Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * PCI EPF driver for MHI Endpoint devices
  4 *
  5 * Copyright (C) 2023 Linaro Ltd.
  6 * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
  7 */
  8
  9#include <linux/dmaengine.h>
 10#include <linux/mhi_ep.h>
 11#include <linux/module.h>
 12#include <linux/of_dma.h>
 13#include <linux/platform_device.h>
 14#include <linux/pci-epc.h>
 15#include <linux/pci-epf.h>
 16
 17#define MHI_VERSION_1_0 0x01000000
 18
 19#define to_epf_mhi(cntrl) container_of(cntrl, struct pci_epf_mhi, cntrl)
 20
 21/* Platform specific flags */
 22#define MHI_EPF_USE_DMA BIT(0)
 23
 24struct pci_epf_mhi_dma_transfer {
 25	struct pci_epf_mhi *epf_mhi;
 26	struct mhi_ep_buf_info buf_info;
 27	struct list_head node;
 28	dma_addr_t paddr;
 29	enum dma_data_direction dir;
 30	size_t size;
 31};
 32
 33struct pci_epf_mhi_ep_info {
 34	const struct mhi_ep_cntrl_config *config;
 35	struct pci_epf_header *epf_header;
 36	enum pci_barno bar_num;
 37	u32 epf_flags;
 38	u32 msi_count;
 39	u32 mru;
 40	u32 flags;
 41};
 42
 43#define MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, direction)	\
 44	{							\
 45		.num = ch_num,					\
 46		.name = ch_name,				\
 47		.dir = direction,				\
 48	}
 49
 50#define MHI_EP_CHANNEL_CONFIG_UL(ch_num, ch_name)		\
 51	MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, DMA_TO_DEVICE)
 52
 53#define MHI_EP_CHANNEL_CONFIG_DL(ch_num, ch_name)		\
 54	MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, DMA_FROM_DEVICE)
 55
 56static const struct mhi_ep_channel_config mhi_v1_channels[] = {
 57	MHI_EP_CHANNEL_CONFIG_UL(0, "LOOPBACK"),
 58	MHI_EP_CHANNEL_CONFIG_DL(1, "LOOPBACK"),
 59	MHI_EP_CHANNEL_CONFIG_UL(2, "SAHARA"),
 60	MHI_EP_CHANNEL_CONFIG_DL(3, "SAHARA"),
 61	MHI_EP_CHANNEL_CONFIG_UL(4, "DIAG"),
 62	MHI_EP_CHANNEL_CONFIG_DL(5, "DIAG"),
 63	MHI_EP_CHANNEL_CONFIG_UL(6, "SSR"),
 64	MHI_EP_CHANNEL_CONFIG_DL(7, "SSR"),
 65	MHI_EP_CHANNEL_CONFIG_UL(8, "QDSS"),
 66	MHI_EP_CHANNEL_CONFIG_DL(9, "QDSS"),
 67	MHI_EP_CHANNEL_CONFIG_UL(10, "EFS"),
 68	MHI_EP_CHANNEL_CONFIG_DL(11, "EFS"),
 69	MHI_EP_CHANNEL_CONFIG_UL(12, "MBIM"),
 70	MHI_EP_CHANNEL_CONFIG_DL(13, "MBIM"),
 71	MHI_EP_CHANNEL_CONFIG_UL(14, "QMI"),
 72	MHI_EP_CHANNEL_CONFIG_DL(15, "QMI"),
 73	MHI_EP_CHANNEL_CONFIG_UL(16, "QMI"),
 74	MHI_EP_CHANNEL_CONFIG_DL(17, "QMI"),
 75	MHI_EP_CHANNEL_CONFIG_UL(18, "IP-CTRL-1"),
 76	MHI_EP_CHANNEL_CONFIG_DL(19, "IP-CTRL-1"),
 77	MHI_EP_CHANNEL_CONFIG_UL(20, "IPCR"),
 78	MHI_EP_CHANNEL_CONFIG_DL(21, "IPCR"),
 79	MHI_EP_CHANNEL_CONFIG_UL(32, "DUN"),
 80	MHI_EP_CHANNEL_CONFIG_DL(33, "DUN"),
 81	MHI_EP_CHANNEL_CONFIG_UL(46, "IP_SW0"),
 82	MHI_EP_CHANNEL_CONFIG_DL(47, "IP_SW0"),
 83};
 84
 85static const struct mhi_ep_cntrl_config mhi_v1_config = {
 86	.max_channels = 128,
 87	.num_channels = ARRAY_SIZE(mhi_v1_channels),
 88	.ch_cfg = mhi_v1_channels,
 89	.mhi_version = MHI_VERSION_1_0,
 90};
 91
 92static struct pci_epf_header sdx55_header = {
 93	.vendorid = PCI_VENDOR_ID_QCOM,
 94	.deviceid = 0x0306,
 95	.baseclass_code = PCI_BASE_CLASS_COMMUNICATION,
 96	.subclass_code = PCI_CLASS_COMMUNICATION_MODEM & 0xff,
 97	.interrupt_pin	= PCI_INTERRUPT_INTA,
 98};
 99
100static const struct pci_epf_mhi_ep_info sdx55_info = {
101	.config = &mhi_v1_config,
102	.epf_header = &sdx55_header,
103	.bar_num = BAR_0,
104	.epf_flags = PCI_BASE_ADDRESS_MEM_TYPE_32,
105	.msi_count = 32,
106	.mru = 0x8000,
107};
108
109static struct pci_epf_header sm8450_header = {
110	.vendorid = PCI_VENDOR_ID_QCOM,
111	.deviceid = 0x0306,
112	.baseclass_code = PCI_CLASS_OTHERS,
113	.interrupt_pin = PCI_INTERRUPT_INTA,
114};
115
116static const struct pci_epf_mhi_ep_info sm8450_info = {
117	.config = &mhi_v1_config,
118	.epf_header = &sm8450_header,
119	.bar_num = BAR_0,
120	.epf_flags = PCI_BASE_ADDRESS_MEM_TYPE_32,
121	.msi_count = 32,
122	.mru = 0x8000,
123	.flags = MHI_EPF_USE_DMA,
124};
125
126struct pci_epf_mhi {
127	const struct pci_epc_features *epc_features;
128	const struct pci_epf_mhi_ep_info *info;
129	struct mhi_ep_cntrl mhi_cntrl;
130	struct pci_epf *epf;
131	struct mutex lock;
132	void __iomem *mmio;
133	resource_size_t mmio_phys;
134	struct dma_chan *dma_chan_tx;
135	struct dma_chan *dma_chan_rx;
136	struct workqueue_struct *dma_wq;
137	struct work_struct dma_work;
138	struct list_head dma_list;
139	spinlock_t list_lock;
140	u32 mmio_size;
141	int irq;
142};
143
144static size_t get_align_offset(struct pci_epf_mhi *epf_mhi, u64 addr)
145{
146	return addr & (epf_mhi->epc_features->align -1);
147}
148
149static int __pci_epf_mhi_alloc_map(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
150				 phys_addr_t *paddr, void __iomem **vaddr,
151				 size_t offset, size_t size)
152{
153	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
154	struct pci_epf *epf = epf_mhi->epf;
155	struct pci_epc *epc = epf->epc;
156	int ret;
157
158	*vaddr = pci_epc_mem_alloc_addr(epc, paddr, size + offset);
159	if (!*vaddr)
160		return -ENOMEM;
161
162	ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, *paddr,
163			       pci_addr - offset, size + offset);
164	if (ret) {
165		pci_epc_mem_free_addr(epc, *paddr, *vaddr, size + offset);
166		return ret;
167	}
168
169	*paddr = *paddr + offset;
170	*vaddr = *vaddr + offset;
171
172	return 0;
173}
174
175static int pci_epf_mhi_alloc_map(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
176				 phys_addr_t *paddr, void __iomem **vaddr,
177				 size_t size)
178{
179	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
180	size_t offset = get_align_offset(epf_mhi, pci_addr);
181
182	return __pci_epf_mhi_alloc_map(mhi_cntrl, pci_addr, paddr, vaddr,
183				      offset, size);
184}
185
186static void __pci_epf_mhi_unmap_free(struct mhi_ep_cntrl *mhi_cntrl,
187				     u64 pci_addr, phys_addr_t paddr,
188				     void __iomem *vaddr, size_t offset,
189				     size_t size)
190{
191	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
192	struct pci_epf *epf = epf_mhi->epf;
193	struct pci_epc *epc = epf->epc;
194
195	pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, paddr - offset);
196	pci_epc_mem_free_addr(epc, paddr - offset, vaddr - offset,
197			      size + offset);
198}
199
200static void pci_epf_mhi_unmap_free(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
201				   phys_addr_t paddr, void __iomem *vaddr,
202				   size_t size)
203{
204	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
205	size_t offset = get_align_offset(epf_mhi, pci_addr);
206
207	__pci_epf_mhi_unmap_free(mhi_cntrl, pci_addr, paddr, vaddr, offset,
208				 size);
209}
210
211static void pci_epf_mhi_raise_irq(struct mhi_ep_cntrl *mhi_cntrl, u32 vector)
212{
213	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
214	struct pci_epf *epf = epf_mhi->epf;
215	struct pci_epc *epc = epf->epc;
216
217	/*
218	 * MHI supplies 0 based MSI vectors but the API expects the vector
219	 * number to start from 1, so we need to increment the vector by 1.
220	 */
221	pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, PCI_IRQ_MSI,
222			  vector + 1);
223}
224
225static int pci_epf_mhi_iatu_read(struct mhi_ep_cntrl *mhi_cntrl,
226				 struct mhi_ep_buf_info *buf_info)
227{
228	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
229	size_t offset = get_align_offset(epf_mhi, buf_info->host_addr);
230	void __iomem *tre_buf;
231	phys_addr_t tre_phys;
232	int ret;
233
234	mutex_lock(&epf_mhi->lock);
235
236	ret = __pci_epf_mhi_alloc_map(mhi_cntrl, buf_info->host_addr, &tre_phys,
237				      &tre_buf, offset, buf_info->size);
238	if (ret) {
239		mutex_unlock(&epf_mhi->lock);
240		return ret;
241	}
242
243	memcpy_fromio(buf_info->dev_addr, tre_buf, buf_info->size);
244
245	__pci_epf_mhi_unmap_free(mhi_cntrl, buf_info->host_addr, tre_phys,
246				 tre_buf, offset, buf_info->size);
247
248	mutex_unlock(&epf_mhi->lock);
249
250	if (buf_info->cb)
251		buf_info->cb(buf_info);
252
253	return 0;
254}
255
256static int pci_epf_mhi_iatu_write(struct mhi_ep_cntrl *mhi_cntrl,
257				  struct mhi_ep_buf_info *buf_info)
258{
259	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
260	size_t offset = get_align_offset(epf_mhi, buf_info->host_addr);
261	void __iomem *tre_buf;
262	phys_addr_t tre_phys;
263	int ret;
264
265	mutex_lock(&epf_mhi->lock);
266
267	ret = __pci_epf_mhi_alloc_map(mhi_cntrl, buf_info->host_addr, &tre_phys,
268				      &tre_buf, offset, buf_info->size);
269	if (ret) {
270		mutex_unlock(&epf_mhi->lock);
271		return ret;
272	}
273
274	memcpy_toio(tre_buf, buf_info->dev_addr, buf_info->size);
275
276	__pci_epf_mhi_unmap_free(mhi_cntrl, buf_info->host_addr, tre_phys,
277				 tre_buf, offset, buf_info->size);
278
279	mutex_unlock(&epf_mhi->lock);
280
281	if (buf_info->cb)
282		buf_info->cb(buf_info);
283
284	return 0;
285}
286
287static void pci_epf_mhi_dma_callback(void *param)
288{
289	complete(param);
290}
291
292static int pci_epf_mhi_edma_read(struct mhi_ep_cntrl *mhi_cntrl,
293				 struct mhi_ep_buf_info *buf_info)
294{
295	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
296	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
297	struct dma_chan *chan = epf_mhi->dma_chan_rx;
298	struct device *dev = &epf_mhi->epf->dev;
299	DECLARE_COMPLETION_ONSTACK(complete);
300	struct dma_async_tx_descriptor *desc;
301	struct dma_slave_config config = {};
302	dma_cookie_t cookie;
303	dma_addr_t dst_addr;
304	int ret;
305
306	if (buf_info->size < SZ_4K)
307		return pci_epf_mhi_iatu_read(mhi_cntrl, buf_info);
308
309	mutex_lock(&epf_mhi->lock);
310
311	config.direction = DMA_DEV_TO_MEM;
312	config.src_addr = buf_info->host_addr;
313
314	ret = dmaengine_slave_config(chan, &config);
315	if (ret) {
316		dev_err(dev, "Failed to configure DMA channel\n");
317		goto err_unlock;
318	}
319
320	dst_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
321				  DMA_FROM_DEVICE);
322	ret = dma_mapping_error(dma_dev, dst_addr);
323	if (ret) {
324		dev_err(dev, "Failed to map remote memory\n");
325		goto err_unlock;
326	}
327
328	desc = dmaengine_prep_slave_single(chan, dst_addr, buf_info->size,
329					   DMA_DEV_TO_MEM,
330					   DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
331	if (!desc) {
332		dev_err(dev, "Failed to prepare DMA\n");
333		ret = -EIO;
334		goto err_unmap;
335	}
336
337	desc->callback = pci_epf_mhi_dma_callback;
338	desc->callback_param = &complete;
339
340	cookie = dmaengine_submit(desc);
341	ret = dma_submit_error(cookie);
342	if (ret) {
343		dev_err(dev, "Failed to do DMA submit\n");
344		goto err_unmap;
345	}
346
347	dma_async_issue_pending(chan);
348	ret = wait_for_completion_timeout(&complete, msecs_to_jiffies(1000));
349	if (!ret) {
350		dev_err(dev, "DMA transfer timeout\n");
351		dmaengine_terminate_sync(chan);
352		ret = -ETIMEDOUT;
353	}
354
355err_unmap:
356	dma_unmap_single(dma_dev, dst_addr, buf_info->size, DMA_FROM_DEVICE);
357err_unlock:
358	mutex_unlock(&epf_mhi->lock);
359
360	return ret;
361}
362
363static int pci_epf_mhi_edma_write(struct mhi_ep_cntrl *mhi_cntrl,
364				  struct mhi_ep_buf_info *buf_info)
365{
366	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
367	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
368	struct dma_chan *chan = epf_mhi->dma_chan_tx;
369	struct device *dev = &epf_mhi->epf->dev;
370	DECLARE_COMPLETION_ONSTACK(complete);
371	struct dma_async_tx_descriptor *desc;
372	struct dma_slave_config config = {};
373	dma_cookie_t cookie;
374	dma_addr_t src_addr;
375	int ret;
376
377	if (buf_info->size < SZ_4K)
378		return pci_epf_mhi_iatu_write(mhi_cntrl, buf_info);
379
380	mutex_lock(&epf_mhi->lock);
381
382	config.direction = DMA_MEM_TO_DEV;
383	config.dst_addr = buf_info->host_addr;
384
385	ret = dmaengine_slave_config(chan, &config);
386	if (ret) {
387		dev_err(dev, "Failed to configure DMA channel\n");
388		goto err_unlock;
389	}
390
391	src_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
392				  DMA_TO_DEVICE);
393	ret = dma_mapping_error(dma_dev, src_addr);
394	if (ret) {
395		dev_err(dev, "Failed to map remote memory\n");
396		goto err_unlock;
397	}
398
399	desc = dmaengine_prep_slave_single(chan, src_addr, buf_info->size,
400					   DMA_MEM_TO_DEV,
401					   DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
402	if (!desc) {
403		dev_err(dev, "Failed to prepare DMA\n");
404		ret = -EIO;
405		goto err_unmap;
406	}
407
408	desc->callback = pci_epf_mhi_dma_callback;
409	desc->callback_param = &complete;
410
411	cookie = dmaengine_submit(desc);
412	ret = dma_submit_error(cookie);
413	if (ret) {
414		dev_err(dev, "Failed to do DMA submit\n");
415		goto err_unmap;
416	}
417
418	dma_async_issue_pending(chan);
419	ret = wait_for_completion_timeout(&complete, msecs_to_jiffies(1000));
420	if (!ret) {
421		dev_err(dev, "DMA transfer timeout\n");
422		dmaengine_terminate_sync(chan);
423		ret = -ETIMEDOUT;
424	}
425
426err_unmap:
427	dma_unmap_single(dma_dev, src_addr, buf_info->size, DMA_TO_DEVICE);
428err_unlock:
429	mutex_unlock(&epf_mhi->lock);
430
431	return ret;
432}
433
434static void pci_epf_mhi_dma_worker(struct work_struct *work)
435{
436	struct pci_epf_mhi *epf_mhi = container_of(work, struct pci_epf_mhi, dma_work);
437	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
438	struct pci_epf_mhi_dma_transfer *itr, *tmp;
439	struct mhi_ep_buf_info *buf_info;
440	unsigned long flags;
441	LIST_HEAD(head);
442
443	spin_lock_irqsave(&epf_mhi->list_lock, flags);
444	list_splice_tail_init(&epf_mhi->dma_list, &head);
445	spin_unlock_irqrestore(&epf_mhi->list_lock, flags);
446
447	list_for_each_entry_safe(itr, tmp, &head, node) {
448		list_del(&itr->node);
449		dma_unmap_single(dma_dev, itr->paddr, itr->size, itr->dir);
450		buf_info = &itr->buf_info;
451		buf_info->cb(buf_info);
452		kfree(itr);
453	}
454}
455
456static void pci_epf_mhi_dma_async_callback(void *param)
457{
458	struct pci_epf_mhi_dma_transfer *transfer = param;
459	struct pci_epf_mhi *epf_mhi = transfer->epf_mhi;
460
461	spin_lock(&epf_mhi->list_lock);
462	list_add_tail(&transfer->node, &epf_mhi->dma_list);
463	spin_unlock(&epf_mhi->list_lock);
464
465	queue_work(epf_mhi->dma_wq, &epf_mhi->dma_work);
466}
467
468static int pci_epf_mhi_edma_read_async(struct mhi_ep_cntrl *mhi_cntrl,
469				       struct mhi_ep_buf_info *buf_info)
470{
471	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
472	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
473	struct pci_epf_mhi_dma_transfer *transfer = NULL;
474	struct dma_chan *chan = epf_mhi->dma_chan_rx;
475	struct device *dev = &epf_mhi->epf->dev;
476	DECLARE_COMPLETION_ONSTACK(complete);
477	struct dma_async_tx_descriptor *desc;
478	struct dma_slave_config config = {};
479	dma_cookie_t cookie;
480	dma_addr_t dst_addr;
481	int ret;
482
483	mutex_lock(&epf_mhi->lock);
484
485	config.direction = DMA_DEV_TO_MEM;
486	config.src_addr = buf_info->host_addr;
487
488	ret = dmaengine_slave_config(chan, &config);
489	if (ret) {
490		dev_err(dev, "Failed to configure DMA channel\n");
491		goto err_unlock;
492	}
493
494	dst_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
495				  DMA_FROM_DEVICE);
496	ret = dma_mapping_error(dma_dev, dst_addr);
497	if (ret) {
498		dev_err(dev, "Failed to map remote memory\n");
499		goto err_unlock;
500	}
501
502	desc = dmaengine_prep_slave_single(chan, dst_addr, buf_info->size,
503					   DMA_DEV_TO_MEM,
504					   DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
505	if (!desc) {
506		dev_err(dev, "Failed to prepare DMA\n");
507		ret = -EIO;
508		goto err_unmap;
509	}
510
511	transfer = kzalloc(sizeof(*transfer), GFP_KERNEL);
512	if (!transfer) {
513		ret = -ENOMEM;
514		goto err_unmap;
515	}
516
517	transfer->epf_mhi = epf_mhi;
518	transfer->paddr = dst_addr;
519	transfer->size = buf_info->size;
520	transfer->dir = DMA_FROM_DEVICE;
521	memcpy(&transfer->buf_info, buf_info, sizeof(*buf_info));
522
523	desc->callback = pci_epf_mhi_dma_async_callback;
524	desc->callback_param = transfer;
525
526	cookie = dmaengine_submit(desc);
527	ret = dma_submit_error(cookie);
528	if (ret) {
529		dev_err(dev, "Failed to do DMA submit\n");
530		goto err_free_transfer;
531	}
532
533	dma_async_issue_pending(chan);
534
535	goto err_unlock;
536
537err_free_transfer:
538	kfree(transfer);
539err_unmap:
540	dma_unmap_single(dma_dev, dst_addr, buf_info->size, DMA_FROM_DEVICE);
541err_unlock:
542	mutex_unlock(&epf_mhi->lock);
543
544	return ret;
545}
546
547static int pci_epf_mhi_edma_write_async(struct mhi_ep_cntrl *mhi_cntrl,
548					struct mhi_ep_buf_info *buf_info)
549{
550	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
551	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
552	struct pci_epf_mhi_dma_transfer *transfer = NULL;
553	struct dma_chan *chan = epf_mhi->dma_chan_tx;
554	struct device *dev = &epf_mhi->epf->dev;
555	DECLARE_COMPLETION_ONSTACK(complete);
556	struct dma_async_tx_descriptor *desc;
557	struct dma_slave_config config = {};
558	dma_cookie_t cookie;
559	dma_addr_t src_addr;
560	int ret;
561
562	mutex_lock(&epf_mhi->lock);
563
564	config.direction = DMA_MEM_TO_DEV;
565	config.dst_addr = buf_info->host_addr;
566
567	ret = dmaengine_slave_config(chan, &config);
568	if (ret) {
569		dev_err(dev, "Failed to configure DMA channel\n");
570		goto err_unlock;
571	}
572
573	src_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
574				  DMA_TO_DEVICE);
575	ret = dma_mapping_error(dma_dev, src_addr);
576	if (ret) {
577		dev_err(dev, "Failed to map remote memory\n");
578		goto err_unlock;
579	}
580
581	desc = dmaengine_prep_slave_single(chan, src_addr, buf_info->size,
582					   DMA_MEM_TO_DEV,
583					   DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
584	if (!desc) {
585		dev_err(dev, "Failed to prepare DMA\n");
586		ret = -EIO;
587		goto err_unmap;
588	}
589
590	transfer = kzalloc(sizeof(*transfer), GFP_KERNEL);
591	if (!transfer) {
592		ret = -ENOMEM;
593		goto err_unmap;
594	}
595
596	transfer->epf_mhi = epf_mhi;
597	transfer->paddr = src_addr;
598	transfer->size = buf_info->size;
599	transfer->dir = DMA_TO_DEVICE;
600	memcpy(&transfer->buf_info, buf_info, sizeof(*buf_info));
601
602	desc->callback = pci_epf_mhi_dma_async_callback;
603	desc->callback_param = transfer;
604
605	cookie = dmaengine_submit(desc);
606	ret = dma_submit_error(cookie);
607	if (ret) {
608		dev_err(dev, "Failed to do DMA submit\n");
609		goto err_free_transfer;
610	}
611
612	dma_async_issue_pending(chan);
613
614	goto err_unlock;
615
616err_free_transfer:
617	kfree(transfer);
618err_unmap:
619	dma_unmap_single(dma_dev, src_addr, buf_info->size, DMA_TO_DEVICE);
620err_unlock:
621	mutex_unlock(&epf_mhi->lock);
622
623	return ret;
624}
625
626struct epf_dma_filter {
627	struct device *dev;
628	u32 dma_mask;
629};
630
631static bool pci_epf_mhi_filter(struct dma_chan *chan, void *node)
632{
633	struct epf_dma_filter *filter = node;
634	struct dma_slave_caps caps;
635
636	memset(&caps, 0, sizeof(caps));
637	dma_get_slave_caps(chan, &caps);
638
639	return chan->device->dev == filter->dev && filter->dma_mask &
640					caps.directions;
641}
642
643static int pci_epf_mhi_dma_init(struct pci_epf_mhi *epf_mhi)
644{
645	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
646	struct device *dev = &epf_mhi->epf->dev;
647	struct epf_dma_filter filter;
648	dma_cap_mask_t mask;
649	int ret;
650
651	dma_cap_zero(mask);
652	dma_cap_set(DMA_SLAVE, mask);
653
654	filter.dev = dma_dev;
655	filter.dma_mask = BIT(DMA_MEM_TO_DEV);
656	epf_mhi->dma_chan_tx = dma_request_channel(mask, pci_epf_mhi_filter,
657						   &filter);
658	if (IS_ERR_OR_NULL(epf_mhi->dma_chan_tx)) {
659		dev_err(dev, "Failed to request tx channel\n");
660		return -ENODEV;
661	}
662
663	filter.dma_mask = BIT(DMA_DEV_TO_MEM);
664	epf_mhi->dma_chan_rx = dma_request_channel(mask, pci_epf_mhi_filter,
665						   &filter);
666	if (IS_ERR_OR_NULL(epf_mhi->dma_chan_rx)) {
667		dev_err(dev, "Failed to request rx channel\n");
668		ret = -ENODEV;
669		goto err_release_tx;
670	}
671
672	epf_mhi->dma_wq = alloc_workqueue("pci_epf_mhi_dma_wq", 0, 0);
673	if (!epf_mhi->dma_wq) {
674		ret = -ENOMEM;
675		goto err_release_rx;
676	}
677
678	INIT_LIST_HEAD(&epf_mhi->dma_list);
679	INIT_WORK(&epf_mhi->dma_work, pci_epf_mhi_dma_worker);
680	spin_lock_init(&epf_mhi->list_lock);
681
682	return 0;
683
684err_release_rx:
685	dma_release_channel(epf_mhi->dma_chan_rx);
686	epf_mhi->dma_chan_rx = NULL;
687err_release_tx:
688	dma_release_channel(epf_mhi->dma_chan_tx);
689	epf_mhi->dma_chan_tx = NULL;
690
691	return ret;
692}
693
694static void pci_epf_mhi_dma_deinit(struct pci_epf_mhi *epf_mhi)
695{
696	destroy_workqueue(epf_mhi->dma_wq);
697	dma_release_channel(epf_mhi->dma_chan_tx);
698	dma_release_channel(epf_mhi->dma_chan_rx);
699	epf_mhi->dma_chan_tx = NULL;
700	epf_mhi->dma_chan_rx = NULL;
701}
702
703static int pci_epf_mhi_core_init(struct pci_epf *epf)
704{
705	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
706	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
707	struct pci_epf_bar *epf_bar = &epf->bar[info->bar_num];
708	struct pci_epc *epc = epf->epc;
709	struct device *dev = &epf->dev;
710	int ret;
711
712	epf_bar->phys_addr = epf_mhi->mmio_phys;
713	epf_bar->size = epf_mhi->mmio_size;
714	epf_bar->barno = info->bar_num;
715	epf_bar->flags = info->epf_flags;
716	ret = pci_epc_set_bar(epc, epf->func_no, epf->vfunc_no, epf_bar);
717	if (ret) {
718		dev_err(dev, "Failed to set BAR: %d\n", ret);
719		return ret;
720	}
721
722	ret = pci_epc_set_msi(epc, epf->func_no, epf->vfunc_no,
723			      order_base_2(info->msi_count));
724	if (ret) {
725		dev_err(dev, "Failed to set MSI configuration: %d\n", ret);
726		return ret;
727	}
728
729	ret = pci_epc_write_header(epc, epf->func_no, epf->vfunc_no,
730				   epf->header);
731	if (ret) {
732		dev_err(dev, "Failed to set Configuration header: %d\n", ret);
733		return ret;
734	}
735
736	epf_mhi->epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no);
737	if (!epf_mhi->epc_features)
738		return -ENODATA;
739
740	return 0;
741}
742
743static int pci_epf_mhi_link_up(struct pci_epf *epf)
744{
745	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
746	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
747	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
748	struct pci_epc *epc = epf->epc;
749	struct device *dev = &epf->dev;
750	int ret;
751
752	if (info->flags & MHI_EPF_USE_DMA) {
753		ret = pci_epf_mhi_dma_init(epf_mhi);
754		if (ret) {
755			dev_err(dev, "Failed to initialize DMA: %d\n", ret);
756			return ret;
757		}
758	}
759
760	mhi_cntrl->mmio = epf_mhi->mmio;
761	mhi_cntrl->irq = epf_mhi->irq;
762	mhi_cntrl->mru = info->mru;
763
764	/* Assign the struct dev of PCI EP as MHI controller device */
765	mhi_cntrl->cntrl_dev = epc->dev.parent;
766	mhi_cntrl->raise_irq = pci_epf_mhi_raise_irq;
767	mhi_cntrl->alloc_map = pci_epf_mhi_alloc_map;
768	mhi_cntrl->unmap_free = pci_epf_mhi_unmap_free;
769	mhi_cntrl->read_sync = mhi_cntrl->read_async = pci_epf_mhi_iatu_read;
770	mhi_cntrl->write_sync = mhi_cntrl->write_async = pci_epf_mhi_iatu_write;
771	if (info->flags & MHI_EPF_USE_DMA) {
772		mhi_cntrl->read_sync = pci_epf_mhi_edma_read;
773		mhi_cntrl->write_sync = pci_epf_mhi_edma_write;
774		mhi_cntrl->read_async = pci_epf_mhi_edma_read_async;
775		mhi_cntrl->write_async = pci_epf_mhi_edma_write_async;
776	}
777
778	/* Register the MHI EP controller */
779	ret = mhi_ep_register_controller(mhi_cntrl, info->config);
780	if (ret) {
781		dev_err(dev, "Failed to register MHI EP controller: %d\n", ret);
782		if (info->flags & MHI_EPF_USE_DMA)
783			pci_epf_mhi_dma_deinit(epf_mhi);
784		return ret;
785	}
786
787	return 0;
788}
789
790static int pci_epf_mhi_link_down(struct pci_epf *epf)
791{
792	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
793	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
794	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
795
796	if (mhi_cntrl->mhi_dev) {
797		mhi_ep_power_down(mhi_cntrl);
798		if (info->flags & MHI_EPF_USE_DMA)
799			pci_epf_mhi_dma_deinit(epf_mhi);
800		mhi_ep_unregister_controller(mhi_cntrl);
801	}
802
803	return 0;
804}
805
806static int pci_epf_mhi_bme(struct pci_epf *epf)
807{
808	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
809	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
810	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
811	struct device *dev = &epf->dev;
812	int ret;
813
814	/*
815	 * Power up the MHI EP stack if link is up and stack is in power down
816	 * state.
817	 */
818	if (!mhi_cntrl->enabled && mhi_cntrl->mhi_dev) {
819		ret = mhi_ep_power_up(mhi_cntrl);
820		if (ret) {
821			dev_err(dev, "Failed to power up MHI EP: %d\n", ret);
822			if (info->flags & MHI_EPF_USE_DMA)
823				pci_epf_mhi_dma_deinit(epf_mhi);
824			mhi_ep_unregister_controller(mhi_cntrl);
825		}
826	}
827
828	return 0;
829}
830
831static int pci_epf_mhi_bind(struct pci_epf *epf)
832{
833	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
834	struct pci_epc *epc = epf->epc;
835	struct platform_device *pdev = to_platform_device(epc->dev.parent);
836	struct resource *res;
837	int ret;
838
839	/* Get MMIO base address from Endpoint controller */
840	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mmio");
841	epf_mhi->mmio_phys = res->start;
842	epf_mhi->mmio_size = resource_size(res);
843
844	epf_mhi->mmio = ioremap(epf_mhi->mmio_phys, epf_mhi->mmio_size);
845	if (!epf_mhi->mmio)
846		return -ENOMEM;
847
848	ret = platform_get_irq_byname(pdev, "doorbell");
849	if (ret < 0) {
850		iounmap(epf_mhi->mmio);
851		return ret;
852	}
853
854	epf_mhi->irq = ret;
855
856	return 0;
857}
858
859static void pci_epf_mhi_unbind(struct pci_epf *epf)
860{
861	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
862	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
863	struct pci_epf_bar *epf_bar = &epf->bar[info->bar_num];
864	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
865	struct pci_epc *epc = epf->epc;
866
867	/*
868	 * Forcefully power down the MHI EP stack. Only way to bring the MHI EP
869	 * stack back to working state after successive bind is by getting BME
870	 * from host.
871	 */
872	if (mhi_cntrl->mhi_dev) {
873		mhi_ep_power_down(mhi_cntrl);
874		if (info->flags & MHI_EPF_USE_DMA)
875			pci_epf_mhi_dma_deinit(epf_mhi);
876		mhi_ep_unregister_controller(mhi_cntrl);
877	}
878
879	iounmap(epf_mhi->mmio);
880	pci_epc_clear_bar(epc, epf->func_no, epf->vfunc_no, epf_bar);
881}
882
883static const struct pci_epc_event_ops pci_epf_mhi_event_ops = {
884	.core_init = pci_epf_mhi_core_init,
885	.link_up = pci_epf_mhi_link_up,
886	.link_down = pci_epf_mhi_link_down,
887	.bme = pci_epf_mhi_bme,
888};
889
890static int pci_epf_mhi_probe(struct pci_epf *epf,
891			     const struct pci_epf_device_id *id)
892{
893	struct pci_epf_mhi_ep_info *info =
894			(struct pci_epf_mhi_ep_info *)id->driver_data;
895	struct pci_epf_mhi *epf_mhi;
896	struct device *dev = &epf->dev;
897
898	epf_mhi = devm_kzalloc(dev, sizeof(*epf_mhi), GFP_KERNEL);
899	if (!epf_mhi)
900		return -ENOMEM;
901
902	epf->header = info->epf_header;
903	epf_mhi->info = info;
904	epf_mhi->epf = epf;
905
906	epf->event_ops = &pci_epf_mhi_event_ops;
907
908	mutex_init(&epf_mhi->lock);
909
910	epf_set_drvdata(epf, epf_mhi);
911
912	return 0;
913}
914
915static const struct pci_epf_device_id pci_epf_mhi_ids[] = {
916	{ .name = "sdx55", .driver_data = (kernel_ulong_t)&sdx55_info },
917	{ .name = "sm8450", .driver_data = (kernel_ulong_t)&sm8450_info },
918	{},
919};
920
921static const struct pci_epf_ops pci_epf_mhi_ops = {
922	.unbind	= pci_epf_mhi_unbind,
923	.bind	= pci_epf_mhi_bind,
924};
925
926static struct pci_epf_driver pci_epf_mhi_driver = {
927	.driver.name	= "pci_epf_mhi",
928	.probe		= pci_epf_mhi_probe,
929	.id_table	= pci_epf_mhi_ids,
930	.ops		= &pci_epf_mhi_ops,
931	.owner		= THIS_MODULE,
932};
933
934static int __init pci_epf_mhi_init(void)
935{
936	return pci_epf_register_driver(&pci_epf_mhi_driver);
937}
938module_init(pci_epf_mhi_init);
939
940static void __exit pci_epf_mhi_exit(void)
941{
942	pci_epf_unregister_driver(&pci_epf_mhi_driver);
943}
944module_exit(pci_epf_mhi_exit);
945
946MODULE_DESCRIPTION("PCI EPF driver for MHI Endpoint devices");
947MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
948MODULE_LICENSE("GPL");