Loading...
1// SPDX-License-Identifier: GPL-2.0+
2//
3// Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
4
5#include <linux/io.h>
6#include <linux/rtc.h>
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/interrupt.h>
10#include <linux/platform_device.h>
11#include <linux/pm_wakeirq.h>
12#include <linux/clk.h>
13#include <linux/of.h>
14
15#define RTC_INPUT_CLK_32768HZ (0x00 << 5)
16#define RTC_INPUT_CLK_32000HZ (0x01 << 5)
17#define RTC_INPUT_CLK_38400HZ (0x02 << 5)
18
19#define RTC_SW_BIT (1 << 0)
20#define RTC_ALM_BIT (1 << 2)
21#define RTC_1HZ_BIT (1 << 4)
22#define RTC_2HZ_BIT (1 << 7)
23#define RTC_SAM0_BIT (1 << 8)
24#define RTC_SAM1_BIT (1 << 9)
25#define RTC_SAM2_BIT (1 << 10)
26#define RTC_SAM3_BIT (1 << 11)
27#define RTC_SAM4_BIT (1 << 12)
28#define RTC_SAM5_BIT (1 << 13)
29#define RTC_SAM6_BIT (1 << 14)
30#define RTC_SAM7_BIT (1 << 15)
31#define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
32 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
33 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
34
35#define RTC_ENABLE_BIT (1 << 7)
36
37#define MAX_PIE_NUM 9
38#define MAX_PIE_FREQ 512
39
40#define MXC_RTC_TIME 0
41#define MXC_RTC_ALARM 1
42
43#define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
44#define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
45#define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
46#define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
47#define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
48#define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
49#define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
50#define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
51#define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
52#define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
53#define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
54#define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
55#define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
56
57enum imx_rtc_type {
58 IMX1_RTC,
59 IMX21_RTC,
60};
61
62struct rtc_plat_data {
63 struct rtc_device *rtc;
64 void __iomem *ioaddr;
65 int irq;
66 struct clk *clk_ref;
67 struct clk *clk_ipg;
68 struct rtc_time g_rtc_alarm;
69 enum imx_rtc_type devtype;
70};
71
72static const struct of_device_id imx_rtc_dt_ids[] = {
73 { .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
74 { .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
75 {}
76};
77MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
78
79static inline int is_imx1_rtc(struct rtc_plat_data *data)
80{
81 return data->devtype == IMX1_RTC;
82}
83
84/*
85 * This function is used to obtain the RTC time or the alarm value in
86 * second.
87 */
88static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
89{
90 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
91 void __iomem *ioaddr = pdata->ioaddr;
92 u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
93
94 switch (time_alarm) {
95 case MXC_RTC_TIME:
96 day = readw(ioaddr + RTC_DAYR);
97 hr_min = readw(ioaddr + RTC_HOURMIN);
98 sec = readw(ioaddr + RTC_SECOND);
99 break;
100 case MXC_RTC_ALARM:
101 day = readw(ioaddr + RTC_DAYALARM);
102 hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
103 sec = readw(ioaddr + RTC_ALRM_SEC);
104 break;
105 }
106
107 hr = hr_min >> 8;
108 min = hr_min & 0xff;
109
110 return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
111}
112
113/*
114 * This function sets the RTC alarm value or the time value.
115 */
116static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
117{
118 u32 tod, day, hr, min, sec, temp;
119 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
120 void __iomem *ioaddr = pdata->ioaddr;
121
122 day = div_s64_rem(time, 86400, &tod);
123
124 /* time is within a day now */
125 hr = tod / 3600;
126 tod -= hr * 3600;
127
128 /* time is within an hour now */
129 min = tod / 60;
130 sec = tod - min * 60;
131
132 temp = (hr << 8) + min;
133
134 switch (time_alarm) {
135 case MXC_RTC_TIME:
136 writew(day, ioaddr + RTC_DAYR);
137 writew(sec, ioaddr + RTC_SECOND);
138 writew(temp, ioaddr + RTC_HOURMIN);
139 break;
140 case MXC_RTC_ALARM:
141 writew(day, ioaddr + RTC_DAYALARM);
142 writew(sec, ioaddr + RTC_ALRM_SEC);
143 writew(temp, ioaddr + RTC_ALRM_HM);
144 break;
145 }
146}
147
148/*
149 * This function updates the RTC alarm registers and then clears all the
150 * interrupt status bits.
151 */
152static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
153{
154 time64_t time;
155 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
156 void __iomem *ioaddr = pdata->ioaddr;
157
158 time = rtc_tm_to_time64(alrm);
159
160 /* clear all the interrupt status bits */
161 writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
162 set_alarm_or_time(dev, MXC_RTC_ALARM, time);
163}
164
165static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
166 unsigned int enabled)
167{
168 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
169 void __iomem *ioaddr = pdata->ioaddr;
170 u32 reg;
171 unsigned long flags;
172
173 spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
174 reg = readw(ioaddr + RTC_RTCIENR);
175
176 if (enabled)
177 reg |= bit;
178 else
179 reg &= ~bit;
180
181 writew(reg, ioaddr + RTC_RTCIENR);
182 spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
183}
184
185/* This function is the RTC interrupt service routine. */
186static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
187{
188 struct platform_device *pdev = dev_id;
189 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
190 void __iomem *ioaddr = pdata->ioaddr;
191 u32 status;
192 u32 events = 0;
193
194 spin_lock(&pdata->rtc->irq_lock);
195 status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
196 /* clear interrupt sources */
197 writew(status, ioaddr + RTC_RTCISR);
198
199 /* update irq data & counter */
200 if (status & RTC_ALM_BIT) {
201 events |= (RTC_AF | RTC_IRQF);
202 /* RTC alarm should be one-shot */
203 mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
204 }
205
206 if (status & PIT_ALL_ON)
207 events |= (RTC_PF | RTC_IRQF);
208
209 rtc_update_irq(pdata->rtc, 1, events);
210 spin_unlock(&pdata->rtc->irq_lock);
211
212 return IRQ_HANDLED;
213}
214
215static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
216{
217 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
218 return 0;
219}
220
221/*
222 * This function reads the current RTC time into tm in Gregorian date.
223 */
224static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
225{
226 time64_t val;
227
228 /* Avoid roll-over from reading the different registers */
229 do {
230 val = get_alarm_or_time(dev, MXC_RTC_TIME);
231 } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
232
233 rtc_time64_to_tm(val, tm);
234
235 return 0;
236}
237
238/*
239 * This function sets the internal RTC time based on tm in Gregorian date.
240 */
241static int mxc_rtc_set_time(struct device *dev, struct rtc_time *tm)
242{
243 time64_t time = rtc_tm_to_time64(tm);
244
245 /* Avoid roll-over from reading the different registers */
246 do {
247 set_alarm_or_time(dev, MXC_RTC_TIME, time);
248 } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
249
250 return 0;
251}
252
253/*
254 * This function reads the current alarm value into the passed in 'alrm'
255 * argument. It updates the alrm's pending field value based on the whether
256 * an alarm interrupt occurs or not.
257 */
258static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
259{
260 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
261 void __iomem *ioaddr = pdata->ioaddr;
262
263 rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
264 alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
265
266 return 0;
267}
268
269/*
270 * This function sets the RTC alarm based on passed in alrm.
271 */
272static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
273{
274 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
275
276 rtc_update_alarm(dev, &alrm->time);
277
278 memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
279 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
280
281 return 0;
282}
283
284/* RTC layer */
285static const struct rtc_class_ops mxc_rtc_ops = {
286 .read_time = mxc_rtc_read_time,
287 .set_time = mxc_rtc_set_time,
288 .read_alarm = mxc_rtc_read_alarm,
289 .set_alarm = mxc_rtc_set_alarm,
290 .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
291};
292
293static int mxc_rtc_probe(struct platform_device *pdev)
294{
295 struct rtc_device *rtc;
296 struct rtc_plat_data *pdata = NULL;
297 u32 reg;
298 unsigned long rate;
299 int ret;
300
301 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
302 if (!pdata)
303 return -ENOMEM;
304
305 pdata->devtype = (uintptr_t)of_device_get_match_data(&pdev->dev);
306
307 pdata->ioaddr = devm_platform_ioremap_resource(pdev, 0);
308 if (IS_ERR(pdata->ioaddr))
309 return PTR_ERR(pdata->ioaddr);
310
311 rtc = devm_rtc_allocate_device(&pdev->dev);
312 if (IS_ERR(rtc))
313 return PTR_ERR(rtc);
314
315 pdata->rtc = rtc;
316 rtc->ops = &mxc_rtc_ops;
317 if (is_imx1_rtc(pdata)) {
318 struct rtc_time tm;
319
320 /* 9bit days + hours minutes seconds */
321 rtc->range_max = (1 << 9) * 86400 - 1;
322
323 /*
324 * Set the start date as beginning of the current year. This can
325 * be overridden using device tree.
326 */
327 rtc_time64_to_tm(ktime_get_real_seconds(), &tm);
328 rtc->start_secs = mktime64(tm.tm_year, 1, 1, 0, 0, 0);
329 rtc->set_start_time = true;
330 } else {
331 /* 16bit days + hours minutes seconds */
332 rtc->range_max = (1 << 16) * 86400ULL - 1;
333 }
334
335 pdata->clk_ipg = devm_clk_get_enabled(&pdev->dev, "ipg");
336 if (IS_ERR(pdata->clk_ipg)) {
337 dev_err(&pdev->dev, "unable to get ipg clock!\n");
338 return PTR_ERR(pdata->clk_ipg);
339 }
340
341 pdata->clk_ref = devm_clk_get_enabled(&pdev->dev, "ref");
342 if (IS_ERR(pdata->clk_ref)) {
343 dev_err(&pdev->dev, "unable to get ref clock!\n");
344 return PTR_ERR(pdata->clk_ref);
345 }
346
347 rate = clk_get_rate(pdata->clk_ref);
348
349 if (rate == 32768)
350 reg = RTC_INPUT_CLK_32768HZ;
351 else if (rate == 32000)
352 reg = RTC_INPUT_CLK_32000HZ;
353 else if (rate == 38400)
354 reg = RTC_INPUT_CLK_38400HZ;
355 else {
356 dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
357 return -EINVAL;
358 }
359
360 reg |= RTC_ENABLE_BIT;
361 writew(reg, (pdata->ioaddr + RTC_RTCCTL));
362 if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
363 dev_err(&pdev->dev, "hardware module can't be enabled!\n");
364 return -EIO;
365 }
366
367 platform_set_drvdata(pdev, pdata);
368
369 /* Configure and enable the RTC */
370 pdata->irq = platform_get_irq(pdev, 0);
371
372 if (pdata->irq >= 0 &&
373 devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
374 IRQF_SHARED, pdev->name, pdev) < 0) {
375 dev_warn(&pdev->dev, "interrupt not available.\n");
376 pdata->irq = -1;
377 }
378
379 if (pdata->irq >= 0) {
380 device_init_wakeup(&pdev->dev, 1);
381 ret = dev_pm_set_wake_irq(&pdev->dev, pdata->irq);
382 if (ret)
383 dev_err(&pdev->dev, "failed to enable irq wake\n");
384 }
385
386 ret = devm_rtc_register_device(rtc);
387
388 return ret;
389}
390
391static struct platform_driver mxc_rtc_driver = {
392 .driver = {
393 .name = "mxc_rtc",
394 .of_match_table = imx_rtc_dt_ids,
395 },
396 .probe = mxc_rtc_probe,
397};
398
399module_platform_driver(mxc_rtc_driver)
400
401MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
402MODULE_DESCRIPTION("RTC driver for Freescale MXC");
403MODULE_LICENSE("GPL");
404
1/*
2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
3 *
4 * The code contained herein is licensed under the GNU General Public
5 * License. You may obtain a copy of the GNU General Public License
6 * Version 2 or later at the following locations:
7 *
8 * http://www.opensource.org/licenses/gpl-license.html
9 * http://www.gnu.org/copyleft/gpl.html
10 */
11
12#include <linux/io.h>
13#include <linux/rtc.h>
14#include <linux/module.h>
15#include <linux/slab.h>
16#include <linux/interrupt.h>
17#include <linux/platform_device.h>
18#include <linux/clk.h>
19
20#include <mach/hardware.h>
21
22#define RTC_INPUT_CLK_32768HZ (0x00 << 5)
23#define RTC_INPUT_CLK_32000HZ (0x01 << 5)
24#define RTC_INPUT_CLK_38400HZ (0x02 << 5)
25
26#define RTC_SW_BIT (1 << 0)
27#define RTC_ALM_BIT (1 << 2)
28#define RTC_1HZ_BIT (1 << 4)
29#define RTC_2HZ_BIT (1 << 7)
30#define RTC_SAM0_BIT (1 << 8)
31#define RTC_SAM1_BIT (1 << 9)
32#define RTC_SAM2_BIT (1 << 10)
33#define RTC_SAM3_BIT (1 << 11)
34#define RTC_SAM4_BIT (1 << 12)
35#define RTC_SAM5_BIT (1 << 13)
36#define RTC_SAM6_BIT (1 << 14)
37#define RTC_SAM7_BIT (1 << 15)
38#define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
39 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
40 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
41
42#define RTC_ENABLE_BIT (1 << 7)
43
44#define MAX_PIE_NUM 9
45#define MAX_PIE_FREQ 512
46static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
47 { 2, RTC_2HZ_BIT },
48 { 4, RTC_SAM0_BIT },
49 { 8, RTC_SAM1_BIT },
50 { 16, RTC_SAM2_BIT },
51 { 32, RTC_SAM3_BIT },
52 { 64, RTC_SAM4_BIT },
53 { 128, RTC_SAM5_BIT },
54 { 256, RTC_SAM6_BIT },
55 { MAX_PIE_FREQ, RTC_SAM7_BIT },
56};
57
58#define MXC_RTC_TIME 0
59#define MXC_RTC_ALARM 1
60
61#define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
62#define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
63#define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
64#define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
65#define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
66#define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
67#define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
68#define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
69#define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
70#define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
71#define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
72#define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
73#define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
74
75struct rtc_plat_data {
76 struct rtc_device *rtc;
77 void __iomem *ioaddr;
78 int irq;
79 struct clk *clk;
80 struct rtc_time g_rtc_alarm;
81};
82
83/*
84 * This function is used to obtain the RTC time or the alarm value in
85 * second.
86 */
87static u32 get_alarm_or_time(struct device *dev, int time_alarm)
88{
89 struct platform_device *pdev = to_platform_device(dev);
90 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
91 void __iomem *ioaddr = pdata->ioaddr;
92 u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
93
94 switch (time_alarm) {
95 case MXC_RTC_TIME:
96 day = readw(ioaddr + RTC_DAYR);
97 hr_min = readw(ioaddr + RTC_HOURMIN);
98 sec = readw(ioaddr + RTC_SECOND);
99 break;
100 case MXC_RTC_ALARM:
101 day = readw(ioaddr + RTC_DAYALARM);
102 hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
103 sec = readw(ioaddr + RTC_ALRM_SEC);
104 break;
105 }
106
107 hr = hr_min >> 8;
108 min = hr_min & 0xff;
109
110 return (((day * 24 + hr) * 60) + min) * 60 + sec;
111}
112
113/*
114 * This function sets the RTC alarm value or the time value.
115 */
116static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time)
117{
118 u32 day, hr, min, sec, temp;
119 struct platform_device *pdev = to_platform_device(dev);
120 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
121 void __iomem *ioaddr = pdata->ioaddr;
122
123 day = time / 86400;
124 time -= day * 86400;
125
126 /* time is within a day now */
127 hr = time / 3600;
128 time -= hr * 3600;
129
130 /* time is within an hour now */
131 min = time / 60;
132 sec = time - min * 60;
133
134 temp = (hr << 8) + min;
135
136 switch (time_alarm) {
137 case MXC_RTC_TIME:
138 writew(day, ioaddr + RTC_DAYR);
139 writew(sec, ioaddr + RTC_SECOND);
140 writew(temp, ioaddr + RTC_HOURMIN);
141 break;
142 case MXC_RTC_ALARM:
143 writew(day, ioaddr + RTC_DAYALARM);
144 writew(sec, ioaddr + RTC_ALRM_SEC);
145 writew(temp, ioaddr + RTC_ALRM_HM);
146 break;
147 }
148}
149
150/*
151 * This function updates the RTC alarm registers and then clears all the
152 * interrupt status bits.
153 */
154static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
155{
156 struct rtc_time alarm_tm, now_tm;
157 unsigned long now, time;
158 int ret;
159 struct platform_device *pdev = to_platform_device(dev);
160 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
161 void __iomem *ioaddr = pdata->ioaddr;
162
163 now = get_alarm_or_time(dev, MXC_RTC_TIME);
164 rtc_time_to_tm(now, &now_tm);
165 alarm_tm.tm_year = now_tm.tm_year;
166 alarm_tm.tm_mon = now_tm.tm_mon;
167 alarm_tm.tm_mday = now_tm.tm_mday;
168 alarm_tm.tm_hour = alrm->tm_hour;
169 alarm_tm.tm_min = alrm->tm_min;
170 alarm_tm.tm_sec = alrm->tm_sec;
171 rtc_tm_to_time(&now_tm, &now);
172 rtc_tm_to_time(&alarm_tm, &time);
173
174 if (time < now) {
175 time += 60 * 60 * 24;
176 rtc_time_to_tm(time, &alarm_tm);
177 }
178
179 ret = rtc_tm_to_time(&alarm_tm, &time);
180
181 /* clear all the interrupt status bits */
182 writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
183 set_alarm_or_time(dev, MXC_RTC_ALARM, time);
184
185 return ret;
186}
187
188/* This function is the RTC interrupt service routine. */
189static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
190{
191 struct platform_device *pdev = dev_id;
192 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
193 void __iomem *ioaddr = pdata->ioaddr;
194 u32 status;
195 u32 events = 0;
196
197 spin_lock_irq(&pdata->rtc->irq_lock);
198 status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
199 /* clear interrupt sources */
200 writew(status, ioaddr + RTC_RTCISR);
201
202 /* clear alarm interrupt if it has occurred */
203 if (status & RTC_ALM_BIT)
204 status &= ~RTC_ALM_BIT;
205
206 /* update irq data & counter */
207 if (status & RTC_ALM_BIT)
208 events |= (RTC_AF | RTC_IRQF);
209
210 if (status & RTC_1HZ_BIT)
211 events |= (RTC_UF | RTC_IRQF);
212
213 if (status & PIT_ALL_ON)
214 events |= (RTC_PF | RTC_IRQF);
215
216 if ((status & RTC_ALM_BIT) && rtc_valid_tm(&pdata->g_rtc_alarm))
217 rtc_update_alarm(&pdev->dev, &pdata->g_rtc_alarm);
218
219 rtc_update_irq(pdata->rtc, 1, events);
220 spin_unlock_irq(&pdata->rtc->irq_lock);
221
222 return IRQ_HANDLED;
223}
224
225/*
226 * Clear all interrupts and release the IRQ
227 */
228static void mxc_rtc_release(struct device *dev)
229{
230 struct platform_device *pdev = to_platform_device(dev);
231 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
232 void __iomem *ioaddr = pdata->ioaddr;
233
234 spin_lock_irq(&pdata->rtc->irq_lock);
235
236 /* Disable all rtc interrupts */
237 writew(0, ioaddr + RTC_RTCIENR);
238
239 /* Clear all interrupt status */
240 writew(0xffffffff, ioaddr + RTC_RTCISR);
241
242 spin_unlock_irq(&pdata->rtc->irq_lock);
243}
244
245static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
246 unsigned int enabled)
247{
248 struct platform_device *pdev = to_platform_device(dev);
249 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
250 void __iomem *ioaddr = pdata->ioaddr;
251 u32 reg;
252
253 spin_lock_irq(&pdata->rtc->irq_lock);
254 reg = readw(ioaddr + RTC_RTCIENR);
255
256 if (enabled)
257 reg |= bit;
258 else
259 reg &= ~bit;
260
261 writew(reg, ioaddr + RTC_RTCIENR);
262 spin_unlock_irq(&pdata->rtc->irq_lock);
263}
264
265static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
266{
267 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
268 return 0;
269}
270
271/*
272 * This function reads the current RTC time into tm in Gregorian date.
273 */
274static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
275{
276 u32 val;
277
278 /* Avoid roll-over from reading the different registers */
279 do {
280 val = get_alarm_or_time(dev, MXC_RTC_TIME);
281 } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
282
283 rtc_time_to_tm(val, tm);
284
285 return 0;
286}
287
288/*
289 * This function sets the internal RTC time based on tm in Gregorian date.
290 */
291static int mxc_rtc_set_mmss(struct device *dev, unsigned long time)
292{
293 /* Avoid roll-over from reading the different registers */
294 do {
295 set_alarm_or_time(dev, MXC_RTC_TIME, time);
296 } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
297
298 return 0;
299}
300
301/*
302 * This function reads the current alarm value into the passed in 'alrm'
303 * argument. It updates the alrm's pending field value based on the whether
304 * an alarm interrupt occurs or not.
305 */
306static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
307{
308 struct platform_device *pdev = to_platform_device(dev);
309 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
310 void __iomem *ioaddr = pdata->ioaddr;
311
312 rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
313 alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
314
315 return 0;
316}
317
318/*
319 * This function sets the RTC alarm based on passed in alrm.
320 */
321static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
322{
323 struct platform_device *pdev = to_platform_device(dev);
324 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
325 int ret;
326
327 if (rtc_valid_tm(&alrm->time)) {
328 if (alrm->time.tm_sec > 59 ||
329 alrm->time.tm_hour > 23 ||
330 alrm->time.tm_min > 59)
331 return -EINVAL;
332
333 ret = rtc_update_alarm(dev, &alrm->time);
334 } else {
335 ret = rtc_valid_tm(&alrm->time);
336 if (ret)
337 return ret;
338
339 ret = rtc_update_alarm(dev, &alrm->time);
340 }
341
342 if (ret)
343 return ret;
344
345 memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
346 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
347
348 return 0;
349}
350
351/* RTC layer */
352static struct rtc_class_ops mxc_rtc_ops = {
353 .release = mxc_rtc_release,
354 .read_time = mxc_rtc_read_time,
355 .set_mmss = mxc_rtc_set_mmss,
356 .read_alarm = mxc_rtc_read_alarm,
357 .set_alarm = mxc_rtc_set_alarm,
358 .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
359};
360
361static int __init mxc_rtc_probe(struct platform_device *pdev)
362{
363 struct resource *res;
364 struct rtc_device *rtc;
365 struct rtc_plat_data *pdata = NULL;
366 u32 reg;
367 unsigned long rate;
368 int ret;
369
370 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
371 if (!res)
372 return -ENODEV;
373
374 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
375 if (!pdata)
376 return -ENOMEM;
377
378 if (!devm_request_mem_region(&pdev->dev, res->start,
379 resource_size(res), pdev->name))
380 return -EBUSY;
381
382 pdata->ioaddr = devm_ioremap(&pdev->dev, res->start,
383 resource_size(res));
384
385 pdata->clk = clk_get(&pdev->dev, "rtc");
386 if (IS_ERR(pdata->clk)) {
387 dev_err(&pdev->dev, "unable to get clock!\n");
388 ret = PTR_ERR(pdata->clk);
389 goto exit_free_pdata;
390 }
391
392 clk_enable(pdata->clk);
393 rate = clk_get_rate(pdata->clk);
394
395 if (rate == 32768)
396 reg = RTC_INPUT_CLK_32768HZ;
397 else if (rate == 32000)
398 reg = RTC_INPUT_CLK_32000HZ;
399 else if (rate == 38400)
400 reg = RTC_INPUT_CLK_38400HZ;
401 else {
402 dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
403 ret = -EINVAL;
404 goto exit_put_clk;
405 }
406
407 reg |= RTC_ENABLE_BIT;
408 writew(reg, (pdata->ioaddr + RTC_RTCCTL));
409 if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
410 dev_err(&pdev->dev, "hardware module can't be enabled!\n");
411 ret = -EIO;
412 goto exit_put_clk;
413 }
414
415 platform_set_drvdata(pdev, pdata);
416
417 /* Configure and enable the RTC */
418 pdata->irq = platform_get_irq(pdev, 0);
419
420 if (pdata->irq >= 0 &&
421 devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
422 IRQF_SHARED, pdev->name, pdev) < 0) {
423 dev_warn(&pdev->dev, "interrupt not available.\n");
424 pdata->irq = -1;
425 }
426
427 rtc = rtc_device_register(pdev->name, &pdev->dev, &mxc_rtc_ops,
428 THIS_MODULE);
429 if (IS_ERR(rtc)) {
430 ret = PTR_ERR(rtc);
431 goto exit_clr_drvdata;
432 }
433
434 pdata->rtc = rtc;
435
436 return 0;
437
438exit_clr_drvdata:
439 platform_set_drvdata(pdev, NULL);
440exit_put_clk:
441 clk_disable(pdata->clk);
442 clk_put(pdata->clk);
443
444exit_free_pdata:
445
446 return ret;
447}
448
449static int __exit mxc_rtc_remove(struct platform_device *pdev)
450{
451 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
452
453 rtc_device_unregister(pdata->rtc);
454
455 clk_disable(pdata->clk);
456 clk_put(pdata->clk);
457 platform_set_drvdata(pdev, NULL);
458
459 return 0;
460}
461
462static struct platform_driver mxc_rtc_driver = {
463 .driver = {
464 .name = "mxc_rtc",
465 .owner = THIS_MODULE,
466 },
467 .remove = __exit_p(mxc_rtc_remove),
468};
469
470static int __init mxc_rtc_init(void)
471{
472 return platform_driver_probe(&mxc_rtc_driver, mxc_rtc_probe);
473}
474
475static void __exit mxc_rtc_exit(void)
476{
477 platform_driver_unregister(&mxc_rtc_driver);
478}
479
480module_init(mxc_rtc_init);
481module_exit(mxc_rtc_exit);
482
483MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
484MODULE_DESCRIPTION("RTC driver for Freescale MXC");
485MODULE_LICENSE("GPL");
486