Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   3	<http://rt2x00.serialmonkey.com>
   4
   5	This program is free software; you can redistribute it and/or modify
   6	it under the terms of the GNU General Public License as published by
   7	the Free Software Foundation; either version 2 of the License, or
   8	(at your option) any later version.
   9
  10	This program is distributed in the hope that it will be useful,
  11	but WITHOUT ANY WARRANTY; without even the implied warranty of
  12	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13	GNU General Public License for more details.
  14
  15	You should have received a copy of the GNU General Public License
  16	along with this program; if not, write to the
  17	Free Software Foundation, Inc.,
  18	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21/*
  22	Module: rt2500pci
  23	Abstract: rt2500pci device specific routines.
  24	Supported chipsets: RT2560.
  25 */
  26
  27#include <linux/delay.h>
  28#include <linux/etherdevice.h>
  29#include <linux/init.h>
  30#include <linux/kernel.h>
  31#include <linux/module.h>
  32#include <linux/pci.h>
  33#include <linux/eeprom_93cx6.h>
  34#include <linux/slab.h>
  35
  36#include "rt2x00.h"
  37#include "rt2x00pci.h"
  38#include "rt2500pci.h"
  39
  40/*
  41 * Register access.
  42 * All access to the CSR registers will go through the methods
  43 * rt2x00pci_register_read and rt2x00pci_register_write.
  44 * BBP and RF register require indirect register access,
  45 * and use the CSR registers BBPCSR and RFCSR to achieve this.
  46 * These indirect registers work with busy bits,
  47 * and we will try maximal REGISTER_BUSY_COUNT times to access
  48 * the register while taking a REGISTER_BUSY_DELAY us delay
  49 * between each attampt. When the busy bit is still set at that time,
  50 * the access attempt is considered to have failed,
  51 * and we will print an error.
  52 */
  53#define WAIT_FOR_BBP(__dev, __reg) \
  54	rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  55#define WAIT_FOR_RF(__dev, __reg) \
  56	rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  57
  58static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  59				const unsigned int word, const u8 value)
  60{
  61	u32 reg;
  62
  63	mutex_lock(&rt2x00dev->csr_mutex);
  64
  65	/*
  66	 * Wait until the BBP becomes available, afterwards we
  67	 * can safely write the new data into the register.
  68	 */
  69	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  70		reg = 0;
  71		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  72		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  73		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  74		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  75
  76		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  77	}
  78
  79	mutex_unlock(&rt2x00dev->csr_mutex);
  80}
  81
  82static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  83			       const unsigned int word, u8 *value)
  84{
  85	u32 reg;
  86
  87	mutex_lock(&rt2x00dev->csr_mutex);
  88
  89	/*
  90	 * Wait until the BBP becomes available, afterwards we
  91	 * can safely write the read request into the register.
  92	 * After the data has been written, we wait until hardware
  93	 * returns the correct value, if at any time the register
  94	 * doesn't become available in time, reg will be 0xffffffff
  95	 * which means we return 0xff to the caller.
  96	 */
  97	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  98		reg = 0;
  99		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
 100		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
 101		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
 102
 103		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
 104
 105		WAIT_FOR_BBP(rt2x00dev, &reg);
 106	}
 107
 108	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
 109
 110	mutex_unlock(&rt2x00dev->csr_mutex);
 111}
 112
 113static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
 114			       const unsigned int word, const u32 value)
 115{
 116	u32 reg;
 117
 118	mutex_lock(&rt2x00dev->csr_mutex);
 119
 120	/*
 121	 * Wait until the RF becomes available, afterwards we
 122	 * can safely write the new data into the register.
 123	 */
 124	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 125		reg = 0;
 126		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
 127		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
 128		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
 129		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
 130
 131		rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
 132		rt2x00_rf_write(rt2x00dev, word, value);
 133	}
 134
 135	mutex_unlock(&rt2x00dev->csr_mutex);
 136}
 137
 138static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
 139{
 140	struct rt2x00_dev *rt2x00dev = eeprom->data;
 141	u32 reg;
 142
 143	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
 144
 145	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
 146	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
 147	eeprom->reg_data_clock =
 148	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
 149	eeprom->reg_chip_select =
 150	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
 151}
 152
 153static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
 154{
 155	struct rt2x00_dev *rt2x00dev = eeprom->data;
 156	u32 reg = 0;
 157
 158	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
 159	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
 160	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
 161			   !!eeprom->reg_data_clock);
 162	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
 163			   !!eeprom->reg_chip_select);
 164
 165	rt2x00pci_register_write(rt2x00dev, CSR21, reg);
 166}
 167
 168#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 169static const struct rt2x00debug rt2500pci_rt2x00debug = {
 170	.owner	= THIS_MODULE,
 171	.csr	= {
 172		.read		= rt2x00pci_register_read,
 173		.write		= rt2x00pci_register_write,
 174		.flags		= RT2X00DEBUGFS_OFFSET,
 175		.word_base	= CSR_REG_BASE,
 176		.word_size	= sizeof(u32),
 177		.word_count	= CSR_REG_SIZE / sizeof(u32),
 178	},
 179	.eeprom	= {
 180		.read		= rt2x00_eeprom_read,
 181		.write		= rt2x00_eeprom_write,
 182		.word_base	= EEPROM_BASE,
 183		.word_size	= sizeof(u16),
 184		.word_count	= EEPROM_SIZE / sizeof(u16),
 185	},
 186	.bbp	= {
 187		.read		= rt2500pci_bbp_read,
 188		.write		= rt2500pci_bbp_write,
 189		.word_base	= BBP_BASE,
 190		.word_size	= sizeof(u8),
 191		.word_count	= BBP_SIZE / sizeof(u8),
 192	},
 193	.rf	= {
 194		.read		= rt2x00_rf_read,
 195		.write		= rt2500pci_rf_write,
 196		.word_base	= RF_BASE,
 197		.word_size	= sizeof(u32),
 198		.word_count	= RF_SIZE / sizeof(u32),
 199	},
 200};
 201#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 202
 203static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 204{
 205	u32 reg;
 206
 207	rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
 208	return rt2x00_get_field32(reg, GPIOCSR_BIT0);
 209}
 210
 211#ifdef CONFIG_RT2X00_LIB_LEDS
 212static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
 213				     enum led_brightness brightness)
 214{
 215	struct rt2x00_led *led =
 216	    container_of(led_cdev, struct rt2x00_led, led_dev);
 217	unsigned int enabled = brightness != LED_OFF;
 218	u32 reg;
 219
 220	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
 221
 222	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
 223		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
 224	else if (led->type == LED_TYPE_ACTIVITY)
 225		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
 226
 227	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
 228}
 229
 230static int rt2500pci_blink_set(struct led_classdev *led_cdev,
 231			       unsigned long *delay_on,
 232			       unsigned long *delay_off)
 233{
 234	struct rt2x00_led *led =
 235	    container_of(led_cdev, struct rt2x00_led, led_dev);
 236	u32 reg;
 237
 238	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
 239	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
 240	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
 241	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
 242
 243	return 0;
 244}
 245
 246static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
 247			       struct rt2x00_led *led,
 248			       enum led_type type)
 249{
 250	led->rt2x00dev = rt2x00dev;
 251	led->type = type;
 252	led->led_dev.brightness_set = rt2500pci_brightness_set;
 253	led->led_dev.blink_set = rt2500pci_blink_set;
 254	led->flags = LED_INITIALIZED;
 255}
 256#endif /* CONFIG_RT2X00_LIB_LEDS */
 257
 258/*
 259 * Configuration handlers.
 260 */
 261static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
 262				    const unsigned int filter_flags)
 263{
 264	u32 reg;
 265
 266	/*
 267	 * Start configuration steps.
 268	 * Note that the version error will always be dropped
 269	 * and broadcast frames will always be accepted since
 270	 * there is no filter for it at this time.
 271	 */
 272	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
 273	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
 274			   !(filter_flags & FIF_FCSFAIL));
 275	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
 276			   !(filter_flags & FIF_PLCPFAIL));
 277	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
 278			   !(filter_flags & FIF_CONTROL));
 279	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
 280			   !(filter_flags & FIF_PROMISC_IN_BSS));
 281	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
 282			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
 283			   !rt2x00dev->intf_ap_count);
 284	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
 285	rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
 286			   !(filter_flags & FIF_ALLMULTI));
 287	rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
 288	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
 289}
 290
 291static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
 292				  struct rt2x00_intf *intf,
 293				  struct rt2x00intf_conf *conf,
 294				  const unsigned int flags)
 295{
 296	struct data_queue *queue = rt2x00dev->bcn;
 297	unsigned int bcn_preload;
 298	u32 reg;
 299
 300	if (flags & CONFIG_UPDATE_TYPE) {
 301		/*
 302		 * Enable beacon config
 303		 */
 304		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
 305		rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
 306		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
 307		rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
 308		rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
 309
 310		/*
 311		 * Enable synchronisation.
 312		 */
 313		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
 314		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
 315		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
 316	}
 317
 318	if (flags & CONFIG_UPDATE_MAC)
 319		rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
 320					      conf->mac, sizeof(conf->mac));
 321
 322	if (flags & CONFIG_UPDATE_BSSID)
 323		rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
 324					      conf->bssid, sizeof(conf->bssid));
 325}
 326
 327static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
 328				 struct rt2x00lib_erp *erp,
 329				 u32 changed)
 330{
 331	int preamble_mask;
 332	u32 reg;
 333
 334	/*
 335	 * When short preamble is enabled, we should set bit 0x08
 336	 */
 337	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 338		preamble_mask = erp->short_preamble << 3;
 339
 340		rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
 341		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
 342		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
 343		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
 344		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
 345		rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
 346
 347		rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
 348		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
 349		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
 350		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 351				   GET_DURATION(ACK_SIZE, 10));
 352		rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
 353
 354		rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
 355		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
 356		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
 357		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 358				   GET_DURATION(ACK_SIZE, 20));
 359		rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
 360
 361		rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
 362		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
 363		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
 364		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 365				   GET_DURATION(ACK_SIZE, 55));
 366		rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
 367
 368		rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
 369		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
 370		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
 371		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 372				   GET_DURATION(ACK_SIZE, 110));
 373		rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
 374	}
 375
 376	if (changed & BSS_CHANGED_BASIC_RATES)
 377		rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
 378
 379	if (changed & BSS_CHANGED_ERP_SLOT) {
 380		rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
 381		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
 382		rt2x00pci_register_write(rt2x00dev, CSR11, reg);
 383
 384		rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
 385		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
 386		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
 387		rt2x00pci_register_write(rt2x00dev, CSR18, reg);
 388
 389		rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
 390		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
 391		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
 392		rt2x00pci_register_write(rt2x00dev, CSR19, reg);
 393	}
 394
 395	if (changed & BSS_CHANGED_BEACON_INT) {
 396		rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
 397		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
 398				   erp->beacon_int * 16);
 399		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
 400				   erp->beacon_int * 16);
 401		rt2x00pci_register_write(rt2x00dev, CSR12, reg);
 402	}
 403
 404}
 405
 406static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
 407				 struct antenna_setup *ant)
 408{
 409	u32 reg;
 410	u8 r14;
 411	u8 r2;
 412
 413	/*
 414	 * We should never come here because rt2x00lib is supposed
 415	 * to catch this and send us the correct antenna explicitely.
 416	 */
 417	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 418	       ant->tx == ANTENNA_SW_DIVERSITY);
 419
 420	rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
 421	rt2500pci_bbp_read(rt2x00dev, 14, &r14);
 422	rt2500pci_bbp_read(rt2x00dev, 2, &r2);
 423
 424	/*
 425	 * Configure the TX antenna.
 426	 */
 427	switch (ant->tx) {
 428	case ANTENNA_A:
 429		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
 430		rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
 431		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
 432		break;
 433	case ANTENNA_B:
 434	default:
 435		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
 436		rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
 437		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
 438		break;
 439	}
 440
 441	/*
 442	 * Configure the RX antenna.
 443	 */
 444	switch (ant->rx) {
 445	case ANTENNA_A:
 446		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
 447		break;
 448	case ANTENNA_B:
 449	default:
 450		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
 451		break;
 452	}
 453
 454	/*
 455	 * RT2525E and RT5222 need to flip TX I/Q
 456	 */
 457	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
 458		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
 459		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
 460		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
 461
 462		/*
 463		 * RT2525E does not need RX I/Q Flip.
 464		 */
 465		if (rt2x00_rf(rt2x00dev, RF2525E))
 466			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
 467	} else {
 468		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
 469		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
 470	}
 471
 472	rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
 473	rt2500pci_bbp_write(rt2x00dev, 14, r14);
 474	rt2500pci_bbp_write(rt2x00dev, 2, r2);
 475}
 476
 477static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
 478				     struct rf_channel *rf, const int txpower)
 479{
 480	u8 r70;
 481
 482	/*
 483	 * Set TXpower.
 484	 */
 485	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 486
 487	/*
 488	 * Switch on tuning bits.
 489	 * For RT2523 devices we do not need to update the R1 register.
 490	 */
 491	if (!rt2x00_rf(rt2x00dev, RF2523))
 492		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
 493	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
 494
 495	/*
 496	 * For RT2525 we should first set the channel to half band higher.
 497	 */
 498	if (rt2x00_rf(rt2x00dev, RF2525)) {
 499		static const u32 vals[] = {
 500			0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
 501			0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
 502			0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
 503			0x00080d2e, 0x00080d3a
 504		};
 505
 506		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 507		rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
 508		rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 509		if (rf->rf4)
 510			rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
 511	}
 512
 513	rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 514	rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
 515	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 516	if (rf->rf4)
 517		rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
 518
 519	/*
 520	 * Channel 14 requires the Japan filter bit to be set.
 521	 */
 522	r70 = 0x46;
 523	rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
 524	rt2500pci_bbp_write(rt2x00dev, 70, r70);
 525
 526	msleep(1);
 527
 528	/*
 529	 * Switch off tuning bits.
 530	 * For RT2523 devices we do not need to update the R1 register.
 531	 */
 532	if (!rt2x00_rf(rt2x00dev, RF2523)) {
 533		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
 534		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 535	}
 536
 537	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
 538	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 539
 540	/*
 541	 * Clear false CRC during channel switch.
 542	 */
 543	rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
 544}
 545
 546static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
 547				     const int txpower)
 548{
 549	u32 rf3;
 550
 551	rt2x00_rf_read(rt2x00dev, 3, &rf3);
 552	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 553	rt2500pci_rf_write(rt2x00dev, 3, rf3);
 554}
 555
 556static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 557					 struct rt2x00lib_conf *libconf)
 558{
 559	u32 reg;
 560
 561	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
 562	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
 563			   libconf->conf->long_frame_max_tx_count);
 564	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
 565			   libconf->conf->short_frame_max_tx_count);
 566	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
 567}
 568
 569static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
 570				struct rt2x00lib_conf *libconf)
 571{
 572	enum dev_state state =
 573	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
 574		STATE_SLEEP : STATE_AWAKE;
 575	u32 reg;
 576
 577	if (state == STATE_SLEEP) {
 578		rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
 579		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
 580				   (rt2x00dev->beacon_int - 20) * 16);
 581		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
 582				   libconf->conf->listen_interval - 1);
 583
 584		/* We must first disable autowake before it can be enabled */
 585		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
 586		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
 587
 588		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
 589		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
 590	} else {
 591		rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
 592		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
 593		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
 594	}
 595
 596	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
 597}
 598
 599static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
 600			     struct rt2x00lib_conf *libconf,
 601			     const unsigned int flags)
 602{
 603	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 604		rt2500pci_config_channel(rt2x00dev, &libconf->rf,
 605					 libconf->conf->power_level);
 606	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 607	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 608		rt2500pci_config_txpower(rt2x00dev,
 609					 libconf->conf->power_level);
 610	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
 611		rt2500pci_config_retry_limit(rt2x00dev, libconf);
 612	if (flags & IEEE80211_CONF_CHANGE_PS)
 613		rt2500pci_config_ps(rt2x00dev, libconf);
 614}
 615
 616/*
 617 * Link tuning
 618 */
 619static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
 620				 struct link_qual *qual)
 621{
 622	u32 reg;
 623
 624	/*
 625	 * Update FCS error count from register.
 626	 */
 627	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
 628	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
 629
 630	/*
 631	 * Update False CCA count from register.
 632	 */
 633	rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
 634	qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
 635}
 636
 637static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
 638				     struct link_qual *qual, u8 vgc_level)
 639{
 640	if (qual->vgc_level_reg != vgc_level) {
 641		rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
 642		qual->vgc_level = vgc_level;
 643		qual->vgc_level_reg = vgc_level;
 644	}
 645}
 646
 647static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
 648				  struct link_qual *qual)
 649{
 650	rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
 651}
 652
 653static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
 654				 struct link_qual *qual, const u32 count)
 655{
 656	/*
 657	 * To prevent collisions with MAC ASIC on chipsets
 658	 * up to version C the link tuning should halt after 20
 659	 * seconds while being associated.
 660	 */
 661	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
 662	    rt2x00dev->intf_associated && count > 20)
 663		return;
 664
 665	/*
 666	 * Chipset versions C and lower should directly continue
 667	 * to the dynamic CCA tuning. Chipset version D and higher
 668	 * should go straight to dynamic CCA tuning when they
 669	 * are not associated.
 670	 */
 671	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
 672	    !rt2x00dev->intf_associated)
 673		goto dynamic_cca_tune;
 674
 675	/*
 676	 * A too low RSSI will cause too much false CCA which will
 677	 * then corrupt the R17 tuning. To remidy this the tuning should
 678	 * be stopped (While making sure the R17 value will not exceed limits)
 679	 */
 680	if (qual->rssi < -80 && count > 20) {
 681		if (qual->vgc_level_reg >= 0x41)
 682			rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
 683		return;
 684	}
 685
 686	/*
 687	 * Special big-R17 for short distance
 688	 */
 689	if (qual->rssi >= -58) {
 690		rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
 691		return;
 692	}
 693
 694	/*
 695	 * Special mid-R17 for middle distance
 696	 */
 697	if (qual->rssi >= -74) {
 698		rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
 699		return;
 700	}
 701
 702	/*
 703	 * Leave short or middle distance condition, restore r17
 704	 * to the dynamic tuning range.
 705	 */
 706	if (qual->vgc_level_reg >= 0x41) {
 707		rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
 708		return;
 709	}
 710
 711dynamic_cca_tune:
 712
 713	/*
 714	 * R17 is inside the dynamic tuning range,
 715	 * start tuning the link based on the false cca counter.
 716	 */
 717	if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
 718		rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
 719	else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
 720		rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
 721}
 722
 723/*
 724 * Queue handlers.
 725 */
 726static void rt2500pci_start_queue(struct data_queue *queue)
 727{
 728	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 729	u32 reg;
 730
 731	switch (queue->qid) {
 732	case QID_RX:
 733		rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
 734		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
 735		rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
 736		break;
 737	case QID_BEACON:
 738		/*
 739		 * Allow the tbtt tasklet to be scheduled.
 740		 */
 741		tasklet_enable(&rt2x00dev->tbtt_tasklet);
 742
 743		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
 744		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
 745		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
 746		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
 747		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
 748		break;
 749	default:
 750		break;
 751	}
 752}
 753
 754static void rt2500pci_kick_queue(struct data_queue *queue)
 755{
 756	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 757	u32 reg;
 758
 759	switch (queue->qid) {
 760	case QID_AC_VO:
 761		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
 762		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
 763		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
 764		break;
 765	case QID_AC_VI:
 766		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
 767		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
 768		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
 769		break;
 770	case QID_ATIM:
 771		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
 772		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
 773		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
 774		break;
 775	default:
 776		break;
 777	}
 778}
 779
 780static void rt2500pci_stop_queue(struct data_queue *queue)
 781{
 782	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 783	u32 reg;
 784
 785	switch (queue->qid) {
 786	case QID_AC_VO:
 787	case QID_AC_VI:
 788	case QID_ATIM:
 789		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
 790		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
 791		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
 792		break;
 793	case QID_RX:
 794		rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
 795		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
 796		rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
 797		break;
 798	case QID_BEACON:
 799		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
 800		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
 801		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
 802		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
 803		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
 804
 805		/*
 806		 * Wait for possibly running tbtt tasklets.
 807		 */
 808		tasklet_disable(&rt2x00dev->tbtt_tasklet);
 809		break;
 810	default:
 811		break;
 812	}
 813}
 814
 815/*
 816 * Initialization functions.
 817 */
 818static bool rt2500pci_get_entry_state(struct queue_entry *entry)
 819{
 820	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
 821	u32 word;
 822
 823	if (entry->queue->qid == QID_RX) {
 824		rt2x00_desc_read(entry_priv->desc, 0, &word);
 825
 826		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
 827	} else {
 828		rt2x00_desc_read(entry_priv->desc, 0, &word);
 829
 830		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
 831		        rt2x00_get_field32(word, TXD_W0_VALID));
 832	}
 833}
 834
 835static void rt2500pci_clear_entry(struct queue_entry *entry)
 836{
 837	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
 838	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 839	u32 word;
 840
 841	if (entry->queue->qid == QID_RX) {
 842		rt2x00_desc_read(entry_priv->desc, 1, &word);
 843		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
 844		rt2x00_desc_write(entry_priv->desc, 1, word);
 845
 846		rt2x00_desc_read(entry_priv->desc, 0, &word);
 847		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
 848		rt2x00_desc_write(entry_priv->desc, 0, word);
 849	} else {
 850		rt2x00_desc_read(entry_priv->desc, 0, &word);
 851		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
 852		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
 853		rt2x00_desc_write(entry_priv->desc, 0, word);
 854	}
 855}
 856
 857static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
 858{
 859	struct queue_entry_priv_pci *entry_priv;
 860	u32 reg;
 861
 862	/*
 863	 * Initialize registers.
 864	 */
 865	rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
 866	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
 867	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
 868	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
 869	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
 870	rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
 871
 872	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
 873	rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
 874	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
 875			   entry_priv->desc_dma);
 876	rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
 877
 878	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
 879	rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
 880	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
 881			   entry_priv->desc_dma);
 882	rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
 883
 884	entry_priv = rt2x00dev->atim->entries[0].priv_data;
 885	rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
 886	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
 887			   entry_priv->desc_dma);
 888	rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
 889
 890	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
 891	rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
 892	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
 893			   entry_priv->desc_dma);
 894	rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
 895
 896	rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
 897	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
 898	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
 899	rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
 900
 901	entry_priv = rt2x00dev->rx->entries[0].priv_data;
 902	rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
 903	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
 904			   entry_priv->desc_dma);
 905	rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
 906
 907	return 0;
 908}
 909
 910static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
 911{
 912	u32 reg;
 913
 914	rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
 915	rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
 916	rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
 917	rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
 918
 919	rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
 920	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
 921	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
 922	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
 923	rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
 924
 925	rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
 926	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
 927			   rt2x00dev->rx->data_size / 128);
 928	rt2x00pci_register_write(rt2x00dev, CSR9, reg);
 929
 930	/*
 931	 * Always use CWmin and CWmax set in descriptor.
 932	 */
 933	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
 934	rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
 935	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
 936
 937	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
 938	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
 939	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
 940	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
 941	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
 942	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
 943	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
 944	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
 945	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
 946	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
 947
 948	rt2x00pci_register_write(rt2x00dev, CNT3, 0);
 949
 950	rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
 951	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
 952	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
 953	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
 954	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
 955	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
 956	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
 957	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
 958	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
 959	rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
 960
 961	rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
 962	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
 963	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
 964	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
 965	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
 966	rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
 967
 968	rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
 969	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
 970	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
 971	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
 972	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
 973	rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
 974
 975	rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
 976	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
 977	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
 978	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
 979	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
 980	rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
 981
 982	rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
 983	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
 984	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
 985	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
 986	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
 987	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
 988	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
 989	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
 990	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
 991	rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
 992
 993	rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
 994	rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
 995	rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
 996	rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
 997	rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
 998	rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
 999	rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
1000	rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
1001	rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
1002
1003	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
1004
1005	rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
1006	rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
1007
1008	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1009		return -EBUSY;
1010
1011	rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
1012	rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
1013
1014	rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
1015	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
1016	rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
1017
1018	rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
1019	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
1020	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
1021	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
1022	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
1023	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
1024	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
1025	rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
1026
1027	rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1028
1029	rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1030
1031	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
1032	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
1033	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
1034	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
1035	rt2x00pci_register_write(rt2x00dev, CSR1, reg);
1036
1037	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
1038	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
1039	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
1040	rt2x00pci_register_write(rt2x00dev, CSR1, reg);
1041
1042	/*
1043	 * We must clear the FCS and FIFO error count.
1044	 * These registers are cleared on read,
1045	 * so we may pass a useless variable to store the value.
1046	 */
1047	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
1048	rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
1049
1050	return 0;
1051}
1052
1053static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1054{
1055	unsigned int i;
1056	u8 value;
1057
1058	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1059		rt2500pci_bbp_read(rt2x00dev, 0, &value);
1060		if ((value != 0xff) && (value != 0x00))
1061			return 0;
1062		udelay(REGISTER_BUSY_DELAY);
1063	}
1064
1065	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1066	return -EACCES;
1067}
1068
1069static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1070{
1071	unsigned int i;
1072	u16 eeprom;
1073	u8 reg_id;
1074	u8 value;
1075
1076	if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
1077		return -EACCES;
1078
1079	rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1080	rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1081	rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1082	rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1083	rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1084	rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1085	rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1086	rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1087	rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1088	rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1089	rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1090	rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1091	rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1092	rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1093	rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1094	rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1095	rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1096	rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1097	rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1098	rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1099	rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1100	rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1101	rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1102	rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1103	rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1104	rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1105	rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1106	rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1107	rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1108	rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1109
1110	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1111		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1112
1113		if (eeprom != 0xffff && eeprom != 0x0000) {
1114			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1115			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1116			rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1117		}
1118	}
1119
1120	return 0;
1121}
1122
1123/*
1124 * Device state switch handlers.
1125 */
1126static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1127				 enum dev_state state)
1128{
1129	int mask = (state == STATE_RADIO_IRQ_OFF);
1130	u32 reg;
1131	unsigned long flags;
1132
1133	/*
1134	 * When interrupts are being enabled, the interrupt registers
1135	 * should clear the register to assure a clean state.
1136	 */
1137	if (state == STATE_RADIO_IRQ_ON) {
1138		rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1139		rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1140
1141		/*
1142		 * Enable tasklets.
1143		 */
1144		tasklet_enable(&rt2x00dev->txstatus_tasklet);
1145		tasklet_enable(&rt2x00dev->rxdone_tasklet);
1146	}
1147
1148	/*
1149	 * Only toggle the interrupts bits we are going to use.
1150	 * Non-checked interrupt bits are disabled by default.
1151	 */
1152	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1153
1154	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1155	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1156	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1157	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1158	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1159	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1160	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1161
1162	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1163
1164	if (state == STATE_RADIO_IRQ_OFF) {
1165		/*
1166		 * Ensure that all tasklets are finished.
1167		 */
1168		tasklet_disable(&rt2x00dev->txstatus_tasklet);
1169		tasklet_disable(&rt2x00dev->rxdone_tasklet);
1170	}
1171}
1172
1173static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1174{
1175	/*
1176	 * Initialize all registers.
1177	 */
1178	if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1179		     rt2500pci_init_registers(rt2x00dev) ||
1180		     rt2500pci_init_bbp(rt2x00dev)))
1181		return -EIO;
1182
1183	return 0;
1184}
1185
1186static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1187{
1188	/*
1189	 * Disable power
1190	 */
1191	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1192}
1193
1194static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1195			       enum dev_state state)
1196{
1197	u32 reg, reg2;
1198	unsigned int i;
1199	char put_to_sleep;
1200	char bbp_state;
1201	char rf_state;
1202
1203	put_to_sleep = (state != STATE_AWAKE);
1204
1205	rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1206	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1207	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1208	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1209	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1210	rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1211
1212	/*
1213	 * Device is not guaranteed to be in the requested state yet.
1214	 * We must wait until the register indicates that the
1215	 * device has entered the correct state.
1216	 */
1217	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1218		rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
1219		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1220		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1221		if (bbp_state == state && rf_state == state)
1222			return 0;
1223		rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1224		msleep(10);
1225	}
1226
1227	return -EBUSY;
1228}
1229
1230static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1231				      enum dev_state state)
1232{
1233	int retval = 0;
1234
1235	switch (state) {
1236	case STATE_RADIO_ON:
1237		retval = rt2500pci_enable_radio(rt2x00dev);
1238		break;
1239	case STATE_RADIO_OFF:
1240		rt2500pci_disable_radio(rt2x00dev);
1241		break;
1242	case STATE_RADIO_IRQ_ON:
1243	case STATE_RADIO_IRQ_OFF:
1244		rt2500pci_toggle_irq(rt2x00dev, state);
1245		break;
1246	case STATE_DEEP_SLEEP:
1247	case STATE_SLEEP:
1248	case STATE_STANDBY:
1249	case STATE_AWAKE:
1250		retval = rt2500pci_set_state(rt2x00dev, state);
1251		break;
1252	default:
1253		retval = -ENOTSUPP;
1254		break;
1255	}
1256
1257	if (unlikely(retval))
1258		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1259		      state, retval);
1260
1261	return retval;
1262}
1263
1264/*
1265 * TX descriptor initialization
1266 */
1267static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1268				    struct txentry_desc *txdesc)
1269{
1270	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1271	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1272	__le32 *txd = entry_priv->desc;
1273	u32 word;
1274
1275	/*
1276	 * Start writing the descriptor words.
1277	 */
1278	rt2x00_desc_read(txd, 1, &word);
1279	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1280	rt2x00_desc_write(txd, 1, word);
1281
1282	rt2x00_desc_read(txd, 2, &word);
1283	rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1284	rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1285	rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1286	rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1287	rt2x00_desc_write(txd, 2, word);
1288
1289	rt2x00_desc_read(txd, 3, &word);
1290	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1291	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1292	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
1293			   txdesc->u.plcp.length_low);
1294	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
1295			   txdesc->u.plcp.length_high);
1296	rt2x00_desc_write(txd, 3, word);
1297
1298	rt2x00_desc_read(txd, 10, &word);
1299	rt2x00_set_field32(&word, TXD_W10_RTS,
1300			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1301	rt2x00_desc_write(txd, 10, word);
1302
1303	/*
1304	 * Writing TXD word 0 must the last to prevent a race condition with
1305	 * the device, whereby the device may take hold of the TXD before we
1306	 * finished updating it.
1307	 */
1308	rt2x00_desc_read(txd, 0, &word);
1309	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1310	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1311	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1312			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1313	rt2x00_set_field32(&word, TXD_W0_ACK,
1314			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1315	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1316			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1317	rt2x00_set_field32(&word, TXD_W0_OFDM,
1318			   (txdesc->rate_mode == RATE_MODE_OFDM));
1319	rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1320	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1321	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1322			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1323	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1324	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1325	rt2x00_desc_write(txd, 0, word);
1326
1327	/*
1328	 * Register descriptor details in skb frame descriptor.
1329	 */
1330	skbdesc->desc = txd;
1331	skbdesc->desc_len = TXD_DESC_SIZE;
1332}
1333
1334/*
1335 * TX data initialization
1336 */
1337static void rt2500pci_write_beacon(struct queue_entry *entry,
1338				   struct txentry_desc *txdesc)
1339{
1340	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1341	u32 reg;
1342
1343	/*
1344	 * Disable beaconing while we are reloading the beacon data,
1345	 * otherwise we might be sending out invalid data.
1346	 */
1347	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1348	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1349	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1350
1351	rt2x00queue_map_txskb(entry);
1352
1353	/*
1354	 * Write the TX descriptor for the beacon.
1355	 */
1356	rt2500pci_write_tx_desc(entry, txdesc);
1357
1358	/*
1359	 * Dump beacon to userspace through debugfs.
1360	 */
1361	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1362
1363	/*
1364	 * Enable beaconing again.
1365	 */
1366	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1367	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1368}
1369
1370/*
1371 * RX control handlers
1372 */
1373static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1374				  struct rxdone_entry_desc *rxdesc)
1375{
1376	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1377	u32 word0;
1378	u32 word2;
1379
1380	rt2x00_desc_read(entry_priv->desc, 0, &word0);
1381	rt2x00_desc_read(entry_priv->desc, 2, &word2);
1382
1383	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1384		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1385	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1386		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1387
1388	/*
1389	 * Obtain the status about this packet.
1390	 * When frame was received with an OFDM bitrate,
1391	 * the signal is the PLCP value. If it was received with
1392	 * a CCK bitrate the signal is the rate in 100kbit/s.
1393	 */
1394	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1395	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1396	    entry->queue->rt2x00dev->rssi_offset;
1397	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1398
1399	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1400		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1401	else
1402		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1403	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1404		rxdesc->dev_flags |= RXDONE_MY_BSS;
1405}
1406
1407/*
1408 * Interrupt functions.
1409 */
1410static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1411			     const enum data_queue_qid queue_idx)
1412{
1413	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1414	struct queue_entry_priv_pci *entry_priv;
1415	struct queue_entry *entry;
1416	struct txdone_entry_desc txdesc;
1417	u32 word;
1418
1419	while (!rt2x00queue_empty(queue)) {
1420		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1421		entry_priv = entry->priv_data;
1422		rt2x00_desc_read(entry_priv->desc, 0, &word);
1423
1424		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1425		    !rt2x00_get_field32(word, TXD_W0_VALID))
1426			break;
1427
1428		/*
1429		 * Obtain the status about this packet.
1430		 */
1431		txdesc.flags = 0;
1432		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1433		case 0: /* Success */
1434		case 1: /* Success with retry */
1435			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
1436			break;
1437		case 2: /* Failure, excessive retries */
1438			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1439			/* Don't break, this is a failed frame! */
1440		default: /* Failure */
1441			__set_bit(TXDONE_FAILURE, &txdesc.flags);
1442		}
1443		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1444
1445		rt2x00lib_txdone(entry, &txdesc);
1446	}
1447}
1448
1449static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1450					      struct rt2x00_field32 irq_field)
1451{
1452	u32 reg;
1453
1454	/*
1455	 * Enable a single interrupt. The interrupt mask register
1456	 * access needs locking.
1457	 */
1458	spin_lock_irq(&rt2x00dev->irqmask_lock);
1459
1460	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1461	rt2x00_set_field32(&reg, irq_field, 0);
1462	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1463
1464	spin_unlock_irq(&rt2x00dev->irqmask_lock);
1465}
1466
1467static void rt2500pci_txstatus_tasklet(unsigned long data)
1468{
1469	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1470	u32 reg;
1471
1472	/*
1473	 * Handle all tx queues.
1474	 */
1475	rt2500pci_txdone(rt2x00dev, QID_ATIM);
1476	rt2500pci_txdone(rt2x00dev, QID_AC_VO);
1477	rt2500pci_txdone(rt2x00dev, QID_AC_VI);
1478
1479	/*
1480	 * Enable all TXDONE interrupts again.
1481	 */
1482	spin_lock_irq(&rt2x00dev->irqmask_lock);
1483
1484	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1485	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1486	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1487	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1488	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1489
1490	spin_unlock_irq(&rt2x00dev->irqmask_lock);
1491}
1492
1493static void rt2500pci_tbtt_tasklet(unsigned long data)
1494{
1495	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1496	rt2x00lib_beacondone(rt2x00dev);
1497	rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1498}
1499
1500static void rt2500pci_rxdone_tasklet(unsigned long data)
1501{
1502	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1503	if (rt2x00pci_rxdone(rt2x00dev))
1504		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1505	else
1506		rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1507}
1508
1509static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1510{
1511	struct rt2x00_dev *rt2x00dev = dev_instance;
1512	u32 reg, mask;
1513
1514	/*
1515	 * Get the interrupt sources & saved to local variable.
1516	 * Write register value back to clear pending interrupts.
1517	 */
1518	rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1519	rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1520
1521	if (!reg)
1522		return IRQ_NONE;
1523
1524	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1525		return IRQ_HANDLED;
1526
1527	mask = reg;
1528
1529	/*
1530	 * Schedule tasklets for interrupt handling.
1531	 */
1532	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1533		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1534
1535	if (rt2x00_get_field32(reg, CSR7_RXDONE))
1536		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1537
1538	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1539	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1540	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1541		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1542		/*
1543		 * Mask out all txdone interrupts.
1544		 */
1545		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1546		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1547		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1548	}
1549
1550	/*
1551	 * Disable all interrupts for which a tasklet was scheduled right now,
1552	 * the tasklet will reenable the appropriate interrupts.
1553	 */
1554	spin_lock(&rt2x00dev->irqmask_lock);
1555
1556	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1557	reg |= mask;
1558	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1559
1560	spin_unlock(&rt2x00dev->irqmask_lock);
1561
1562	return IRQ_HANDLED;
1563}
1564
1565/*
1566 * Device probe functions.
1567 */
1568static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1569{
1570	struct eeprom_93cx6 eeprom;
1571	u32 reg;
1572	u16 word;
1573	u8 *mac;
1574
1575	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1576
1577	eeprom.data = rt2x00dev;
1578	eeprom.register_read = rt2500pci_eepromregister_read;
1579	eeprom.register_write = rt2500pci_eepromregister_write;
1580	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1581	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1582	eeprom.reg_data_in = 0;
1583	eeprom.reg_data_out = 0;
1584	eeprom.reg_data_clock = 0;
1585	eeprom.reg_chip_select = 0;
1586
1587	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1588			       EEPROM_SIZE / sizeof(u16));
1589
1590	/*
1591	 * Start validation of the data that has been read.
1592	 */
1593	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1594	if (!is_valid_ether_addr(mac)) {
1595		random_ether_addr(mac);
1596		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1597	}
1598
1599	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1600	if (word == 0xffff) {
1601		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1602		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1603				   ANTENNA_SW_DIVERSITY);
1604		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1605				   ANTENNA_SW_DIVERSITY);
1606		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1607				   LED_MODE_DEFAULT);
1608		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1609		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1610		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1611		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1612		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1613	}
1614
1615	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1616	if (word == 0xffff) {
1617		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1618		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1619		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1620		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1621		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1622	}
1623
1624	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1625	if (word == 0xffff) {
1626		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1627				   DEFAULT_RSSI_OFFSET);
1628		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1629		EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1630	}
1631
1632	return 0;
1633}
1634
1635static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1636{
1637	u32 reg;
1638	u16 value;
1639	u16 eeprom;
1640
1641	/*
1642	 * Read EEPROM word for configuration.
1643	 */
1644	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1645
1646	/*
1647	 * Identify RF chipset.
1648	 */
1649	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1650	rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1651	rt2x00_set_chip(rt2x00dev, RT2560, value,
1652			rt2x00_get_field32(reg, CSR0_REVISION));
1653
1654	if (!rt2x00_rf(rt2x00dev, RF2522) &&
1655	    !rt2x00_rf(rt2x00dev, RF2523) &&
1656	    !rt2x00_rf(rt2x00dev, RF2524) &&
1657	    !rt2x00_rf(rt2x00dev, RF2525) &&
1658	    !rt2x00_rf(rt2x00dev, RF2525E) &&
1659	    !rt2x00_rf(rt2x00dev, RF5222)) {
1660		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1661		return -ENODEV;
1662	}
1663
1664	/*
1665	 * Identify default antenna configuration.
1666	 */
1667	rt2x00dev->default_ant.tx =
1668	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1669	rt2x00dev->default_ant.rx =
1670	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1671
1672	/*
1673	 * Store led mode, for correct led behaviour.
1674	 */
1675#ifdef CONFIG_RT2X00_LIB_LEDS
1676	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1677
1678	rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1679	if (value == LED_MODE_TXRX_ACTIVITY ||
1680	    value == LED_MODE_DEFAULT ||
1681	    value == LED_MODE_ASUS)
1682		rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1683				   LED_TYPE_ACTIVITY);
1684#endif /* CONFIG_RT2X00_LIB_LEDS */
1685
1686	/*
1687	 * Detect if this device has an hardware controlled radio.
1688	 */
1689	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1690		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1691
1692	/*
1693	 * Check if the BBP tuning should be enabled.
1694	 */
1695	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1696	if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1697		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1698
1699	/*
1700	 * Read the RSSI <-> dBm offset information.
1701	 */
1702	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1703	rt2x00dev->rssi_offset =
1704	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1705
1706	return 0;
1707}
1708
1709/*
1710 * RF value list for RF2522
1711 * Supports: 2.4 GHz
1712 */
1713static const struct rf_channel rf_vals_bg_2522[] = {
1714	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1715	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1716	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1717	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1718	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1719	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1720	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1721	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1722	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1723	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1724	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1725	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1726	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1727	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1728};
1729
1730/*
1731 * RF value list for RF2523
1732 * Supports: 2.4 GHz
1733 */
1734static const struct rf_channel rf_vals_bg_2523[] = {
1735	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1736	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1737	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1738	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1739	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1740	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1741	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1742	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1743	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1744	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1745	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1746	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1747	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1748	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1749};
1750
1751/*
1752 * RF value list for RF2524
1753 * Supports: 2.4 GHz
1754 */
1755static const struct rf_channel rf_vals_bg_2524[] = {
1756	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1757	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1758	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1759	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1760	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1761	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1762	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1763	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1764	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1765	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1766	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1767	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1768	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1769	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1770};
1771
1772/*
1773 * RF value list for RF2525
1774 * Supports: 2.4 GHz
1775 */
1776static const struct rf_channel rf_vals_bg_2525[] = {
1777	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1778	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1779	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1780	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1781	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1782	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1783	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1784	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1785	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1786	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1787	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1788	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1789	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1790	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1791};
1792
1793/*
1794 * RF value list for RF2525e
1795 * Supports: 2.4 GHz
1796 */
1797static const struct rf_channel rf_vals_bg_2525e[] = {
1798	{ 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1799	{ 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1800	{ 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1801	{ 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1802	{ 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1803	{ 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1804	{ 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1805	{ 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1806	{ 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1807	{ 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1808	{ 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1809	{ 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1810	{ 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1811	{ 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1812};
1813
1814/*
1815 * RF value list for RF5222
1816 * Supports: 2.4 GHz & 5.2 GHz
1817 */
1818static const struct rf_channel rf_vals_5222[] = {
1819	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1820	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1821	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1822	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1823	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1824	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1825	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1826	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1827	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1828	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1829	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1830	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1831	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1832	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1833
1834	/* 802.11 UNI / HyperLan 2 */
1835	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1836	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1837	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1838	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1839	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1840	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1841	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1842	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1843
1844	/* 802.11 HyperLan 2 */
1845	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1846	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1847	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1848	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1849	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1850	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1851	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1852	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1853	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1854	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1855
1856	/* 802.11 UNII */
1857	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1858	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1859	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1860	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1861	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1862};
1863
1864static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1865{
1866	struct hw_mode_spec *spec = &rt2x00dev->spec;
1867	struct channel_info *info;
1868	char *tx_power;
1869	unsigned int i;
1870
1871	/*
1872	 * Initialize all hw fields.
1873	 */
1874	rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1875			       IEEE80211_HW_SIGNAL_DBM |
1876			       IEEE80211_HW_SUPPORTS_PS |
1877			       IEEE80211_HW_PS_NULLFUNC_STACK;
1878
1879	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1880	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1881				rt2x00_eeprom_addr(rt2x00dev,
1882						   EEPROM_MAC_ADDR_0));
1883
1884	/*
1885	 * Initialize hw_mode information.
1886	 */
1887	spec->supported_bands = SUPPORT_BAND_2GHZ;
1888	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1889
1890	if (rt2x00_rf(rt2x00dev, RF2522)) {
1891		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1892		spec->channels = rf_vals_bg_2522;
1893	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1894		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1895		spec->channels = rf_vals_bg_2523;
1896	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1897		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1898		spec->channels = rf_vals_bg_2524;
1899	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1900		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1901		spec->channels = rf_vals_bg_2525;
1902	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1903		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1904		spec->channels = rf_vals_bg_2525e;
1905	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1906		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1907		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1908		spec->channels = rf_vals_5222;
1909	}
1910
1911	/*
1912	 * Create channel information array
1913	 */
1914	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1915	if (!info)
1916		return -ENOMEM;
1917
1918	spec->channels_info = info;
1919
1920	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1921	for (i = 0; i < 14; i++) {
1922		info[i].max_power = MAX_TXPOWER;
1923		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1924	}
1925
1926	if (spec->num_channels > 14) {
1927		for (i = 14; i < spec->num_channels; i++) {
1928			info[i].max_power = MAX_TXPOWER;
1929			info[i].default_power1 = DEFAULT_TXPOWER;
1930		}
1931	}
1932
1933	return 0;
1934}
1935
1936static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1937{
1938	int retval;
1939
1940	/*
1941	 * Allocate eeprom data.
1942	 */
1943	retval = rt2500pci_validate_eeprom(rt2x00dev);
1944	if (retval)
1945		return retval;
1946
1947	retval = rt2500pci_init_eeprom(rt2x00dev);
1948	if (retval)
1949		return retval;
1950
1951	/*
1952	 * Initialize hw specifications.
1953	 */
1954	retval = rt2500pci_probe_hw_mode(rt2x00dev);
1955	if (retval)
1956		return retval;
1957
1958	/*
1959	 * This device requires the atim queue and DMA-mapped skbs.
1960	 */
1961	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1962	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1963	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1964
1965	/*
1966	 * Set the rssi offset.
1967	 */
1968	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1969
1970	return 0;
1971}
1972
1973/*
1974 * IEEE80211 stack callback functions.
1975 */
1976static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1977{
1978	struct rt2x00_dev *rt2x00dev = hw->priv;
1979	u64 tsf;
1980	u32 reg;
1981
1982	rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1983	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1984	rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1985	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1986
1987	return tsf;
1988}
1989
1990static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1991{
1992	struct rt2x00_dev *rt2x00dev = hw->priv;
1993	u32 reg;
1994
1995	rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1996	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1997}
1998
1999static const struct ieee80211_ops rt2500pci_mac80211_ops = {
2000	.tx			= rt2x00mac_tx,
2001	.start			= rt2x00mac_start,
2002	.stop			= rt2x00mac_stop,
2003	.add_interface		= rt2x00mac_add_interface,
2004	.remove_interface	= rt2x00mac_remove_interface,
2005	.config			= rt2x00mac_config,
2006	.configure_filter	= rt2x00mac_configure_filter,
2007	.sw_scan_start		= rt2x00mac_sw_scan_start,
2008	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2009	.get_stats		= rt2x00mac_get_stats,
2010	.bss_info_changed	= rt2x00mac_bss_info_changed,
2011	.conf_tx		= rt2x00mac_conf_tx,
2012	.get_tsf		= rt2500pci_get_tsf,
2013	.tx_last_beacon		= rt2500pci_tx_last_beacon,
2014	.rfkill_poll		= rt2x00mac_rfkill_poll,
2015	.flush			= rt2x00mac_flush,
2016	.set_antenna		= rt2x00mac_set_antenna,
2017	.get_antenna		= rt2x00mac_get_antenna,
2018	.get_ringparam		= rt2x00mac_get_ringparam,
2019	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
2020};
2021
2022static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
2023	.irq_handler		= rt2500pci_interrupt,
2024	.txstatus_tasklet	= rt2500pci_txstatus_tasklet,
2025	.tbtt_tasklet		= rt2500pci_tbtt_tasklet,
2026	.rxdone_tasklet		= rt2500pci_rxdone_tasklet,
2027	.probe_hw		= rt2500pci_probe_hw,
2028	.initialize		= rt2x00pci_initialize,
2029	.uninitialize		= rt2x00pci_uninitialize,
2030	.get_entry_state	= rt2500pci_get_entry_state,
2031	.clear_entry		= rt2500pci_clear_entry,
2032	.set_device_state	= rt2500pci_set_device_state,
2033	.rfkill_poll		= rt2500pci_rfkill_poll,
2034	.link_stats		= rt2500pci_link_stats,
2035	.reset_tuner		= rt2500pci_reset_tuner,
2036	.link_tuner		= rt2500pci_link_tuner,
2037	.start_queue		= rt2500pci_start_queue,
2038	.kick_queue		= rt2500pci_kick_queue,
2039	.stop_queue		= rt2500pci_stop_queue,
2040	.flush_queue		= rt2x00pci_flush_queue,
2041	.write_tx_desc		= rt2500pci_write_tx_desc,
2042	.write_beacon		= rt2500pci_write_beacon,
2043	.fill_rxdone		= rt2500pci_fill_rxdone,
2044	.config_filter		= rt2500pci_config_filter,
2045	.config_intf		= rt2500pci_config_intf,
2046	.config_erp		= rt2500pci_config_erp,
2047	.config_ant		= rt2500pci_config_ant,
2048	.config			= rt2500pci_config,
2049};
2050
2051static const struct data_queue_desc rt2500pci_queue_rx = {
2052	.entry_num		= 32,
2053	.data_size		= DATA_FRAME_SIZE,
2054	.desc_size		= RXD_DESC_SIZE,
2055	.priv_size		= sizeof(struct queue_entry_priv_pci),
2056};
2057
2058static const struct data_queue_desc rt2500pci_queue_tx = {
2059	.entry_num		= 32,
2060	.data_size		= DATA_FRAME_SIZE,
2061	.desc_size		= TXD_DESC_SIZE,
2062	.priv_size		= sizeof(struct queue_entry_priv_pci),
2063};
2064
2065static const struct data_queue_desc rt2500pci_queue_bcn = {
2066	.entry_num		= 1,
2067	.data_size		= MGMT_FRAME_SIZE,
2068	.desc_size		= TXD_DESC_SIZE,
2069	.priv_size		= sizeof(struct queue_entry_priv_pci),
2070};
2071
2072static const struct data_queue_desc rt2500pci_queue_atim = {
2073	.entry_num		= 8,
2074	.data_size		= DATA_FRAME_SIZE,
2075	.desc_size		= TXD_DESC_SIZE,
2076	.priv_size		= sizeof(struct queue_entry_priv_pci),
2077};
2078
2079static const struct rt2x00_ops rt2500pci_ops = {
2080	.name			= KBUILD_MODNAME,
2081	.max_sta_intf		= 1,
2082	.max_ap_intf		= 1,
2083	.eeprom_size		= EEPROM_SIZE,
2084	.rf_size		= RF_SIZE,
2085	.tx_queues		= NUM_TX_QUEUES,
2086	.extra_tx_headroom	= 0,
2087	.rx			= &rt2500pci_queue_rx,
2088	.tx			= &rt2500pci_queue_tx,
2089	.bcn			= &rt2500pci_queue_bcn,
2090	.atim			= &rt2500pci_queue_atim,
2091	.lib			= &rt2500pci_rt2x00_ops,
2092	.hw			= &rt2500pci_mac80211_ops,
2093#ifdef CONFIG_RT2X00_LIB_DEBUGFS
2094	.debugfs		= &rt2500pci_rt2x00debug,
2095#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2096};
2097
2098/*
2099 * RT2500pci module information.
2100 */
2101static DEFINE_PCI_DEVICE_TABLE(rt2500pci_device_table) = {
2102	{ PCI_DEVICE(0x1814, 0x0201) },
2103	{ 0, }
2104};
2105
2106MODULE_AUTHOR(DRV_PROJECT);
2107MODULE_VERSION(DRV_VERSION);
2108MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2109MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
2110MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2111MODULE_LICENSE("GPL");
2112
2113static int rt2500pci_probe(struct pci_dev *pci_dev,
2114			   const struct pci_device_id *id)
2115{
2116	return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
2117}
2118
2119static struct pci_driver rt2500pci_driver = {
2120	.name		= KBUILD_MODNAME,
2121	.id_table	= rt2500pci_device_table,
2122	.probe		= rt2500pci_probe,
2123	.remove		= __devexit_p(rt2x00pci_remove),
2124	.suspend	= rt2x00pci_suspend,
2125	.resume		= rt2x00pci_resume,
2126};
2127
2128static int __init rt2500pci_init(void)
2129{
2130	return pci_register_driver(&rt2500pci_driver);
2131}
2132
2133static void __exit rt2500pci_exit(void)
2134{
2135	pci_unregister_driver(&rt2500pci_driver);
2136}
2137
2138module_init(rt2500pci_init);
2139module_exit(rt2500pci_exit);