Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
   3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
   4 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
   5 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
   6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
   7 *
   8 * Permission to use, copy, modify, and distribute this software for any
   9 * purpose with or without fee is hereby granted, provided that the above
  10 * copyright notice and this permission notice appear in all copies.
  11 *
  12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  19 *
  20 */
  21
  22/****************************\
  23  Reset function and helpers
  24\****************************/
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <asm/unaligned.h>
  29
  30#include <linux/pci.h>		/* To determine if a card is pci-e */
  31#include <linux/log2.h>
  32#include <linux/platform_device.h>
  33#include "ath5k.h"
  34#include "reg.h"
 
  35#include "debug.h"
  36
  37
  38/**
  39 * DOC: Reset function and helpers
  40 *
  41 * Here we implement the main reset routine, used to bring the card
  42 * to a working state and ready to receive. We also handle routines
  43 * that don't fit on other places such as clock, sleep and power control
  44 */
  45
  46
  47/******************\
  48* Helper functions *
  49\******************/
  50
  51/**
  52 * ath5k_hw_register_timeout() - Poll a register for a flag/field change
  53 * @ah: The &struct ath5k_hw
  54 * @reg: The register to read
  55 * @flag: The flag/field to check on the register
  56 * @val: The field value we expect (if we check a field)
  57 * @is_set: Instead of checking if the flag got cleared, check if it got set
  58 *
  59 * Some registers contain flags that indicate that an operation is
  60 * running. We use this function to poll these registers and check
  61 * if these flags get cleared. We also use it to poll a register
  62 * field (containing multiple flags) until it gets a specific value.
  63 *
  64 * Returns -EAGAIN if we exceeded AR5K_TUNE_REGISTER_TIMEOUT * 15us or 0
  65 */
  66int
  67ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val,
  68			      bool is_set)
  69{
  70	int i;
  71	u32 data;
  72
  73	for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) {
  74		data = ath5k_hw_reg_read(ah, reg);
  75		if (is_set && (data & flag))
  76			break;
  77		else if ((data & flag) == val)
  78			break;
  79		udelay(15);
  80	}
  81
  82	return (i <= 0) ? -EAGAIN : 0;
  83}
  84
  85
  86/*************************\
  87* Clock related functions *
  88\*************************/
  89
  90/**
  91 * ath5k_hw_htoclock() - Translate usec to hw clock units
 
  92 * @ah: The &struct ath5k_hw
  93 * @usec: value in microseconds
  94 *
  95 * Translate usecs to hw clock units based on the current
  96 * hw clock rate.
  97 *
  98 * Returns number of clock units
  99 */
 100unsigned int
 101ath5k_hw_htoclock(struct ath5k_hw *ah, unsigned int usec)
 102{
 103	struct ath_common *common = ath5k_hw_common(ah);
 104	return usec * common->clockrate;
 105}
 106
 107/**
 108 * ath5k_hw_clocktoh() - Translate hw clock units to usec
 109 * @ah: The &struct ath5k_hw
 110 * @clock: value in hw clock units
 111 *
 112 * Translate hw clock units to usecs based on the current
 113 * hw clock rate.
 114 *
 115 * Returns number of usecs
 116 */
 117unsigned int
 118ath5k_hw_clocktoh(struct ath5k_hw *ah, unsigned int clock)
 119{
 120	struct ath_common *common = ath5k_hw_common(ah);
 121	return clock / common->clockrate;
 122}
 123
 124/**
 125 * ath5k_hw_init_core_clock() - Initialize core clock
 126 * @ah: The &struct ath5k_hw
 
 127 *
 128 * Initialize core clock parameters (usec, usec32, latencies etc),
 129 * based on current bwmode and chipset properties.
 130 */
 131static void
 132ath5k_hw_init_core_clock(struct ath5k_hw *ah)
 133{
 134	struct ieee80211_channel *channel = ah->ah_current_channel;
 135	struct ath_common *common = ath5k_hw_common(ah);
 136	u32 usec_reg, txlat, rxlat, usec, clock, sclock, txf2txs;
 137
 138	/*
 139	 * Set core clock frequency
 140	 */
 141	switch (channel->hw_value) {
 142	case AR5K_MODE_11A:
 143		clock = 40;
 144		break;
 145	case AR5K_MODE_11B:
 146		clock = 22;
 147		break;
 148	case AR5K_MODE_11G:
 149	default:
 150		clock = 44;
 151		break;
 152	}
 153
 154	/* Use clock multiplier for non-default
 155	 * bwmode */
 156	switch (ah->ah_bwmode) {
 157	case AR5K_BWMODE_40MHZ:
 158		clock *= 2;
 159		break;
 160	case AR5K_BWMODE_10MHZ:
 161		clock /= 2;
 162		break;
 163	case AR5K_BWMODE_5MHZ:
 164		clock /= 4;
 165		break;
 166	default:
 167		break;
 168	}
 169
 170	common->clockrate = clock;
 171
 172	/*
 173	 * Set USEC parameters
 174	 */
 175	/* Set USEC counter on PCU*/
 176	usec = clock - 1;
 177	usec = AR5K_REG_SM(usec, AR5K_USEC_1);
 178
 179	/* Set usec duration on DCU */
 180	if (ah->ah_version != AR5K_AR5210)
 181		AR5K_REG_WRITE_BITS(ah, AR5K_DCU_GBL_IFS_MISC,
 182					AR5K_DCU_GBL_IFS_MISC_USEC_DUR,
 183					clock);
 184
 185	/* Set 32MHz USEC counter */
 186	if ((ah->ah_radio == AR5K_RF5112) ||
 187	    (ah->ah_radio == AR5K_RF2413) ||
 188	    (ah->ah_radio == AR5K_RF5413) ||
 189	    (ah->ah_radio == AR5K_RF2316) ||
 190	    (ah->ah_radio == AR5K_RF2317))
 191		/* Remain on 40MHz clock ? */
 192		sclock = 40 - 1;
 193	else
 194		sclock = 32 - 1;
 195	sclock = AR5K_REG_SM(sclock, AR5K_USEC_32);
 196
 197	/*
 198	 * Set tx/rx latencies
 199	 */
 200	usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211);
 201	txlat = AR5K_REG_MS(usec_reg, AR5K_USEC_TX_LATENCY_5211);
 202	rxlat = AR5K_REG_MS(usec_reg, AR5K_USEC_RX_LATENCY_5211);
 203
 204	/*
 205	 * Set default Tx frame to Tx data start delay
 206	 */
 207	txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT;
 208
 209	/*
 210	 * 5210 initvals don't include usec settings
 211	 * so we need to use magic values here for
 212	 * tx/rx latencies
 213	 */
 214	if (ah->ah_version == AR5K_AR5210) {
 215		/* same for turbo */
 216		txlat = AR5K_INIT_TX_LATENCY_5210;
 217		rxlat = AR5K_INIT_RX_LATENCY_5210;
 218	}
 219
 220	if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
 221		/* 5311 has different tx/rx latency masks
 222		 * from 5211, since we deal 5311 the same
 223		 * as 5211 when setting initvals, shift
 224		 * values here to their proper locations
 225		 *
 226		 * Note: Initvals indicate tx/rx/ latencies
 227		 * are the same for turbo mode */
 228		txlat = AR5K_REG_SM(txlat, AR5K_USEC_TX_LATENCY_5210);
 229		rxlat = AR5K_REG_SM(rxlat, AR5K_USEC_RX_LATENCY_5210);
 230	} else
 231	switch (ah->ah_bwmode) {
 232	case AR5K_BWMODE_10MHZ:
 233		txlat = AR5K_REG_SM(txlat * 2,
 234				AR5K_USEC_TX_LATENCY_5211);
 235		rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX,
 236				AR5K_USEC_RX_LATENCY_5211);
 237		txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_10MHZ;
 238		break;
 239	case AR5K_BWMODE_5MHZ:
 240		txlat = AR5K_REG_SM(txlat * 4,
 241				AR5K_USEC_TX_LATENCY_5211);
 242		rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX,
 243				AR5K_USEC_RX_LATENCY_5211);
 244		txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_5MHZ;
 245		break;
 246	case AR5K_BWMODE_40MHZ:
 247		txlat = AR5K_INIT_TX_LAT_MIN;
 248		rxlat = AR5K_REG_SM(rxlat / 2,
 249				AR5K_USEC_RX_LATENCY_5211);
 250		txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT;
 251		break;
 252	default:
 253		break;
 254	}
 255
 256	usec_reg = (usec | sclock | txlat | rxlat);
 257	ath5k_hw_reg_write(ah, usec_reg, AR5K_USEC);
 258
 259	/* On 5112 set tx frame to tx data start delay */
 260	if (ah->ah_radio == AR5K_RF5112) {
 261		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL2,
 262					AR5K_PHY_RF_CTL2_TXF2TXD_START,
 263					txf2txs);
 264	}
 265}
 266
 267/**
 268 * ath5k_hw_set_sleep_clock() - Setup sleep clock operation
 269 * @ah: The &struct ath5k_hw
 270 * @enable: Enable sleep clock operation (false to disable)
 271 *
 272 * If there is an external 32KHz crystal available, use it
 273 * as ref. clock instead of 32/40MHz clock and baseband clocks
 274 * to save power during sleep or restore normal 32/40MHz
 275 * operation.
 276 *
 277 * NOTE: When operating on 32KHz certain PHY registers (27 - 31,
 278 * 123 - 127) require delay on access.
 279 */
 280static void
 281ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable)
 282{
 283	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 284	u32 scal, spending, sclock;
 285
 286	/* Only set 32KHz settings if we have an external
 287	 * 32KHz crystal present */
 288	if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) ||
 289	AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) &&
 290	enable) {
 291
 292		/* 1 usec/cycle */
 293		AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1);
 294		/* Set up tsf increment on each cycle */
 295		AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61);
 296
 297		/* Set baseband sleep control registers
 298		 * and sleep control rate */
 299		ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
 300
 301		if ((ah->ah_radio == AR5K_RF5112) ||
 302		(ah->ah_radio == AR5K_RF5413) ||
 303		(ah->ah_radio == AR5K_RF2316) ||
 304		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
 305			spending = 0x14;
 306		else
 307			spending = 0x18;
 308		ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
 309
 310		if ((ah->ah_radio == AR5K_RF5112) ||
 311		(ah->ah_radio == AR5K_RF5413) ||
 312		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
 313			ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT);
 314			ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL);
 315			ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK);
 316			ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY);
 317			AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
 318				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02);
 319		} else {
 320			ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT);
 321			ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL);
 322			ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK);
 323			ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY);
 324			AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
 325				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03);
 326		}
 327
 328		/* Enable sleep clock operation */
 329		AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG,
 330				AR5K_PCICFG_SLEEP_CLOCK_EN);
 331
 332	} else {
 333
 334		/* Disable sleep clock operation and
 335		 * restore default parameters */
 336		AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
 337				AR5K_PCICFG_SLEEP_CLOCK_EN);
 338
 339		AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
 340				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0);
 341
 342		/* Set DAC/ADC delays */
 343		ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
 344		ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
 345
 346		if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
 347			scal = AR5K_PHY_SCAL_32MHZ_2417;
 348		else if (ee->ee_is_hb63)
 349			scal = AR5K_PHY_SCAL_32MHZ_HB63;
 350		else
 351			scal = AR5K_PHY_SCAL_32MHZ;
 352		ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
 353
 354		ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
 355		ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
 356
 357		if ((ah->ah_radio == AR5K_RF5112) ||
 358		(ah->ah_radio == AR5K_RF5413) ||
 359		(ah->ah_radio == AR5K_RF2316) ||
 360		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
 361			spending = 0x14;
 362		else
 363			spending = 0x18;
 364		ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
 365
 366		/* Set up tsf increment on each cycle */
 367		AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1);
 368
 369		if ((ah->ah_radio == AR5K_RF5112) ||
 370			(ah->ah_radio == AR5K_RF5413) ||
 371			(ah->ah_radio == AR5K_RF2316) ||
 372			(ah->ah_radio == AR5K_RF2317))
 373			sclock = 40 - 1;
 374		else
 375			sclock = 32 - 1;
 376		AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, sclock);
 377	}
 378}
 379
 380
 381/*********************\
 382* Reset/Sleep control *
 383\*********************/
 384
 385/**
 386 * ath5k_hw_nic_reset() - Reset the various chipset units
 387 * @ah: The &struct ath5k_hw
 388 * @val: Mask to indicate what units to reset
 389 *
 390 * To reset the various chipset units we need to write
 391 * the mask to AR5K_RESET_CTL and poll the register until
 392 * all flags are cleared.
 393 *
 394 * Returns 0 if we are O.K. or -EAGAIN (from athk5_hw_register_timeout)
 395 */
 396static int
 397ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
 398{
 399	int ret;
 400	u32 mask = val ? val : ~0U;
 401
 402	/* Read-and-clear RX Descriptor Pointer*/
 403	ath5k_hw_reg_read(ah, AR5K_RXDP);
 404
 405	/*
 406	 * Reset the device and wait until success
 407	 */
 408	ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
 409
 410	/* Wait at least 128 PCI clocks */
 411	usleep_range(15, 20);
 412
 413	if (ah->ah_version == AR5K_AR5210) {
 414		val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
 415			| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
 416		mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
 417			| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
 418	} else {
 419		val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
 420		mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
 421	}
 422
 423	ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
 424
 425	/*
 426	 * Reset configuration register (for hw byte-swap). Note that this
 427	 * is only set for big endian. We do the necessary magic in
 428	 * AR5K_INIT_CFG.
 429	 */
 430	if ((val & AR5K_RESET_CTL_PCU) == 0)
 431		ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
 432
 433	return ret;
 434}
 435
 436/**
 437 * ath5k_hw_wisoc_reset() -  Reset AHB chipset
 438 * @ah: The &struct ath5k_hw
 439 * @flags: Mask to indicate what units to reset
 440 *
 441 * Same as ath5k_hw_nic_reset but for AHB based devices
 442 *
 443 * Returns 0 if we are O.K. or -EAGAIN (from athk5_hw_register_timeout)
 444 */
 445static int
 446ath5k_hw_wisoc_reset(struct ath5k_hw *ah, u32 flags)
 447{
 448	u32 mask = flags ? flags : ~0U;
 449	u32 __iomem *reg;
 450	u32 regval;
 451	u32 val = 0;
 452
 453	/* ah->ah_mac_srev is not available at this point yet */
 454	if (ah->devid >= AR5K_SREV_AR2315_R6) {
 455		reg = (u32 __iomem *) AR5K_AR2315_RESET;
 456		if (mask & AR5K_RESET_CTL_PCU)
 457			val |= AR5K_AR2315_RESET_WMAC;
 458		if (mask & AR5K_RESET_CTL_BASEBAND)
 459			val |= AR5K_AR2315_RESET_BB_WARM;
 460	} else {
 461		reg = (u32 __iomem *) AR5K_AR5312_RESET;
 462		if (to_platform_device(ah->dev)->id == 0) {
 463			if (mask & AR5K_RESET_CTL_PCU)
 464				val |= AR5K_AR5312_RESET_WMAC0;
 465			if (mask & AR5K_RESET_CTL_BASEBAND)
 466				val |= AR5K_AR5312_RESET_BB0_COLD |
 467				       AR5K_AR5312_RESET_BB0_WARM;
 468		} else {
 469			if (mask & AR5K_RESET_CTL_PCU)
 470				val |= AR5K_AR5312_RESET_WMAC1;
 471			if (mask & AR5K_RESET_CTL_BASEBAND)
 472				val |= AR5K_AR5312_RESET_BB1_COLD |
 473				       AR5K_AR5312_RESET_BB1_WARM;
 474		}
 475	}
 476
 477	/* Put BB/MAC into reset */
 478	regval = ioread32(reg);
 479	iowrite32(regval | val, reg);
 480	regval = ioread32(reg);
 481	udelay(100);	/* NB: should be atomic */
 482
 483	/* Bring BB/MAC out of reset */
 484	iowrite32(regval & ~val, reg);
 485	regval = ioread32(reg);
 486
 487	/*
 488	 * Reset configuration register (for hw byte-swap). Note that this
 489	 * is only set for big endian. We do the necessary magic in
 490	 * AR5K_INIT_CFG.
 491	 */
 492	if ((flags & AR5K_RESET_CTL_PCU) == 0)
 493		ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
 494
 495	return 0;
 496}
 497
 498/**
 499 * ath5k_hw_set_power_mode() - Set power mode
 500 * @ah: The &struct ath5k_hw
 501 * @mode: One of enum ath5k_power_mode
 502 * @set_chip: Set to true to write sleep control register
 503 * @sleep_duration: How much time the device is allowed to sleep
 504 * when sleep logic is enabled (in 128 microsecond increments).
 505 *
 506 * This function is used to configure sleep policy and allowed
 507 * sleep modes. For more information check out the sleep control
 508 * register on reg.h and STA_ID1.
 509 *
 510 * Returns 0 on success, -EIO if chip didn't wake up or -EINVAL if an invalid
 511 * mode is requested.
 512 */
 513static int
 514ath5k_hw_set_power_mode(struct ath5k_hw *ah, enum ath5k_power_mode mode,
 515			      bool set_chip, u16 sleep_duration)
 516{
 517	unsigned int i;
 518	u32 staid, data;
 519
 520	staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
 521
 522	switch (mode) {
 523	case AR5K_PM_AUTO:
 524		staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
 525		fallthrough;
 526	case AR5K_PM_NETWORK_SLEEP:
 527		if (set_chip)
 528			ath5k_hw_reg_write(ah,
 529				AR5K_SLEEP_CTL_SLE_ALLOW |
 530				sleep_duration,
 531				AR5K_SLEEP_CTL);
 532
 533		staid |= AR5K_STA_ID1_PWR_SV;
 534		break;
 535
 536	case AR5K_PM_FULL_SLEEP:
 537		if (set_chip)
 538			ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
 539				AR5K_SLEEP_CTL);
 540
 541		staid |= AR5K_STA_ID1_PWR_SV;
 542		break;
 543
 544	case AR5K_PM_AWAKE:
 545
 546		staid &= ~AR5K_STA_ID1_PWR_SV;
 547
 548		if (!set_chip)
 549			goto commit;
 550
 551		data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
 552
 553		/* If card is down we 'll get 0xffff... so we
 554		 * need to clean this up before we write the register
 555		 */
 556		if (data & 0xffc00000)
 557			data = 0;
 558		else
 559			/* Preserve sleep duration etc */
 560			data = data & ~AR5K_SLEEP_CTL_SLE;
 561
 562		ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
 563							AR5K_SLEEP_CTL);
 564		usleep_range(15, 20);
 565
 566		for (i = 200; i > 0; i--) {
 567			/* Check if the chip did wake up */
 568			if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
 569					AR5K_PCICFG_SPWR_DN) == 0)
 570				break;
 571
 572			/* Wait a bit and retry */
 573			usleep_range(50, 75);
 574			ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
 575							AR5K_SLEEP_CTL);
 576		}
 577
 578		/* Fail if the chip didn't wake up */
 579		if (i == 0)
 580			return -EIO;
 581
 582		break;
 583
 584	default:
 585		return -EINVAL;
 586	}
 587
 588commit:
 589	ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
 590
 591	return 0;
 592}
 593
 594/**
 595 * ath5k_hw_on_hold() - Put device on hold
 596 * @ah: The &struct ath5k_hw
 597 *
 598 * Put MAC and Baseband on warm reset and keep that state
 599 * (don't clean sleep control register). After this MAC
 600 * and Baseband are disabled and a full reset is needed
 601 * to come back. This way we save as much power as possible
 
 602 * without putting the card on full sleep.
 603 *
 604 * Returns 0 on success or -EIO on error
 605 */
 606int
 607ath5k_hw_on_hold(struct ath5k_hw *ah)
 608{
 609	struct pci_dev *pdev = ah->pdev;
 610	u32 bus_flags;
 611	int ret;
 612
 613	if (ath5k_get_bus_type(ah) == ATH_AHB)
 614		return 0;
 615
 616	/* Make sure device is awake */
 617	ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
 618	if (ret) {
 619		ATH5K_ERR(ah, "failed to wakeup the MAC Chip\n");
 620		return ret;
 621	}
 622
 623	/*
 624	 * Put chipset on warm reset...
 625	 *
 626	 * Note: putting PCI core on warm reset on PCI-E cards
 627	 * results card to hang and always return 0xffff... so
 628	 * we ignore that flag for PCI-E cards. On PCI cards
 629	 * this flag gets cleared after 64 PCI clocks.
 630	 */
 631	bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI;
 632
 633	if (ah->ah_version == AR5K_AR5210) {
 634		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
 635			AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
 636			AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
 637		usleep_range(2000, 2500);
 638	} else {
 639		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
 640			AR5K_RESET_CTL_BASEBAND | bus_flags);
 641	}
 642
 643	if (ret) {
 644		ATH5K_ERR(ah, "failed to put device on warm reset\n");
 645		return -EIO;
 646	}
 647
 648	/* ...wakeup again!*/
 649	ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
 650	if (ret) {
 651		ATH5K_ERR(ah, "failed to put device on hold\n");
 652		return ret;
 653	}
 654
 655	return ret;
 656}
 657
 658/**
 659 * ath5k_hw_nic_wakeup() - Force card out of sleep
 660 * @ah: The &struct ath5k_hw
 661 * @channel: The &struct ieee80211_channel
 662 *
 663 * Bring up MAC + PHY Chips and program PLL
 664 * NOTE: Channel is NULL for the initial wakeup.
 665 *
 666 * Returns 0 on success, -EIO on hw failure or -EINVAL for false channel infos
 667 */
 668int
 669ath5k_hw_nic_wakeup(struct ath5k_hw *ah, struct ieee80211_channel *channel)
 670{
 671	struct pci_dev *pdev = ah->pdev;
 672	u32 turbo, mode, clock, bus_flags;
 673	int ret;
 674
 675	turbo = 0;
 676	mode = 0;
 677	clock = 0;
 678
 679	if ((ath5k_get_bus_type(ah) != ATH_AHB) || channel) {
 680		/* Wakeup the device */
 681		ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
 682		if (ret) {
 683			ATH5K_ERR(ah, "failed to wakeup the MAC Chip\n");
 684			return ret;
 685		}
 686	}
 687
 688	/*
 689	 * Put chipset on warm reset...
 690	 *
 691	 * Note: putting PCI core on warm reset on PCI-E cards
 692	 * results card to hang and always return 0xffff... so
 693	 * we ignore that flag for PCI-E cards. On PCI cards
 694	 * this flag gets cleared after 64 PCI clocks.
 695	 */
 696	bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI;
 697
 698	if (ah->ah_version == AR5K_AR5210) {
 699		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
 700			AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
 701			AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
 702		usleep_range(2000, 2500);
 703	} else {
 704		if (ath5k_get_bus_type(ah) == ATH_AHB)
 705			ret = ath5k_hw_wisoc_reset(ah, AR5K_RESET_CTL_PCU |
 706				AR5K_RESET_CTL_BASEBAND);
 707		else
 708			ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
 709				AR5K_RESET_CTL_BASEBAND | bus_flags);
 710	}
 711
 712	if (ret) {
 713		ATH5K_ERR(ah, "failed to reset the MAC Chip\n");
 714		return -EIO;
 715	}
 716
 717	/* ...wakeup again!...*/
 718	ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
 719	if (ret) {
 720		ATH5K_ERR(ah, "failed to resume the MAC Chip\n");
 721		return ret;
 722	}
 723
 724	/* ...reset configuration register on Wisoc ...
 725	 * ...clear reset control register and pull device out of
 726	 * warm reset on others */
 727	if (ath5k_get_bus_type(ah) == ATH_AHB)
 728		ret = ath5k_hw_wisoc_reset(ah, 0);
 729	else
 730		ret = ath5k_hw_nic_reset(ah, 0);
 731
 732	if (ret) {
 733		ATH5K_ERR(ah, "failed to warm reset the MAC Chip\n");
 734		return -EIO;
 735	}
 736
 737	/* On initialization skip PLL programming since we don't have
 738	 * a channel / mode set yet */
 739	if (!channel)
 740		return 0;
 741
 742	if (ah->ah_version != AR5K_AR5210) {
 743		/*
 744		 * Get channel mode flags
 745		 */
 746
 747		if (ah->ah_radio >= AR5K_RF5112) {
 748			mode = AR5K_PHY_MODE_RAD_RF5112;
 749			clock = AR5K_PHY_PLL_RF5112;
 750		} else {
 751			mode = AR5K_PHY_MODE_RAD_RF5111;	/*Zero*/
 752			clock = AR5K_PHY_PLL_RF5111;		/*Zero*/
 753		}
 754
 755		if (channel->band == NL80211_BAND_2GHZ) {
 756			mode |= AR5K_PHY_MODE_FREQ_2GHZ;
 757			clock |= AR5K_PHY_PLL_44MHZ;
 758
 759			if (channel->hw_value == AR5K_MODE_11B) {
 760				mode |= AR5K_PHY_MODE_MOD_CCK;
 761			} else {
 762				/* XXX Dynamic OFDM/CCK is not supported by the
 763				 * AR5211 so we set MOD_OFDM for plain g (no
 764				 * CCK headers) operation. We need to test
 765				 * this, 5211 might support ofdm-only g after
 766				 * all, there are also initial register values
 767				 * in the code for g mode (see initvals.c).
 768				 */
 769				if (ah->ah_version == AR5K_AR5211)
 770					mode |= AR5K_PHY_MODE_MOD_OFDM;
 771				else
 772					mode |= AR5K_PHY_MODE_MOD_DYN;
 
 
 
 
 773			}
 774		} else if (channel->band == NL80211_BAND_5GHZ) {
 775			mode |= (AR5K_PHY_MODE_FREQ_5GHZ |
 776				 AR5K_PHY_MODE_MOD_OFDM);
 777
 778			/* Different PLL setting for 5413 */
 779			if (ah->ah_radio == AR5K_RF5413)
 780				clock = AR5K_PHY_PLL_40MHZ_5413;
 781			else
 782				clock |= AR5K_PHY_PLL_40MHZ;
 
 
 
 
 
 
 
 
 783		} else {
 784			ATH5K_ERR(ah, "invalid radio frequency mode\n");
 785			return -EINVAL;
 786		}
 787
 788		/*XXX: Can bwmode be used with dynamic mode ?
 789		 * (I don't think it supports 44MHz) */
 790		/* On 2425 initvals TURBO_SHORT is not present */
 791		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) {
 792			turbo = AR5K_PHY_TURBO_MODE;
 793			if (ah->ah_radio != AR5K_RF2425)
 794				turbo |= AR5K_PHY_TURBO_SHORT;
 795		} else if (ah->ah_bwmode != AR5K_BWMODE_DEFAULT) {
 796			if (ah->ah_radio == AR5K_RF5413) {
 797				mode |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ?
 798					AR5K_PHY_MODE_HALF_RATE :
 799					AR5K_PHY_MODE_QUARTER_RATE;
 800			} else if (ah->ah_version == AR5K_AR5212) {
 801				clock |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ?
 802					AR5K_PHY_PLL_HALF_RATE :
 803					AR5K_PHY_PLL_QUARTER_RATE;
 804			}
 805		}
 806
 807	} else { /* Reset the device */
 808
 809		/* ...enable Atheros turbo mode if requested */
 810		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
 811			ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
 812					AR5K_PHY_TURBO);
 813	}
 814
 815	if (ah->ah_version != AR5K_AR5210) {
 816
 817		/* ...update PLL if needed */
 818		if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) {
 819			ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
 820			usleep_range(300, 350);
 821		}
 822
 823		/* ...set the PHY operating mode */
 824		ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
 825		ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
 826	}
 827
 828	return 0;
 829}
 830
 831
 832/**************************************\
 833* Post-initvals register modifications *
 834\**************************************/
 835
 836/**
 837 * ath5k_hw_tweak_initval_settings() - Tweak initial settings
 838 * @ah: The &struct ath5k_hw
 839 * @channel: The &struct ieee80211_channel
 840 *
 841 * Some settings are not handled on initvals, e.g. bwmode
 842 * settings, some phy settings, workarounds etc that in general
 843 * don't fit anywhere else or are too small to introduce a separate
 844 * function for each one. So we have this function to handle
 845 * them all during reset and complete card's initialization.
 846 */
 847static void
 848ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
 849				struct ieee80211_channel *channel)
 850{
 851	if (ah->ah_version == AR5K_AR5212 &&
 852	    ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
 853
 854		/* Setup ADC control */
 855		ath5k_hw_reg_write(ah,
 856				(AR5K_REG_SM(2,
 857				AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) |
 858				AR5K_REG_SM(2,
 859				AR5K_PHY_ADC_CTL_INBUFGAIN_ON) |
 860				AR5K_PHY_ADC_CTL_PWD_DAC_OFF |
 861				AR5K_PHY_ADC_CTL_PWD_ADC_OFF),
 862				AR5K_PHY_ADC_CTL);
 863
 864
 865
 866		/* Disable barker RSSI threshold */
 867		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
 868				AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR);
 869
 870		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
 871			AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2);
 872
 873		/* Set the mute mask */
 874		ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
 875	}
 876
 877	/* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
 878	if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B)
 879		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH);
 880
 881	/* Enable DCU double buffering */
 882	if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B)
 883		AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
 884				AR5K_TXCFG_DCU_DBL_BUF_DIS);
 885
 886	/* Set fast ADC */
 887	if ((ah->ah_radio == AR5K_RF5413) ||
 888		(ah->ah_radio == AR5K_RF2317) ||
 889		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
 890		u32 fast_adc = true;
 891
 892		if (channel->center_freq == 2462 ||
 893		channel->center_freq == 2467)
 894			fast_adc = 0;
 895
 896		/* Only update if needed */
 897		if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc)
 898				ath5k_hw_reg_write(ah, fast_adc,
 899						AR5K_PHY_FAST_ADC);
 900	}
 901
 902	/* Fix for first revision of the RF5112 RF chipset */
 903	if (ah->ah_radio == AR5K_RF5112 &&
 904			ah->ah_radio_5ghz_revision <
 905			AR5K_SREV_RAD_5112A) {
 906		u32 data;
 907		ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
 908				AR5K_PHY_CCKTXCTL);
 909		if (channel->band == NL80211_BAND_5GHZ)
 910			data = 0xffb81020;
 911		else
 912			data = 0xffb80d20;
 913		ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
 914	}
 915
 916	if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
 917		/* Clear QCU/DCU clock gating register */
 918		ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT);
 919		/* Set DAC/ADC delays */
 920		ath5k_hw_reg_write(ah, AR5K_PHY_SCAL_32MHZ_5311,
 921						AR5K_PHY_SCAL);
 922		/* Enable PCU FIFO corruption ECO */
 923		AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
 924					AR5K_DIAG_SW_ECO_ENABLE);
 925	}
 926
 927	if (ah->ah_bwmode) {
 928		/* Increase PHY switch and AGC settling time
 929		 * on turbo mode (ath5k_hw_commit_eeprom_settings
 930		 * will override settling time if available) */
 931		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) {
 932
 933			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
 934						AR5K_PHY_SETTLING_AGC,
 935						AR5K_AGC_SETTLING_TURBO);
 936
 937			/* XXX: Initvals indicate we only increase
 938			 * switch time on AR5212, 5211 and 5210
 939			 * only change agc time (bug?) */
 940			if (ah->ah_version == AR5K_AR5212)
 941				AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
 942						AR5K_PHY_SETTLING_SWITCH,
 943						AR5K_SWITCH_SETTLING_TURBO);
 944
 945			if (ah->ah_version == AR5K_AR5210) {
 946				/* Set Frame Control Register */
 947				ath5k_hw_reg_write(ah,
 948					(AR5K_PHY_FRAME_CTL_INI |
 949					AR5K_PHY_TURBO_MODE |
 950					AR5K_PHY_TURBO_SHORT | 0x2020),
 951					AR5K_PHY_FRAME_CTL_5210);
 952			}
 953		/* On 5413 PHY force window length for half/quarter rate*/
 954		} else if ((ah->ah_mac_srev >= AR5K_SREV_AR5424) &&
 955		(ah->ah_mac_srev <= AR5K_SREV_AR5414)) {
 956			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL_5211,
 957						AR5K_PHY_FRAME_CTL_WIN_LEN,
 958						3);
 959		}
 960	} else if (ah->ah_version == AR5K_AR5210) {
 961		/* Set Frame Control Register for normal operation */
 962		ath5k_hw_reg_write(ah, (AR5K_PHY_FRAME_CTL_INI | 0x1020),
 963						AR5K_PHY_FRAME_CTL_5210);
 964	}
 965}
 966
 967/**
 968 * ath5k_hw_commit_eeprom_settings() - Commit settings from EEPROM
 969 * @ah: The &struct ath5k_hw
 970 * @channel: The &struct ieee80211_channel
 971 *
 972 * Use settings stored on EEPROM to properly initialize the card
 973 * based on various infos and per-mode calibration data.
 974 */
 975static void
 976ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
 977		struct ieee80211_channel *channel)
 978{
 979	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 980	s16 cck_ofdm_pwr_delta;
 981	u8 ee_mode;
 982
 983	/* TODO: Add support for AR5210 EEPROM */
 984	if (ah->ah_version == AR5K_AR5210)
 985		return;
 986
 987	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
 988
 989	/* Adjust power delta for channel 14 */
 990	if (channel->center_freq == 2484)
 991		cck_ofdm_pwr_delta =
 992			((ee->ee_cck_ofdm_power_delta -
 993			ee->ee_scaled_cck_delta) * 2) / 10;
 994	else
 995		cck_ofdm_pwr_delta =
 996			(ee->ee_cck_ofdm_power_delta * 2) / 10;
 997
 998	/* Set CCK to OFDM power delta on tx power
 999	 * adjustment register */
1000	if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1001		if (channel->hw_value == AR5K_MODE_11G)
1002			ath5k_hw_reg_write(ah,
1003			AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1),
1004				AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
1005			AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
1006				AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
1007				AR5K_PHY_TX_PWR_ADJ);
1008		else
1009			ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
1010	} else {
1011		/* For older revs we scale power on sw during tx power
1012		 * setup */
1013		ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta;
1014		ah->ah_txpower.txp_cck_ofdm_gainf_delta =
1015						ee->ee_cck_ofdm_gain_delta;
1016	}
1017
1018	/* XXX: necessary here? is called from ath5k_hw_set_antenna_mode()
1019	 * too */
1020	ath5k_hw_set_antenna_switch(ah, ee_mode);
1021
1022	/* Noise floor threshold */
1023	ath5k_hw_reg_write(ah,
1024		AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
1025		AR5K_PHY_NFTHRES);
1026
1027	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
1028	(ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) {
1029		/* Switch settling time (Turbo) */
1030		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
1031				AR5K_PHY_SETTLING_SWITCH,
1032				ee->ee_switch_settling_turbo[ee_mode]);
1033
1034		/* Tx/Rx attenuation (Turbo) */
1035		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
1036				AR5K_PHY_GAIN_TXRX_ATTEN,
1037				ee->ee_atn_tx_rx_turbo[ee_mode]);
1038
1039		/* ADC/PGA desired size (Turbo) */
1040		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1041				AR5K_PHY_DESIRED_SIZE_ADC,
1042				ee->ee_adc_desired_size_turbo[ee_mode]);
1043
1044		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1045				AR5K_PHY_DESIRED_SIZE_PGA,
1046				ee->ee_pga_desired_size_turbo[ee_mode]);
1047
1048		/* Tx/Rx margin (Turbo) */
1049		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
1050				AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
1051				ee->ee_margin_tx_rx_turbo[ee_mode]);
1052
1053	} else {
1054		/* Switch settling time */
1055		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
1056				AR5K_PHY_SETTLING_SWITCH,
1057				ee->ee_switch_settling[ee_mode]);
1058
1059		/* Tx/Rx attenuation */
1060		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
1061				AR5K_PHY_GAIN_TXRX_ATTEN,
1062				ee->ee_atn_tx_rx[ee_mode]);
1063
1064		/* ADC/PGA desired size */
1065		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1066				AR5K_PHY_DESIRED_SIZE_ADC,
1067				ee->ee_adc_desired_size[ee_mode]);
1068
1069		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1070				AR5K_PHY_DESIRED_SIZE_PGA,
1071				ee->ee_pga_desired_size[ee_mode]);
1072
1073		/* Tx/Rx margin */
1074		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
1075			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
1076				AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
1077				ee->ee_margin_tx_rx[ee_mode]);
1078	}
1079
1080	/* XPA delays */
1081	ath5k_hw_reg_write(ah,
1082		(ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
1083		(ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
1084		(ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
1085		(ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
1086
1087	/* XLNA delay */
1088	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3,
1089			AR5K_PHY_RF_CTL3_TXE2XLNA_ON,
1090			ee->ee_tx_end2xlna_enable[ee_mode]);
1091
1092	/* Thresh64 (ANI) */
1093	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF,
1094			AR5K_PHY_NF_THRESH62,
1095			ee->ee_thr_62[ee_mode]);
1096
1097	/* False detect backoff for channels
1098	 * that have spur noise. Write the new
1099	 * cyclic power RSSI threshold. */
1100	if (ath5k_hw_chan_has_spur_noise(ah, channel))
1101		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
1102				AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
1103				AR5K_INIT_CYCRSSI_THR1 +
1104				ee->ee_false_detect[ee_mode]);
1105	else
1106		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
1107				AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
1108				AR5K_INIT_CYCRSSI_THR1);
1109
1110	/* I/Q correction (set enable bit last to match HAL sources) */
1111	/* TODO: Per channel i/q infos ? */
1112	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
1113		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF,
1114			    ee->ee_i_cal[ee_mode]);
1115		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF,
1116			    ee->ee_q_cal[ee_mode]);
1117		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1118	}
1119
1120	/* Heavy clipping -disable for now */
1121	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1)
1122		ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
1123}
1124
1125
1126/*********************\
1127* Main reset function *
1128\*********************/
1129
1130/**
1131 * ath5k_hw_reset() - The main reset function
1132 * @ah: The &struct ath5k_hw
1133 * @op_mode: One of enum nl80211_iftype
1134 * @channel: The &struct ieee80211_channel
1135 * @fast: Enable fast channel switching
1136 * @skip_pcu: Skip pcu initialization
1137 *
1138 * This is the function we call each time we want to (re)initialize the
1139 * card and pass new settings to hw. We also call it when hw runs into
1140 * trouble to make it come back to a working state.
1141 *
1142 * Returns 0 on success, -EINVAL on false op_mode or channel infos, or -EIO
1143 * on failure.
1144 */
1145int
1146ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
1147		struct ieee80211_channel *channel, bool fast, bool skip_pcu)
1148{
1149	u32 s_seq[10], s_led[3], tsf_up, tsf_lo;
1150	u8 mode;
1151	int i, ret;
1152
1153	tsf_up = 0;
1154	tsf_lo = 0;
1155	mode = 0;
1156
1157	/*
1158	 * Sanity check for fast flag
1159	 * Fast channel change only available
1160	 * on AR2413/AR5413.
1161	 */
1162	if (fast && (ah->ah_radio != AR5K_RF2413) &&
1163	(ah->ah_radio != AR5K_RF5413))
1164		fast = false;
1165
1166	/* Disable sleep clock operation
1167	 * to avoid register access delay on certain
1168	 * PHY registers */
1169	if (ah->ah_version == AR5K_AR5212)
1170		ath5k_hw_set_sleep_clock(ah, false);
1171
1172	mode = channel->hw_value;
1173	switch (mode) {
1174	case AR5K_MODE_11A:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1175		break;
1176	case AR5K_MODE_11G:
 
1177		if (ah->ah_version <= AR5K_AR5211) {
1178			ATH5K_ERR(ah,
1179				"G mode not available on 5210/5211");
1180			return -EINVAL;
1181		}
 
 
1182		break;
1183	case AR5K_MODE_11B:
 
1184		if (ah->ah_version < AR5K_AR5211) {
1185			ATH5K_ERR(ah,
1186				"B mode not available on 5210");
1187			return -EINVAL;
1188		}
 
 
 
 
 
 
 
 
 
 
1189		break;
1190	default:
1191		ATH5K_ERR(ah,
1192			"invalid channel: %d\n", channel->center_freq);
1193		return -EINVAL;
1194	}
1195
1196	/*
1197	 * If driver requested fast channel change and DMA has stopped
1198	 * go on. If it fails continue with a normal reset.
1199	 */
1200	if (fast) {
1201		ret = ath5k_hw_phy_init(ah, channel, mode, true);
1202		if (ret) {
1203			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1204				"fast chan change failed, falling back to normal reset\n");
1205			/* Non fatal, can happen eg.
1206			 * on mode change */
1207			ret = 0;
1208		} else {
1209			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1210				"fast chan change successful\n");
1211			return 0;
1212		}
1213	}
1214
1215	/*
1216	 * Save some registers before a reset
1217	 */
1218	if (ah->ah_version != AR5K_AR5210) {
1219		/*
1220		 * Save frame sequence count
1221		 * For revs. after Oahu, only save
1222		 * seq num for DCU 0 (Global seq num)
1223		 */
1224		if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1225
1226			for (i = 0; i < 10; i++)
1227				s_seq[i] = ath5k_hw_reg_read(ah,
1228					AR5K_QUEUE_DCU_SEQNUM(i));
1229
1230		} else {
1231			s_seq[0] = ath5k_hw_reg_read(ah,
1232					AR5K_QUEUE_DCU_SEQNUM(0));
1233		}
1234
1235		/* TSF accelerates on AR5211 during reset
1236		 * As a workaround save it here and restore
1237		 * it later so that it's back in time after
1238		 * reset. This way it'll get re-synced on the
1239		 * next beacon without breaking ad-hoc.
1240		 *
1241		 * On AR5212 TSF is almost preserved across a
1242		 * reset so it stays back in time anyway and
1243		 * we don't have to save/restore it.
1244		 *
1245		 * XXX: Since this breaks power saving we have
1246		 * to disable power saving until we receive the
1247		 * next beacon, so we can resync beacon timers */
1248		if (ah->ah_version == AR5K_AR5211) {
1249			tsf_up = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
1250			tsf_lo = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
1251		}
1252	}
1253
1254
1255	/*GPIOs*/
1256	s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) &
1257					AR5K_PCICFG_LEDSTATE;
1258	s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
1259	s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
1260
1261
1262	/*
1263	 * Since we are going to write rf buffer
1264	 * check if we have any pending gain_F
1265	 * optimization settings
1266	 */
1267	if (ah->ah_version == AR5K_AR5212 &&
1268	(ah->ah_radio <= AR5K_RF5112)) {
1269		if (!fast && ah->ah_rf_banks != NULL)
1270				ath5k_hw_gainf_calibrate(ah);
1271	}
1272
1273	/* Wakeup the device */
1274	ret = ath5k_hw_nic_wakeup(ah, channel);
1275	if (ret)
1276		return ret;
1277
1278	/* PHY access enable */
1279	if (ah->ah_mac_srev >= AR5K_SREV_AR5211)
1280		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1281	else
1282		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40,
1283							AR5K_PHY(0));
1284
1285	/* Write initial settings */
1286	ret = ath5k_hw_write_initvals(ah, mode, skip_pcu);
1287	if (ret)
1288		return ret;
1289
1290	/* Initialize core clock settings */
1291	ath5k_hw_init_core_clock(ah);
1292
1293	/*
1294	 * Tweak initval settings for revised
1295	 * chipsets and add some more config
1296	 * bits
1297	 */
1298	ath5k_hw_tweak_initval_settings(ah, channel);
1299
1300	/* Commit values from EEPROM */
1301	ath5k_hw_commit_eeprom_settings(ah, channel);
1302
1303
1304	/*
1305	 * Restore saved values
1306	 */
1307
1308	/* Seqnum, TSF */
1309	if (ah->ah_version != AR5K_AR5210) {
1310		if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1311			for (i = 0; i < 10; i++)
1312				ath5k_hw_reg_write(ah, s_seq[i],
1313					AR5K_QUEUE_DCU_SEQNUM(i));
1314		} else {
1315			ath5k_hw_reg_write(ah, s_seq[0],
1316				AR5K_QUEUE_DCU_SEQNUM(0));
1317		}
1318
1319		if (ah->ah_version == AR5K_AR5211) {
1320			ath5k_hw_reg_write(ah, tsf_up, AR5K_TSF_U32);
1321			ath5k_hw_reg_write(ah, tsf_lo, AR5K_TSF_L32);
1322		}
1323	}
1324
1325	/* Ledstate */
1326	AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
1327
1328	/* Gpio settings */
1329	ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
1330	ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
1331
1332	/*
1333	 * Initialize PCU
1334	 */
1335	ath5k_hw_pcu_init(ah, op_mode);
1336
1337	/*
1338	 * Initialize PHY
1339	 */
1340	ret = ath5k_hw_phy_init(ah, channel, mode, false);
1341	if (ret) {
1342		ATH5K_ERR(ah,
1343			"failed to initialize PHY (%i) !\n", ret);
1344		return ret;
1345	}
1346
1347	/*
1348	 * Configure QCUs/DCUs
1349	 */
1350	ret = ath5k_hw_init_queues(ah);
1351	if (ret)
1352		return ret;
1353
1354
1355	/*
1356	 * Initialize DMA/Interrupts
1357	 */
1358	ath5k_hw_dma_init(ah);
1359
1360
1361	/*
1362	 * Enable 32KHz clock function for AR5212+ chips
1363	 * Set clocks to 32KHz operation and use an
1364	 * external 32KHz crystal when sleeping if one
1365	 * exists.
1366	 * Disabled by default because it is also disabled in
1367	 * other drivers and it is known to cause stability
1368	 * issues on some devices
1369	 */
1370	if (ah->ah_use_32khz_clock && ah->ah_version == AR5K_AR5212 &&
1371	    op_mode != NL80211_IFTYPE_AP)
1372		ath5k_hw_set_sleep_clock(ah, true);
1373
1374	/*
1375	 * Disable beacons and reset the TSF
1376	 */
1377	AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE);
1378	ath5k_hw_reset_tsf(ah);
1379	return 0;
1380}
v3.1
   1/*
   2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
   3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
   4 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
   5 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
   6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
   7 *
   8 * Permission to use, copy, modify, and distribute this software for any
   9 * purpose with or without fee is hereby granted, provided that the above
  10 * copyright notice and this permission notice appear in all copies.
  11 *
  12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  19 *
  20 */
  21
  22/*****************************\
  23  Reset functions and helpers
  24\*****************************/
 
 
  25
  26#include <asm/unaligned.h>
  27
  28#include <linux/pci.h>		/* To determine if a card is pci-e */
  29#include <linux/log2.h>
  30#include <linux/platform_device.h>
  31#include "ath5k.h"
  32#include "reg.h"
  33#include "base.h"
  34#include "debug.h"
  35
  36
 
 
 
 
 
 
 
 
 
  37/******************\
  38* Helper functions *
  39\******************/
  40
  41/*
  42 * Check if a register write has been completed
 
 
 
 
 
 
 
 
 
 
 
 
  43 */
  44int ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val,
 
  45			      bool is_set)
  46{
  47	int i;
  48	u32 data;
  49
  50	for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) {
  51		data = ath5k_hw_reg_read(ah, reg);
  52		if (is_set && (data & flag))
  53			break;
  54		else if ((data & flag) == val)
  55			break;
  56		udelay(15);
  57	}
  58
  59	return (i <= 0) ? -EAGAIN : 0;
  60}
  61
  62
  63/*************************\
  64* Clock related functions *
  65\*************************/
  66
  67/**
  68 * ath5k_hw_htoclock - Translate usec to hw clock units
  69 *
  70 * @ah: The &struct ath5k_hw
  71 * @usec: value in microseconds
 
 
 
 
 
  72 */
  73unsigned int ath5k_hw_htoclock(struct ath5k_hw *ah, unsigned int usec)
 
  74{
  75	struct ath_common *common = ath5k_hw_common(ah);
  76	return usec * common->clockrate;
  77}
  78
  79/**
  80 * ath5k_hw_clocktoh - Translate hw clock units to usec
 
  81 * @clock: value in hw clock units
 
 
 
 
 
  82 */
  83unsigned int ath5k_hw_clocktoh(struct ath5k_hw *ah, unsigned int clock)
 
  84{
  85	struct ath_common *common = ath5k_hw_common(ah);
  86	return clock / common->clockrate;
  87}
  88
  89/**
  90 * ath5k_hw_init_core_clock - Initialize core clock
  91 *
  92 * @ah The &struct ath5k_hw
  93 *
  94 * Initialize core clock parameters (usec, usec32, latencies etc).
 
  95 */
  96static void ath5k_hw_init_core_clock(struct ath5k_hw *ah)
 
  97{
  98	struct ieee80211_channel *channel = ah->ah_current_channel;
  99	struct ath_common *common = ath5k_hw_common(ah);
 100	u32 usec_reg, txlat, rxlat, usec, clock, sclock, txf2txs;
 101
 102	/*
 103	 * Set core clock frequency
 104	 */
 105	if (channel->hw_value & CHANNEL_5GHZ)
 106		clock = 40; /* 802.11a */
 107	else if (channel->hw_value & CHANNEL_CCK)
 108		clock = 22; /* 802.11b */
 109	else
 110		clock = 44; /* 802.11g */
 
 
 
 
 
 
 111
 112	/* Use clock multiplier for non-default
 113	 * bwmode */
 114	switch (ah->ah_bwmode) {
 115	case AR5K_BWMODE_40MHZ:
 116		clock *= 2;
 117		break;
 118	case AR5K_BWMODE_10MHZ:
 119		clock /= 2;
 120		break;
 121	case AR5K_BWMODE_5MHZ:
 122		clock /= 4;
 123		break;
 124	default:
 125		break;
 126	}
 127
 128	common->clockrate = clock;
 129
 130	/*
 131	 * Set USEC parameters
 132	 */
 133	/* Set USEC counter on PCU*/
 134	usec = clock - 1;
 135	usec = AR5K_REG_SM(usec, AR5K_USEC_1);
 136
 137	/* Set usec duration on DCU */
 138	if (ah->ah_version != AR5K_AR5210)
 139		AR5K_REG_WRITE_BITS(ah, AR5K_DCU_GBL_IFS_MISC,
 140					AR5K_DCU_GBL_IFS_MISC_USEC_DUR,
 141					clock);
 142
 143	/* Set 32MHz USEC counter */
 144	if ((ah->ah_radio == AR5K_RF5112) ||
 145	    (ah->ah_radio == AR5K_RF2413) ||
 146	    (ah->ah_radio == AR5K_RF5413) ||
 147	    (ah->ah_radio == AR5K_RF2316) ||
 148	    (ah->ah_radio == AR5K_RF2317))
 149		/* Remain on 40MHz clock ? */
 150		sclock = 40 - 1;
 151	else
 152		sclock = 32 - 1;
 153	sclock = AR5K_REG_SM(sclock, AR5K_USEC_32);
 154
 155	/*
 156	 * Set tx/rx latencies
 157	 */
 158	usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211);
 159	txlat = AR5K_REG_MS(usec_reg, AR5K_USEC_TX_LATENCY_5211);
 160	rxlat = AR5K_REG_MS(usec_reg, AR5K_USEC_RX_LATENCY_5211);
 161
 162	/*
 163	 * Set default Tx frame to Tx data start delay
 164	 */
 165	txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT;
 166
 167	/*
 168	 * 5210 initvals don't include usec settings
 169	 * so we need to use magic values here for
 170	 * tx/rx latencies
 171	 */
 172	if (ah->ah_version == AR5K_AR5210) {
 173		/* same for turbo */
 174		txlat = AR5K_INIT_TX_LATENCY_5210;
 175		rxlat = AR5K_INIT_RX_LATENCY_5210;
 176	}
 177
 178	if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
 179		/* 5311 has different tx/rx latency masks
 180		 * from 5211, since we deal 5311 the same
 181		 * as 5211 when setting initvals, shift
 182		 * values here to their proper locations
 183		 *
 184		 * Note: Initvals indicate tx/rx/ latencies
 185		 * are the same for turbo mode */
 186		txlat = AR5K_REG_SM(txlat, AR5K_USEC_TX_LATENCY_5210);
 187		rxlat = AR5K_REG_SM(rxlat, AR5K_USEC_RX_LATENCY_5210);
 188	} else
 189	switch (ah->ah_bwmode) {
 190	case AR5K_BWMODE_10MHZ:
 191		txlat = AR5K_REG_SM(txlat * 2,
 192				AR5K_USEC_TX_LATENCY_5211);
 193		rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX,
 194				AR5K_USEC_RX_LATENCY_5211);
 195		txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_10MHZ;
 196		break;
 197	case AR5K_BWMODE_5MHZ:
 198		txlat = AR5K_REG_SM(txlat * 4,
 199				AR5K_USEC_TX_LATENCY_5211);
 200		rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX,
 201				AR5K_USEC_RX_LATENCY_5211);
 202		txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_5MHZ;
 203		break;
 204	case AR5K_BWMODE_40MHZ:
 205		txlat = AR5K_INIT_TX_LAT_MIN;
 206		rxlat = AR5K_REG_SM(rxlat / 2,
 207				AR5K_USEC_RX_LATENCY_5211);
 208		txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT;
 209		break;
 210	default:
 211		break;
 212	}
 213
 214	usec_reg = (usec | sclock | txlat | rxlat);
 215	ath5k_hw_reg_write(ah, usec_reg, AR5K_USEC);
 216
 217	/* On 5112 set tx frame to tx data start delay */
 218	if (ah->ah_radio == AR5K_RF5112) {
 219		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL2,
 220					AR5K_PHY_RF_CTL2_TXF2TXD_START,
 221					txf2txs);
 222	}
 223}
 224
 225/*
 
 
 
 
 226 * If there is an external 32KHz crystal available, use it
 227 * as ref. clock instead of 32/40MHz clock and baseband clocks
 228 * to save power during sleep or restore normal 32/40MHz
 229 * operation.
 230 *
 231 * XXX: When operating on 32KHz certain PHY registers (27 - 31,
 232 *	123 - 127) require delay on access.
 233 */
 234static void ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable)
 
 235{
 236	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 237	u32 scal, spending, sclock;
 238
 239	/* Only set 32KHz settings if we have an external
 240	 * 32KHz crystal present */
 241	if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) ||
 242	AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) &&
 243	enable) {
 244
 245		/* 1 usec/cycle */
 246		AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1);
 247		/* Set up tsf increment on each cycle */
 248		AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61);
 249
 250		/* Set baseband sleep control registers
 251		 * and sleep control rate */
 252		ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
 253
 254		if ((ah->ah_radio == AR5K_RF5112) ||
 255		(ah->ah_radio == AR5K_RF5413) ||
 256		(ah->ah_radio == AR5K_RF2316) ||
 257		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
 258			spending = 0x14;
 259		else
 260			spending = 0x18;
 261		ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
 262
 263		if ((ah->ah_radio == AR5K_RF5112) ||
 264		(ah->ah_radio == AR5K_RF5413) ||
 265		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
 266			ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT);
 267			ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL);
 268			ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK);
 269			ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY);
 270			AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
 271				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02);
 272		} else {
 273			ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT);
 274			ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL);
 275			ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK);
 276			ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY);
 277			AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
 278				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03);
 279		}
 280
 281		/* Enable sleep clock operation */
 282		AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG,
 283				AR5K_PCICFG_SLEEP_CLOCK_EN);
 284
 285	} else {
 286
 287		/* Disable sleep clock operation and
 288		 * restore default parameters */
 289		AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
 290				AR5K_PCICFG_SLEEP_CLOCK_EN);
 291
 292		AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
 293				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0);
 294
 295		/* Set DAC/ADC delays */
 296		ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
 297		ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
 298
 299		if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
 300			scal = AR5K_PHY_SCAL_32MHZ_2417;
 301		else if (ee->ee_is_hb63)
 302			scal = AR5K_PHY_SCAL_32MHZ_HB63;
 303		else
 304			scal = AR5K_PHY_SCAL_32MHZ;
 305		ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
 306
 307		ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
 308		ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
 309
 310		if ((ah->ah_radio == AR5K_RF5112) ||
 311		(ah->ah_radio == AR5K_RF5413) ||
 312		(ah->ah_radio == AR5K_RF2316) ||
 313		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
 314			spending = 0x14;
 315		else
 316			spending = 0x18;
 317		ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
 318
 319		/* Set up tsf increment on each cycle */
 320		AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1);
 321
 322		if ((ah->ah_radio == AR5K_RF5112) ||
 323			(ah->ah_radio == AR5K_RF5413) ||
 324			(ah->ah_radio == AR5K_RF2316) ||
 325			(ah->ah_radio == AR5K_RF2317))
 326			sclock = 40 - 1;
 327		else
 328			sclock = 32 - 1;
 329		AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, sclock);
 330	}
 331}
 332
 333
 334/*********************\
 335* Reset/Sleep control *
 336\*********************/
 337
 338/*
 339 * Reset chipset
 
 
 
 
 
 
 
 
 340 */
 341static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
 
 342{
 343	int ret;
 344	u32 mask = val ? val : ~0U;
 345
 346	/* Read-and-clear RX Descriptor Pointer*/
 347	ath5k_hw_reg_read(ah, AR5K_RXDP);
 348
 349	/*
 350	 * Reset the device and wait until success
 351	 */
 352	ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
 353
 354	/* Wait at least 128 PCI clocks */
 355	udelay(15);
 356
 357	if (ah->ah_version == AR5K_AR5210) {
 358		val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
 359			| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
 360		mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
 361			| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
 362	} else {
 363		val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
 364		mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
 365	}
 366
 367	ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
 368
 369	/*
 370	 * Reset configuration register (for hw byte-swap). Note that this
 371	 * is only set for big endian. We do the necessary magic in
 372	 * AR5K_INIT_CFG.
 373	 */
 374	if ((val & AR5K_RESET_CTL_PCU) == 0)
 375		ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
 376
 377	return ret;
 378}
 379
 380/*
 381 * Reset AHB chipset
 382 * AR5K_RESET_CTL_PCU flag resets WMAC
 383 * AR5K_RESET_CTL_BASEBAND flag resets WBB
 
 
 
 
 384 */
 385static int ath5k_hw_wisoc_reset(struct ath5k_hw *ah, u32 flags)
 
 386{
 387	u32 mask = flags ? flags : ~0U;
 388	u32 __iomem *reg;
 389	u32 regval;
 390	u32 val = 0;
 391
 392	/* ah->ah_mac_srev is not available at this point yet */
 393	if (ah->devid >= AR5K_SREV_AR2315_R6) {
 394		reg = (u32 __iomem *) AR5K_AR2315_RESET;
 395		if (mask & AR5K_RESET_CTL_PCU)
 396			val |= AR5K_AR2315_RESET_WMAC;
 397		if (mask & AR5K_RESET_CTL_BASEBAND)
 398			val |= AR5K_AR2315_RESET_BB_WARM;
 399	} else {
 400		reg = (u32 __iomem *) AR5K_AR5312_RESET;
 401		if (to_platform_device(ah->dev)->id == 0) {
 402			if (mask & AR5K_RESET_CTL_PCU)
 403				val |= AR5K_AR5312_RESET_WMAC0;
 404			if (mask & AR5K_RESET_CTL_BASEBAND)
 405				val |= AR5K_AR5312_RESET_BB0_COLD |
 406				       AR5K_AR5312_RESET_BB0_WARM;
 407		} else {
 408			if (mask & AR5K_RESET_CTL_PCU)
 409				val |= AR5K_AR5312_RESET_WMAC1;
 410			if (mask & AR5K_RESET_CTL_BASEBAND)
 411				val |= AR5K_AR5312_RESET_BB1_COLD |
 412				       AR5K_AR5312_RESET_BB1_WARM;
 413		}
 414	}
 415
 416	/* Put BB/MAC into reset */
 417	regval = __raw_readl(reg);
 418	__raw_writel(regval | val, reg);
 419	regval = __raw_readl(reg);
 420	udelay(100);
 421
 422	/* Bring BB/MAC out of reset */
 423	__raw_writel(regval & ~val, reg);
 424	regval = __raw_readl(reg);
 425
 426	/*
 427	 * Reset configuration register (for hw byte-swap). Note that this
 428	 * is only set for big endian. We do the necessary magic in
 429	 * AR5K_INIT_CFG.
 430	 */
 431	if ((flags & AR5K_RESET_CTL_PCU) == 0)
 432		ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
 433
 434	return 0;
 435}
 436
 437
 438/*
 439 * Sleep control
 
 
 
 
 
 
 
 
 
 
 
 440 */
 441static int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode,
 
 442			      bool set_chip, u16 sleep_duration)
 443{
 444	unsigned int i;
 445	u32 staid, data;
 446
 447	staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
 448
 449	switch (mode) {
 450	case AR5K_PM_AUTO:
 451		staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
 452		/* fallthrough */
 453	case AR5K_PM_NETWORK_SLEEP:
 454		if (set_chip)
 455			ath5k_hw_reg_write(ah,
 456				AR5K_SLEEP_CTL_SLE_ALLOW |
 457				sleep_duration,
 458				AR5K_SLEEP_CTL);
 459
 460		staid |= AR5K_STA_ID1_PWR_SV;
 461		break;
 462
 463	case AR5K_PM_FULL_SLEEP:
 464		if (set_chip)
 465			ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
 466				AR5K_SLEEP_CTL);
 467
 468		staid |= AR5K_STA_ID1_PWR_SV;
 469		break;
 470
 471	case AR5K_PM_AWAKE:
 472
 473		staid &= ~AR5K_STA_ID1_PWR_SV;
 474
 475		if (!set_chip)
 476			goto commit;
 477
 478		data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
 479
 480		/* If card is down we 'll get 0xffff... so we
 481		 * need to clean this up before we write the register
 482		 */
 483		if (data & 0xffc00000)
 484			data = 0;
 485		else
 486			/* Preserve sleep duration etc */
 487			data = data & ~AR5K_SLEEP_CTL_SLE;
 488
 489		ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
 490							AR5K_SLEEP_CTL);
 491		udelay(15);
 492
 493		for (i = 200; i > 0; i--) {
 494			/* Check if the chip did wake up */
 495			if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
 496					AR5K_PCICFG_SPWR_DN) == 0)
 497				break;
 498
 499			/* Wait a bit and retry */
 500			udelay(50);
 501			ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
 502							AR5K_SLEEP_CTL);
 503		}
 504
 505		/* Fail if the chip didn't wake up */
 506		if (i == 0)
 507			return -EIO;
 508
 509		break;
 510
 511	default:
 512		return -EINVAL;
 513	}
 514
 515commit:
 516	ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
 517
 518	return 0;
 519}
 520
 521/*
 522 * Put device on hold
 
 523 *
 524 * Put MAC and Baseband on warm reset and
 525 * keep that state (don't clean sleep control
 526 * register). After this MAC and Baseband are
 527 * disabled and a full reset is needed to come
 528 * back. This way we save as much power as possible
 529 * without putting the card on full sleep.
 
 
 530 */
 531int ath5k_hw_on_hold(struct ath5k_hw *ah)
 
 532{
 533	struct pci_dev *pdev = ah->pdev;
 534	u32 bus_flags;
 535	int ret;
 536
 537	if (ath5k_get_bus_type(ah) == ATH_AHB)
 538		return 0;
 539
 540	/* Make sure device is awake */
 541	ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
 542	if (ret) {
 543		ATH5K_ERR(ah, "failed to wakeup the MAC Chip\n");
 544		return ret;
 545	}
 546
 547	/*
 548	 * Put chipset on warm reset...
 549	 *
 550	 * Note: putting PCI core on warm reset on PCI-E cards
 551	 * results card to hang and always return 0xffff... so
 552	 * we ignore that flag for PCI-E cards. On PCI cards
 553	 * this flag gets cleared after 64 PCI clocks.
 554	 */
 555	bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI;
 556
 557	if (ah->ah_version == AR5K_AR5210) {
 558		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
 559			AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
 560			AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
 561			mdelay(2);
 562	} else {
 563		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
 564			AR5K_RESET_CTL_BASEBAND | bus_flags);
 565	}
 566
 567	if (ret) {
 568		ATH5K_ERR(ah, "failed to put device on warm reset\n");
 569		return -EIO;
 570	}
 571
 572	/* ...wakeup again!*/
 573	ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
 574	if (ret) {
 575		ATH5K_ERR(ah, "failed to put device on hold\n");
 576		return ret;
 577	}
 578
 579	return ret;
 580}
 581
 582/*
 
 
 
 
 583 * Bring up MAC + PHY Chips and program PLL
 
 
 
 584 */
 585int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial)
 
 586{
 587	struct pci_dev *pdev = ah->pdev;
 588	u32 turbo, mode, clock, bus_flags;
 589	int ret;
 590
 591	turbo = 0;
 592	mode = 0;
 593	clock = 0;
 594
 595	if ((ath5k_get_bus_type(ah) != ATH_AHB) || !initial) {
 596		/* Wakeup the device */
 597		ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
 598		if (ret) {
 599			ATH5K_ERR(ah, "failed to wakeup the MAC Chip\n");
 600			return ret;
 601		}
 602	}
 603
 604	/*
 605	 * Put chipset on warm reset...
 606	 *
 607	 * Note: putting PCI core on warm reset on PCI-E cards
 608	 * results card to hang and always return 0xffff... so
 609	 * we ignore that flag for PCI-E cards. On PCI cards
 610	 * this flag gets cleared after 64 PCI clocks.
 611	 */
 612	bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI;
 613
 614	if (ah->ah_version == AR5K_AR5210) {
 615		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
 616			AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
 617			AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
 618			mdelay(2);
 619	} else {
 620		if (ath5k_get_bus_type(ah) == ATH_AHB)
 621			ret = ath5k_hw_wisoc_reset(ah, AR5K_RESET_CTL_PCU |
 622				AR5K_RESET_CTL_BASEBAND);
 623		else
 624			ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
 625				AR5K_RESET_CTL_BASEBAND | bus_flags);
 626	}
 627
 628	if (ret) {
 629		ATH5K_ERR(ah, "failed to reset the MAC Chip\n");
 630		return -EIO;
 631	}
 632
 633	/* ...wakeup again!...*/
 634	ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
 635	if (ret) {
 636		ATH5K_ERR(ah, "failed to resume the MAC Chip\n");
 637		return ret;
 638	}
 639
 640	/* ...reset configuration register on Wisoc ...
 641	 * ...clear reset control register and pull device out of
 642	 * warm reset on others */
 643	if (ath5k_get_bus_type(ah) == ATH_AHB)
 644		ret = ath5k_hw_wisoc_reset(ah, 0);
 645	else
 646		ret = ath5k_hw_nic_reset(ah, 0);
 647
 648	if (ret) {
 649		ATH5K_ERR(ah, "failed to warm reset the MAC Chip\n");
 650		return -EIO;
 651	}
 652
 653	/* On initialization skip PLL programming since we don't have
 654	 * a channel / mode set yet */
 655	if (initial)
 656		return 0;
 657
 658	if (ah->ah_version != AR5K_AR5210) {
 659		/*
 660		 * Get channel mode flags
 661		 */
 662
 663		if (ah->ah_radio >= AR5K_RF5112) {
 664			mode = AR5K_PHY_MODE_RAD_RF5112;
 665			clock = AR5K_PHY_PLL_RF5112;
 666		} else {
 667			mode = AR5K_PHY_MODE_RAD_RF5111;	/*Zero*/
 668			clock = AR5K_PHY_PLL_RF5111;		/*Zero*/
 669		}
 670
 671		if (flags & CHANNEL_2GHZ) {
 672			mode |= AR5K_PHY_MODE_FREQ_2GHZ;
 673			clock |= AR5K_PHY_PLL_44MHZ;
 674
 675			if (flags & CHANNEL_CCK) {
 676				mode |= AR5K_PHY_MODE_MOD_CCK;
 677			} else if (flags & CHANNEL_OFDM) {
 678				/* XXX Dynamic OFDM/CCK is not supported by the
 679				 * AR5211 so we set MOD_OFDM for plain g (no
 680				 * CCK headers) operation. We need to test
 681				 * this, 5211 might support ofdm-only g after
 682				 * all, there are also initial register values
 683				 * in the code for g mode (see initvals.c).
 684				 */
 685				if (ah->ah_version == AR5K_AR5211)
 686					mode |= AR5K_PHY_MODE_MOD_OFDM;
 687				else
 688					mode |= AR5K_PHY_MODE_MOD_DYN;
 689			} else {
 690				ATH5K_ERR(ah,
 691					"invalid radio modulation mode\n");
 692				return -EINVAL;
 693			}
 694		} else if (flags & CHANNEL_5GHZ) {
 695			mode |= AR5K_PHY_MODE_FREQ_5GHZ;
 
 696
 697			/* Different PLL setting for 5413 */
 698			if (ah->ah_radio == AR5K_RF5413)
 699				clock = AR5K_PHY_PLL_40MHZ_5413;
 700			else
 701				clock |= AR5K_PHY_PLL_40MHZ;
 702
 703			if (flags & CHANNEL_OFDM)
 704				mode |= AR5K_PHY_MODE_MOD_OFDM;
 705			else {
 706				ATH5K_ERR(ah,
 707					"invalid radio modulation mode\n");
 708				return -EINVAL;
 709			}
 710		} else {
 711			ATH5K_ERR(ah, "invalid radio frequency mode\n");
 712			return -EINVAL;
 713		}
 714
 715		/*XXX: Can bwmode be used with dynamic mode ?
 716		 * (I don't think it supports 44MHz) */
 717		/* On 2425 initvals TURBO_SHORT is not present */
 718		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) {
 719			turbo = AR5K_PHY_TURBO_MODE |
 720				(ah->ah_radio == AR5K_RF2425) ? 0 :
 721				AR5K_PHY_TURBO_SHORT;
 722		} else if (ah->ah_bwmode != AR5K_BWMODE_DEFAULT) {
 723			if (ah->ah_radio == AR5K_RF5413) {
 724				mode |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ?
 725					AR5K_PHY_MODE_HALF_RATE :
 726					AR5K_PHY_MODE_QUARTER_RATE;
 727			} else if (ah->ah_version == AR5K_AR5212) {
 728				clock |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ?
 729					AR5K_PHY_PLL_HALF_RATE :
 730					AR5K_PHY_PLL_QUARTER_RATE;
 731			}
 732		}
 733
 734	} else { /* Reset the device */
 735
 736		/* ...enable Atheros turbo mode if requested */
 737		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
 738			ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
 739					AR5K_PHY_TURBO);
 740	}
 741
 742	if (ah->ah_version != AR5K_AR5210) {
 743
 744		/* ...update PLL if needed */
 745		if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) {
 746			ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
 747			udelay(300);
 748		}
 749
 750		/* ...set the PHY operating mode */
 751		ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
 752		ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
 753	}
 754
 755	return 0;
 756}
 757
 758
 759/**************************************\
 760* Post-initvals register modifications *
 761\**************************************/
 762
 763/* TODO: Half/Quarter rate */
 764static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
 
 
 
 
 
 
 
 
 
 
 
 765				struct ieee80211_channel *channel)
 766{
 767	if (ah->ah_version == AR5K_AR5212 &&
 768	    ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
 769
 770		/* Setup ADC control */
 771		ath5k_hw_reg_write(ah,
 772				(AR5K_REG_SM(2,
 773				AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) |
 774				AR5K_REG_SM(2,
 775				AR5K_PHY_ADC_CTL_INBUFGAIN_ON) |
 776				AR5K_PHY_ADC_CTL_PWD_DAC_OFF |
 777				AR5K_PHY_ADC_CTL_PWD_ADC_OFF),
 778				AR5K_PHY_ADC_CTL);
 779
 780
 781
 782		/* Disable barker RSSI threshold */
 783		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
 784				AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR);
 785
 786		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
 787			AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2);
 788
 789		/* Set the mute mask */
 790		ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
 791	}
 792
 793	/* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
 794	if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B)
 795		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH);
 796
 797	/* Enable DCU double buffering */
 798	if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B)
 799		AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
 800				AR5K_TXCFG_DCU_DBL_BUF_DIS);
 801
 802	/* Set fast ADC */
 803	if ((ah->ah_radio == AR5K_RF5413) ||
 804		(ah->ah_radio == AR5K_RF2317) ||
 805		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
 806		u32 fast_adc = true;
 807
 808		if (channel->center_freq == 2462 ||
 809		channel->center_freq == 2467)
 810			fast_adc = 0;
 811
 812		/* Only update if needed */
 813		if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc)
 814				ath5k_hw_reg_write(ah, fast_adc,
 815						AR5K_PHY_FAST_ADC);
 816	}
 817
 818	/* Fix for first revision of the RF5112 RF chipset */
 819	if (ah->ah_radio == AR5K_RF5112 &&
 820			ah->ah_radio_5ghz_revision <
 821			AR5K_SREV_RAD_5112A) {
 822		u32 data;
 823		ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
 824				AR5K_PHY_CCKTXCTL);
 825		if (channel->hw_value & CHANNEL_5GHZ)
 826			data = 0xffb81020;
 827		else
 828			data = 0xffb80d20;
 829		ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
 830	}
 831
 832	if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
 833		/* Clear QCU/DCU clock gating register */
 834		ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT);
 835		/* Set DAC/ADC delays */
 836		ath5k_hw_reg_write(ah, AR5K_PHY_SCAL_32MHZ_5311,
 837						AR5K_PHY_SCAL);
 838		/* Enable PCU FIFO corruption ECO */
 839		AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
 840					AR5K_DIAG_SW_ECO_ENABLE);
 841	}
 842
 843	if (ah->ah_bwmode) {
 844		/* Increase PHY switch and AGC settling time
 845		 * on turbo mode (ath5k_hw_commit_eeprom_settings
 846		 * will override settling time if available) */
 847		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) {
 848
 849			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
 850						AR5K_PHY_SETTLING_AGC,
 851						AR5K_AGC_SETTLING_TURBO);
 852
 853			/* XXX: Initvals indicate we only increase
 854			 * switch time on AR5212, 5211 and 5210
 855			 * only change agc time (bug?) */
 856			if (ah->ah_version == AR5K_AR5212)
 857				AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
 858						AR5K_PHY_SETTLING_SWITCH,
 859						AR5K_SWITCH_SETTLING_TURBO);
 860
 861			if (ah->ah_version == AR5K_AR5210) {
 862				/* Set Frame Control Register */
 863				ath5k_hw_reg_write(ah,
 864					(AR5K_PHY_FRAME_CTL_INI |
 865					AR5K_PHY_TURBO_MODE |
 866					AR5K_PHY_TURBO_SHORT | 0x2020),
 867					AR5K_PHY_FRAME_CTL_5210);
 868			}
 869		/* On 5413 PHY force window length for half/quarter rate*/
 870		} else if ((ah->ah_mac_srev >= AR5K_SREV_AR5424) &&
 871		(ah->ah_mac_srev <= AR5K_SREV_AR5414)) {
 872			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL_5211,
 873						AR5K_PHY_FRAME_CTL_WIN_LEN,
 874						3);
 875		}
 876	} else if (ah->ah_version == AR5K_AR5210) {
 877		/* Set Frame Control Register for normal operation */
 878		ath5k_hw_reg_write(ah, (AR5K_PHY_FRAME_CTL_INI | 0x1020),
 879						AR5K_PHY_FRAME_CTL_5210);
 880	}
 881}
 882
 883static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
 
 
 
 
 
 
 
 
 
 884		struct ieee80211_channel *channel)
 885{
 886	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 887	s16 cck_ofdm_pwr_delta;
 888	u8 ee_mode;
 889
 890	/* TODO: Add support for AR5210 EEPROM */
 891	if (ah->ah_version == AR5K_AR5210)
 892		return;
 893
 894	ee_mode = ath5k_eeprom_mode_from_channel(channel);
 895
 896	/* Adjust power delta for channel 14 */
 897	if (channel->center_freq == 2484)
 898		cck_ofdm_pwr_delta =
 899			((ee->ee_cck_ofdm_power_delta -
 900			ee->ee_scaled_cck_delta) * 2) / 10;
 901	else
 902		cck_ofdm_pwr_delta =
 903			(ee->ee_cck_ofdm_power_delta * 2) / 10;
 904
 905	/* Set CCK to OFDM power delta on tx power
 906	 * adjustment register */
 907	if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
 908		if (channel->hw_value == CHANNEL_G)
 909			ath5k_hw_reg_write(ah,
 910			AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1),
 911				AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
 912			AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
 913				AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
 914				AR5K_PHY_TX_PWR_ADJ);
 915		else
 916			ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
 917	} else {
 918		/* For older revs we scale power on sw during tx power
 919		 * setup */
 920		ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta;
 921		ah->ah_txpower.txp_cck_ofdm_gainf_delta =
 922						ee->ee_cck_ofdm_gain_delta;
 923	}
 924
 925	/* XXX: necessary here? is called from ath5k_hw_set_antenna_mode()
 926	 * too */
 927	ath5k_hw_set_antenna_switch(ah, ee_mode);
 928
 929	/* Noise floor threshold */
 930	ath5k_hw_reg_write(ah,
 931		AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
 932		AR5K_PHY_NFTHRES);
 933
 934	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
 935	(ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) {
 936		/* Switch settling time (Turbo) */
 937		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
 938				AR5K_PHY_SETTLING_SWITCH,
 939				ee->ee_switch_settling_turbo[ee_mode]);
 940
 941		/* Tx/Rx attenuation (Turbo) */
 942		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
 943				AR5K_PHY_GAIN_TXRX_ATTEN,
 944				ee->ee_atn_tx_rx_turbo[ee_mode]);
 945
 946		/* ADC/PGA desired size (Turbo) */
 947		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
 948				AR5K_PHY_DESIRED_SIZE_ADC,
 949				ee->ee_adc_desired_size_turbo[ee_mode]);
 950
 951		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
 952				AR5K_PHY_DESIRED_SIZE_PGA,
 953				ee->ee_pga_desired_size_turbo[ee_mode]);
 954
 955		/* Tx/Rx margin (Turbo) */
 956		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
 957				AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
 958				ee->ee_margin_tx_rx_turbo[ee_mode]);
 959
 960	} else {
 961		/* Switch settling time */
 962		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
 963				AR5K_PHY_SETTLING_SWITCH,
 964				ee->ee_switch_settling[ee_mode]);
 965
 966		/* Tx/Rx attenuation */
 967		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
 968				AR5K_PHY_GAIN_TXRX_ATTEN,
 969				ee->ee_atn_tx_rx[ee_mode]);
 970
 971		/* ADC/PGA desired size */
 972		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
 973				AR5K_PHY_DESIRED_SIZE_ADC,
 974				ee->ee_adc_desired_size[ee_mode]);
 975
 976		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
 977				AR5K_PHY_DESIRED_SIZE_PGA,
 978				ee->ee_pga_desired_size[ee_mode]);
 979
 980		/* Tx/Rx margin */
 981		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
 982			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
 983				AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
 984				ee->ee_margin_tx_rx[ee_mode]);
 985	}
 986
 987	/* XPA delays */
 988	ath5k_hw_reg_write(ah,
 989		(ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
 990		(ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
 991		(ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
 992		(ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
 993
 994	/* XLNA delay */
 995	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3,
 996			AR5K_PHY_RF_CTL3_TXE2XLNA_ON,
 997			ee->ee_tx_end2xlna_enable[ee_mode]);
 998
 999	/* Thresh64 (ANI) */
1000	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF,
1001			AR5K_PHY_NF_THRESH62,
1002			ee->ee_thr_62[ee_mode]);
1003
1004	/* False detect backoff for channels
1005	 * that have spur noise. Write the new
1006	 * cyclic power RSSI threshold. */
1007	if (ath5k_hw_chan_has_spur_noise(ah, channel))
1008		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
1009				AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
1010				AR5K_INIT_CYCRSSI_THR1 +
1011				ee->ee_false_detect[ee_mode]);
1012	else
1013		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
1014				AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
1015				AR5K_INIT_CYCRSSI_THR1);
1016
1017	/* I/Q correction (set enable bit last to match HAL sources) */
1018	/* TODO: Per channel i/q infos ? */
1019	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
1020		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF,
1021			    ee->ee_i_cal[ee_mode]);
1022		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF,
1023			    ee->ee_q_cal[ee_mode]);
1024		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1025	}
1026
1027	/* Heavy clipping -disable for now */
1028	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1)
1029		ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
1030}
1031
1032
1033/*********************\
1034* Main reset function *
1035\*********************/
1036
1037int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1038		struct ieee80211_channel *channel, bool fast, bool skip_pcu)
1039{
1040	u32 s_seq[10], s_led[3], tsf_up, tsf_lo;
1041	u8 mode;
1042	int i, ret;
1043
1044	tsf_up = 0;
1045	tsf_lo = 0;
1046	mode = 0;
1047
1048	/*
1049	 * Sanity check for fast flag
1050	 * Fast channel change only available
1051	 * on AR2413/AR5413.
1052	 */
1053	if (fast && (ah->ah_radio != AR5K_RF2413) &&
1054	(ah->ah_radio != AR5K_RF5413))
1055		fast = 0;
1056
1057	/* Disable sleep clock operation
1058	 * to avoid register access delay on certain
1059	 * PHY registers */
1060	if (ah->ah_version == AR5K_AR5212)
1061		ath5k_hw_set_sleep_clock(ah, false);
1062
1063	/*
1064	 * Stop PCU
1065	 */
1066	ath5k_hw_stop_rx_pcu(ah);
1067
1068	/*
1069	 * Stop DMA
1070	 *
1071	 * Note: If DMA didn't stop continue
1072	 * since only a reset will fix it.
1073	 */
1074	ret = ath5k_hw_dma_stop(ah);
1075
1076	/* RF Bus grant won't work if we have pending
1077	 * frames */
1078	if (ret && fast) {
1079		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1080			"DMA didn't stop, falling back to normal reset\n");
1081		fast = 0;
1082		/* Non fatal, just continue with
1083		 * normal reset */
1084		ret = 0;
1085	}
1086
1087	switch (channel->hw_value & CHANNEL_MODES) {
1088	case CHANNEL_A:
1089		mode = AR5K_MODE_11A;
1090		break;
1091	case CHANNEL_G:
1092
1093		if (ah->ah_version <= AR5K_AR5211) {
1094			ATH5K_ERR(ah,
1095				"G mode not available on 5210/5211");
1096			return -EINVAL;
1097		}
1098
1099		mode = AR5K_MODE_11G;
1100		break;
1101	case CHANNEL_B:
1102
1103		if (ah->ah_version < AR5K_AR5211) {
1104			ATH5K_ERR(ah,
1105				"B mode not available on 5210");
1106			return -EINVAL;
1107		}
1108
1109		mode = AR5K_MODE_11B;
1110		break;
1111	case CHANNEL_XR:
1112		if (ah->ah_version == AR5K_AR5211) {
1113			ATH5K_ERR(ah,
1114				"XR mode not available on 5211");
1115			return -EINVAL;
1116		}
1117		mode = AR5K_MODE_XR;
1118		break;
1119	default:
1120		ATH5K_ERR(ah,
1121			"invalid channel: %d\n", channel->center_freq);
1122		return -EINVAL;
1123	}
1124
1125	/*
1126	 * If driver requested fast channel change and DMA has stopped
1127	 * go on. If it fails continue with a normal reset.
1128	 */
1129	if (fast) {
1130		ret = ath5k_hw_phy_init(ah, channel, mode, true);
1131		if (ret) {
1132			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1133				"fast chan change failed, falling back to normal reset\n");
1134			/* Non fatal, can happen eg.
1135			 * on mode change */
1136			ret = 0;
1137		} else {
1138			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1139				"fast chan change successful\n");
1140			return 0;
1141		}
1142	}
1143
1144	/*
1145	 * Save some registers before a reset
1146	 */
1147	if (ah->ah_version != AR5K_AR5210) {
1148		/*
1149		 * Save frame sequence count
1150		 * For revs. after Oahu, only save
1151		 * seq num for DCU 0 (Global seq num)
1152		 */
1153		if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1154
1155			for (i = 0; i < 10; i++)
1156				s_seq[i] = ath5k_hw_reg_read(ah,
1157					AR5K_QUEUE_DCU_SEQNUM(i));
1158
1159		} else {
1160			s_seq[0] = ath5k_hw_reg_read(ah,
1161					AR5K_QUEUE_DCU_SEQNUM(0));
1162		}
1163
1164		/* TSF accelerates on AR5211 during reset
1165		 * As a workaround save it here and restore
1166		 * it later so that it's back in time after
1167		 * reset. This way it'll get re-synced on the
1168		 * next beacon without breaking ad-hoc.
1169		 *
1170		 * On AR5212 TSF is almost preserved across a
1171		 * reset so it stays back in time anyway and
1172		 * we don't have to save/restore it.
1173		 *
1174		 * XXX: Since this breaks power saving we have
1175		 * to disable power saving until we receive the
1176		 * next beacon, so we can resync beacon timers */
1177		if (ah->ah_version == AR5K_AR5211) {
1178			tsf_up = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
1179			tsf_lo = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
1180		}
1181	}
1182
1183
1184	/*GPIOs*/
1185	s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) &
1186					AR5K_PCICFG_LEDSTATE;
1187	s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
1188	s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
1189
1190
1191	/*
1192	 * Since we are going to write rf buffer
1193	 * check if we have any pending gain_F
1194	 * optimization settings
1195	 */
1196	if (ah->ah_version == AR5K_AR5212 &&
1197	(ah->ah_radio <= AR5K_RF5112)) {
1198		if (!fast && ah->ah_rf_banks != NULL)
1199				ath5k_hw_gainf_calibrate(ah);
1200	}
1201
1202	/* Wakeup the device */
1203	ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, false);
1204	if (ret)
1205		return ret;
1206
1207	/* PHY access enable */
1208	if (ah->ah_mac_srev >= AR5K_SREV_AR5211)
1209		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1210	else
1211		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40,
1212							AR5K_PHY(0));
1213
1214	/* Write initial settings */
1215	ret = ath5k_hw_write_initvals(ah, mode, skip_pcu);
1216	if (ret)
1217		return ret;
1218
1219	/* Initialize core clock settings */
1220	ath5k_hw_init_core_clock(ah);
1221
1222	/*
1223	 * Tweak initval settings for revised
1224	 * chipsets and add some more config
1225	 * bits
1226	 */
1227	ath5k_hw_tweak_initval_settings(ah, channel);
1228
1229	/* Commit values from EEPROM */
1230	ath5k_hw_commit_eeprom_settings(ah, channel);
1231
1232
1233	/*
1234	 * Restore saved values
1235	 */
1236
1237	/* Seqnum, TSF */
1238	if (ah->ah_version != AR5K_AR5210) {
1239		if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1240			for (i = 0; i < 10; i++)
1241				ath5k_hw_reg_write(ah, s_seq[i],
1242					AR5K_QUEUE_DCU_SEQNUM(i));
1243		} else {
1244			ath5k_hw_reg_write(ah, s_seq[0],
1245				AR5K_QUEUE_DCU_SEQNUM(0));
1246		}
1247
1248		if (ah->ah_version == AR5K_AR5211) {
1249			ath5k_hw_reg_write(ah, tsf_up, AR5K_TSF_U32);
1250			ath5k_hw_reg_write(ah, tsf_lo, AR5K_TSF_L32);
1251		}
1252	}
1253
1254	/* Ledstate */
1255	AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
1256
1257	/* Gpio settings */
1258	ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
1259	ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
1260
1261	/*
1262	 * Initialize PCU
1263	 */
1264	ath5k_hw_pcu_init(ah, op_mode, mode);
1265
1266	/*
1267	 * Initialize PHY
1268	 */
1269	ret = ath5k_hw_phy_init(ah, channel, mode, false);
1270	if (ret) {
1271		ATH5K_ERR(ah,
1272			"failed to initialize PHY (%i) !\n", ret);
1273		return ret;
1274	}
1275
1276	/*
1277	 * Configure QCUs/DCUs
1278	 */
1279	ret = ath5k_hw_init_queues(ah);
1280	if (ret)
1281		return ret;
1282
1283
1284	/*
1285	 * Initialize DMA/Interrupts
1286	 */
1287	ath5k_hw_dma_init(ah);
1288
1289
1290	/*
1291	 * Enable 32KHz clock function for AR5212+ chips
1292	 * Set clocks to 32KHz operation and use an
1293	 * external 32KHz crystal when sleeping if one
1294	 * exists.
1295	 * Disabled by default because it is also disabled in
1296	 * other drivers and it is known to cause stability
1297	 * issues on some devices
1298	 */
1299	if (ah->ah_use_32khz_clock && ah->ah_version == AR5K_AR5212 &&
1300	    op_mode != NL80211_IFTYPE_AP)
1301		ath5k_hw_set_sleep_clock(ah, true);
1302
1303	/*
1304	 * Disable beacons and reset the TSF
1305	 */
1306	AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE);
1307	ath5k_hw_reset_tsf(ah);
1308	return 0;
1309}