIT_SATA_POWER: {
 536		u32 scu_sas_pcfg_value;
 537
 538		/* Release the spinup hold state and reset the OOB state machine */
 539		scu_sas_pcfg_value =
 540			readl(&iphy->link_layer_registers->phy_configuration);
 541		scu_sas_pcfg_value &=
 542			~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
 543		scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
 544		writel(scu_sas_pcfg_value,
 545			&iphy->link_layer_registers->phy_configuration);
 546
 547		/* Now restart the OOB operation */
 548		scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
 549		scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
 550		writel(scu_sas_pcfg_value,
 551			&iphy->link_layer_registers->phy_configuration);
 552
 553		/* Change state to the final state this substate machine has run to completion */
 554		sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_PHY_EN);
 555
 556		return SCI_SUCCESS;
 557	}
 558	default:
 559		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
 560			__func__, phy_state_name(state));
 561		return SCI_FAILURE_INVALID_STATE;
 562	}
 563}
 564
 565static void sci_phy_start_sas_link_training(struct isci_phy *iphy)
 566{
 567	/* continue the link training for the phy as if it were a SAS PHY
 568	 * instead of a SATA PHY. This is done because the completion queue had a SAS
 569	 * PHY DETECTED event when the state machine was expecting a SATA PHY event.
 570	 */
 571	u32 phy_control;
 572
 573	phy_control = readl(&iphy->link_layer_registers->phy_configuration);
 574	phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD);
 575	writel(phy_control,
 576	       &iphy->link_layer_registers->phy_configuration);
 577
 578	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SAS_SPEED_EN);
 579
 580	iphy->protocol = SAS_PROTOCOL_SSP;
 581}
 582
 583static void sci_phy_start_sata_link_training(struct isci_phy *iphy)
 584{
 585	/* This method continues the link training for the phy as if it were a SATA PHY
 586	 * instead of a SAS PHY.  This is done because the completion queue had a SATA
 587	 * SPINUP HOLD event when the state machine was expecting a SAS PHY event. none
 588	 */
 589	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_POWER);
 590
 591	iphy->protocol = SAS_PROTOCOL_SATA;
 592}
 593
 594/**
 595 * sci_phy_complete_link_training - perform processing common to
 596 *    all protocols upon completion of link training.
 597 * @iphy: This parameter specifies the phy object for which link training
 598 *    has completed.
 599 * @max_link_rate: This parameter specifies the maximum link rate to be
 600 *    associated with this phy.
 601 * @next_state: This parameter specifies the next state for the phy's starting
 602 *    sub-state machine.
 603 *
 604 */
 605static void sci_phy_complete_link_training(struct isci_phy *iphy,
 606					   enum sas_linkrate max_link_rate,
 607					   u32 next_state)
 608{
 609	iphy->max_negotiated_speed = max_link_rate;
 610
 611	sci_change_state(&iphy->sm, next_state);
 612}
 613
 614static const char *phy_event_name(u32 event_code)
 615{
 616	switch (scu_get_event_code(event_code)) {
 617	case SCU_EVENT_PORT_SELECTOR_DETECTED:
 618		return "port selector";
 619	case SCU_EVENT_SENT_PORT_SELECTION:
 620		return "port selection";
 621	case SCU_EVENT_HARD_RESET_TRANSMITTED:
 622		return "tx hard reset";
 623	case SCU_EVENT_HARD_RESET_RECEIVED:
 624		return "rx hard reset";
 625	case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
 626		return "identify timeout";
 627	case SCU_EVENT_LINK_FAILURE:
 628		return "link fail";
 629	case SCU_EVENT_SATA_SPINUP_HOLD:
 630		return "sata spinup hold";
 631	case SCU_EVENT_SAS_15_SSC:
 632	case SCU_EVENT_SAS_15:
 633		return "sas 1.5";
 634	case SCU_EVENT_SAS_30_SSC:
 635	case SCU_EVENT_SAS_30:
 636		return "sas 3.0";
 637	case SCU_EVENT_SAS_60_SSC:
 638	case SCU_EVENT_SAS_60:
 639		return "sas 6.0";
 640	case SCU_EVENT_SATA_15_SSC:
 641	case SCU_EVENT_SATA_15:
 642		return "sata 1.5";
 643	case SCU_EVENT_SATA_30_SSC:
 644	case SCU_EVENT_SATA_30:
 645		return "sata 3.0";
 646	case SCU_EVENT_SATA_60_SSC:
 647	case SCU_EVENT_SATA_60:
 648		return "sata 6.0";
 649	case SCU_EVENT_SAS_PHY_DETECTED:
 650		return "sas detect";
 651	case SCU_EVENT_SATA_PHY_DETECTED:
 652		return "sata detect";
 653	default:
 654		return "unknown";
 655	}
 656}
 657
 658#define phy_event_dbg(iphy, state, code) \
 659	dev_dbg(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
 660		phy_to_host(iphy)->id, iphy->phy_index, \
 661		phy_state_name(state), phy_event_name(code), code)
 662
 663#define phy_event_warn(iphy, state, code) \
 664	dev_warn(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
 665		phy_to_host(iphy)->id, iphy->phy_index, \
 666		phy_state_name(state), phy_event_name(code), code)
 667
 668
 669static void scu_link_layer_set_txcomsas_timeout(struct isci_phy *iphy, u32 timeout)
 670{
 671	u32 val;
 672
 673	/* Extend timeout */
 674	val = readl(&iphy->link_layer_registers->transmit_comsas_signal);
 675	val &= ~SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_MASK);
 676	val |= SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, timeout);
 677
 678	writel(val, &iphy->link_layer_registers->transmit_comsas_signal);
 679}
 680
 681enum sci_status sci_phy_event_handler(struct isci_phy *iphy, u32 event_code)
 682{
 683	enum sci_phy_states state = iphy->sm.current_state_id;
 684
 685	switch (state) {
 686	case SCI_PHY_SUB_AWAIT_OSSP_EN:
 687		switch (scu_get_event_code(event_code)) {
 688		case SCU_EVENT_SAS_PHY_DETECTED:
 689			sci_phy_start_sas_link_training(iphy);
 690			iphy->is_in_link_training = true;
 691			break;
 692		case SCU_EVENT_SATA_SPINUP_HOLD:
 693			sci_phy_start_sata_link_training(iphy);
 694			iphy->is_in_link_training = true;
 695			break;
 696		case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
 697		       /* Extend timeout value */
 698		       scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
 699
 700		       /* Start the oob/sn state machine over again */
 701		       sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 702		       break;
 703		default:
 704			phy_event_dbg(iphy, state, event_code);
 
 
 
 
 705			return SCI_FAILURE;
 706		}
 707		return SCI_SUCCESS;
 708	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
 709		switch (scu_get_event_code(event_code)) {
 710		case SCU_EVENT_SAS_PHY_DETECTED:
 711			/*
 712			 * Why is this being reported again by the controller?
 713			 * We would re-enter this state so just stay here */
 714			break;
 715		case SCU_EVENT_SAS_15:
 716		case SCU_EVENT_SAS_15_SSC:
 717			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
 718						       SCI_PHY_SUB_AWAIT_IAF_UF);
 719			break;
 720		case SCU_EVENT_SAS_30:
 721		case SCU_EVENT_SAS_30_SSC:
 722			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
 723						       SCI_PHY_SUB_AWAIT_IAF_UF);
 724			break;
 725		case SCU_EVENT_SAS_60:
 726		case SCU_EVENT_SAS_60_SSC:
 727			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
 728						       SCI_PHY_SUB_AWAIT_IAF_UF);
 729			break;
 730		case SCU_EVENT_SATA_SPINUP_HOLD:
 731			/*
 732			 * We were doing SAS PHY link training and received a SATA PHY event
 733			 * continue OOB/SN as if this were a SATA PHY */
 734			sci_phy_start_sata_link_training(iphy);
 735			break;
 736		case SCU_EVENT_LINK_FAILURE:
 737			/* Change the timeout value to default */
 738			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
 739
 740			/* Link failure change state back to the starting state */
 741			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 742			break;
 743		case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
 744		       /* Extend the timeout value */
 745		       scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
 746
 747		       /* Start the oob/sn state machine over again */
 748		       sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 749		       break;
 750		default:
 751			phy_event_warn(iphy, state, event_code);
 
 
 
 
 752			return SCI_FAILURE;
 
 753		}
 754		return SCI_SUCCESS;
 755	case SCI_PHY_SUB_AWAIT_IAF_UF:
 756		switch (scu_get_event_code(event_code)) {
 757		case SCU_EVENT_SAS_PHY_DETECTED:
 758			/* Backup the state machine */
 759			sci_phy_start_sas_link_training(iphy);
 760			break;
 761		case SCU_EVENT_SATA_SPINUP_HOLD:
 762			/* We were doing SAS PHY link training and received a
 763			 * SATA PHY event continue OOB/SN as if this were a
 764			 * SATA PHY
 765			 */
 766			sci_phy_start_sata_link_training(iphy);
 767			break;
 768		case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
 769			/* Extend the timeout value */
 770			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
 771
 772			/* Start the oob/sn state machine over again */
 773			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 774			break;
 775		case SCU_EVENT_LINK_FAILURE:
 776			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
 777			fallthrough;
 778		case SCU_EVENT_HARD_RESET_RECEIVED:
 779			/* Start the oob/sn state machine over again */
 780			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 781			break;
 782		default:
 783			phy_event_warn(iphy, state, event_code);
 
 
 
 784			return SCI_FAILURE;
 785		}
 786		return SCI_SUCCESS;
 787	case SCI_PHY_SUB_AWAIT_SAS_POWER:
 788		switch (scu_get_event_code(event_code)) {
 789		case SCU_EVENT_LINK_FAILURE:
 790			/* Change the timeout value to default */
 791			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
 792
 793			/* Link failure change state back to the starting state */
 794			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 795			break;
 796		default:
 797			phy_event_warn(iphy, state, event_code);
 
 
 
 
 798			return SCI_FAILURE;
 799		}
 800		return SCI_SUCCESS;
 801	case SCI_PHY_SUB_AWAIT_SATA_POWER:
 802		switch (scu_get_event_code(event_code)) {
 803		case SCU_EVENT_LINK_FAILURE:
 804			/* Change the timeout value to default */
 805			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
 806
 807			/* Link failure change state back to the starting state */
 808			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 809			break;
 810		case SCU_EVENT_SATA_SPINUP_HOLD:
 811			/* These events are received every 10ms and are
 812			 * expected while in this state
 813			 */
 814			break;
 815
 816		case SCU_EVENT_SAS_PHY_DETECTED:
 817			/* There has been a change in the phy type before OOB/SN for the
 818			 * SATA finished start down the SAS link traning path.
 819			 */
 820			sci_phy_start_sas_link_training(iphy);
 821			break;
 822
 823		default:
 824			phy_event_warn(iphy, state, event_code);
 
 
 
 
 825			return SCI_FAILURE;
 826		}
 827		return SCI_SUCCESS;
 828	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
 829		switch (scu_get_event_code(event_code)) {
 830		case SCU_EVENT_LINK_FAILURE:
 831			/* Change the timeout value to default */
 832			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
 833
 834			/* Link failure change state back to the starting state */
 835			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 836			break;
 837		case SCU_EVENT_SATA_SPINUP_HOLD:
 838			/* These events might be received since we dont know how many may be in
 839			 * the completion queue while waiting for power
 840			 */
 841			break;
 842		case SCU_EVENT_SATA_PHY_DETECTED:
 843			iphy->protocol = SAS_PROTOCOL_SATA;
 844
 845			/* We have received the SATA PHY notification change state */
 846			sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
 847			break;
 848		case SCU_EVENT_SAS_PHY_DETECTED:
 849			/* There has been a change in the phy type before OOB/SN for the
 850			 * SATA finished start down the SAS link traning path.
 851			 */
 852			sci_phy_start_sas_link_training(iphy);
 853			break;
 854		default:
 855			phy_event_warn(iphy, state, event_code);
 856			return SCI_FAILURE;
 
 
 
 
 
 857		}
 858		return SCI_SUCCESS;
 859	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
 860		switch (scu_get_event_code(event_code)) {
 861		case SCU_EVENT_SATA_PHY_DETECTED:
 862			/*
 863			 * The hardware reports multiple SATA PHY detected events
 864			 * ignore the extras */
 865			break;
 866		case SCU_EVENT_SATA_15:
 867		case SCU_EVENT_SATA_15_SSC:
 868			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
 869						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
 870			break;
 871		case SCU_EVENT_SATA_30:
 872		case SCU_EVENT_SATA_30_SSC:
 873			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
 874						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
 875			break;
 876		case SCU_EVENT_SATA_60:
 877		case SCU_EVENT_SATA_60_SSC:
 878			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
 879						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
 880			break;
 881		case SCU_EVENT_LINK_FAILURE:
 882			/* Change the timeout value to default */
 883			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
 884
 885			/* Link failure change state back to the starting state */
 886			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 887			break;
 888		case SCU_EVENT_SAS_PHY_DETECTED:
 889			/*
 890			 * There has been a change in the phy type before OOB/SN for the
 891			 * SATA finished start down the SAS link traning path. */
 892			sci_phy_start_sas_link_training(iphy);
 893			break;
 894		default:
 895			phy_event_warn(iphy, state, event_code);
 
 
 
 
 896			return SCI_FAILURE;
 897		}
 898
 899		return SCI_SUCCESS;
 900	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
 901		switch (scu_get_event_code(event_code)) {
 902		case SCU_EVENT_SATA_PHY_DETECTED:
 903			/* Backup the state machine */
 904			sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
 905			break;
 906
 907		case SCU_EVENT_LINK_FAILURE:
 908			/* Change the timeout value to default */
 909			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
 910
 911			/* Link failure change state back to the starting state */
 912			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 913			break;
 914
 915		default:
 916			phy_event_warn(iphy, state, event_code);
 
 
 
 
 
 917			return SCI_FAILURE;
 918		}
 919		return SCI_SUCCESS;
 920	case SCI_PHY_READY:
 921		switch (scu_get_event_code(event_code)) {
 922		case SCU_EVENT_LINK_FAILURE:
 923			/* Set default timeout */
 924			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
 925
 926			/* Link failure change state back to the starting state */
 927			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 928			break;
 929		case SCU_EVENT_BROADCAST_CHANGE:
 930		case SCU_EVENT_BROADCAST_SES:
 931		case SCU_EVENT_BROADCAST_RESERVED0:
 932		case SCU_EVENT_BROADCAST_RESERVED1:
 933		case SCU_EVENT_BROADCAST_EXPANDER:
 934		case SCU_EVENT_BROADCAST_AEN:
 935			/* Broadcast change received. Notify the port. */
 936			if (phy_get_non_dummy_port(iphy) != NULL)
 937				sci_port_broadcast_change_received(iphy->owning_port, iphy);
 938			else
 939				iphy->bcn_received_while_port_unassigned = true;
 940			break;
 941		case SCU_EVENT_BROADCAST_RESERVED3:
 942		case SCU_EVENT_BROADCAST_RESERVED4:
 943		default:
 944			phy_event_warn(iphy, state, event_code);
 
 
 
 945			return SCI_FAILURE_INVALID_STATE;
 946		}
 947		return SCI_SUCCESS;
 948	case SCI_PHY_RESETTING:
 949		switch (scu_get_event_code(event_code)) {
 950		case SCU_EVENT_HARD_RESET_TRANSMITTED:
 951			/* Link failure change state back to the starting state */
 952			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 953			break;
 954		default:
 955			phy_event_warn(iphy, state, event_code);
 
 
 
 
 956			return SCI_FAILURE_INVALID_STATE;
 
 957		}
 958		return SCI_SUCCESS;
 959	default:
 960		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
 961			__func__, phy_state_name(state));
 962		return SCI_FAILURE_INVALID_STATE;
 963	}
 964}
 965
 966enum sci_status sci_phy_frame_handler(struct isci_phy *iphy, u32 frame_index)
 967{
 968	enum sci_phy_states state = iphy->sm.current_state_id;
 969	struct isci_host *ihost = iphy->owning_port->owning_controller;
 970	enum sci_status result;
 971	unsigned long flags;
 972
 973	switch (state) {
 974	case SCI_PHY_SUB_AWAIT_IAF_UF: {
 975		u32 *frame_words;
 976		struct sas_identify_frame iaf;
 977
 978		result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
 979								  frame_index,
 980								  (void **)&frame_words);
 981
 982		if (result != SCI_SUCCESS)
 983			return result;
 984
 985		sci_swab32_cpy(&iaf, frame_words, sizeof(iaf) / sizeof(u32));
 986		if (iaf.frame_type == 0) {
 987			u32 state;
 988
 989			spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
 990			memcpy(&iphy->frame_rcvd.iaf, &iaf, sizeof(iaf));
 991			spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
 992			if (iaf.smp_tport) {
 993				/* We got the IAF for an expander PHY go to the final
 994				 * state since there are no power requirements for
 995				 * expander phys.
 996				 */
 997				state = SCI_PHY_SUB_FINAL;
 998			} else {
 999				/* We got the IAF we can now go to the await spinup
1000				 * semaphore state
1001				 */
1002				state = SCI_PHY_SUB_AWAIT_SAS_POWER;
1003			}
1004			sci_change_state(&iphy->sm, state);
1005			result = SCI_SUCCESS;
1006		} else
1007			dev_warn(sciphy_to_dev(iphy),
1008				"%s: PHY starting substate machine received "
1009				"unexpected frame id %x\n",
1010				__func__, frame_index);
1011
1012		sci_controller_release_frame(ihost, frame_index);
1013		return result;
1014	}
1015	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: {
1016		struct dev_to_host_fis *frame_header;
1017		u32 *fis_frame_data;
1018
1019		result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1020								  frame_index,
1021								  (void **)&frame_header);
1022
1023		if (result != SCI_SUCCESS)
1024			return result;
1025
1026		if ((frame_header->fis_type == FIS_REGD2H) &&
1027		    !(frame_header->status & ATA_BUSY)) {
1028			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1029								 frame_index,
1030								 (void **)&fis_frame_data);
1031
1032			spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
1033			sci_controller_copy_sata_response(&iphy->frame_rcvd.fis,
1034							  frame_header,
1035							  fis_frame_data);
1036			spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
1037
1038			/* got IAF we can now go to the await spinup semaphore state */
1039			sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
1040
1041			result = SCI_SUCCESS;
1042		} else
1043			dev_warn(sciphy_to_dev(iphy),
1044				 "%s: PHY starting substate machine received "
1045				 "unexpected frame id %x\n",
1046				 __func__, frame_index);
1047
1048		/* Regardless of the result we are done with this frame with it */
1049		sci_controller_release_frame(ihost, frame_index);
1050
1051		return result;
1052	}
1053	default:
1054		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
1055			__func__, phy_state_name(state));
1056		return SCI_FAILURE_INVALID_STATE;
1057	}
1058
1059}
1060
1061static void sci_phy_starting_initial_substate_enter(struct sci_base_state_machine *sm)
1062{
1063	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1064
1065	/* This is just an temporary state go off to the starting state */
1066	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_OSSP_EN);
1067}
1068
1069static void sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine *sm)
1070{
1071	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1072	struct isci_host *ihost = iphy->owning_port->owning_controller;
1073
1074	sci_controller_power_control_queue_insert(ihost, iphy);
1075}
1076
1077static void sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine *sm)
1078{
1079	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1080	struct isci_host *ihost = iphy->owning_port->owning_controller;
1081
1082	sci_controller_power_control_queue_remove(ihost, iphy);
1083}
1084
1085static void sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine *sm)
1086{
1087	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1088	struct isci_host *ihost = iphy->owning_port->owning_controller;
1089
1090	sci_controller_power_control_queue_insert(ihost, iphy);
1091}
1092
1093static void sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine *sm)
1094{
1095	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1096	struct isci_host *ihost = iphy->owning_port->owning_controller;
1097
1098	sci_controller_power_control_queue_remove(ihost, iphy);
1099}
1100
1101static void sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine *sm)
1102{
1103	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1104
1105	sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
1106}
1107
1108static void sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine *sm)
1109{
1110	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1111
1112	sci_del_timer(&iphy->sata_timer);
1113}
1114
1115static void sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine *sm)
1116{
1117	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1118
1119	sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
1120}
1121
1122static void sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine *sm)
1123{
1124	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1125
1126	sci_del_timer(&iphy->sata_timer);
1127}
1128
1129static void sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine *sm)
1130{
1131	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1132
1133	if (sci_port_link_detected(iphy->owning_port, iphy)) {
1134
1135		/*
1136		 * Clear the PE suspend condition so we can actually
1137		 * receive SIG FIS
1138		 * The hardware will not respond to the XRDY until the PE
1139		 * suspend condition is cleared.
1140		 */
1141		sci_phy_resume(iphy);
1142
1143		sci_mod_timer(&iphy->sata_timer,
1144			      SCIC_SDS_SIGNATURE_FIS_TIMEOUT);
1145	} else
1146		iphy->is_in_link_training = false;
1147}
1148
1149static void sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine *sm)
1150{
1151	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1152
1153	sci_del_timer(&iphy->sata_timer);
1154}
1155
1156static void sci_phy_starting_final_substate_enter(struct sci_base_state_machine *sm)
1157{
1158	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1159
1160	/* State machine has run to completion so exit out and change
1161	 * the base state machine to the ready state
1162	 */
1163	sci_change_state(&iphy->sm, SCI_PHY_READY);
1164}
1165
1166/**
1167 * scu_link_layer_stop_protocol_engine()
1168 * @iphy: This is the struct isci_phy object to stop.
1169 *
1170 * This method will stop the struct isci_phy object. This does not reset the
1171 * protocol engine it just suspends it and places it in a state where it will
1172 * not cause the end device to power up. none
1173 */
1174static void scu_link_layer_stop_protocol_engine(
1175	struct isci_phy *iphy)
1176{
1177	u32 scu_sas_pcfg_value;
1178	u32 enable_spinup_value;
1179
1180	/* Suspend the protocol engine and place it in a sata spinup hold state */
1181	scu_sas_pcfg_value =
1182		readl(&iphy->link_layer_registers->phy_configuration);
1183	scu_sas_pcfg_value |=
1184		(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1185		 SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE) |
1186		 SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD));
1187	writel(scu_sas_pcfg_value,
1188	       &iphy->link_layer_registers->phy_configuration);
1189
1190	/* Disable the notify enable spinup primitives */
1191	enable_spinup_value = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
1192	enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE);
1193	writel(enable_spinup_value, &iphy->link_layer_registers->notify_enable_spinup_control);
1194}
1195
1196static void scu_link_layer_start_oob(struct isci_phy *iphy)
 
 
 
 
 
 
1197{
1198	struct scu_link_layer_registers __iomem *ll = iphy->link_layer_registers;
1199	u32 val;
1200
1201	/** Reset OOB sequence - start */
1202	val = readl(&ll->phy_configuration);
1203	val &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1204		 SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE) |
1205		 SCU_SAS_PCFG_GEN_BIT(HARD_RESET));
1206	writel(val, &ll->phy_configuration);
1207	readl(&ll->phy_configuration); /* flush */
1208	/** Reset OOB sequence - end */
1209
1210	/** Start OOB sequence - start */
1211	val = readl(&ll->phy_configuration);
1212	val |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1213	writel(val, &ll->phy_configuration);
1214	readl(&ll->phy_configuration); /* flush */
1215	/** Start OOB sequence - end */
1216}
1217
1218/**
1219 * scu_link_layer_tx_hard_reset()
1220 * @iphy: This is the struct isci_phy object to stop.
1221 *
1222 * This method will transmit a hard reset request on the specified phy. The SCU
1223 * hardware requires that we reset the OOB state machine and set the hard reset
1224 * bit in the phy configuration register. We then must start OOB over with the
1225 * hard reset bit set.
1226 */
1227static void scu_link_layer_tx_hard_reset(
1228	struct isci_phy *iphy)
1229{
1230	u32 phy_configuration_value;
1231
1232	/*
1233	 * SAS Phys must wait for the HARD_RESET_TX event notification to transition
1234	 * to the starting state. */
1235	phy_configuration_value =
1236		readl(&iphy->link_layer_registers->phy_configuration);
1237	phy_configuration_value &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
1238	phy_configuration_value |=
1239		(SCU_SAS_PCFG_GEN_BIT(HARD_RESET) |
1240		 SCU_SAS_PCFG_GEN_BIT(OOB_RESET));
1241	writel(phy_configuration_value,
1242	       &iphy->link_layer_registers->phy_configuration);
1243
1244	/* Now take the OOB state machine out of reset */
1245	phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1246	phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
1247	writel(phy_configuration_value,
1248	       &iphy->link_layer_registers->phy_configuration);
1249}
1250
1251static void sci_phy_stopped_state_enter(struct sci_base_state_machine *sm)
1252{
1253	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1254	struct isci_port *iport = iphy->owning_port;
1255	struct isci_host *ihost = iport->owning_controller;
1256
1257	/*
1258	 * @todo We need to get to the controller to place this PE in a
1259	 * reset state
1260	 */
1261	sci_del_timer(&iphy->sata_timer);
1262
1263	scu_link_layer_stop_protocol_engine(iphy);
1264
1265	if (iphy->sm.previous_state_id != SCI_PHY_INITIAL)
1266		sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1267}
1268
1269static void sci_phy_starting_state_enter(struct sci_base_state_machine *sm)
1270{
1271	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1272	struct isci_port *iport = iphy->owning_port;
1273	struct isci_host *ihost = iport->owning_controller;
1274
1275	scu_link_layer_stop_protocol_engine(iphy);
1276	scu_link_layer_start_oob(iphy);
1277
1278	/* We don't know what kind of phy we are going to be just yet */
1279	iphy->protocol = SAS_PROTOCOL_NONE;
1280	iphy->bcn_received_while_port_unassigned = false;
1281
1282	if (iphy->sm.previous_state_id == SCI_PHY_READY)
1283		sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1284
1285	sci_change_state(&iphy->sm, SCI_PHY_SUB_INITIAL);
1286}
1287
1288static void sci_phy_ready_state_enter(struct sci_base_state_machine *sm)
1289{
1290	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1291	struct isci_port *iport = iphy->owning_port;
1292	struct isci_host *ihost = iport->owning_controller;
1293
1294	sci_controller_link_up(ihost, phy_get_non_dummy_port(iphy), iphy);
1295}
1296
1297static void sci_phy_ready_state_exit(struct sci_base_state_machine *sm)
1298{
1299	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1300
1301	sci_phy_suspend(iphy);
1302}
1303
1304static void sci_phy_resetting_state_enter(struct sci_base_state_machine *sm)
1305{
1306	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1307
1308	/* The phy is being reset, therefore deactivate it from the port.  In
1309	 * the resetting state we don't notify the user regarding link up and
1310	 * link down notifications
1311	 */
1312	sci_port_deactivate_phy(iphy->owning_port, iphy, false);
1313
1314	if (iphy->protocol == SAS_PROTOCOL_SSP) {
1315		scu_link_layer_tx_hard_reset(iphy);
1316	} else {
1317		/* The SCU does not need to have a discrete reset state so
1318		 * just go back to the starting state.
1319		 */
1320		sci_change_state(&iphy->sm, SCI_PHY_STARTING);
1321	}
1322}
1323
1324static const struct sci_base_state sci_phy_state_table[] = {
1325	[SCI_PHY_INITIAL] = { },
1326	[SCI_PHY_STOPPED] = {
1327		.enter_state = sci_phy_stopped_state_enter,
1328	},
1329	[SCI_PHY_STARTING] = {
1330		.enter_state = sci_phy_starting_state_enter,
1331	},
1332	[SCI_PHY_SUB_INITIAL] = {
1333		.enter_state = sci_phy_starting_initial_substate_enter,
1334	},
1335	[SCI_PHY_SUB_AWAIT_OSSP_EN] = { },
1336	[SCI_PHY_SUB_AWAIT_SAS_SPEED_EN] = { },
1337	[SCI_PHY_SUB_AWAIT_IAF_UF] = { },
1338	[SCI_PHY_SUB_AWAIT_SAS_POWER] = {
1339		.enter_state = sci_phy_starting_await_sas_power_substate_enter,
1340		.exit_state  = sci_phy_starting_await_sas_power_substate_exit,
1341	},
1342	[SCI_PHY_SUB_AWAIT_SATA_POWER] = {
1343		.enter_state = sci_phy_starting_await_sata_power_substate_enter,
1344		.exit_state  = sci_phy_starting_await_sata_power_substate_exit
1345	},
1346	[SCI_PHY_SUB_AWAIT_SATA_PHY_EN] = {
1347		.enter_state = sci_phy_starting_await_sata_phy_substate_enter,
1348		.exit_state  = sci_phy_starting_await_sata_phy_substate_exit
1349	},
1350	[SCI_PHY_SUB_AWAIT_SATA_SPEED_EN] = {
1351		.enter_state = sci_phy_starting_await_sata_speed_substate_enter,
1352		.exit_state  = sci_phy_starting_await_sata_speed_substate_exit
1353	},
1354	[SCI_PHY_SUB_AWAIT_SIG_FIS_UF] = {
1355		.enter_state = sci_phy_starting_await_sig_fis_uf_substate_enter,
1356		.exit_state  = sci_phy_starting_await_sig_fis_uf_substate_exit
1357	},
1358	[SCI_PHY_SUB_FINAL] = {
1359		.enter_state = sci_phy_starting_final_substate_enter,
1360	},
1361	[SCI_PHY_READY] = {
1362		.enter_state = sci_phy_ready_state_enter,
1363		.exit_state = sci_phy_ready_state_exit,
1364	},
1365	[SCI_PHY_RESETTING] = {
1366		.enter_state = sci_phy_resetting_state_enter,
1367	},
1368	[SCI_PHY_FINAL] = { },
1369};
1370
1371void sci_phy_construct(struct isci_phy *iphy,
1372			    struct isci_port *iport, u8 phy_index)
1373{
1374	sci_init_sm(&iphy->sm, sci_phy_state_table, SCI_PHY_INITIAL);
1375
1376	/* Copy the rest of the input data to our locals */
1377	iphy->owning_port = iport;
1378	iphy->phy_index = phy_index;
1379	iphy->bcn_received_while_port_unassigned = false;
1380	iphy->protocol = SAS_PROTOCOL_NONE;
1381	iphy->link_layer_registers = NULL;
1382	iphy->max_negotiated_speed = SAS_LINK_RATE_UNKNOWN;
1383
1384	/* Create the SIGNATURE FIS Timeout timer for this phy */
1385	sci_init_timer(&iphy->sata_timer, phy_sata_timeout);
1386}
1387
1388void isci_phy_init(struct isci_phy *iphy, struct isci_host *ihost, int index)
1389{
1390	struct sci_oem_params *oem = &ihost->oem_parameters;
1391	u64 sci_sas_addr;
1392	__be64 sas_addr;
1393
1394	sci_sas_addr = oem->phys[index].sas_address.high;
1395	sci_sas_addr <<= 32;
1396	sci_sas_addr |= oem->phys[index].sas_address.low;
1397	sas_addr = cpu_to_be64(sci_sas_addr);
1398	memcpy(iphy->sas_addr, &sas_addr, sizeof(sas_addr));
1399
 
1400	iphy->sas_phy.enabled = 0;
1401	iphy->sas_phy.id = index;
1402	iphy->sas_phy.sas_addr = &iphy->sas_addr[0];
1403	iphy->sas_phy.frame_rcvd = (u8 *)&iphy->frame_rcvd;
1404	iphy->sas_phy.ha = &ihost->sas_ha;
1405	iphy->sas_phy.lldd_phy = iphy;
1406	iphy->sas_phy.enabled = 1;
 
1407	iphy->sas_phy.iproto = SAS_PROTOCOL_ALL;
1408	iphy->sas_phy.tproto = 0;
 
1409	iphy->sas_phy.role = PHY_ROLE_INITIATOR;
1410	iphy->sas_phy.oob_mode = OOB_NOT_CONNECTED;
1411	iphy->sas_phy.linkrate = SAS_LINK_RATE_UNKNOWN;
1412	memset(&iphy->frame_rcvd, 0, sizeof(iphy->frame_rcvd));
1413}
1414
1415
1416/**
1417 * isci_phy_control() - This function is one of the SAS Domain Template
1418 *    functions. This is a phy management function.
1419 * @sas_phy: This parameter specifies the sphy being controlled.
1420 * @func: This parameter specifies the phy control function being invoked.
1421 * @buf: This parameter is specific to the phy function being invoked.
1422 *
1423 * status, zero indicates success.
1424 */
1425int isci_phy_control(struct asd_sas_phy *sas_phy,
1426		     enum phy_func func,
1427		     void *buf)
1428{
1429	int ret = 0;
1430	struct isci_phy *iphy = sas_phy->lldd_phy;
1431	struct asd_sas_port *port = sas_phy->port;
1432	struct isci_host *ihost = sas_phy->ha->lldd_ha;
1433	unsigned long flags;
1434
1435	dev_dbg(&ihost->pdev->dev,
1436		"%s: phy %p; func %d; buf %p; isci phy %p, port %p\n",
1437		__func__, sas_phy, func, buf, iphy, port);
1438
1439	switch (func) {
1440	case PHY_FUNC_DISABLE:
1441		spin_lock_irqsave(&ihost->scic_lock, flags);
1442		scu_link_layer_start_oob(iphy);
1443		sci_phy_stop(iphy);
1444		spin_unlock_irqrestore(&ihost->scic_lock, flags);
1445		break;
1446
1447	case PHY_FUNC_LINK_RESET:
1448		spin_lock_irqsave(&ihost->scic_lock, flags);
1449		scu_link_layer_start_oob(iphy);
1450		sci_phy_stop(iphy);
1451		sci_phy_start(iphy);
1452		spin_unlock_irqrestore(&ihost->scic_lock, flags);
1453		break;
1454
1455	case PHY_FUNC_HARD_RESET:
1456		if (!port)
1457			return -ENODEV;
1458
1459		ret = isci_port_perform_hard_reset(ihost, port->lldd_port, iphy);
 
1460
1461		break;
1462	case PHY_FUNC_GET_EVENTS: {
1463		struct scu_link_layer_registers __iomem *r;
1464		struct sas_phy *phy = sas_phy->phy;
1465
1466		r = iphy->link_layer_registers;
1467		phy->running_disparity_error_count = readl(&r->running_disparity_error_count);
1468		phy->loss_of_dword_sync_count = readl(&r->loss_of_sync_error_count);
1469		phy->phy_reset_problem_count = readl(&r->phy_reset_problem_count);
1470		phy->invalid_dword_count = readl(&r->invalid_dword_counter);
1471		break;
1472	}
1473
1474	default:
1475		dev_dbg(&ihost->pdev->dev,
1476			   "%s: phy %p; func %d NOT IMPLEMENTED!\n",
1477			   __func__, sas_phy, func);
1478		ret = -ENOSYS;
1479		break;
1480	}
1481	return ret;
1482}
v3.1
   1/*
   2 * This file is provided under a dual BSD/GPLv2 license.  When using or
   3 * redistributing this file, you may do so under either license.
   4 *
   5 * GPL LICENSE SUMMARY
   6 *
   7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  21 * The full GNU General Public License is included in this distribution
  22 * in the file called LICENSE.GPL.
  23 *
  24 * BSD LICENSE
  25 *
  26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
  27 * All rights reserved.
  28 *
  29 * Redistribution and use in source and binary forms, with or without
  30 * modification, are permitted provided that the following conditions
  31 * are met:
  32 *
  33 *   * Redistributions of source code must retain the above copyright
  34 *     notice, this list of conditions and the following disclaimer.
  35 *   * Redistributions in binary form must reproduce the above copyright
  36 *     notice, this list of conditions and the following disclaimer in
  37 *     the documentation and/or other materials provided with the
  38 *     distribution.
  39 *   * Neither the name of Intel Corporation nor the names of its
  40 *     contributors may be used to endorse or promote products derived
  41 *     from this software without specific prior written permission.
  42 *
  43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  54 */
  55
  56#include "isci.h"
  57#include "host.h"
  58#include "phy.h"
  59#include "scu_event_codes.h"
  60#include "probe_roms.h"
  61
 
 
 
 
 
 
 
 
 
 
  62/* Maximum arbitration wait time in micro-seconds */
  63#define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME  (700)
  64
  65enum sas_linkrate sci_phy_linkrate(struct isci_phy *iphy)
  66{
  67	return iphy->max_negotiated_speed;
  68}
  69
 
 
 
 
 
 
 
 
 
 
 
 
 
  70static enum sci_status
  71sci_phy_transport_layer_initialization(struct isci_phy *iphy,
  72				       struct scu_transport_layer_registers __iomem *reg)
  73{
  74	u32 tl_control;
  75
  76	iphy->transport_layer_registers = reg;
  77
  78	writel(SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX,
  79		&iphy->transport_layer_registers->stp_rni);
  80
  81	/*
  82	 * Hardware team recommends that we enable the STP prefetch for all
  83	 * transports
  84	 */
  85	tl_control = readl(&iphy->transport_layer_registers->control);
  86	tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH);
  87	writel(tl_control, &iphy->transport_layer_registers->control);
  88
  89	return SCI_SUCCESS;
  90}
  91
  92static enum sci_status
  93sci_phy_link_layer_initialization(struct isci_phy *iphy,
  94				  struct scu_link_layer_registers __iomem *reg)
  95{
  96	struct isci_host *ihost = iphy->owning_port->owning_controller;
 
 
  97	int phy_idx = iphy->phy_index;
  98	struct sci_phy_user_params *phy_user = &ihost->user_parameters.phys[phy_idx];
  99	struct sci_phy_oem_params *phy_oem =
 100		&ihost->oem_parameters.phys[phy_idx];
 101	u32 phy_configuration;
 102	struct sci_phy_cap phy_cap;
 103	u32 parity_check = 0;
 104	u32 parity_count = 0;
 105	u32 llctl, link_rate;
 106	u32 clksm_value = 0;
 107	u32 sp_timeouts = 0;
 108
 109	iphy->link_layer_registers = reg;
 
 
 110
 111	/* Set our IDENTIFY frame data */
 112	#define SCI_END_DEVICE 0x01
 113
 114	writel(SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR) |
 115	       SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR) |
 116	       SCU_SAS_TIID_GEN_BIT(STP_INITIATOR) |
 117	       SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST) |
 118	       SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE),
 119	       &iphy->link_layer_registers->transmit_identification);
 120
 121	/* Write the device SAS Address */
 122	writel(0xFEDCBA98,
 123	       &iphy->link_layer_registers->sas_device_name_high);
 124	writel(phy_idx, &iphy->link_layer_registers->sas_device_name_low);
 125
 126	/* Write the source SAS Address */
 127	writel(phy_oem->sas_address.high,
 128		&iphy->link_layer_registers->source_sas_address_high);
 129	writel(phy_oem->sas_address.low,
 130		&iphy->link_layer_registers->source_sas_address_low);
 131
 132	/* Clear and Set the PHY Identifier */
 133	writel(0, &iphy->link_layer_registers->identify_frame_phy_id);
 134	writel(SCU_SAS_TIPID_GEN_VALUE(ID, phy_idx),
 135		&iphy->link_layer_registers->identify_frame_phy_id);
 136
 137	/* Change the initial state of the phy configuration register */
 138	phy_configuration =
 139		readl(&iphy->link_layer_registers->phy_configuration);
 140
 141	/* Hold OOB state machine in reset */
 142	phy_configuration |=  SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
 143	writel(phy_configuration,
 144		&iphy->link_layer_registers->phy_configuration);
 145
 146	/* Configure the SNW capabilities */
 147	phy_cap.all = 0;
 148	phy_cap.start = 1;
 149	phy_cap.gen3_no_ssc = 1;
 150	phy_cap.gen2_no_ssc = 1;
 151	phy_cap.gen1_no_ssc = 1;
 152	if (ihost->oem_parameters.controller.do_enable_ssc == true) {
 
 
 
 
 
 
 
 
 
 153		phy_cap.gen3_ssc = 1;
 154		phy_cap.gen2_ssc = 1;
 155		phy_cap.gen1_ssc = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156	}
 157
 158	/*
 159	 * The SAS specification indicates that the phy_capabilities that
 160	 * are transmitted shall have an even parity.  Calculate the parity. */
 161	parity_check = phy_cap.all;
 162	while (parity_check != 0) {
 163		if (parity_check & 0x1)
 164			parity_count++;
 165		parity_check >>= 1;
 166	}
 167
 168	/*
 169	 * If parity indicates there are an odd number of bits set, then
 170	 * set the parity bit to 1 in the phy capabilities. */
 171	if ((parity_count % 2) != 0)
 172		phy_cap.parity = 1;
 173
 174	writel(phy_cap.all, &iphy->link_layer_registers->phy_capabilities);
 175
 176	/* Set the enable spinup period but disable the ability to send
 177	 * notify enable spinup
 178	 */
 179	writel(SCU_ENSPINUP_GEN_VAL(COUNT,
 180			phy_user->notify_enable_spin_up_insertion_frequency),
 181		&iphy->link_layer_registers->notify_enable_spinup_control);
 182
 183	/* Write the ALIGN Insertion Ferequency for connected phy and
 184	 * inpendent of connected state
 185	 */
 186	clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(CONNECTED,
 187			phy_user->in_connection_align_insertion_frequency);
 188
 189	clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(GENERAL,
 190			phy_user->align_insertion_frequency);
 191
 192	writel(clksm_value, &iphy->link_layer_registers->clock_skew_management);
 193
 194	/* @todo Provide a way to write this register correctly */
 195	writel(0x02108421,
 196		&iphy->link_layer_registers->afe_lookup_table_control);
 
 
 197
 198	llctl = SCU_SAS_LLCTL_GEN_VAL(NO_OUTBOUND_TASK_TIMEOUT,
 199		(u8)ihost->user_parameters.no_outbound_task_timeout);
 200
 201	switch (phy_user->max_speed_generation) {
 202	case SCIC_SDS_PARM_GEN3_SPEED:
 203		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3;
 204		break;
 205	case SCIC_SDS_PARM_GEN2_SPEED:
 206		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2;
 207		break;
 208	default:
 209		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1;
 210		break;
 211	}
 212	llctl |= SCU_SAS_LLCTL_GEN_VAL(MAX_LINK_RATE, link_rate);
 213	writel(llctl, &iphy->link_layer_registers->link_layer_control);
 214
 215	sp_timeouts = readl(&iphy->link_layer_registers->sas_phy_timeouts);
 216
 217	/* Clear the default 0x36 (54us) RATE_CHANGE timeout value. */
 218	sp_timeouts &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF);
 219
 220	/* Set RATE_CHANGE timeout value to 0x3B (59us).  This ensures SCU can
 221	 * lock with 3Gb drive when SCU max rate is set to 1.5Gb.
 222	 */
 223	sp_timeouts |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B);
 224
 225	writel(sp_timeouts, &iphy->link_layer_registers->sas_phy_timeouts);
 226
 227	if (is_a2(ihost->pdev)) {
 228		/* Program the max ARB time for the PHY to 700us so we inter-operate with
 229		 * the PMC expander which shuts down PHYs if the expander PHY generates too
 230		 * many breaks.  This time value will guarantee that the initiator PHY will
 231		 * generate the break.
 
 232		 */
 233		writel(SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME,
 234			&iphy->link_layer_registers->maximum_arbitration_wait_timer_timeout);
 235	}
 236
 237	/* Disable link layer hang detection, rely on the OS timeout for I/O timeouts. */
 238	writel(0, &iphy->link_layer_registers->link_layer_hang_detection_timeout);
 
 
 239
 240	/* We can exit the initial state to the stopped state */
 241	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
 242
 243	return SCI_SUCCESS;
 244}
 245
 246static void phy_sata_timeout(unsigned long data)
 247{
 248	struct sci_timer *tmr = (struct sci_timer *)data;
 249	struct isci_phy *iphy = container_of(tmr, typeof(*iphy), sata_timer);
 250	struct isci_host *ihost = iphy->owning_port->owning_controller;
 251	unsigned long flags;
 252
 253	spin_lock_irqsave(&ihost->scic_lock, flags);
 254
 255	if (tmr->cancel)
 256		goto done;
 257
 258	dev_dbg(sciphy_to_dev(iphy),
 259		 "%s: SCIC SDS Phy 0x%p did not receive signature fis before "
 260		 "timeout.\n",
 261		 __func__,
 262		 iphy);
 263
 264	sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 265done:
 266	spin_unlock_irqrestore(&ihost->scic_lock, flags);
 267}
 268
 269/**
 270 * This method returns the port currently containing this phy. If the phy is
 271 *    currently contained by the dummy port, then the phy is considered to not
 272 *    be part of a port.
 273 * @sci_phy: This parameter specifies the phy for which to retrieve the
 
 274 *    containing port.
 275 *
 276 * This method returns a handle to a port that contains the supplied phy.
 277 * NULL This value is returned if the phy is not part of a real
 278 * port (i.e. it's contained in the dummy port). !NULL All other
 279 * values indicate a handle/pointer to the port containing the phy.
 280 */
 281struct isci_port *phy_get_non_dummy_port(struct isci_phy *iphy)
 282{
 283	struct isci_port *iport = iphy->owning_port;
 284
 285	if (iport->physical_port_index == SCIC_SDS_DUMMY_PORT)
 286		return NULL;
 287
 288	return iphy->owning_port;
 289}
 290
 291/**
 292 * This method will assign a port to the phy object.
 293 * @out]: iphy This parameter specifies the phy for which to assign a port
 294 *    object.
 295 *
 296 *
 297 */
 298void sci_phy_set_port(
 299	struct isci_phy *iphy,
 300	struct isci_port *iport)
 301{
 302	iphy->owning_port = iport;
 303
 304	if (iphy->bcn_received_while_port_unassigned) {
 305		iphy->bcn_received_while_port_unassigned = false;
 306		sci_port_broadcast_change_received(iphy->owning_port, iphy);
 307	}
 308}
 309
 310enum sci_status sci_phy_initialize(struct isci_phy *iphy,
 311				   struct scu_transport_layer_registers __iomem *tl,
 312				   struct scu_link_layer_registers __iomem *ll)
 313{
 314	/* Perfrom the initialization of the TL hardware */
 315	sci_phy_transport_layer_initialization(iphy, tl);
 316
 317	/* Perofrm the initialization of the PE hardware */
 318	sci_phy_link_layer_initialization(iphy, ll);
 319
 320	/* There is nothing that needs to be done in this state just
 321	 * transition to the stopped state
 322	 */
 323	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
 324
 325	return SCI_SUCCESS;
 326}
 327
 328/**
 329 * This method assigns the direct attached device ID for this phy.
 330 *
 331 * @iphy The phy for which the direct attached device id is to
 332 *       be assigned.
 333 * @device_id The direct attached device ID to assign to the phy.
 334 *       This will either be the RNi for the device or an invalid RNi if there
 335 *       is no current device assigned to the phy.
 336 */
 337void sci_phy_setup_transport(struct isci_phy *iphy, u32 device_id)
 338{
 339	u32 tl_control;
 340
 341	writel(device_id, &iphy->transport_layer_registers->stp_rni);
 342
 343	/*
 344	 * The read should guarantee that the first write gets posted
 345	 * before the next write
 346	 */
 347	tl_control = readl(&iphy->transport_layer_registers->control);
 348	tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE);
 349	writel(tl_control, &iphy->transport_layer_registers->control);
 350}
 351
 352static void sci_phy_suspend(struct isci_phy *iphy)
 353{
 354	u32 scu_sas_pcfg_value;
 355
 356	scu_sas_pcfg_value =
 357		readl(&iphy->link_layer_registers->phy_configuration);
 358	scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
 359	writel(scu_sas_pcfg_value,
 360		&iphy->link_layer_registers->phy_configuration);
 361
 362	sci_phy_setup_transport(iphy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX);
 363}
 364
 365void sci_phy_resume(struct isci_phy *iphy)
 366{
 367	u32 scu_sas_pcfg_value;
 368
 369	scu_sas_pcfg_value =
 370		readl(&iphy->link_layer_registers->phy_configuration);
 371	scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
 372	writel(scu_sas_pcfg_value,
 373		&iphy->link_layer_registers->phy_configuration);
 374}
 375
 376void sci_phy_get_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
 377{
 378	sas->high = readl(&iphy->link_layer_registers->source_sas_address_high);
 379	sas->low = readl(&iphy->link_layer_registers->source_sas_address_low);
 380}
 381
 382void sci_phy_get_attached_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
 383{
 384	struct sas_identify_frame *iaf;
 385
 386	iaf = &iphy->frame_rcvd.iaf;
 387	memcpy(sas, iaf->sas_addr, SAS_ADDR_SIZE);
 388}
 389
 390void sci_phy_get_protocols(struct isci_phy *iphy, struct sci_phy_proto *proto)
 391{
 392	proto->all = readl(&iphy->link_layer_registers->transmit_identification);
 393}
 394
 395enum sci_status sci_phy_start(struct isci_phy *iphy)
 396{
 397	enum sci_phy_states state = iphy->sm.current_state_id;
 398
 399	if (state != SCI_PHY_STOPPED) {
 400		dev_dbg(sciphy_to_dev(iphy),
 401			 "%s: in wrong state: %d\n", __func__, state);
 402		return SCI_FAILURE_INVALID_STATE;
 403	}
 404
 405	sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 406	return SCI_SUCCESS;
 407}
 408
 409enum sci_status sci_phy_stop(struct isci_phy *iphy)
 410{
 411	enum sci_phy_states state = iphy->sm.current_state_id;
 412
 413	switch (state) {
 414	case SCI_PHY_SUB_INITIAL:
 415	case SCI_PHY_SUB_AWAIT_OSSP_EN:
 416	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
 417	case SCI_PHY_SUB_AWAIT_SAS_POWER:
 418	case SCI_PHY_SUB_AWAIT_SATA_POWER:
 419	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
 420	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
 421	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
 422	case SCI_PHY_SUB_FINAL:
 423	case SCI_PHY_READY:
 424		break;
 425	default:
 426		dev_dbg(sciphy_to_dev(iphy),
 427			"%s: in wrong state: %d\n", __func__, state);
 428		return SCI_FAILURE_INVALID_STATE;
 429	}
 430
 431	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
 432	return SCI_SUCCESS;
 433}
 434
 435enum sci_status sci_phy_reset(struct isci_phy *iphy)
 436{
 437	enum sci_phy_states state = iphy->sm.current_state_id;
 438
 439	if (state != SCI_PHY_READY) {
 440		dev_dbg(sciphy_to_dev(iphy),
 441			"%s: in wrong state: %d\n", __func__, state);
 442		return SCI_FAILURE_INVALID_STATE;
 443	}
 444
 445	sci_change_state(&iphy->sm, SCI_PHY_RESETTING);
 446	return SCI_SUCCESS;
 447}
 448
 449enum sci_status sci_phy_consume_power_handler(struct isci_phy *iphy)
 450{
 451	enum sci_phy_states state = iphy->sm.current_state_id;
 452
 453	switch (state) {
 454	case SCI_PHY_SUB_AWAIT_SAS_POWER: {
 455		u32 enable_spinup;
 456
 457		enable_spinup = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
 458		enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE);
 459		writel(enable_spinup, &iphy->link_layer_registers->notify_enable_spinup_control);
 460
 461		/* Change state to the final state this substate machine has run to completion */
 462		sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
 463
 464		return SCI_SUCCESS;
 465	}
 466	case SCI_PHY_SUB_AWAIT_SATA_POWER: {
 467		u32 scu_sas_pcfg_value;
 468
 469		/* Release the spinup hold state and reset the OOB state machine */
 470		scu_sas_pcfg_value =
 471			readl(&iphy->link_layer_registers->phy_configuration);
 472		scu_sas_pcfg_value &=
 473			~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
 474		scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
 475		writel(scu_sas_pcfg_value,
 476			&iphy->link_layer_registers->phy_configuration);
 477
 478		/* Now restart the OOB operation */
 479		scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
 480		scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
 481		writel(scu_sas_pcfg_value,
 482			&iphy->link_layer_registers->phy_configuration);
 483
 484		/* Change state to the final state this substate machine has run to completion */
 485		sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_PHY_EN);
 486
 487		return SCI_SUCCESS;
 488	}
 489	default:
 490		dev_dbg(sciphy_to_dev(iphy),
 491			"%s: in wrong state: %d\n", __func__, state);
 492		return SCI_FAILURE_INVALID_STATE;
 493	}
 494}
 495
 496static void sci_phy_start_sas_link_training(struct isci_phy *iphy)
 497{
 498	/* continue the link training for the phy as if it were a SAS PHY
 499	 * instead of a SATA PHY. This is done because the completion queue had a SAS
 500	 * PHY DETECTED event when the state machine was expecting a SATA PHY event.
 501	 */
 502	u32 phy_control;
 503
 504	phy_control = readl(&iphy->link_layer_registers->phy_configuration);
 505	phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD);
 506	writel(phy_control,
 507	       &iphy->link_layer_registers->phy_configuration);
 508
 509	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SAS_SPEED_EN);
 510
 511	iphy->protocol = SCIC_SDS_PHY_PROTOCOL_SAS;
 512}
 513
 514static void sci_phy_start_sata_link_training(struct isci_phy *iphy)
 515{
 516	/* This method continues the link training for the phy as if it were a SATA PHY
 517	 * instead of a SAS PHY.  This is done because the completion queue had a SATA
 518	 * SPINUP HOLD event when the state machine was expecting a SAS PHY event. none
 519	 */
 520	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_POWER);
 521
 522	iphy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA;
 523}
 524
 525/**
 526 * sci_phy_complete_link_training - perform processing common to
 527 *    all protocols upon completion of link training.
 528 * @sci_phy: This parameter specifies the phy object for which link training
 529 *    has completed.
 530 * @max_link_rate: This parameter specifies the maximum link rate to be
 531 *    associated with this phy.
 532 * @next_state: This parameter specifies the next state for the phy's starting
 533 *    sub-state machine.
 534 *
 535 */
 536static void sci_phy_complete_link_training(struct isci_phy *iphy,
 537					   enum sas_linkrate max_link_rate,
 538					   u32 next_state)
 539{
 540	iphy->max_negotiated_speed = max_link_rate;
 541
 542	sci_change_state(&iphy->sm, next_state);
 543}
 544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545enum sci_status sci_phy_event_handler(struct isci_phy *iphy, u32 event_code)
 546{
 547	enum sci_phy_states state = iphy->sm.current_state_id;
 548
 549	switch (state) {
 550	case SCI_PHY_SUB_AWAIT_OSSP_EN:
 551		switch (scu_get_event_code(event_code)) {
 552		case SCU_EVENT_SAS_PHY_DETECTED:
 553			sci_phy_start_sas_link_training(iphy);
 554			iphy->is_in_link_training = true;
 555			break;
 556		case SCU_EVENT_SATA_SPINUP_HOLD:
 557			sci_phy_start_sata_link_training(iphy);
 558			iphy->is_in_link_training = true;
 559			break;
 
 
 
 
 
 
 
 560		default:
 561			dev_dbg(sciphy_to_dev(iphy),
 562				"%s: PHY starting substate machine received "
 563				"unexpected event_code %x\n",
 564				__func__,
 565				event_code);
 566			return SCI_FAILURE;
 567		}
 568		return SCI_SUCCESS;
 569	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
 570		switch (scu_get_event_code(event_code)) {
 571		case SCU_EVENT_SAS_PHY_DETECTED:
 572			/*
 573			 * Why is this being reported again by the controller?
 574			 * We would re-enter this state so just stay here */
 575			break;
 576		case SCU_EVENT_SAS_15:
 577		case SCU_EVENT_SAS_15_SSC:
 578			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
 579						       SCI_PHY_SUB_AWAIT_IAF_UF);
 580			break;
 581		case SCU_EVENT_SAS_30:
 582		case SCU_EVENT_SAS_30_SSC:
 583			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
 584						       SCI_PHY_SUB_AWAIT_IAF_UF);
 585			break;
 586		case SCU_EVENT_SAS_60:
 587		case SCU_EVENT_SAS_60_SSC:
 588			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
 589						       SCI_PHY_SUB_AWAIT_IAF_UF);
 590			break;
 591		case SCU_EVENT_SATA_SPINUP_HOLD:
 592			/*
 593			 * We were doing SAS PHY link training and received a SATA PHY event
 594			 * continue OOB/SN as if this were a SATA PHY */
 595			sci_phy_start_sata_link_training(iphy);
 596			break;
 597		case SCU_EVENT_LINK_FAILURE:
 
 
 
 598			/* Link failure change state back to the starting state */
 599			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 600			break;
 
 
 
 
 
 
 
 601		default:
 602			dev_warn(sciphy_to_dev(iphy),
 603				 "%s: PHY starting substate machine received "
 604				 "unexpected event_code %x\n",
 605				 __func__, event_code);
 606
 607			return SCI_FAILURE;
 608			break;
 609		}
 610		return SCI_SUCCESS;
 611	case SCI_PHY_SUB_AWAIT_IAF_UF:
 612		switch (scu_get_event_code(event_code)) {
 613		case SCU_EVENT_SAS_PHY_DETECTED:
 614			/* Backup the state machine */
 615			sci_phy_start_sas_link_training(iphy);
 616			break;
 617		case SCU_EVENT_SATA_SPINUP_HOLD:
 618			/* We were doing SAS PHY link training and received a
 619			 * SATA PHY event continue OOB/SN as if this were a
 620			 * SATA PHY
 621			 */
 622			sci_phy_start_sata_link_training(iphy);
 623			break;
 624		case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
 
 
 
 
 
 
 625		case SCU_EVENT_LINK_FAILURE:
 
 
 626		case SCU_EVENT_HARD_RESET_RECEIVED:
 627			/* Start the oob/sn state machine over again */
 628			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 629			break;
 630		default:
 631			dev_warn(sciphy_to_dev(iphy),
 632				 "%s: PHY starting substate machine received "
 633				 "unexpected event_code %x\n",
 634				 __func__, event_code);
 635			return SCI_FAILURE;
 636		}
 637		return SCI_SUCCESS;
 638	case SCI_PHY_SUB_AWAIT_SAS_POWER:
 639		switch (scu_get_event_code(event_code)) {
 640		case SCU_EVENT_LINK_FAILURE:
 
 
 
 641			/* Link failure change state back to the starting state */
 642			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 643			break;
 644		default:
 645			dev_warn(sciphy_to_dev(iphy),
 646				"%s: PHY starting substate machine received unexpected "
 647				"event_code %x\n",
 648				__func__,
 649				event_code);
 650			return SCI_FAILURE;
 651		}
 652		return SCI_SUCCESS;
 653	case SCI_PHY_SUB_AWAIT_SATA_POWER:
 654		switch (scu_get_event_code(event_code)) {
 655		case SCU_EVENT_LINK_FAILURE:
 
 
 
 656			/* Link failure change state back to the starting state */
 657			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 658			break;
 659		case SCU_EVENT_SATA_SPINUP_HOLD:
 660			/* These events are received every 10ms and are
 661			 * expected while in this state
 662			 */
 663			break;
 664
 665		case SCU_EVENT_SAS_PHY_DETECTED:
 666			/* There has been a change in the phy type before OOB/SN for the
 667			 * SATA finished start down the SAS link traning path.
 668			 */
 669			sci_phy_start_sas_link_training(iphy);
 670			break;
 671
 672		default:
 673			dev_warn(sciphy_to_dev(iphy),
 674				 "%s: PHY starting substate machine received "
 675				 "unexpected event_code %x\n",
 676				 __func__, event_code);
 677
 678			return SCI_FAILURE;
 679		}
 680		return SCI_SUCCESS;
 681	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
 682		switch (scu_get_event_code(event_code)) {
 683		case SCU_EVENT_LINK_FAILURE:
 
 
 
 684			/* Link failure change state back to the starting state */
 685			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 686			break;
 687		case SCU_EVENT_SATA_SPINUP_HOLD:
 688			/* These events might be received since we dont know how many may be in
 689			 * the completion queue while waiting for power
 690			 */
 691			break;
 692		case SCU_EVENT_SATA_PHY_DETECTED:
 693			iphy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA;
 694
 695			/* We have received the SATA PHY notification change state */
 696			sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
 697			break;
 698		case SCU_EVENT_SAS_PHY_DETECTED:
 699			/* There has been a change in the phy type before OOB/SN for the
 700			 * SATA finished start down the SAS link traning path.
 701			 */
 702			sci_phy_start_sas_link_training(iphy);
 703			break;
 704		default:
 705			dev_warn(sciphy_to_dev(iphy),
 706				 "%s: PHY starting substate machine received "
 707				 "unexpected event_code %x\n",
 708				 __func__,
 709				 event_code);
 710
 711			return SCI_FAILURE;;
 712		}
 713		return SCI_SUCCESS;
 714	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
 715		switch (scu_get_event_code(event_code)) {
 716		case SCU_EVENT_SATA_PHY_DETECTED:
 717			/*
 718			 * The hardware reports multiple SATA PHY detected events
 719			 * ignore the extras */
 720			break;
 721		case SCU_EVENT_SATA_15:
 722		case SCU_EVENT_SATA_15_SSC:
 723			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
 724						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
 725			break;
 726		case SCU_EVENT_SATA_30:
 727		case SCU_EVENT_SATA_30_SSC:
 728			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
 729						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
 730			break;
 731		case SCU_EVENT_SATA_60:
 732		case SCU_EVENT_SATA_60_SSC:
 733			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
 734						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
 735			break;
 736		case SCU_EVENT_LINK_FAILURE:
 
 
 
 737			/* Link failure change state back to the starting state */
 738			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 739			break;
 740		case SCU_EVENT_SAS_PHY_DETECTED:
 741			/*
 742			 * There has been a change in the phy type before OOB/SN for the
 743			 * SATA finished start down the SAS link traning path. */
 744			sci_phy_start_sas_link_training(iphy);
 745			break;
 746		default:
 747			dev_warn(sciphy_to_dev(iphy),
 748				 "%s: PHY starting substate machine received "
 749				 "unexpected event_code %x\n",
 750				 __func__, event_code);
 751
 752			return SCI_FAILURE;
 753		}
 754
 755		return SCI_SUCCESS;
 756	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
 757		switch (scu_get_event_code(event_code)) {
 758		case SCU_EVENT_SATA_PHY_DETECTED:
 759			/* Backup the state machine */
 760			sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
 761			break;
 762
 763		case SCU_EVENT_LINK_FAILURE:
 
 
 
 764			/* Link failure change state back to the starting state */
 765			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 766			break;
 767
 768		default:
 769			dev_warn(sciphy_to_dev(iphy),
 770				 "%s: PHY starting substate machine received "
 771				 "unexpected event_code %x\n",
 772				 __func__,
 773				 event_code);
 774
 775			return SCI_FAILURE;
 776		}
 777		return SCI_SUCCESS;
 778	case SCI_PHY_READY:
 779		switch (scu_get_event_code(event_code)) {
 780		case SCU_EVENT_LINK_FAILURE:
 
 
 
 781			/* Link failure change state back to the starting state */
 782			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 783			break;
 784		case SCU_EVENT_BROADCAST_CHANGE:
 
 
 
 
 
 785			/* Broadcast change received. Notify the port. */
 786			if (phy_get_non_dummy_port(iphy) != NULL)
 787				sci_port_broadcast_change_received(iphy->owning_port, iphy);
 788			else
 789				iphy->bcn_received_while_port_unassigned = true;
 790			break;
 
 
 791		default:
 792			dev_warn(sciphy_to_dev(iphy),
 793				 "%sP SCIC PHY 0x%p ready state machine received "
 794				 "unexpected event_code %x\n",
 795				 __func__, iphy, event_code);
 796			return SCI_FAILURE_INVALID_STATE;
 797		}
 798		return SCI_SUCCESS;
 799	case SCI_PHY_RESETTING:
 800		switch (scu_get_event_code(event_code)) {
 801		case SCU_EVENT_HARD_RESET_TRANSMITTED:
 802			/* Link failure change state back to the starting state */
 803			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 804			break;
 805		default:
 806			dev_warn(sciphy_to_dev(iphy),
 807				 "%s: SCIC PHY 0x%p resetting state machine received "
 808				 "unexpected event_code %x\n",
 809				 __func__, iphy, event_code);
 810
 811			return SCI_FAILURE_INVALID_STATE;
 812			break;
 813		}
 814		return SCI_SUCCESS;
 815	default:
 816		dev_dbg(sciphy_to_dev(iphy),
 817			"%s: in wrong state: %d\n", __func__, state);
 818		return SCI_FAILURE_INVALID_STATE;
 819	}
 820}
 821
 822enum sci_status sci_phy_frame_handler(struct isci_phy *iphy, u32 frame_index)
 823{
 824	enum sci_phy_states state = iphy->sm.current_state_id;
 825	struct isci_host *ihost = iphy->owning_port->owning_controller;
 826	enum sci_status result;
 827	unsigned long flags;
 828
 829	switch (state) {
 830	case SCI_PHY_SUB_AWAIT_IAF_UF: {
 831		u32 *frame_words;
 832		struct sas_identify_frame iaf;
 833
 834		result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
 835								  frame_index,
 836								  (void **)&frame_words);
 837
 838		if (result != SCI_SUCCESS)
 839			return result;
 840
 841		sci_swab32_cpy(&iaf, frame_words, sizeof(iaf) / sizeof(u32));
 842		if (iaf.frame_type == 0) {
 843			u32 state;
 844
 845			spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
 846			memcpy(&iphy->frame_rcvd.iaf, &iaf, sizeof(iaf));
 847			spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
 848			if (iaf.smp_tport) {
 849				/* We got the IAF for an expander PHY go to the final
 850				 * state since there are no power requirements for
 851				 * expander phys.
 852				 */
 853				state = SCI_PHY_SUB_FINAL;
 854			} else {
 855				/* We got the IAF we can now go to the await spinup
 856				 * semaphore state
 857				 */
 858				state = SCI_PHY_SUB_AWAIT_SAS_POWER;
 859			}
 860			sci_change_state(&iphy->sm, state);
 861			result = SCI_SUCCESS;
 862		} else
 863			dev_warn(sciphy_to_dev(iphy),
 864				"%s: PHY starting substate machine received "
 865				"unexpected frame id %x\n",
 866				__func__, frame_index);
 867
 868		sci_controller_release_frame(ihost, frame_index);
 869		return result;
 870	}
 871	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: {
 872		struct dev_to_host_fis *frame_header;
 873		u32 *fis_frame_data;
 874
 875		result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
 876								  frame_index,
 877								  (void **)&frame_header);
 878
 879		if (result != SCI_SUCCESS)
 880			return result;
 881
 882		if ((frame_header->fis_type == FIS_REGD2H) &&
 883		    !(frame_header->status & ATA_BUSY)) {
 884			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
 885								 frame_index,
 886								 (void **)&fis_frame_data);
 887
 888			spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
 889			sci_controller_copy_sata_response(&iphy->frame_rcvd.fis,
 890							  frame_header,
 891							  fis_frame_data);
 892			spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
 893
 894			/* got IAF we can now go to the await spinup semaphore state */
 895			sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
 896
 897			result = SCI_SUCCESS;
 898		} else
 899			dev_warn(sciphy_to_dev(iphy),
 900				 "%s: PHY starting substate machine received "
 901				 "unexpected frame id %x\n",
 902				 __func__, frame_index);
 903
 904		/* Regardless of the result we are done with this frame with it */
 905		sci_controller_release_frame(ihost, frame_index);
 906
 907		return result;
 908	}
 909	default:
 910		dev_dbg(sciphy_to_dev(iphy),
 911			"%s: in wrong state: %d\n", __func__, state);
 912		return SCI_FAILURE_INVALID_STATE;
 913	}
 914
 915}
 916
 917static void sci_phy_starting_initial_substate_enter(struct sci_base_state_machine *sm)
 918{
 919	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
 920
 921	/* This is just an temporary state go off to the starting state */
 922	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_OSSP_EN);
 923}
 924
 925static void sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine *sm)
 926{
 927	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
 928	struct isci_host *ihost = iphy->owning_port->owning_controller;
 929
 930	sci_controller_power_control_queue_insert(ihost, iphy);
 931}
 932
 933static void sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine *sm)
 934{
 935	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
 936	struct isci_host *ihost = iphy->owning_port->owning_controller;
 937
 938	sci_controller_power_control_queue_remove(ihost, iphy);
 939}
 940
 941static void sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine *sm)
 942{
 943	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
 944	struct isci_host *ihost = iphy->owning_port->owning_controller;
 945
 946	sci_controller_power_control_queue_insert(ihost, iphy);
 947}
 948
 949static void sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine *sm)
 950{
 951	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
 952	struct isci_host *ihost = iphy->owning_port->owning_controller;
 953
 954	sci_controller_power_control_queue_remove(ihost, iphy);
 955}
 956
 957static void sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine *sm)
 958{
 959	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
 960
 961	sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
 962}
 963
 964static void sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine *sm)
 965{
 966	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
 967
 968	sci_del_timer(&iphy->sata_timer);
 969}
 970
 971static void sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine *sm)
 972{
 973	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
 974
 975	sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
 976}
 977
 978static void sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine *sm)
 979{
 980	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
 981
 982	sci_del_timer(&iphy->sata_timer);
 983}
 984
 985static void sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine *sm)
 986{
 987	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
 988
 989	if (sci_port_link_detected(iphy->owning_port, iphy)) {
 990
 991		/*
 992		 * Clear the PE suspend condition so we can actually
 993		 * receive SIG FIS
 994		 * The hardware will not respond to the XRDY until the PE
 995		 * suspend condition is cleared.
 996		 */
 997		sci_phy_resume(iphy);
 998
 999		sci_mod_timer(&iphy->sata_timer,
1000			      SCIC_SDS_SIGNATURE_FIS_TIMEOUT);
1001	} else
1002		iphy->is_in_link_training = false;
1003}
1004
1005static void sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine *sm)
1006{
1007	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1008
1009	sci_del_timer(&iphy->sata_timer);
1010}
1011
1012static void sci_phy_starting_final_substate_enter(struct sci_base_state_machine *sm)
1013{
1014	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1015
1016	/* State machine has run to completion so exit out and change
1017	 * the base state machine to the ready state
1018	 */
1019	sci_change_state(&iphy->sm, SCI_PHY_READY);
1020}
1021
1022/**
1023 *
1024 * @sci_phy: This is the struct isci_phy object to stop.
1025 *
1026 * This method will stop the struct isci_phy object. This does not reset the
1027 * protocol engine it just suspends it and places it in a state where it will
1028 * not cause the end device to power up. none
1029 */
1030static void scu_link_layer_stop_protocol_engine(
1031	struct isci_phy *iphy)
1032{
1033	u32 scu_sas_pcfg_value;
1034	u32 enable_spinup_value;
1035
1036	/* Suspend the protocol engine and place it in a sata spinup hold state */
1037	scu_sas_pcfg_value =
1038		readl(&iphy->link_layer_registers->phy_configuration);
1039	scu_sas_pcfg_value |=
1040		(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1041		 SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE) |
1042		 SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD));
1043	writel(scu_sas_pcfg_value,
1044	       &iphy->link_layer_registers->phy_configuration);
1045
1046	/* Disable the notify enable spinup primitives */
1047	enable_spinup_value = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
1048	enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE);
1049	writel(enable_spinup_value, &iphy->link_layer_registers->notify_enable_spinup_control);
1050}
1051
1052/**
1053 *
1054 *
1055 * This method will start the OOB/SN state machine for this struct isci_phy object.
1056 */
1057static void scu_link_layer_start_oob(
1058	struct isci_phy *iphy)
1059{
1060	u32 scu_sas_pcfg_value;
 
1061
1062	scu_sas_pcfg_value =
1063		readl(&iphy->link_layer_registers->phy_configuration);
1064	scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1065	scu_sas_pcfg_value &=
1066		~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1067		SCU_SAS_PCFG_GEN_BIT(HARD_RESET));
1068	writel(scu_sas_pcfg_value,
1069	       &iphy->link_layer_registers->phy_configuration);
 
 
 
 
 
 
 
1070}
1071
1072/**
1073 *
 
1074 *
1075 * This method will transmit a hard reset request on the specified phy. The SCU
1076 * hardware requires that we reset the OOB state machine and set the hard reset
1077 * bit in the phy configuration register. We then must start OOB over with the
1078 * hard reset bit set.
1079 */
1080static void scu_link_layer_tx_hard_reset(
1081	struct isci_phy *iphy)
1082{
1083	u32 phy_configuration_value;
1084
1085	/*
1086	 * SAS Phys must wait for the HARD_RESET_TX event notification to transition
1087	 * to the starting state. */
1088	phy_configuration_value =
1089		readl(&iphy->link_layer_registers->phy_configuration);
 
1090	phy_configuration_value |=
1091		(SCU_SAS_PCFG_GEN_BIT(HARD_RESET) |
1092		 SCU_SAS_PCFG_GEN_BIT(OOB_RESET));
1093	writel(phy_configuration_value,
1094	       &iphy->link_layer_registers->phy_configuration);
1095
1096	/* Now take the OOB state machine out of reset */
1097	phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1098	phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
1099	writel(phy_configuration_value,
1100	       &iphy->link_layer_registers->phy_configuration);
1101}
1102
1103static void sci_phy_stopped_state_enter(struct sci_base_state_machine *sm)
1104{
1105	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1106	struct isci_port *iport = iphy->owning_port;
1107	struct isci_host *ihost = iport->owning_controller;
1108
1109	/*
1110	 * @todo We need to get to the controller to place this PE in a
1111	 * reset state
1112	 */
1113	sci_del_timer(&iphy->sata_timer);
1114
1115	scu_link_layer_stop_protocol_engine(iphy);
1116
1117	if (iphy->sm.previous_state_id != SCI_PHY_INITIAL)
1118		sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1119}
1120
1121static void sci_phy_starting_state_enter(struct sci_base_state_machine *sm)
1122{
1123	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1124	struct isci_port *iport = iphy->owning_port;
1125	struct isci_host *ihost = iport->owning_controller;
1126
1127	scu_link_layer_stop_protocol_engine(iphy);
1128	scu_link_layer_start_oob(iphy);
1129
1130	/* We don't know what kind of phy we are going to be just yet */
1131	iphy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN;
1132	iphy->bcn_received_while_port_unassigned = false;
1133
1134	if (iphy->sm.previous_state_id == SCI_PHY_READY)
1135		sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1136
1137	sci_change_state(&iphy->sm, SCI_PHY_SUB_INITIAL);
1138}
1139
1140static void sci_phy_ready_state_enter(struct sci_base_state_machine *sm)
1141{
1142	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1143	struct isci_port *iport = iphy->owning_port;
1144	struct isci_host *ihost = iport->owning_controller;
1145
1146	sci_controller_link_up(ihost, phy_get_non_dummy_port(iphy), iphy);
1147}
1148
1149static void sci_phy_ready_state_exit(struct sci_base_state_machine *sm)
1150{
1151	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1152
1153	sci_phy_suspend(iphy);
1154}
1155
1156static void sci_phy_resetting_state_enter(struct sci_base_state_machine *sm)
1157{
1158	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1159
1160	/* The phy is being reset, therefore deactivate it from the port.  In
1161	 * the resetting state we don't notify the user regarding link up and
1162	 * link down notifications
1163	 */
1164	sci_port_deactivate_phy(iphy->owning_port, iphy, false);
1165
1166	if (iphy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS) {
1167		scu_link_layer_tx_hard_reset(iphy);
1168	} else {
1169		/* The SCU does not need to have a discrete reset state so
1170		 * just go back to the starting state.
1171		 */
1172		sci_change_state(&iphy->sm, SCI_PHY_STARTING);
1173	}
1174}
1175
1176static const struct sci_base_state sci_phy_state_table[] = {
1177	[SCI_PHY_INITIAL] = { },
1178	[SCI_PHY_STOPPED] = {
1179		.enter_state = sci_phy_stopped_state_enter,
1180	},
1181	[SCI_PHY_STARTING] = {
1182		.enter_state = sci_phy_starting_state_enter,
1183	},
1184	[SCI_PHY_SUB_INITIAL] = {
1185		.enter_state = sci_phy_starting_initial_substate_enter,
1186	},
1187	[SCI_PHY_SUB_AWAIT_OSSP_EN] = { },
1188	[SCI_PHY_SUB_AWAIT_SAS_SPEED_EN] = { },
1189	[SCI_PHY_SUB_AWAIT_IAF_UF] = { },
1190	[SCI_PHY_SUB_AWAIT_SAS_POWER] = {
1191		.enter_state = sci_phy_starting_await_sas_power_substate_enter,
1192		.exit_state  = sci_phy_starting_await_sas_power_substate_exit,
1193	},
1194	[SCI_PHY_SUB_AWAIT_SATA_POWER] = {
1195		.enter_state = sci_phy_starting_await_sata_power_substate_enter,
1196		.exit_state  = sci_phy_starting_await_sata_power_substate_exit
1197	},
1198	[SCI_PHY_SUB_AWAIT_SATA_PHY_EN] = {
1199		.enter_state = sci_phy_starting_await_sata_phy_substate_enter,
1200		.exit_state  = sci_phy_starting_await_sata_phy_substate_exit
1201	},
1202	[SCI_PHY_SUB_AWAIT_SATA_SPEED_EN] = {
1203		.enter_state = sci_phy_starting_await_sata_speed_substate_enter,
1204		.exit_state  = sci_phy_starting_await_sata_speed_substate_exit
1205	},
1206	[SCI_PHY_SUB_AWAIT_SIG_FIS_UF] = {
1207		.enter_state = sci_phy_starting_await_sig_fis_uf_substate_enter,
1208		.exit_state  = sci_phy_starting_await_sig_fis_uf_substate_exit
1209	},
1210	[SCI_PHY_SUB_FINAL] = {
1211		.enter_state = sci_phy_starting_final_substate_enter,
1212	},
1213	[SCI_PHY_READY] = {
1214		.enter_state = sci_phy_ready_state_enter,
1215		.exit_state = sci_phy_ready_state_exit,
1216	},
1217	[SCI_PHY_RESETTING] = {
1218		.enter_state = sci_phy_resetting_state_enter,
1219	},
1220	[SCI_PHY_FINAL] = { },
1221};
1222
1223void sci_phy_construct(struct isci_phy *iphy,
1224			    struct isci_port *iport, u8 phy_index)
1225{
1226	sci_init_sm(&iphy->sm, sci_phy_state_table, SCI_PHY_INITIAL);
1227
1228	/* Copy the rest of the input data to our locals */
1229	iphy->owning_port = iport;
1230	iphy->phy_index = phy_index;
1231	iphy->bcn_received_while_port_unassigned = false;
1232	iphy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN;
1233	iphy->link_layer_registers = NULL;
1234	iphy->max_negotiated_speed = SAS_LINK_RATE_UNKNOWN;
1235
1236	/* Create the SIGNATURE FIS Timeout timer for this phy */
1237	sci_init_timer(&iphy->sata_timer, phy_sata_timeout);
1238}
1239
1240void isci_phy_init(struct isci_phy *iphy, struct isci_host *ihost, int index)
1241{
1242	struct sci_oem_params *oem = &ihost->oem_parameters;
1243	u64 sci_sas_addr;
1244	__be64 sas_addr;
1245
1246	sci_sas_addr = oem->phys[index].sas_address.high;
1247	sci_sas_addr <<= 32;
1248	sci_sas_addr |= oem->phys[index].sas_address.low;
1249	sas_addr = cpu_to_be64(sci_sas_addr);
1250	memcpy(iphy->sas_addr, &sas_addr, sizeof(sas_addr));
1251
1252	iphy->isci_port = NULL;
1253	iphy->sas_phy.enabled = 0;
1254	iphy->sas_phy.id = index;
1255	iphy->sas_phy.sas_addr = &iphy->sas_addr[0];
1256	iphy->sas_phy.frame_rcvd = (u8 *)&iphy->frame_rcvd;
1257	iphy->sas_phy.ha = &ihost->sas_ha;
1258	iphy->sas_phy.lldd_phy = iphy;
1259	iphy->sas_phy.enabled = 1;
1260	iphy->sas_phy.class = SAS;
1261	iphy->sas_phy.iproto = SAS_PROTOCOL_ALL;
1262	iphy->sas_phy.tproto = 0;
1263	iphy->sas_phy.type = PHY_TYPE_PHYSICAL;
1264	iphy->sas_phy.role = PHY_ROLE_INITIATOR;
1265	iphy->sas_phy.oob_mode = OOB_NOT_CONNECTED;
1266	iphy->sas_phy.linkrate = SAS_LINK_RATE_UNKNOWN;
1267	memset(&iphy->frame_rcvd, 0, sizeof(iphy->frame_rcvd));
1268}
1269
1270
1271/**
1272 * isci_phy_control() - This function is one of the SAS Domain Template
1273 *    functions. This is a phy management function.
1274 * @phy: This parameter specifies the sphy being controlled.
1275 * @func: This parameter specifies the phy control function being invoked.
1276 * @buf: This parameter is specific to the phy function being invoked.
1277 *
1278 * status, zero indicates success.
1279 */
1280int isci_phy_control(struct asd_sas_phy *sas_phy,
1281		     enum phy_func func,
1282		     void *buf)
1283{
1284	int ret = 0;
1285	struct isci_phy *iphy = sas_phy->lldd_phy;
1286	struct isci_port *iport = iphy->isci_port;
1287	struct isci_host *ihost = sas_phy->ha->lldd_ha;
1288	unsigned long flags;
1289
1290	dev_dbg(&ihost->pdev->dev,
1291		"%s: phy %p; func %d; buf %p; isci phy %p, port %p\n",
1292		__func__, sas_phy, func, buf, iphy, iport);
1293
1294	switch (func) {
1295	case PHY_FUNC_DISABLE:
1296		spin_lock_irqsave(&ihost->scic_lock, flags);
 
1297		sci_phy_stop(iphy);
1298		spin_unlock_irqrestore(&ihost->scic_lock, flags);
1299		break;
1300
1301	case PHY_FUNC_LINK_RESET:
1302		spin_lock_irqsave(&ihost->scic_lock, flags);
 
1303		sci_phy_stop(iphy);
1304		sci_phy_start(iphy);
1305		spin_unlock_irqrestore(&ihost->scic_lock, flags);
1306		break;
1307
1308	case PHY_FUNC_HARD_RESET:
1309		if (!iport)
1310			return -ENODEV;
1311
1312		/* Perform the port reset. */
1313		ret = isci_port_perform_hard_reset(ihost, iport, iphy);
1314
1315		break;
 
 
 
 
 
 
 
 
 
 
 
1316
1317	default:
1318		dev_dbg(&ihost->pdev->dev,
1319			   "%s: phy %p; func %d NOT IMPLEMENTED!\n",
1320			   __func__, sas_phy, func);
1321		ret = -ENOSYS;
1322		break;
1323	}
1324	return ret;
1325}