Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Common code for Intel Running Average Power Limit (RAPL) support.
   4 * Copyright (c) 2019, Intel Corporation.
   5 */
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/list.h>
  11#include <linux/types.h>
  12#include <linux/device.h>
  13#include <linux/slab.h>
  14#include <linux/log2.h>
  15#include <linux/bitmap.h>
  16#include <linux/delay.h>
  17#include <linux/sysfs.h>
  18#include <linux/cpu.h>
  19#include <linux/powercap.h>
  20#include <linux/suspend.h>
  21#include <linux/intel_rapl.h>
  22#include <linux/processor.h>
  23#include <linux/platform_device.h>
  24
  25#include <asm/iosf_mbi.h>
  26#include <asm/cpu_device_id.h>
  27#include <asm/intel-family.h>
  28
  29/* bitmasks for RAPL MSRs, used by primitive access functions */
  30#define ENERGY_STATUS_MASK      0xffffffff
  31
  32#define POWER_LIMIT1_MASK       0x7FFF
  33#define POWER_LIMIT1_ENABLE     BIT(15)
  34#define POWER_LIMIT1_CLAMP      BIT(16)
  35
  36#define POWER_LIMIT2_MASK       (0x7FFFULL<<32)
  37#define POWER_LIMIT2_ENABLE     BIT_ULL(47)
  38#define POWER_LIMIT2_CLAMP      BIT_ULL(48)
  39#define POWER_HIGH_LOCK         BIT_ULL(63)
  40#define POWER_LOW_LOCK          BIT(31)
  41
  42#define POWER_LIMIT4_MASK		0x1FFF
  43
  44#define TIME_WINDOW1_MASK       (0x7FULL<<17)
  45#define TIME_WINDOW2_MASK       (0x7FULL<<49)
  46
  47#define POWER_UNIT_OFFSET	0
  48#define POWER_UNIT_MASK		0x0F
  49
  50#define ENERGY_UNIT_OFFSET	0x08
  51#define ENERGY_UNIT_MASK	0x1F00
  52
  53#define TIME_UNIT_OFFSET	0x10
  54#define TIME_UNIT_MASK		0xF0000
  55
  56#define POWER_INFO_MAX_MASK     (0x7fffULL<<32)
  57#define POWER_INFO_MIN_MASK     (0x7fffULL<<16)
  58#define POWER_INFO_MAX_TIME_WIN_MASK     (0x3fULL<<48)
  59#define POWER_INFO_THERMAL_SPEC_MASK     0x7fff
  60
  61#define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
  62#define PP_POLICY_MASK         0x1F
  63
  64/*
  65 * SPR has different layout for Psys Domain PowerLimit registers.
  66 * There are 17 bits of PL1 and PL2 instead of 15 bits.
  67 * The Enable bits and TimeWindow bits are also shifted as a result.
  68 */
  69#define PSYS_POWER_LIMIT1_MASK       0x1FFFF
  70#define PSYS_POWER_LIMIT1_ENABLE     BIT(17)
  71
  72#define PSYS_POWER_LIMIT2_MASK       (0x1FFFFULL<<32)
  73#define PSYS_POWER_LIMIT2_ENABLE     BIT_ULL(49)
  74
  75#define PSYS_TIME_WINDOW1_MASK       (0x7FULL<<19)
  76#define PSYS_TIME_WINDOW2_MASK       (0x7FULL<<51)
  77
  78/* bitmasks for RAPL TPMI, used by primitive access functions */
  79#define TPMI_POWER_LIMIT_MASK	0x3FFFF
  80#define TPMI_POWER_LIMIT_ENABLE	BIT_ULL(62)
  81#define TPMI_TIME_WINDOW_MASK	(0x7FULL<<18)
  82#define TPMI_INFO_SPEC_MASK	0x3FFFF
  83#define TPMI_INFO_MIN_MASK	(0x3FFFFULL << 18)
  84#define TPMI_INFO_MAX_MASK	(0x3FFFFULL << 36)
  85#define TPMI_INFO_MAX_TIME_WIN_MASK	(0x7FULL << 54)
  86
  87/* Non HW constants */
  88#define RAPL_PRIMITIVE_DERIVED       BIT(1)	/* not from raw data */
  89#define RAPL_PRIMITIVE_DUMMY         BIT(2)
  90
  91#define TIME_WINDOW_MAX_MSEC 40000
  92#define TIME_WINDOW_MIN_MSEC 250
  93#define ENERGY_UNIT_SCALE    1000	/* scale from driver unit to powercap unit */
  94enum unit_type {
  95	ARBITRARY_UNIT,		/* no translation */
  96	POWER_UNIT,
  97	ENERGY_UNIT,
  98	TIME_UNIT,
  99};
 100
 101/* per domain data, some are optional */
 102#define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
 103
 104#define	DOMAIN_STATE_INACTIVE           BIT(0)
 105#define	DOMAIN_STATE_POWER_LIMIT_SET    BIT(1)
 106
 107static const char *pl_names[NR_POWER_LIMITS] = {
 108	[POWER_LIMIT1] = "long_term",
 109	[POWER_LIMIT2] = "short_term",
 110	[POWER_LIMIT4] = "peak_power",
 111};
 112
 113enum pl_prims {
 114	PL_ENABLE,
 115	PL_CLAMP,
 116	PL_LIMIT,
 117	PL_TIME_WINDOW,
 118	PL_MAX_POWER,
 119	PL_LOCK,
 120};
 121
 122static bool is_pl_valid(struct rapl_domain *rd, int pl)
 123{
 124	if (pl < POWER_LIMIT1 || pl > POWER_LIMIT4)
 125		return false;
 126	return rd->rpl[pl].name ? true : false;
 127}
 128
 129static int get_pl_lock_prim(struct rapl_domain *rd, int pl)
 130{
 131	if (rd->rp->priv->type == RAPL_IF_TPMI) {
 132		if (pl == POWER_LIMIT1)
 133			return PL1_LOCK;
 134		if (pl == POWER_LIMIT2)
 135			return PL2_LOCK;
 136		if (pl == POWER_LIMIT4)
 137			return PL4_LOCK;
 138	}
 139
 140	/* MSR/MMIO Interface doesn't have Lock bit for PL4 */
 141	if (pl == POWER_LIMIT4)
 142		return -EINVAL;
 143
 144	/*
 145	 * Power Limit register that supports two power limits has a different
 146	 * bit position for the Lock bit.
 147	 */
 148	if (rd->rp->priv->limits[rd->id] & BIT(POWER_LIMIT2))
 149		return FW_HIGH_LOCK;
 150	return FW_LOCK;
 151}
 152
 153static int get_pl_prim(struct rapl_domain *rd, int pl, enum pl_prims prim)
 154{
 155	switch (pl) {
 156	case POWER_LIMIT1:
 157		if (prim == PL_ENABLE)
 158			return PL1_ENABLE;
 159		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
 160			return PL1_CLAMP;
 161		if (prim == PL_LIMIT)
 162			return POWER_LIMIT1;
 163		if (prim == PL_TIME_WINDOW)
 164			return TIME_WINDOW1;
 165		if (prim == PL_MAX_POWER)
 166			return THERMAL_SPEC_POWER;
 167		if (prim == PL_LOCK)
 168			return get_pl_lock_prim(rd, pl);
 169		return -EINVAL;
 170	case POWER_LIMIT2:
 171		if (prim == PL_ENABLE)
 172			return PL2_ENABLE;
 173		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
 174			return PL2_CLAMP;
 175		if (prim == PL_LIMIT)
 176			return POWER_LIMIT2;
 177		if (prim == PL_TIME_WINDOW)
 178			return TIME_WINDOW2;
 179		if (prim == PL_MAX_POWER)
 180			return MAX_POWER;
 181		if (prim == PL_LOCK)
 182			return get_pl_lock_prim(rd, pl);
 183		return -EINVAL;
 184	case POWER_LIMIT4:
 185		if (prim == PL_LIMIT)
 186			return POWER_LIMIT4;
 187		if (prim == PL_ENABLE)
 188			return PL4_ENABLE;
 189		/* PL4 would be around two times PL2, use same prim as PL2. */
 190		if (prim == PL_MAX_POWER)
 191			return MAX_POWER;
 192		if (prim == PL_LOCK)
 193			return get_pl_lock_prim(rd, pl);
 194		return -EINVAL;
 195	default:
 196		return -EINVAL;
 197	}
 198}
 199
 200#define power_zone_to_rapl_domain(_zone) \
 201	container_of(_zone, struct rapl_domain, power_zone)
 202
 203struct rapl_defaults {
 204	u8 floor_freq_reg_addr;
 205	int (*check_unit)(struct rapl_domain *rd);
 206	void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
 207	u64 (*compute_time_window)(struct rapl_domain *rd, u64 val,
 208				    bool to_raw);
 209	unsigned int dram_domain_energy_unit;
 210	unsigned int psys_domain_energy_unit;
 211	bool spr_psys_bits;
 212};
 213static struct rapl_defaults *defaults_msr;
 214static const struct rapl_defaults defaults_tpmi;
 215
 216static struct rapl_defaults *get_defaults(struct rapl_package *rp)
 217{
 218	return rp->priv->defaults;
 219}
 220
 221/* Sideband MBI registers */
 222#define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
 223#define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
 224
 225#define PACKAGE_PLN_INT_SAVED   BIT(0)
 226#define MAX_PRIM_NAME (32)
 227
 228/* per domain data. used to describe individual knobs such that access function
 229 * can be consolidated into one instead of many inline functions.
 230 */
 231struct rapl_primitive_info {
 232	const char *name;
 233	u64 mask;
 234	int shift;
 235	enum rapl_domain_reg_id id;
 236	enum unit_type unit;
 237	u32 flag;
 238};
 239
 240#define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) {	\
 241		.name = #p,			\
 242		.mask = m,			\
 243		.shift = s,			\
 244		.id = i,			\
 245		.unit = u,			\
 246		.flag = f			\
 247	}
 248
 249static void rapl_init_domains(struct rapl_package *rp);
 250static int rapl_read_data_raw(struct rapl_domain *rd,
 251			      enum rapl_primitives prim,
 252			      bool xlate, u64 *data);
 253static int rapl_write_data_raw(struct rapl_domain *rd,
 254			       enum rapl_primitives prim,
 255			       unsigned long long value);
 256static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
 257			      enum pl_prims pl_prim,
 258			      bool xlate, u64 *data);
 259static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
 260			       enum pl_prims pl_prim,
 261			       unsigned long long value);
 262static u64 rapl_unit_xlate(struct rapl_domain *rd,
 263			   enum unit_type type, u64 value, int to_raw);
 264static void package_power_limit_irq_save(struct rapl_package *rp);
 265
 266static LIST_HEAD(rapl_packages);	/* guarded by CPU hotplug lock */
 267
 268static const char *const rapl_domain_names[] = {
 269	"package",
 270	"core",
 271	"uncore",
 272	"dram",
 273	"psys",
 274};
 275
 276static int get_energy_counter(struct powercap_zone *power_zone,
 277			      u64 *energy_raw)
 278{
 279	struct rapl_domain *rd;
 280	u64 energy_now;
 281
 282	/* prevent CPU hotplug, make sure the RAPL domain does not go
 283	 * away while reading the counter.
 284	 */
 285	cpus_read_lock();
 286	rd = power_zone_to_rapl_domain(power_zone);
 287
 288	if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
 289		*energy_raw = energy_now;
 290		cpus_read_unlock();
 291
 292		return 0;
 293	}
 294	cpus_read_unlock();
 295
 296	return -EIO;
 297}
 298
 299static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
 300{
 301	struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
 302
 303	*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
 304	return 0;
 305}
 306
 307static int release_zone(struct powercap_zone *power_zone)
 308{
 309	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 310	struct rapl_package *rp = rd->rp;
 311
 312	/* package zone is the last zone of a package, we can free
 313	 * memory here since all children has been unregistered.
 314	 */
 315	if (rd->id == RAPL_DOMAIN_PACKAGE) {
 316		kfree(rd);
 317		rp->domains = NULL;
 318	}
 319
 320	return 0;
 321
 322}
 323
 324static int find_nr_power_limit(struct rapl_domain *rd)
 325{
 326	int i, nr_pl = 0;
 327
 328	for (i = 0; i < NR_POWER_LIMITS; i++) {
 329		if (is_pl_valid(rd, i))
 330			nr_pl++;
 331	}
 332
 333	return nr_pl;
 334}
 335
 336static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
 337{
 338	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 339	struct rapl_defaults *defaults = get_defaults(rd->rp);
 340	int ret;
 341
 342	cpus_read_lock();
 343	ret = rapl_write_pl_data(rd, POWER_LIMIT1, PL_ENABLE, mode);
 344	if (!ret && defaults->set_floor_freq)
 345		defaults->set_floor_freq(rd, mode);
 346	cpus_read_unlock();
 347
 348	return ret;
 349}
 350
 351static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
 352{
 353	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 354	u64 val;
 355	int ret;
 356
 357	if (rd->rpl[POWER_LIMIT1].locked) {
 358		*mode = false;
 359		return 0;
 360	}
 361	cpus_read_lock();
 362	ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, true, &val);
 363	if (!ret)
 364		*mode = val;
 365	cpus_read_unlock();
 366
 367	return ret;
 368}
 369
 370/* per RAPL domain ops, in the order of rapl_domain_type */
 371static const struct powercap_zone_ops zone_ops[] = {
 372	/* RAPL_DOMAIN_PACKAGE */
 373	{
 374	 .get_energy_uj = get_energy_counter,
 375	 .get_max_energy_range_uj = get_max_energy_counter,
 376	 .release = release_zone,
 377	 .set_enable = set_domain_enable,
 378	 .get_enable = get_domain_enable,
 379	 },
 380	/* RAPL_DOMAIN_PP0 */
 381	{
 382	 .get_energy_uj = get_energy_counter,
 383	 .get_max_energy_range_uj = get_max_energy_counter,
 384	 .release = release_zone,
 385	 .set_enable = set_domain_enable,
 386	 .get_enable = get_domain_enable,
 387	 },
 388	/* RAPL_DOMAIN_PP1 */
 389	{
 390	 .get_energy_uj = get_energy_counter,
 391	 .get_max_energy_range_uj = get_max_energy_counter,
 392	 .release = release_zone,
 393	 .set_enable = set_domain_enable,
 394	 .get_enable = get_domain_enable,
 395	 },
 396	/* RAPL_DOMAIN_DRAM */
 397	{
 398	 .get_energy_uj = get_energy_counter,
 399	 .get_max_energy_range_uj = get_max_energy_counter,
 400	 .release = release_zone,
 401	 .set_enable = set_domain_enable,
 402	 .get_enable = get_domain_enable,
 403	 },
 404	/* RAPL_DOMAIN_PLATFORM */
 405	{
 406	 .get_energy_uj = get_energy_counter,
 407	 .get_max_energy_range_uj = get_max_energy_counter,
 408	 .release = release_zone,
 409	 .set_enable = set_domain_enable,
 410	 .get_enable = get_domain_enable,
 411	 },
 412};
 413
 414/*
 415 * Constraint index used by powercap can be different than power limit (PL)
 416 * index in that some  PLs maybe missing due to non-existent MSRs. So we
 417 * need to convert here by finding the valid PLs only (name populated).
 418 */
 419static int contraint_to_pl(struct rapl_domain *rd, int cid)
 420{
 421	int i, j;
 422
 423	for (i = POWER_LIMIT1, j = 0; i < NR_POWER_LIMITS; i++) {
 424		if (is_pl_valid(rd, i) && j++ == cid) {
 425			pr_debug("%s: index %d\n", __func__, i);
 426			return i;
 427		}
 428	}
 429	pr_err("Cannot find matching power limit for constraint %d\n", cid);
 430
 431	return -EINVAL;
 432}
 433
 434static int set_power_limit(struct powercap_zone *power_zone, int cid,
 435			   u64 power_limit)
 436{
 437	struct rapl_domain *rd;
 438	struct rapl_package *rp;
 439	int ret = 0;
 440	int id;
 441
 442	cpus_read_lock();
 443	rd = power_zone_to_rapl_domain(power_zone);
 444	id = contraint_to_pl(rd, cid);
 445	rp = rd->rp;
 446
 447	ret = rapl_write_pl_data(rd, id, PL_LIMIT, power_limit);
 448	if (!ret)
 449		package_power_limit_irq_save(rp);
 450	cpus_read_unlock();
 451	return ret;
 452}
 453
 454static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
 455				   u64 *data)
 456{
 457	struct rapl_domain *rd;
 458	u64 val;
 459	int ret = 0;
 460	int id;
 461
 462	cpus_read_lock();
 463	rd = power_zone_to_rapl_domain(power_zone);
 464	id = contraint_to_pl(rd, cid);
 465
 466	ret = rapl_read_pl_data(rd, id, PL_LIMIT, true, &val);
 467	if (!ret)
 468		*data = val;
 469
 470	cpus_read_unlock();
 471
 472	return ret;
 473}
 474
 475static int set_time_window(struct powercap_zone *power_zone, int cid,
 476			   u64 window)
 477{
 478	struct rapl_domain *rd;
 479	int ret = 0;
 480	int id;
 481
 482	cpus_read_lock();
 483	rd = power_zone_to_rapl_domain(power_zone);
 484	id = contraint_to_pl(rd, cid);
 485
 486	ret = rapl_write_pl_data(rd, id, PL_TIME_WINDOW, window);
 487
 488	cpus_read_unlock();
 489	return ret;
 490}
 491
 492static int get_time_window(struct powercap_zone *power_zone, int cid,
 493			   u64 *data)
 494{
 495	struct rapl_domain *rd;
 496	u64 val;
 497	int ret = 0;
 498	int id;
 499
 500	cpus_read_lock();
 501	rd = power_zone_to_rapl_domain(power_zone);
 502	id = contraint_to_pl(rd, cid);
 503
 504	ret = rapl_read_pl_data(rd, id, PL_TIME_WINDOW, true, &val);
 505	if (!ret)
 506		*data = val;
 507
 508	cpus_read_unlock();
 509
 510	return ret;
 511}
 512
 513static const char *get_constraint_name(struct powercap_zone *power_zone,
 514				       int cid)
 515{
 516	struct rapl_domain *rd;
 517	int id;
 518
 519	rd = power_zone_to_rapl_domain(power_zone);
 520	id = contraint_to_pl(rd, cid);
 521	if (id >= 0)
 522		return rd->rpl[id].name;
 523
 524	return NULL;
 525}
 526
 527static int get_max_power(struct powercap_zone *power_zone, int cid, u64 *data)
 528{
 529	struct rapl_domain *rd;
 530	u64 val;
 531	int ret = 0;
 532	int id;
 533
 534	cpus_read_lock();
 535	rd = power_zone_to_rapl_domain(power_zone);
 536	id = contraint_to_pl(rd, cid);
 537
 538	ret = rapl_read_pl_data(rd, id, PL_MAX_POWER, true, &val);
 539	if (!ret)
 540		*data = val;
 541
 542	/* As a generalization rule, PL4 would be around two times PL2. */
 543	if (id == POWER_LIMIT4)
 544		*data = *data * 2;
 545
 546	cpus_read_unlock();
 547
 548	return ret;
 549}
 550
 551static const struct powercap_zone_constraint_ops constraint_ops = {
 552	.set_power_limit_uw = set_power_limit,
 553	.get_power_limit_uw = get_current_power_limit,
 554	.set_time_window_us = set_time_window,
 555	.get_time_window_us = get_time_window,
 556	.get_max_power_uw = get_max_power,
 557	.get_name = get_constraint_name,
 558};
 559
 560/* Return the id used for read_raw/write_raw callback */
 561static int get_rid(struct rapl_package *rp)
 562{
 563	return rp->lead_cpu >= 0 ? rp->lead_cpu : rp->id;
 564}
 565
 566/* called after domain detection and package level data are set */
 567static void rapl_init_domains(struct rapl_package *rp)
 568{
 569	enum rapl_domain_type i;
 570	enum rapl_domain_reg_id j;
 571	struct rapl_domain *rd = rp->domains;
 572
 573	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
 574		unsigned int mask = rp->domain_map & (1 << i);
 575		int t;
 576
 577		if (!mask)
 578			continue;
 579
 580		rd->rp = rp;
 581
 582		if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
 583			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
 584				rp->lead_cpu >= 0 ? topology_physical_package_id(rp->lead_cpu) :
 585				rp->id);
 586		} else {
 587			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
 588				rapl_domain_names[i]);
 589		}
 590
 591		rd->id = i;
 592
 593		/* PL1 is supported by default */
 594		rp->priv->limits[i] |= BIT(POWER_LIMIT1);
 595
 596		for (t = POWER_LIMIT1; t < NR_POWER_LIMITS; t++) {
 597			if (rp->priv->limits[i] & BIT(t))
 598				rd->rpl[t].name = pl_names[t];
 599		}
 600
 601		for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
 602			rd->regs[j] = rp->priv->regs[i][j];
 603
 604		rd++;
 605	}
 606}
 607
 608static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
 609			   u64 value, int to_raw)
 610{
 611	u64 units = 1;
 612	struct rapl_defaults *defaults = get_defaults(rd->rp);
 613	u64 scale = 1;
 614
 615	switch (type) {
 616	case POWER_UNIT:
 617		units = rd->power_unit;
 618		break;
 619	case ENERGY_UNIT:
 620		scale = ENERGY_UNIT_SCALE;
 621		units = rd->energy_unit;
 622		break;
 623	case TIME_UNIT:
 624		return defaults->compute_time_window(rd, value, to_raw);
 625	case ARBITRARY_UNIT:
 626	default:
 627		return value;
 628	}
 629
 630	if (to_raw)
 631		return div64_u64(value, units) * scale;
 632
 633	value *= units;
 634
 635	return div64_u64(value, scale);
 636}
 637
 638/* RAPL primitives for MSR and MMIO I/F */
 639static struct rapl_primitive_info rpi_msr[NR_RAPL_PRIMITIVES] = {
 640	/* name, mask, shift, msr index, unit divisor */
 641	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
 642			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
 643	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
 644			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
 645	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
 646				RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
 647	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
 648			    RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
 649	[FW_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
 650			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 651	[FW_HIGH_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_HIGH_LOCK, 63,
 652			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 653	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
 654			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 655	[PL1_CLAMP] = PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
 656			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 657	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
 658			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 659	[PL2_CLAMP] = PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
 660			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 661	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
 662			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
 663	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
 664			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
 665	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
 666			    0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 667	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
 668			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 669	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
 670			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 671	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
 672			    RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
 673	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
 674			    RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
 675	[PRIORITY_LEVEL] = PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
 676			    RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
 677	[PSYS_POWER_LIMIT1] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT1, PSYS_POWER_LIMIT1_MASK, 0,
 678			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
 679	[PSYS_POWER_LIMIT2] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT2, PSYS_POWER_LIMIT2_MASK, 32,
 680			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
 681	[PSYS_PL1_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL1_ENABLE, PSYS_POWER_LIMIT1_ENABLE, 17,
 682			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 683	[PSYS_PL2_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL2_ENABLE, PSYS_POWER_LIMIT2_ENABLE, 49,
 684			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 685	[PSYS_TIME_WINDOW1] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW1, PSYS_TIME_WINDOW1_MASK, 19,
 686			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
 687	[PSYS_TIME_WINDOW2] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW2, PSYS_TIME_WINDOW2_MASK, 51,
 688			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
 689	/* non-hardware */
 690	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
 691			    RAPL_PRIMITIVE_DERIVED),
 692};
 693
 694/* RAPL primitives for TPMI I/F */
 695static struct rapl_primitive_info rpi_tpmi[NR_RAPL_PRIMITIVES] = {
 696	/* name, mask, shift, msr index, unit divisor */
 697	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, TPMI_POWER_LIMIT_MASK, 0,
 698		RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
 699	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, TPMI_POWER_LIMIT_MASK, 0,
 700		RAPL_DOMAIN_REG_PL2, POWER_UNIT, 0),
 701	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, TPMI_POWER_LIMIT_MASK, 0,
 702		RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
 703	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
 704		RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
 705	[PL1_LOCK] = PRIMITIVE_INFO_INIT(PL1_LOCK, POWER_HIGH_LOCK, 63,
 706		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 707	[PL2_LOCK] = PRIMITIVE_INFO_INIT(PL2_LOCK, POWER_HIGH_LOCK, 63,
 708		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
 709	[PL4_LOCK] = PRIMITIVE_INFO_INIT(PL4_LOCK, POWER_HIGH_LOCK, 63,
 710		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
 711	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
 712		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 713	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
 714		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
 715	[PL4_ENABLE] = PRIMITIVE_INFO_INIT(PL4_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
 716		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
 717	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TPMI_TIME_WINDOW_MASK, 18,
 718		RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
 719	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TPMI_TIME_WINDOW_MASK, 18,
 720		RAPL_DOMAIN_REG_PL2, TIME_UNIT, 0),
 721	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, TPMI_INFO_SPEC_MASK, 0,
 722		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 723	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, TPMI_INFO_MAX_MASK, 36,
 724		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 725	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, TPMI_INFO_MIN_MASK, 18,
 726		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 727	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, TPMI_INFO_MAX_TIME_WIN_MASK, 54,
 728		RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
 729	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
 730		RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
 731	/* non-hardware */
 732	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0,
 733		POWER_UNIT, RAPL_PRIMITIVE_DERIVED),
 734};
 735
 736static struct rapl_primitive_info *get_rpi(struct rapl_package *rp, int prim)
 737{
 738	struct rapl_primitive_info *rpi = rp->priv->rpi;
 739
 740	if (prim < 0 || prim > NR_RAPL_PRIMITIVES || !rpi)
 741		return NULL;
 742
 743	return &rpi[prim];
 744}
 745
 746static int rapl_config(struct rapl_package *rp)
 747{
 748	switch (rp->priv->type) {
 749	/* MMIO I/F shares the same register layout as MSR registers */
 750	case RAPL_IF_MMIO:
 751	case RAPL_IF_MSR:
 752		rp->priv->defaults = (void *)defaults_msr;
 753		rp->priv->rpi = (void *)rpi_msr;
 754		break;
 755	case RAPL_IF_TPMI:
 756		rp->priv->defaults = (void *)&defaults_tpmi;
 757		rp->priv->rpi = (void *)rpi_tpmi;
 758		break;
 759	default:
 760		return -EINVAL;
 761	}
 762	return 0;
 763}
 764
 765static enum rapl_primitives
 766prim_fixups(struct rapl_domain *rd, enum rapl_primitives prim)
 767{
 768	struct rapl_defaults *defaults = get_defaults(rd->rp);
 769
 770	if (!defaults->spr_psys_bits)
 771		return prim;
 772
 773	if (rd->id != RAPL_DOMAIN_PLATFORM)
 774		return prim;
 775
 776	switch (prim) {
 777	case POWER_LIMIT1:
 778		return PSYS_POWER_LIMIT1;
 779	case POWER_LIMIT2:
 780		return PSYS_POWER_LIMIT2;
 781	case PL1_ENABLE:
 782		return PSYS_PL1_ENABLE;
 783	case PL2_ENABLE:
 784		return PSYS_PL2_ENABLE;
 785	case TIME_WINDOW1:
 786		return PSYS_TIME_WINDOW1;
 787	case TIME_WINDOW2:
 788		return PSYS_TIME_WINDOW2;
 789	default:
 790		return prim;
 791	}
 792}
 793
 794/* Read primitive data based on its related struct rapl_primitive_info.
 795 * if xlate flag is set, return translated data based on data units, i.e.
 796 * time, energy, and power.
 797 * RAPL MSRs are non-architectual and are laid out not consistently across
 798 * domains. Here we use primitive info to allow writing consolidated access
 799 * functions.
 800 * For a given primitive, it is processed by MSR mask and shift. Unit conversion
 801 * is pre-assigned based on RAPL unit MSRs read at init time.
 802 * 63-------------------------- 31--------------------------- 0
 803 * |                           xxxxx (mask)                   |
 804 * |                                |<- shift ----------------|
 805 * 63-------------------------- 31--------------------------- 0
 806 */
 807static int rapl_read_data_raw(struct rapl_domain *rd,
 808			      enum rapl_primitives prim, bool xlate, u64 *data)
 809{
 810	u64 value;
 811	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
 812	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
 813	struct reg_action ra;
 814
 815	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
 816		return -EINVAL;
 817
 818	ra.reg = rd->regs[rpi->id];
 819	if (!ra.reg.val)
 820		return -EINVAL;
 821
 822	/* non-hardware data are collected by the polling thread */
 823	if (rpi->flag & RAPL_PRIMITIVE_DERIVED) {
 824		*data = rd->rdd.primitives[prim];
 825		return 0;
 826	}
 827
 828	ra.mask = rpi->mask;
 829
 830	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
 831		pr_debug("failed to read reg 0x%llx for %s:%s\n", ra.reg.val, rd->rp->name, rd->name);
 832		return -EIO;
 833	}
 834
 835	value = ra.value >> rpi->shift;
 836
 837	if (xlate)
 838		*data = rapl_unit_xlate(rd, rpi->unit, value, 0);
 839	else
 840		*data = value;
 841
 842	return 0;
 843}
 844
 845/* Similar use of primitive info in the read counterpart */
 846static int rapl_write_data_raw(struct rapl_domain *rd,
 847			       enum rapl_primitives prim,
 848			       unsigned long long value)
 849{
 850	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
 851	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
 852	u64 bits;
 853	struct reg_action ra;
 854	int ret;
 855
 856	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
 857		return -EINVAL;
 858
 859	bits = rapl_unit_xlate(rd, rpi->unit, value, 1);
 860	bits <<= rpi->shift;
 861	bits &= rpi->mask;
 862
 863	memset(&ra, 0, sizeof(ra));
 864
 865	ra.reg = rd->regs[rpi->id];
 866	ra.mask = rpi->mask;
 867	ra.value = bits;
 868
 869	ret = rd->rp->priv->write_raw(get_rid(rd->rp), &ra);
 870
 871	return ret;
 872}
 873
 874static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
 875			      enum pl_prims pl_prim, bool xlate, u64 *data)
 876{
 877	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
 878
 879	if (!is_pl_valid(rd, pl))
 880		return -EINVAL;
 881
 882	return rapl_read_data_raw(rd, prim, xlate, data);
 883}
 884
 885static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
 886			       enum pl_prims pl_prim,
 887			       unsigned long long value)
 888{
 889	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
 890
 891	if (!is_pl_valid(rd, pl))
 892		return -EINVAL;
 893
 894	if (rd->rpl[pl].locked) {
 895		pr_debug("%s:%s:%s locked by BIOS\n", rd->rp->name, rd->name, pl_names[pl]);
 896		return -EACCES;
 897	}
 898
 899	return rapl_write_data_raw(rd, prim, value);
 900}
 901/*
 902 * Raw RAPL data stored in MSRs are in certain scales. We need to
 903 * convert them into standard units based on the units reported in
 904 * the RAPL unit MSRs. This is specific to CPUs as the method to
 905 * calculate units differ on different CPUs.
 906 * We convert the units to below format based on CPUs.
 907 * i.e.
 908 * energy unit: picoJoules  : Represented in picoJoules by default
 909 * power unit : microWatts  : Represented in milliWatts by default
 910 * time unit  : microseconds: Represented in seconds by default
 911 */
 912static int rapl_check_unit_core(struct rapl_domain *rd)
 913{
 914	struct reg_action ra;
 915	u32 value;
 916
 917	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
 918	ra.mask = ~0;
 919	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
 920		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
 921			ra.reg.val, rd->rp->name, rd->name);
 922		return -ENODEV;
 923	}
 924
 925	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
 926	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
 927
 928	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
 929	rd->power_unit = 1000000 / (1 << value);
 930
 931	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
 932	rd->time_unit = 1000000 / (1 << value);
 933
 934	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
 935		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
 936
 937	return 0;
 938}
 939
 940static int rapl_check_unit_atom(struct rapl_domain *rd)
 941{
 942	struct reg_action ra;
 943	u32 value;
 944
 945	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
 946	ra.mask = ~0;
 947	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
 948		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
 949			ra.reg.val, rd->rp->name, rd->name);
 950		return -ENODEV;
 951	}
 952
 953	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
 954	rd->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
 955
 956	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
 957	rd->power_unit = (1 << value) * 1000;
 958
 959	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
 960	rd->time_unit = 1000000 / (1 << value);
 961
 962	pr_debug("Atom %s:%s energy=%dpJ, time=%dus, power=%duW\n",
 963		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
 964
 965	return 0;
 966}
 967
 968static void power_limit_irq_save_cpu(void *info)
 969{
 970	u32 l, h = 0;
 971	struct rapl_package *rp = (struct rapl_package *)info;
 972
 973	/* save the state of PLN irq mask bit before disabling it */
 974	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
 975	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
 976		rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
 977		rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
 978	}
 979	l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
 980	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
 981}
 982
 983/* REVISIT:
 984 * When package power limit is set artificially low by RAPL, LVT
 985 * thermal interrupt for package power limit should be ignored
 986 * since we are not really exceeding the real limit. The intention
 987 * is to avoid excessive interrupts while we are trying to save power.
 988 * A useful feature might be routing the package_power_limit interrupt
 989 * to userspace via eventfd. once we have a usecase, this is simple
 990 * to do by adding an atomic notifier.
 991 */
 992
 993static void package_power_limit_irq_save(struct rapl_package *rp)
 994{
 995	if (rp->lead_cpu < 0)
 996		return;
 997
 998	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
 999		return;
1000
1001	smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
1002}
1003
1004/*
1005 * Restore per package power limit interrupt enable state. Called from cpu
1006 * hotplug code on package removal.
1007 */
1008static void package_power_limit_irq_restore(struct rapl_package *rp)
1009{
1010	u32 l, h;
1011
1012	if (rp->lead_cpu < 0)
1013		return;
1014
1015	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1016		return;
1017
1018	/* irq enable state not saved, nothing to restore */
1019	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
1020		return;
1021
1022	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
1023
1024	if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
1025		l |= PACKAGE_THERM_INT_PLN_ENABLE;
1026	else
1027		l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
1028
1029	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
1030}
1031
1032static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
1033{
1034	int i;
1035
1036	/* always enable clamp such that p-state can go below OS requested
1037	 * range. power capping priority over guranteed frequency.
1038	 */
1039	rapl_write_pl_data(rd, POWER_LIMIT1, PL_CLAMP, mode);
1040
1041	for (i = POWER_LIMIT2; i < NR_POWER_LIMITS; i++) {
1042		rapl_write_pl_data(rd, i, PL_ENABLE, mode);
1043		rapl_write_pl_data(rd, i, PL_CLAMP, mode);
1044	}
1045}
1046
1047static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
1048{
1049	static u32 power_ctrl_orig_val;
1050	struct rapl_defaults *defaults = get_defaults(rd->rp);
1051	u32 mdata;
1052
1053	if (!defaults->floor_freq_reg_addr) {
1054		pr_err("Invalid floor frequency config register\n");
1055		return;
1056	}
1057
1058	if (!power_ctrl_orig_val)
1059		iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
1060			      defaults->floor_freq_reg_addr,
1061			      &power_ctrl_orig_val);
1062	mdata = power_ctrl_orig_val;
1063	if (enable) {
1064		mdata &= ~(0x7f << 8);
1065		mdata |= 1 << 8;
1066	}
1067	iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
1068		       defaults->floor_freq_reg_addr, mdata);
1069}
1070
1071static u64 rapl_compute_time_window_core(struct rapl_domain *rd, u64 value,
1072					 bool to_raw)
1073{
1074	u64 f, y;		/* fraction and exp. used for time unit */
1075
1076	/*
1077	 * Special processing based on 2^Y*(1+F/4), refer
1078	 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
1079	 */
1080	if (!to_raw) {
1081		f = (value & 0x60) >> 5;
1082		y = value & 0x1f;
1083		value = (1 << y) * (4 + f) * rd->time_unit / 4;
1084	} else {
1085		if (value < rd->time_unit)
1086			return 0;
1087
1088		do_div(value, rd->time_unit);
1089		y = ilog2(value);
1090
1091		/*
1092		 * The target hardware field is 7 bits wide, so return all ones
1093		 * if the exponent is too large.
1094		 */
1095		if (y > 0x1f)
1096			return 0x7f;
1097
1098		f = div64_u64(4 * (value - (1ULL << y)), 1ULL << y);
1099		value = (y & 0x1f) | ((f & 0x3) << 5);
1100	}
1101	return value;
1102}
1103
1104static u64 rapl_compute_time_window_atom(struct rapl_domain *rd, u64 value,
1105					 bool to_raw)
1106{
1107	/*
1108	 * Atom time unit encoding is straight forward val * time_unit,
1109	 * where time_unit is default to 1 sec. Never 0.
1110	 */
1111	if (!to_raw)
1112		return (value) ? value * rd->time_unit : rd->time_unit;
1113
1114	value = div64_u64(value, rd->time_unit);
1115
1116	return value;
1117}
1118
1119/* TPMI Unit register has different layout */
1120#define TPMI_POWER_UNIT_OFFSET	POWER_UNIT_OFFSET
1121#define TPMI_POWER_UNIT_MASK	POWER_UNIT_MASK
1122#define TPMI_ENERGY_UNIT_OFFSET	0x06
1123#define TPMI_ENERGY_UNIT_MASK	0x7C0
1124#define TPMI_TIME_UNIT_OFFSET	0x0C
1125#define TPMI_TIME_UNIT_MASK	0xF000
1126
1127static int rapl_check_unit_tpmi(struct rapl_domain *rd)
1128{
1129	struct reg_action ra;
1130	u32 value;
1131
1132	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
1133	ra.mask = ~0;
1134	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
1135		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
1136			ra.reg.val, rd->rp->name, rd->name);
1137		return -ENODEV;
1138	}
1139
1140	value = (ra.value & TPMI_ENERGY_UNIT_MASK) >> TPMI_ENERGY_UNIT_OFFSET;
1141	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
1142
1143	value = (ra.value & TPMI_POWER_UNIT_MASK) >> TPMI_POWER_UNIT_OFFSET;
1144	rd->power_unit = 1000000 / (1 << value);
1145
1146	value = (ra.value & TPMI_TIME_UNIT_MASK) >> TPMI_TIME_UNIT_OFFSET;
1147	rd->time_unit = 1000000 / (1 << value);
1148
1149	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
1150		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
1151
1152	return 0;
1153}
1154
1155static const struct rapl_defaults defaults_tpmi = {
1156	.check_unit = rapl_check_unit_tpmi,
1157	/* Reuse existing logic, ignore the PL_CLAMP failures and enable all Power Limits */
1158	.set_floor_freq = set_floor_freq_default,
1159	.compute_time_window = rapl_compute_time_window_core,
1160};
1161
1162static const struct rapl_defaults rapl_defaults_core = {
1163	.floor_freq_reg_addr = 0,
1164	.check_unit = rapl_check_unit_core,
1165	.set_floor_freq = set_floor_freq_default,
1166	.compute_time_window = rapl_compute_time_window_core,
1167};
1168
1169static const struct rapl_defaults rapl_defaults_hsw_server = {
1170	.check_unit = rapl_check_unit_core,
1171	.set_floor_freq = set_floor_freq_default,
1172	.compute_time_window = rapl_compute_time_window_core,
1173	.dram_domain_energy_unit = 15300,
1174};
1175
1176static const struct rapl_defaults rapl_defaults_spr_server = {
1177	.check_unit = rapl_check_unit_core,
1178	.set_floor_freq = set_floor_freq_default,
1179	.compute_time_window = rapl_compute_time_window_core,
1180	.psys_domain_energy_unit = 1000000000,
1181	.spr_psys_bits = true,
1182};
1183
1184static const struct rapl_defaults rapl_defaults_byt = {
1185	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
1186	.check_unit = rapl_check_unit_atom,
1187	.set_floor_freq = set_floor_freq_atom,
1188	.compute_time_window = rapl_compute_time_window_atom,
1189};
1190
1191static const struct rapl_defaults rapl_defaults_tng = {
1192	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
1193	.check_unit = rapl_check_unit_atom,
1194	.set_floor_freq = set_floor_freq_atom,
1195	.compute_time_window = rapl_compute_time_window_atom,
1196};
1197
1198static const struct rapl_defaults rapl_defaults_ann = {
1199	.floor_freq_reg_addr = 0,
1200	.check_unit = rapl_check_unit_atom,
1201	.set_floor_freq = NULL,
1202	.compute_time_window = rapl_compute_time_window_atom,
1203};
1204
1205static const struct rapl_defaults rapl_defaults_cht = {
1206	.floor_freq_reg_addr = 0,
1207	.check_unit = rapl_check_unit_atom,
1208	.set_floor_freq = NULL,
1209	.compute_time_window = rapl_compute_time_window_atom,
1210};
1211
1212static const struct rapl_defaults rapl_defaults_amd = {
1213	.check_unit = rapl_check_unit_core,
1214};
1215
1216static const struct x86_cpu_id rapl_ids[] __initconst = {
1217	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE,		&rapl_defaults_core),
1218	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X,	&rapl_defaults_core),
1219
1220	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE,		&rapl_defaults_core),
1221	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X,		&rapl_defaults_core),
1222
1223	X86_MATCH_INTEL_FAM6_MODEL(HASWELL,		&rapl_defaults_core),
1224	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L,		&rapl_defaults_core),
1225	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G,		&rapl_defaults_core),
1226	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X,		&rapl_defaults_hsw_server),
1227
1228	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL,		&rapl_defaults_core),
1229	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G,		&rapl_defaults_core),
1230	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D,		&rapl_defaults_core),
1231	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X,		&rapl_defaults_hsw_server),
1232
1233	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE,		&rapl_defaults_core),
1234	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L,		&rapl_defaults_core),
1235	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X,		&rapl_defaults_hsw_server),
1236	X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L,		&rapl_defaults_core),
1237	X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE,		&rapl_defaults_core),
1238	X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L,	&rapl_defaults_core),
1239	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,		&rapl_defaults_core),
1240	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE,		&rapl_defaults_core),
1241	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI,	&rapl_defaults_core),
1242	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,		&rapl_defaults_hsw_server),
1243	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,		&rapl_defaults_hsw_server),
1244	X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L,		&rapl_defaults_core),
1245	X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE,		&rapl_defaults_core),
1246	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L,		&rapl_defaults_core),
1247	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE,		&rapl_defaults_core),
1248	X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE,		&rapl_defaults_core),
1249	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE,		&rapl_defaults_core),
1250	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L,		&rapl_defaults_core),
1251	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GRACEMONT,	&rapl_defaults_core),
1252	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE,		&rapl_defaults_core),
1253	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_P,        &rapl_defaults_core),
1254	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_S,	&rapl_defaults_core),
1255	X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE,		&rapl_defaults_core),
1256	X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L,	&rapl_defaults_core),
1257	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X,	&rapl_defaults_spr_server),
1258	X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X,	&rapl_defaults_spr_server),
1259	X86_MATCH_INTEL_FAM6_MODEL(LAKEFIELD,		&rapl_defaults_core),
1260
1261	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,	&rapl_defaults_byt),
1262	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,	&rapl_defaults_cht),
1263	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID,	&rapl_defaults_tng),
1264	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID,	&rapl_defaults_ann),
1265	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT,	&rapl_defaults_core),
1266	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS,	&rapl_defaults_core),
1267	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D,	&rapl_defaults_core),
1268	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT,	&rapl_defaults_core),
1269	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D,	&rapl_defaults_core),
1270	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L,	&rapl_defaults_core),
1271
1272	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL,	&rapl_defaults_hsw_server),
1273	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM,	&rapl_defaults_hsw_server),
1274
1275	X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
1276	X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
1277	X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
1278	{}
1279};
1280MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1281
1282/* Read once for all raw primitive data for domains */
1283static void rapl_update_domain_data(struct rapl_package *rp)
1284{
1285	int dmn, prim;
1286	u64 val;
1287
1288	for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1289		pr_debug("update %s domain %s data\n", rp->name,
1290			 rp->domains[dmn].name);
1291		/* exclude non-raw primitives */
1292		for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1293			struct rapl_primitive_info *rpi = get_rpi(rp, prim);
1294
1295			if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1296						rpi->unit, &val))
1297				rp->domains[dmn].rdd.primitives[prim] = val;
1298		}
1299	}
1300
1301}
1302
1303static int rapl_package_register_powercap(struct rapl_package *rp)
1304{
1305	struct rapl_domain *rd;
1306	struct powercap_zone *power_zone = NULL;
1307	int nr_pl, ret;
1308
1309	/* Update the domain data of the new package */
1310	rapl_update_domain_data(rp);
1311
1312	/* first we register package domain as the parent zone */
1313	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1314		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1315			nr_pl = find_nr_power_limit(rd);
1316			pr_debug("register package domain %s\n", rp->name);
1317			power_zone = powercap_register_zone(&rd->power_zone,
1318					    rp->priv->control_type, rp->name,
1319					    NULL, &zone_ops[rd->id], nr_pl,
1320					    &constraint_ops);
1321			if (IS_ERR(power_zone)) {
1322				pr_debug("failed to register power zone %s\n",
1323					 rp->name);
1324				return PTR_ERR(power_zone);
1325			}
1326			/* track parent zone in per package/socket data */
1327			rp->power_zone = power_zone;
1328			/* done, only one package domain per socket */
1329			break;
1330		}
1331	}
1332	if (!power_zone) {
1333		pr_err("no package domain found, unknown topology!\n");
1334		return -ENODEV;
1335	}
1336	/* now register domains as children of the socket/package */
1337	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1338		struct powercap_zone *parent = rp->power_zone;
1339
1340		if (rd->id == RAPL_DOMAIN_PACKAGE)
1341			continue;
1342		if (rd->id == RAPL_DOMAIN_PLATFORM)
1343			parent = NULL;
1344		/* number of power limits per domain varies */
1345		nr_pl = find_nr_power_limit(rd);
1346		power_zone = powercap_register_zone(&rd->power_zone,
1347						    rp->priv->control_type,
1348						    rd->name, parent,
1349						    &zone_ops[rd->id], nr_pl,
1350						    &constraint_ops);
1351
1352		if (IS_ERR(power_zone)) {
1353			pr_debug("failed to register power_zone, %s:%s\n",
1354				 rp->name, rd->name);
1355			ret = PTR_ERR(power_zone);
1356			goto err_cleanup;
1357		}
1358	}
1359	return 0;
1360
1361err_cleanup:
1362	/*
1363	 * Clean up previously initialized domains within the package if we
1364	 * failed after the first domain setup.
1365	 */
1366	while (--rd >= rp->domains) {
1367		pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1368		powercap_unregister_zone(rp->priv->control_type,
1369					 &rd->power_zone);
1370	}
1371
1372	return ret;
1373}
1374
1375static int rapl_check_domain(int domain, struct rapl_package *rp)
1376{
1377	struct reg_action ra;
1378
1379	switch (domain) {
1380	case RAPL_DOMAIN_PACKAGE:
1381	case RAPL_DOMAIN_PP0:
1382	case RAPL_DOMAIN_PP1:
1383	case RAPL_DOMAIN_DRAM:
1384	case RAPL_DOMAIN_PLATFORM:
1385		ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1386		break;
1387	default:
1388		pr_err("invalid domain id %d\n", domain);
1389		return -EINVAL;
1390	}
1391	/* make sure domain counters are available and contains non-zero
1392	 * values, otherwise skip it.
1393	 */
1394
1395	ra.mask = ENERGY_STATUS_MASK;
1396	if (rp->priv->read_raw(get_rid(rp), &ra) || !ra.value)
1397		return -ENODEV;
1398
1399	return 0;
1400}
1401
1402/*
1403 * Get per domain energy/power/time unit.
1404 * RAPL Interfaces without per domain unit register will use the package
1405 * scope unit register to set per domain units.
1406 */
1407static int rapl_get_domain_unit(struct rapl_domain *rd)
1408{
1409	struct rapl_defaults *defaults = get_defaults(rd->rp);
1410	int ret;
1411
1412	if (!rd->regs[RAPL_DOMAIN_REG_UNIT].val) {
1413		if (!rd->rp->priv->reg_unit.val) {
1414			pr_err("No valid Unit register found\n");
1415			return -ENODEV;
1416		}
1417		rd->regs[RAPL_DOMAIN_REG_UNIT] = rd->rp->priv->reg_unit;
1418	}
1419
1420	if (!defaults->check_unit) {
1421		pr_err("missing .check_unit() callback\n");
1422		return -ENODEV;
1423	}
1424
1425	ret = defaults->check_unit(rd);
1426	if (ret)
1427		return ret;
1428
1429	if (rd->id == RAPL_DOMAIN_DRAM && defaults->dram_domain_energy_unit)
1430		rd->energy_unit = defaults->dram_domain_energy_unit;
1431	if (rd->id == RAPL_DOMAIN_PLATFORM && defaults->psys_domain_energy_unit)
1432		rd->energy_unit = defaults->psys_domain_energy_unit;
1433	return 0;
1434}
1435
1436/*
1437 * Check if power limits are available. Two cases when they are not available:
1438 * 1. Locked by BIOS, in this case we still provide read-only access so that
1439 *    users can see what limit is set by the BIOS.
1440 * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1441 *    exist at all. In this case, we do not show the constraints in powercap.
1442 *
1443 * Called after domains are detected and initialized.
1444 */
1445static void rapl_detect_powerlimit(struct rapl_domain *rd)
1446{
1447	u64 val64;
1448	int i;
1449
1450	for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1451		if (!rapl_read_pl_data(rd, i, PL_LOCK, false, &val64)) {
1452			if (val64) {
1453				rd->rpl[i].locked = true;
1454				pr_info("%s:%s:%s locked by BIOS\n",
1455					rd->rp->name, rd->name, pl_names[i]);
1456			}
1457		}
1458
1459		if (rapl_read_pl_data(rd, i, PL_LIMIT, false, &val64))
1460			rd->rpl[i].name = NULL;
1461	}
1462}
1463
1464/* Detect active and valid domains for the given CPU, caller must
1465 * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1466 */
1467static int rapl_detect_domains(struct rapl_package *rp)
1468{
1469	struct rapl_domain *rd;
1470	int i;
1471
1472	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1473		/* use physical package id to read counters */
1474		if (!rapl_check_domain(i, rp)) {
1475			rp->domain_map |= 1 << i;
1476			pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1477		}
1478	}
1479	rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1480	if (!rp->nr_domains) {
1481		pr_debug("no valid rapl domains found in %s\n", rp->name);
1482		return -ENODEV;
1483	}
1484	pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1485
1486	rp->domains = kcalloc(rp->nr_domains, sizeof(struct rapl_domain),
1487			      GFP_KERNEL);
1488	if (!rp->domains)
1489		return -ENOMEM;
1490
1491	rapl_init_domains(rp);
1492
1493	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1494		rapl_get_domain_unit(rd);
1495		rapl_detect_powerlimit(rd);
1496	}
1497
1498	return 0;
1499}
1500
1501/* called from CPU hotplug notifier, hotplug lock held */
1502void rapl_remove_package(struct rapl_package *rp)
1503{
1504	struct rapl_domain *rd, *rd_package = NULL;
1505
1506	package_power_limit_irq_restore(rp);
1507
1508	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1509		int i;
1510
1511		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1512			rapl_write_pl_data(rd, i, PL_ENABLE, 0);
1513			rapl_write_pl_data(rd, i, PL_CLAMP, 0);
1514		}
1515
1516		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1517			rd_package = rd;
1518			continue;
1519		}
1520		pr_debug("remove package, undo power limit on %s: %s\n",
1521			 rp->name, rd->name);
1522		powercap_unregister_zone(rp->priv->control_type,
1523					 &rd->power_zone);
1524	}
1525	/* do parent zone last */
1526	powercap_unregister_zone(rp->priv->control_type,
1527				 &rd_package->power_zone);
1528	list_del(&rp->plist);
1529	kfree(rp);
1530}
1531EXPORT_SYMBOL_GPL(rapl_remove_package);
1532
1533/* caller to ensure CPU hotplug lock is held */
1534struct rapl_package *rapl_find_package_domain(int id, struct rapl_if_priv *priv, bool id_is_cpu)
1535{
1536	struct rapl_package *rp;
1537	int uid;
1538
1539	if (id_is_cpu)
1540		uid = topology_logical_die_id(id);
1541	else
1542		uid = id;
1543
1544	list_for_each_entry(rp, &rapl_packages, plist) {
1545		if (rp->id == uid
1546		    && rp->priv->control_type == priv->control_type)
1547			return rp;
1548	}
1549
1550	return NULL;
1551}
1552EXPORT_SYMBOL_GPL(rapl_find_package_domain);
1553
1554/* called from CPU hotplug notifier, hotplug lock held */
1555struct rapl_package *rapl_add_package(int id, struct rapl_if_priv *priv, bool id_is_cpu)
1556{
1557	struct rapl_package *rp;
1558	int ret;
1559
1560	rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
1561	if (!rp)
1562		return ERR_PTR(-ENOMEM);
1563
1564	if (id_is_cpu) {
1565		rp->id = topology_logical_die_id(id);
1566		rp->lead_cpu = id;
1567		if (topology_max_die_per_package() > 1)
1568			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d-die-%d",
1569				 topology_physical_package_id(id), topology_die_id(id));
1570		else
1571			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
1572				 topology_physical_package_id(id));
1573	} else {
1574		rp->id = id;
1575		rp->lead_cpu = -1;
1576		snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d", id);
1577	}
1578
1579	rp->priv = priv;
1580	ret = rapl_config(rp);
1581	if (ret)
1582		goto err_free_package;
1583
1584	/* check if the package contains valid domains */
1585	if (rapl_detect_domains(rp)) {
1586		ret = -ENODEV;
1587		goto err_free_package;
1588	}
1589	ret = rapl_package_register_powercap(rp);
1590	if (!ret) {
1591		INIT_LIST_HEAD(&rp->plist);
1592		list_add(&rp->plist, &rapl_packages);
1593		return rp;
1594	}
1595
1596err_free_package:
1597	kfree(rp->domains);
1598	kfree(rp);
1599	return ERR_PTR(ret);
1600}
1601EXPORT_SYMBOL_GPL(rapl_add_package);
1602
1603static void power_limit_state_save(void)
1604{
1605	struct rapl_package *rp;
1606	struct rapl_domain *rd;
1607	int ret, i;
1608
1609	cpus_read_lock();
1610	list_for_each_entry(rp, &rapl_packages, plist) {
1611		if (!rp->power_zone)
1612			continue;
1613		rd = power_zone_to_rapl_domain(rp->power_zone);
1614		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1615			ret = rapl_read_pl_data(rd, i, PL_LIMIT, true,
1616						 &rd->rpl[i].last_power_limit);
1617			if (ret)
1618				rd->rpl[i].last_power_limit = 0;
1619		}
1620	}
1621	cpus_read_unlock();
1622}
1623
1624static void power_limit_state_restore(void)
1625{
1626	struct rapl_package *rp;
1627	struct rapl_domain *rd;
1628	int i;
1629
1630	cpus_read_lock();
1631	list_for_each_entry(rp, &rapl_packages, plist) {
1632		if (!rp->power_zone)
1633			continue;
1634		rd = power_zone_to_rapl_domain(rp->power_zone);
1635		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++)
1636			if (rd->rpl[i].last_power_limit)
1637				rapl_write_pl_data(rd, i, PL_LIMIT,
1638					       rd->rpl[i].last_power_limit);
1639	}
1640	cpus_read_unlock();
1641}
1642
1643static int rapl_pm_callback(struct notifier_block *nb,
1644			    unsigned long mode, void *_unused)
1645{
1646	switch (mode) {
1647	case PM_SUSPEND_PREPARE:
1648		power_limit_state_save();
1649		break;
1650	case PM_POST_SUSPEND:
1651		power_limit_state_restore();
1652		break;
1653	}
1654	return NOTIFY_OK;
1655}
1656
1657static struct notifier_block rapl_pm_notifier = {
1658	.notifier_call = rapl_pm_callback,
1659};
1660
1661static struct platform_device *rapl_msr_platdev;
1662
1663static int __init rapl_init(void)
1664{
1665	const struct x86_cpu_id *id;
1666	int ret;
1667
1668	id = x86_match_cpu(rapl_ids);
1669	if (id) {
1670		defaults_msr = (struct rapl_defaults *)id->driver_data;
1671
1672		rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
1673		if (!rapl_msr_platdev)
1674			return -ENOMEM;
1675
1676		ret = platform_device_add(rapl_msr_platdev);
1677		if (ret) {
1678			platform_device_put(rapl_msr_platdev);
1679			return ret;
1680		}
1681	}
1682
1683	ret = register_pm_notifier(&rapl_pm_notifier);
1684	if (ret && rapl_msr_platdev) {
1685		platform_device_del(rapl_msr_platdev);
1686		platform_device_put(rapl_msr_platdev);
1687	}
1688
1689	return ret;
1690}
1691
1692static void __exit rapl_exit(void)
1693{
1694	platform_device_unregister(rapl_msr_platdev);
1695	unregister_pm_notifier(&rapl_pm_notifier);
1696}
1697
1698fs_initcall(rapl_init);
1699module_exit(rapl_exit);
1700
1701MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
1702MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
1703MODULE_LICENSE("GPL v2");