Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* FarSync WAN driver for Linux (2.6.x kernel version)
3 *
4 * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
5 *
6 * Copyright (C) 2001-2004 FarSite Communications Ltd.
7 * www.farsite.co.uk
8 *
9 * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk>
10 * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk>
11 */
12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15#include <linux/module.h>
16#include <linux/kernel.h>
17#include <linux/version.h>
18#include <linux/pci.h>
19#include <linux/sched.h>
20#include <linux/slab.h>
21#include <linux/ioport.h>
22#include <linux/init.h>
23#include <linux/interrupt.h>
24#include <linux/delay.h>
25#include <linux/if.h>
26#include <linux/hdlc.h>
27#include <asm/io.h>
28#include <linux/uaccess.h>
29
30#include "farsync.h"
31
32/* Module info
33 */
34MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
35MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
36MODULE_LICENSE("GPL");
37
38/* Driver configuration and global parameters
39 * ==========================================
40 */
41
42/* Number of ports (per card) and cards supported
43 */
44#define FST_MAX_PORTS 4
45#define FST_MAX_CARDS 32
46
47/* Default parameters for the link
48 */
49#define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is
50 * useful
51 */
52#define FST_TXQ_DEPTH 16 /* This one is for the buffering
53 * of frames on the way down to the card
54 * so that we can keep the card busy
55 * and maximise throughput
56 */
57#define FST_HIGH_WATER_MARK 12 /* Point at which we flow control
58 * network layer
59 */
60#define FST_LOW_WATER_MARK 8 /* Point at which we remove flow
61 * control from network layer
62 */
63#define FST_MAX_MTU 8000 /* Huge but possible */
64#define FST_DEF_MTU 1500 /* Common sane value */
65
66#define FST_TX_TIMEOUT (2 * HZ)
67
68#ifdef ARPHRD_RAWHDLC
69#define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */
70#else
71#define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */
72#endif
73
74/* Modules parameters and associated variables
75 */
76static int fst_txq_low = FST_LOW_WATER_MARK;
77static int fst_txq_high = FST_HIGH_WATER_MARK;
78static int fst_max_reads = 7;
79static int fst_excluded_cards;
80static int fst_excluded_list[FST_MAX_CARDS];
81
82module_param(fst_txq_low, int, 0);
83module_param(fst_txq_high, int, 0);
84module_param(fst_max_reads, int, 0);
85module_param(fst_excluded_cards, int, 0);
86module_param_array(fst_excluded_list, int, NULL, 0);
87
88/* Card shared memory layout
89 * =========================
90 */
91#pragma pack(1)
92
93/* This information is derived in part from the FarSite FarSync Smc.h
94 * file. Unfortunately various name clashes and the non-portability of the
95 * bit field declarations in that file have meant that I have chosen to
96 * recreate the information here.
97 *
98 * The SMC (Shared Memory Configuration) has a version number that is
99 * incremented every time there is a significant change. This number can
100 * be used to check that we have not got out of step with the firmware
101 * contained in the .CDE files.
102 */
103#define SMC_VERSION 24
104
105#define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */
106
107#define SMC_BASE 0x00002000L /* Base offset of the shared memory window main
108 * configuration structure
109 */
110#define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA
111 * buffers
112 */
113
114#define LEN_TX_BUFFER 8192 /* Size of packet buffers */
115#define LEN_RX_BUFFER 8192
116
117#define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
118#define LEN_SMALL_RX_BUFFER 256
119
120#define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */
121#define NUM_RX_BUFFER 8
122
123/* Interrupt retry time in milliseconds */
124#define INT_RETRY_TIME 2
125
126/* The Am186CH/CC processors support a SmartDMA mode using circular pools
127 * of buffer descriptors. The structure is almost identical to that used
128 * in the LANCE Ethernet controllers. Details available as PDF from the
129 * AMD web site: https://www.amd.com/products/epd/processors/\
130 * 2.16bitcont/3.am186cxfa/a21914/21914.pdf
131 */
132struct txdesc { /* Transmit descriptor */
133 volatile u16 ladr; /* Low order address of packet. This is a
134 * linear address in the Am186 memory space
135 */
136 volatile u8 hadr; /* High order address. Low 4 bits only, high 4
137 * bits must be zero
138 */
139 volatile u8 bits; /* Status and config */
140 volatile u16 bcnt; /* 2s complement of packet size in low 15 bits.
141 * Transmit terminal count interrupt enable in
142 * top bit.
143 */
144 u16 unused; /* Not used in Tx */
145};
146
147struct rxdesc { /* Receive descriptor */
148 volatile u16 ladr; /* Low order address of packet */
149 volatile u8 hadr; /* High order address */
150 volatile u8 bits; /* Status and config */
151 volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits.
152 * Receive terminal count interrupt enable in
153 * top bit.
154 */
155 volatile u16 mcnt; /* Message byte count (15 bits) */
156};
157
158/* Convert a length into the 15 bit 2's complement */
159/* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */
160/* Since we need to set the high bit to enable the completion interrupt this
161 * can be made a lot simpler
162 */
163#define cnv_bcnt(len) (-(len))
164
165/* Status and config bits for the above */
166#define DMA_OWN 0x80 /* SmartDMA owns the descriptor */
167#define TX_STP 0x02 /* Tx: start of packet */
168#define TX_ENP 0x01 /* Tx: end of packet */
169#define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */
170#define RX_FRAM 0x20 /* Rx: framing error */
171#define RX_OFLO 0x10 /* Rx: overflow error */
172#define RX_CRC 0x08 /* Rx: CRC error */
173#define RX_HBUF 0x04 /* Rx: buffer error */
174#define RX_STP 0x02 /* Rx: start of packet */
175#define RX_ENP 0x01 /* Rx: end of packet */
176
177/* Interrupts from the card are caused by various events which are presented
178 * in a circular buffer as several events may be processed on one physical int
179 */
180#define MAX_CIRBUFF 32
181
182struct cirbuff {
183 u8 rdindex; /* read, then increment and wrap */
184 u8 wrindex; /* write, then increment and wrap */
185 u8 evntbuff[MAX_CIRBUFF];
186};
187
188/* Interrupt event codes.
189 * Where appropriate the two low order bits indicate the port number
190 */
191#define CTLA_CHG 0x18 /* Control signal changed */
192#define CTLB_CHG 0x19
193#define CTLC_CHG 0x1A
194#define CTLD_CHG 0x1B
195
196#define INIT_CPLT 0x20 /* Initialisation complete */
197#define INIT_FAIL 0x21 /* Initialisation failed */
198
199#define ABTA_SENT 0x24 /* Abort sent */
200#define ABTB_SENT 0x25
201#define ABTC_SENT 0x26
202#define ABTD_SENT 0x27
203
204#define TXA_UNDF 0x28 /* Transmission underflow */
205#define TXB_UNDF 0x29
206#define TXC_UNDF 0x2A
207#define TXD_UNDF 0x2B
208
209#define F56_INT 0x2C
210#define M32_INT 0x2D
211
212#define TE1_ALMA 0x30
213
214/* Port physical configuration. See farsync.h for field values */
215struct port_cfg {
216 u16 lineInterface; /* Physical interface type */
217 u8 x25op; /* Unused at present */
218 u8 internalClock; /* 1 => internal clock, 0 => external */
219 u8 transparentMode; /* 1 => on, 0 => off */
220 u8 invertClock; /* 0 => normal, 1 => inverted */
221 u8 padBytes[6]; /* Padding */
222 u32 lineSpeed; /* Speed in bps */
223};
224
225/* TE1 port physical configuration */
226struct su_config {
227 u32 dataRate;
228 u8 clocking;
229 u8 framing;
230 u8 structure;
231 u8 interface;
232 u8 coding;
233 u8 lineBuildOut;
234 u8 equalizer;
235 u8 transparentMode;
236 u8 loopMode;
237 u8 range;
238 u8 txBufferMode;
239 u8 rxBufferMode;
240 u8 startingSlot;
241 u8 losThreshold;
242 u8 enableIdleCode;
243 u8 idleCode;
244 u8 spare[44];
245};
246
247/* TE1 Status */
248struct su_status {
249 u32 receiveBufferDelay;
250 u32 framingErrorCount;
251 u32 codeViolationCount;
252 u32 crcErrorCount;
253 u32 lineAttenuation;
254 u8 portStarted;
255 u8 lossOfSignal;
256 u8 receiveRemoteAlarm;
257 u8 alarmIndicationSignal;
258 u8 spare[40];
259};
260
261/* Finally sling all the above together into the shared memory structure.
262 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
263 * evolving under NT for some time so I guess we're stuck with it.
264 * The structure starts at offset SMC_BASE.
265 * See farsync.h for some field values.
266 */
267struct fst_shared {
268 /* DMA descriptor rings */
269 struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
270 struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
271
272 /* Obsolete small buffers */
273 u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
274 u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
275
276 u8 taskStatus; /* 0x00 => initialising, 0x01 => running,
277 * 0xFF => halted
278 */
279
280 u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt,
281 * set to 0xEE by host to acknowledge interrupt
282 */
283
284 u16 smcVersion; /* Must match SMC_VERSION */
285
286 u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
287 * version, RR = revision and BB = build
288 */
289
290 u16 txa_done; /* Obsolete completion flags */
291 u16 rxa_done;
292 u16 txb_done;
293 u16 rxb_done;
294 u16 txc_done;
295 u16 rxc_done;
296 u16 txd_done;
297 u16 rxd_done;
298
299 u16 mailbox[4]; /* Diagnostics mailbox. Not used */
300
301 struct cirbuff interruptEvent; /* interrupt causes */
302
303 u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */
304 u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */
305
306 struct port_cfg portConfig[FST_MAX_PORTS];
307
308 u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
309
310 u16 cableStatus; /* lsb: 0=> present, 1=> absent */
311
312 u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */
313 u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */
314
315 u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */
316 u16 cardMailbox[4]; /* Not used */
317
318 /* Number of times the card thinks the host has
319 * missed an interrupt by not acknowledging
320 * within 2mS (I guess NT has problems)
321 */
322 u32 interruptRetryCount;
323
324 /* Driver private data used as an ID. We'll not
325 * use this as I'd rather keep such things
326 * in main memory rather than on the PCI bus
327 */
328 u32 portHandle[FST_MAX_PORTS];
329
330 /* Count of Tx underflows for stats */
331 u32 transmitBufferUnderflow[FST_MAX_PORTS];
332
333 /* Debounced V.24 control input status */
334 u32 v24DebouncedSts[FST_MAX_PORTS];
335
336 /* Adapter debounce timers. Don't touch */
337 u32 ctsTimer[FST_MAX_PORTS];
338 u32 ctsTimerRun[FST_MAX_PORTS];
339 u32 dcdTimer[FST_MAX_PORTS];
340 u32 dcdTimerRun[FST_MAX_PORTS];
341
342 u32 numberOfPorts; /* Number of ports detected at startup */
343
344 u16 _reserved[64];
345
346 u16 cardMode; /* Bit-mask to enable features:
347 * Bit 0: 1 enables LED identify mode
348 */
349
350 u16 portScheduleOffset;
351
352 struct su_config suConfig; /* TE1 Bits */
353 struct su_status suStatus;
354
355 u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of
356 * the structure and marks the end of shared
357 * memory. Adapter code initializes it as
358 * END_SIG.
359 */
360};
361
362/* endOfSmcSignature value */
363#define END_SIG 0x12345678
364
365/* Mailbox values. (portMailbox) */
366#define NOP 0 /* No operation */
367#define ACK 1 /* Positive acknowledgement to PC driver */
368#define NAK 2 /* Negative acknowledgement to PC driver */
369#define STARTPORT 3 /* Start an HDLC port */
370#define STOPPORT 4 /* Stop an HDLC port */
371#define ABORTTX 5 /* Abort the transmitter for a port */
372#define SETV24O 6 /* Set V24 outputs */
373
374/* PLX Chip Register Offsets */
375#define CNTRL_9052 0x50 /* Control Register */
376#define CNTRL_9054 0x6c /* Control Register */
377
378#define INTCSR_9052 0x4c /* Interrupt control/status register */
379#define INTCSR_9054 0x68 /* Interrupt control/status register */
380
381/* 9054 DMA Registers */
382/* Note that we will be using DMA Channel 0 for copying rx data
383 * and Channel 1 for copying tx data
384 */
385#define DMAMODE0 0x80
386#define DMAPADR0 0x84
387#define DMALADR0 0x88
388#define DMASIZ0 0x8c
389#define DMADPR0 0x90
390#define DMAMODE1 0x94
391#define DMAPADR1 0x98
392#define DMALADR1 0x9c
393#define DMASIZ1 0xa0
394#define DMADPR1 0xa4
395#define DMACSR0 0xa8
396#define DMACSR1 0xa9
397#define DMAARB 0xac
398#define DMATHR 0xb0
399#define DMADAC0 0xb4
400#define DMADAC1 0xb8
401#define DMAMARBR 0xac
402
403#define FST_MIN_DMA_LEN 64
404#define FST_RX_DMA_INT 0x01
405#define FST_TX_DMA_INT 0x02
406#define FST_CARD_INT 0x04
407
408/* Larger buffers are positioned in memory at offset BFM_BASE */
409struct buf_window {
410 u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
411 u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
412};
413
414/* Calculate offset of a buffer object within the shared memory window */
415#define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X))
416
417#pragma pack()
418
419/* Device driver private information
420 * =================================
421 */
422/* Per port (line or channel) information
423 */
424struct fst_port_info {
425 struct net_device *dev; /* Device struct - must be first */
426 struct fst_card_info *card; /* Card we're associated with */
427 int index; /* Port index on the card */
428 int hwif; /* Line hardware (lineInterface copy) */
429 int run; /* Port is running */
430 int mode; /* Normal or FarSync raw */
431 int rxpos; /* Next Rx buffer to use */
432 int txpos; /* Next Tx buffer to use */
433 int txipos; /* Next Tx buffer to check for free */
434 int start; /* Indication of start/stop to network */
435 /* A sixteen entry transmit queue
436 */
437 int txqs; /* index to get next buffer to tx */
438 int txqe; /* index to queue next packet */
439 struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */
440 int rxqdepth;
441};
442
443/* Per card information
444 */
445struct fst_card_info {
446 char __iomem *mem; /* Card memory mapped to kernel space */
447 char __iomem *ctlmem; /* Control memory for PCI cards */
448 unsigned int phys_mem; /* Physical memory window address */
449 unsigned int phys_ctlmem; /* Physical control memory address */
450 unsigned int irq; /* Interrupt request line number */
451 unsigned int nports; /* Number of serial ports */
452 unsigned int type; /* Type index of card */
453 unsigned int state; /* State of card */
454 spinlock_t card_lock; /* Lock for SMP access */
455 unsigned short pci_conf; /* PCI card config in I/O space */
456 /* Per port info */
457 struct fst_port_info ports[FST_MAX_PORTS];
458 struct pci_dev *device; /* Information about the pci device */
459 int card_no; /* Inst of the card on the system */
460 int family; /* TxP or TxU */
461 int dmarx_in_progress;
462 int dmatx_in_progress;
463 unsigned long int_count;
464 unsigned long int_time_ave;
465 void *rx_dma_handle_host;
466 dma_addr_t rx_dma_handle_card;
467 void *tx_dma_handle_host;
468 dma_addr_t tx_dma_handle_card;
469 struct sk_buff *dma_skb_rx;
470 struct fst_port_info *dma_port_rx;
471 struct fst_port_info *dma_port_tx;
472 int dma_len_rx;
473 int dma_len_tx;
474 int dma_txpos;
475 int dma_rxpos;
476};
477
478/* Convert an HDLC device pointer into a port info pointer and similar */
479#define dev_to_port(D) (dev_to_hdlc(D)->priv)
480#define port_to_dev(P) ((P)->dev)
481
482/* Shared memory window access macros
483 *
484 * We have a nice memory based structure above, which could be directly
485 * mapped on i386 but might not work on other architectures unless we use
486 * the readb,w,l and writeb,w,l macros. Unfortunately these macros take
487 * physical offsets so we have to convert. The only saving grace is that
488 * this should all collapse back to a simple indirection eventually.
489 */
490#define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X))
491
492#define FST_RDB(C, E) (readb((C)->mem + WIN_OFFSET(E)))
493#define FST_RDW(C, E) (readw((C)->mem + WIN_OFFSET(E)))
494#define FST_RDL(C, E) (readl((C)->mem + WIN_OFFSET(E)))
495
496#define FST_WRB(C, E, B) (writeb((B), (C)->mem + WIN_OFFSET(E)))
497#define FST_WRW(C, E, W) (writew((W), (C)->mem + WIN_OFFSET(E)))
498#define FST_WRL(C, E, L) (writel((L), (C)->mem + WIN_OFFSET(E)))
499
500/* Debug support
501 */
502#if FST_DEBUG
503
504static int fst_debug_mask = { FST_DEBUG };
505
506/* Most common debug activity is to print something if the corresponding bit
507 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
508 * support variable numbers of macro parameters. The inverted if prevents us
509 * eating someone else's else clause.
510 */
511#define dbg(F, fmt, args...) \
512do { \
513 if (fst_debug_mask & (F)) \
514 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
515} while (0)
516#else
517#define dbg(F, fmt, args...) \
518do { \
519 if (0) \
520 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
521} while (0)
522#endif
523
524/* PCI ID lookup table
525 */
526static const struct pci_device_id fst_pci_dev_id[] = {
527 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
528 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
529
530 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
531 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
532
533 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
534 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
535
536 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
537 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
538
539 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
540 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
541
542 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
543 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
544
545 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
546 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
547 {0,} /* End */
548};
549
550MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
551
552/* Device Driver Work Queues
553 *
554 * So that we don't spend too much time processing events in the
555 * Interrupt Service routine, we will declare a work queue per Card
556 * and make the ISR schedule a task in the queue for later execution.
557 * In the 2.4 Kernel we used to use the immediate queue for BH's
558 * Now that they are gone, tasklets seem to be much better than work
559 * queues.
560 */
561
562static void do_bottom_half_tx(struct fst_card_info *card);
563static void do_bottom_half_rx(struct fst_card_info *card);
564static void fst_process_tx_work_q(struct tasklet_struct *unused);
565static void fst_process_int_work_q(struct tasklet_struct *unused);
566
567static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q);
568static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q);
569
570static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
571static DEFINE_SPINLOCK(fst_work_q_lock);
572static u64 fst_work_txq;
573static u64 fst_work_intq;
574
575static void
576fst_q_work_item(u64 *queue, int card_index)
577{
578 unsigned long flags;
579 u64 mask;
580
581 /* Grab the queue exclusively
582 */
583 spin_lock_irqsave(&fst_work_q_lock, flags);
584
585 /* Making an entry in the queue is simply a matter of setting
586 * a bit for the card indicating that there is work to do in the
587 * bottom half for the card. Note the limitation of 64 cards.
588 * That ought to be enough
589 */
590 mask = (u64)1 << card_index;
591 *queue |= mask;
592 spin_unlock_irqrestore(&fst_work_q_lock, flags);
593}
594
595static void
596fst_process_tx_work_q(struct tasklet_struct *unused)
597{
598 unsigned long flags;
599 u64 work_txq;
600 int i;
601
602 /* Grab the queue exclusively
603 */
604 dbg(DBG_TX, "fst_process_tx_work_q\n");
605 spin_lock_irqsave(&fst_work_q_lock, flags);
606 work_txq = fst_work_txq;
607 fst_work_txq = 0;
608 spin_unlock_irqrestore(&fst_work_q_lock, flags);
609
610 /* Call the bottom half for each card with work waiting
611 */
612 for (i = 0; i < FST_MAX_CARDS; i++) {
613 if (work_txq & 0x01) {
614 if (fst_card_array[i]) {
615 dbg(DBG_TX, "Calling tx bh for card %d\n", i);
616 do_bottom_half_tx(fst_card_array[i]);
617 }
618 }
619 work_txq = work_txq >> 1;
620 }
621}
622
623static void
624fst_process_int_work_q(struct tasklet_struct *unused)
625{
626 unsigned long flags;
627 u64 work_intq;
628 int i;
629
630 /* Grab the queue exclusively
631 */
632 dbg(DBG_INTR, "fst_process_int_work_q\n");
633 spin_lock_irqsave(&fst_work_q_lock, flags);
634 work_intq = fst_work_intq;
635 fst_work_intq = 0;
636 spin_unlock_irqrestore(&fst_work_q_lock, flags);
637
638 /* Call the bottom half for each card with work waiting
639 */
640 for (i = 0; i < FST_MAX_CARDS; i++) {
641 if (work_intq & 0x01) {
642 if (fst_card_array[i]) {
643 dbg(DBG_INTR,
644 "Calling rx & tx bh for card %d\n", i);
645 do_bottom_half_rx(fst_card_array[i]);
646 do_bottom_half_tx(fst_card_array[i]);
647 }
648 }
649 work_intq = work_intq >> 1;
650 }
651}
652
653/* Card control functions
654 * ======================
655 */
656/* Place the processor in reset state
657 *
658 * Used to be a simple write to card control space but a glitch in the latest
659 * AMD Am186CH processor means that we now have to do it by asserting and de-
660 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
661 * at offset 9052_CNTRL. Note the updates for the TXU.
662 */
663static inline void
664fst_cpureset(struct fst_card_info *card)
665{
666 unsigned char interrupt_line_register;
667 unsigned int regval;
668
669 if (card->family == FST_FAMILY_TXU) {
670 if (pci_read_config_byte
671 (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
672 dbg(DBG_ASS,
673 "Error in reading interrupt line register\n");
674 }
675 /* Assert PLX software reset and Am186 hardware reset
676 * and then deassert the PLX software reset but 186 still in reset
677 */
678 outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
679 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
680 /* We are delaying here to allow the 9054 to reset itself
681 */
682 usleep_range(10, 20);
683 outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
684 /* We are delaying here to allow the 9054 to reload its eeprom
685 */
686 usleep_range(10, 20);
687 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
688
689 if (pci_write_config_byte
690 (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
691 dbg(DBG_ASS,
692 "Error in writing interrupt line register\n");
693 }
694
695 } else {
696 regval = inl(card->pci_conf + CNTRL_9052);
697
698 outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
699 outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
700 }
701}
702
703/* Release the processor from reset
704 */
705static inline void
706fst_cpurelease(struct fst_card_info *card)
707{
708 if (card->family == FST_FAMILY_TXU) {
709 /* Force posted writes to complete
710 */
711 (void)readb(card->mem);
712
713 /* Release LRESET DO = 1
714 * Then release Local Hold, DO = 1
715 */
716 outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
717 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
718 } else {
719 (void)readb(card->ctlmem);
720 }
721}
722
723/* Clear the cards interrupt flag
724 */
725static inline void
726fst_clear_intr(struct fst_card_info *card)
727{
728 if (card->family == FST_FAMILY_TXU) {
729 (void)readb(card->ctlmem);
730 } else {
731 /* Poke the appropriate PLX chip register (same as enabling interrupts)
732 */
733 outw(0x0543, card->pci_conf + INTCSR_9052);
734 }
735}
736
737/* Enable card interrupts
738 */
739static inline void
740fst_enable_intr(struct fst_card_info *card)
741{
742 if (card->family == FST_FAMILY_TXU)
743 outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
744 else
745 outw(0x0543, card->pci_conf + INTCSR_9052);
746}
747
748/* Disable card interrupts
749 */
750static inline void
751fst_disable_intr(struct fst_card_info *card)
752{
753 if (card->family == FST_FAMILY_TXU)
754 outl(0x00000000, card->pci_conf + INTCSR_9054);
755 else
756 outw(0x0000, card->pci_conf + INTCSR_9052);
757}
758
759/* Process the result of trying to pass a received frame up the stack
760 */
761static void
762fst_process_rx_status(int rx_status, char *name)
763{
764 switch (rx_status) {
765 case NET_RX_SUCCESS:
766 {
767 /* Nothing to do here
768 */
769 break;
770 }
771 case NET_RX_DROP:
772 {
773 dbg(DBG_ASS, "%s: Received packet dropped\n", name);
774 break;
775 }
776 }
777}
778
779/* Initilaise DMA for PLX 9054
780 */
781static inline void
782fst_init_dma(struct fst_card_info *card)
783{
784 /* This is only required for the PLX 9054
785 */
786 if (card->family == FST_FAMILY_TXU) {
787 pci_set_master(card->device);
788 outl(0x00020441, card->pci_conf + DMAMODE0);
789 outl(0x00020441, card->pci_conf + DMAMODE1);
790 outl(0x0, card->pci_conf + DMATHR);
791 }
792}
793
794/* Tx dma complete interrupt
795 */
796static void
797fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
798 int len, int txpos)
799{
800 struct net_device *dev = port_to_dev(port);
801
802 /* Everything is now set, just tell the card to go
803 */
804 dbg(DBG_TX, "fst_tx_dma_complete\n");
805 FST_WRB(card, txDescrRing[port->index][txpos].bits,
806 DMA_OWN | TX_STP | TX_ENP);
807 dev->stats.tx_packets++;
808 dev->stats.tx_bytes += len;
809 netif_trans_update(dev);
810}
811
812/* Mark it for our own raw sockets interface
813 */
814static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
815{
816 skb->dev = dev;
817 skb_reset_mac_header(skb);
818 skb->pkt_type = PACKET_HOST;
819 return htons(ETH_P_CUST);
820}
821
822/* Rx dma complete interrupt
823 */
824static void
825fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
826 int len, struct sk_buff *skb, int rxp)
827{
828 struct net_device *dev = port_to_dev(port);
829 int pi;
830 int rx_status;
831
832 dbg(DBG_TX, "fst_rx_dma_complete\n");
833 pi = port->index;
834 skb_put_data(skb, card->rx_dma_handle_host, len);
835
836 /* Reset buffer descriptor */
837 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
838
839 /* Update stats */
840 dev->stats.rx_packets++;
841 dev->stats.rx_bytes += len;
842
843 /* Push upstream */
844 dbg(DBG_RX, "Pushing the frame up the stack\n");
845 if (port->mode == FST_RAW)
846 skb->protocol = farsync_type_trans(skb, dev);
847 else
848 skb->protocol = hdlc_type_trans(skb, dev);
849 rx_status = netif_rx(skb);
850 fst_process_rx_status(rx_status, port_to_dev(port)->name);
851 if (rx_status == NET_RX_DROP)
852 dev->stats.rx_dropped++;
853}
854
855/* Receive a frame through the DMA
856 */
857static inline void
858fst_rx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
859{
860 /* This routine will setup the DMA and start it
861 */
862
863 dbg(DBG_RX, "In fst_rx_dma %x %x %d\n", (u32)dma, mem, len);
864 if (card->dmarx_in_progress)
865 dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
866
867 outl(dma, card->pci_conf + DMAPADR0); /* Copy to here */
868 outl(mem, card->pci_conf + DMALADR0); /* from here */
869 outl(len, card->pci_conf + DMASIZ0); /* for this length */
870 outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */
871
872 /* We use the dmarx_in_progress flag to flag the channel as busy
873 */
874 card->dmarx_in_progress = 1;
875 outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */
876}
877
878/* Send a frame through the DMA
879 */
880static inline void
881fst_tx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
882{
883 /* This routine will setup the DMA and start it.
884 */
885
886 dbg(DBG_TX, "In fst_tx_dma %x %x %d\n", (u32)dma, mem, len);
887 if (card->dmatx_in_progress)
888 dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
889
890 outl(dma, card->pci_conf + DMAPADR1); /* Copy from here */
891 outl(mem, card->pci_conf + DMALADR1); /* to here */
892 outl(len, card->pci_conf + DMASIZ1); /* for this length */
893 outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */
894
895 /* We use the dmatx_in_progress to flag the channel as busy
896 */
897 card->dmatx_in_progress = 1;
898 outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */
899}
900
901/* Issue a Mailbox command for a port.
902 * Note we issue them on a fire and forget basis, not expecting to see an
903 * error and not waiting for completion.
904 */
905static void
906fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
907{
908 struct fst_card_info *card;
909 unsigned short mbval;
910 unsigned long flags;
911 int safety;
912
913 card = port->card;
914 spin_lock_irqsave(&card->card_lock, flags);
915 mbval = FST_RDW(card, portMailbox[port->index][0]);
916
917 safety = 0;
918 /* Wait for any previous command to complete */
919 while (mbval > NAK) {
920 spin_unlock_irqrestore(&card->card_lock, flags);
921 schedule_timeout_uninterruptible(1);
922 spin_lock_irqsave(&card->card_lock, flags);
923
924 if (++safety > 2000) {
925 pr_err("Mailbox safety timeout\n");
926 break;
927 }
928
929 mbval = FST_RDW(card, portMailbox[port->index][0]);
930 }
931 if (safety > 0)
932 dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
933
934 if (mbval == NAK)
935 dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
936
937 FST_WRW(card, portMailbox[port->index][0], cmd);
938
939 if (cmd == ABORTTX || cmd == STARTPORT) {
940 port->txpos = 0;
941 port->txipos = 0;
942 port->start = 0;
943 }
944
945 spin_unlock_irqrestore(&card->card_lock, flags);
946}
947
948/* Port output signals control
949 */
950static inline void
951fst_op_raise(struct fst_port_info *port, unsigned int outputs)
952{
953 outputs |= FST_RDL(port->card, v24OpSts[port->index]);
954 FST_WRL(port->card, v24OpSts[port->index], outputs);
955
956 if (port->run)
957 fst_issue_cmd(port, SETV24O);
958}
959
960static inline void
961fst_op_lower(struct fst_port_info *port, unsigned int outputs)
962{
963 outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
964 FST_WRL(port->card, v24OpSts[port->index], outputs);
965
966 if (port->run)
967 fst_issue_cmd(port, SETV24O);
968}
969
970/* Setup port Rx buffers
971 */
972static void
973fst_rx_config(struct fst_port_info *port)
974{
975 int i;
976 int pi;
977 unsigned int offset;
978 unsigned long flags;
979 struct fst_card_info *card;
980
981 pi = port->index;
982 card = port->card;
983 spin_lock_irqsave(&card->card_lock, flags);
984 for (i = 0; i < NUM_RX_BUFFER; i++) {
985 offset = BUF_OFFSET(rxBuffer[pi][i][0]);
986
987 FST_WRW(card, rxDescrRing[pi][i].ladr, (u16)offset);
988 FST_WRB(card, rxDescrRing[pi][i].hadr, (u8)(offset >> 16));
989 FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
990 FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
991 FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
992 }
993 port->rxpos = 0;
994 spin_unlock_irqrestore(&card->card_lock, flags);
995}
996
997/* Setup port Tx buffers
998 */
999static void
1000fst_tx_config(struct fst_port_info *port)
1001{
1002 int i;
1003 int pi;
1004 unsigned int offset;
1005 unsigned long flags;
1006 struct fst_card_info *card;
1007
1008 pi = port->index;
1009 card = port->card;
1010 spin_lock_irqsave(&card->card_lock, flags);
1011 for (i = 0; i < NUM_TX_BUFFER; i++) {
1012 offset = BUF_OFFSET(txBuffer[pi][i][0]);
1013
1014 FST_WRW(card, txDescrRing[pi][i].ladr, (u16)offset);
1015 FST_WRB(card, txDescrRing[pi][i].hadr, (u8)(offset >> 16));
1016 FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1017 FST_WRB(card, txDescrRing[pi][i].bits, 0);
1018 }
1019 port->txpos = 0;
1020 port->txipos = 0;
1021 port->start = 0;
1022 spin_unlock_irqrestore(&card->card_lock, flags);
1023}
1024
1025/* TE1 Alarm change interrupt event
1026 */
1027static void
1028fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1029{
1030 u8 los;
1031 u8 rra;
1032 u8 ais;
1033
1034 los = FST_RDB(card, suStatus.lossOfSignal);
1035 rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1036 ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1037
1038 if (los) {
1039 /* Lost the link
1040 */
1041 if (netif_carrier_ok(port_to_dev(port))) {
1042 dbg(DBG_INTR, "Net carrier off\n");
1043 netif_carrier_off(port_to_dev(port));
1044 }
1045 } else {
1046 /* Link available
1047 */
1048 if (!netif_carrier_ok(port_to_dev(port))) {
1049 dbg(DBG_INTR, "Net carrier on\n");
1050 netif_carrier_on(port_to_dev(port));
1051 }
1052 }
1053
1054 if (los)
1055 dbg(DBG_INTR, "Assert LOS Alarm\n");
1056 else
1057 dbg(DBG_INTR, "De-assert LOS Alarm\n");
1058 if (rra)
1059 dbg(DBG_INTR, "Assert RRA Alarm\n");
1060 else
1061 dbg(DBG_INTR, "De-assert RRA Alarm\n");
1062
1063 if (ais)
1064 dbg(DBG_INTR, "Assert AIS Alarm\n");
1065 else
1066 dbg(DBG_INTR, "De-assert AIS Alarm\n");
1067}
1068
1069/* Control signal change interrupt event
1070 */
1071static void
1072fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1073{
1074 int signals;
1075
1076 signals = FST_RDL(card, v24DebouncedSts[port->index]);
1077
1078 if (signals & ((port->hwif == X21 || port->hwif == X21D)
1079 ? IPSTS_INDICATE : IPSTS_DCD)) {
1080 if (!netif_carrier_ok(port_to_dev(port))) {
1081 dbg(DBG_INTR, "DCD active\n");
1082 netif_carrier_on(port_to_dev(port));
1083 }
1084 } else {
1085 if (netif_carrier_ok(port_to_dev(port))) {
1086 dbg(DBG_INTR, "DCD lost\n");
1087 netif_carrier_off(port_to_dev(port));
1088 }
1089 }
1090}
1091
1092/* Log Rx Errors
1093 */
1094static void
1095fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1096 unsigned char dmabits, int rxp, unsigned short len)
1097{
1098 struct net_device *dev = port_to_dev(port);
1099
1100 /* Increment the appropriate error counter
1101 */
1102 dev->stats.rx_errors++;
1103 if (dmabits & RX_OFLO) {
1104 dev->stats.rx_fifo_errors++;
1105 dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1106 card->card_no, port->index, rxp);
1107 }
1108 if (dmabits & RX_CRC) {
1109 dev->stats.rx_crc_errors++;
1110 dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1111 card->card_no, port->index);
1112 }
1113 if (dmabits & RX_FRAM) {
1114 dev->stats.rx_frame_errors++;
1115 dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1116 card->card_no, port->index);
1117 }
1118 if (dmabits == (RX_STP | RX_ENP)) {
1119 dev->stats.rx_length_errors++;
1120 dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1121 len, card->card_no, port->index);
1122 }
1123}
1124
1125/* Rx Error Recovery
1126 */
1127static void
1128fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1129 unsigned char dmabits, int rxp, unsigned short len)
1130{
1131 int i;
1132 int pi;
1133
1134 pi = port->index;
1135 /* Discard buffer descriptors until we see the start of the
1136 * next frame. Note that for long frames this could be in
1137 * a subsequent interrupt.
1138 */
1139 i = 0;
1140 while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1141 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1142 rxp = (rxp + 1) % NUM_RX_BUFFER;
1143 if (++i > NUM_RX_BUFFER) {
1144 dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1145 " than we have\n");
1146 break;
1147 }
1148 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1149 dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1150 }
1151 dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1152
1153 /* Discard the terminal buffer */
1154 if (!(dmabits & DMA_OWN)) {
1155 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1156 rxp = (rxp + 1) % NUM_RX_BUFFER;
1157 }
1158 port->rxpos = rxp;
1159}
1160
1161/* Rx complete interrupt
1162 */
1163static void
1164fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1165{
1166 unsigned char dmabits;
1167 int pi;
1168 int rxp;
1169 int rx_status;
1170 unsigned short len;
1171 struct sk_buff *skb;
1172 struct net_device *dev = port_to_dev(port);
1173
1174 /* Check we have a buffer to process */
1175 pi = port->index;
1176 rxp = port->rxpos;
1177 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1178 if (dmabits & DMA_OWN) {
1179 dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1180 pi, rxp);
1181 return;
1182 }
1183 if (card->dmarx_in_progress)
1184 return;
1185
1186 /* Get buffer length */
1187 len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1188 /* Discard the CRC */
1189 len -= 2;
1190 if (len == 0) {
1191 /* This seems to happen on the TE1 interface sometimes
1192 * so throw the frame away and log the event.
1193 */
1194 pr_err("Frame received with 0 length. Card %d Port %d\n",
1195 card->card_no, port->index);
1196 /* Return descriptor to card */
1197 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1198
1199 rxp = (rxp + 1) % NUM_RX_BUFFER;
1200 port->rxpos = rxp;
1201 return;
1202 }
1203
1204 /* Check buffer length and for other errors. We insist on one packet
1205 * in one buffer. This simplifies things greatly and since we've
1206 * allocated 8K it shouldn't be a real world limitation
1207 */
1208 dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1209 if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1210 fst_log_rx_error(card, port, dmabits, rxp, len);
1211 fst_recover_rx_error(card, port, dmabits, rxp, len);
1212 return;
1213 }
1214
1215 /* Allocate SKB */
1216 skb = dev_alloc_skb(len);
1217 if (!skb) {
1218 dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1219
1220 dev->stats.rx_dropped++;
1221
1222 /* Return descriptor to card */
1223 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1224
1225 rxp = (rxp + 1) % NUM_RX_BUFFER;
1226 port->rxpos = rxp;
1227 return;
1228 }
1229
1230 /* We know the length we need to receive, len.
1231 * It's not worth using the DMA for reads of less than
1232 * FST_MIN_DMA_LEN
1233 */
1234
1235 if (len < FST_MIN_DMA_LEN || card->family == FST_FAMILY_TXP) {
1236 memcpy_fromio(skb_put(skb, len),
1237 card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1238 len);
1239
1240 /* Reset buffer descriptor */
1241 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1242
1243 /* Update stats */
1244 dev->stats.rx_packets++;
1245 dev->stats.rx_bytes += len;
1246
1247 /* Push upstream */
1248 dbg(DBG_RX, "Pushing frame up the stack\n");
1249 if (port->mode == FST_RAW)
1250 skb->protocol = farsync_type_trans(skb, dev);
1251 else
1252 skb->protocol = hdlc_type_trans(skb, dev);
1253 rx_status = netif_rx(skb);
1254 fst_process_rx_status(rx_status, port_to_dev(port)->name);
1255 if (rx_status == NET_RX_DROP)
1256 dev->stats.rx_dropped++;
1257 } else {
1258 card->dma_skb_rx = skb;
1259 card->dma_port_rx = port;
1260 card->dma_len_rx = len;
1261 card->dma_rxpos = rxp;
1262 fst_rx_dma(card, card->rx_dma_handle_card,
1263 BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1264 }
1265 if (rxp != port->rxpos) {
1266 dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1267 dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1268 }
1269 rxp = (rxp + 1) % NUM_RX_BUFFER;
1270 port->rxpos = rxp;
1271}
1272
1273/* The bottom half to the ISR
1274 *
1275 */
1276
1277static void
1278do_bottom_half_tx(struct fst_card_info *card)
1279{
1280 struct fst_port_info *port;
1281 int pi;
1282 int txq_length;
1283 struct sk_buff *skb;
1284 unsigned long flags;
1285 struct net_device *dev;
1286
1287 /* Find a free buffer for the transmit
1288 * Step through each port on this card
1289 */
1290
1291 dbg(DBG_TX, "do_bottom_half_tx\n");
1292 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1293 if (!port->run)
1294 continue;
1295
1296 dev = port_to_dev(port);
1297 while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1298 DMA_OWN) &&
1299 !(card->dmatx_in_progress)) {
1300 /* There doesn't seem to be a txdone event per-se
1301 * We seem to have to deduce it, by checking the DMA_OWN
1302 * bit on the next buffer we think we can use
1303 */
1304 spin_lock_irqsave(&card->card_lock, flags);
1305 txq_length = port->txqe - port->txqs;
1306 if (txq_length < 0) {
1307 /* This is the case where one has wrapped and the
1308 * maths gives us a negative number
1309 */
1310 txq_length = txq_length + FST_TXQ_DEPTH;
1311 }
1312 spin_unlock_irqrestore(&card->card_lock, flags);
1313 if (txq_length > 0) {
1314 /* There is something to send
1315 */
1316 spin_lock_irqsave(&card->card_lock, flags);
1317 skb = port->txq[port->txqs];
1318 port->txqs++;
1319 if (port->txqs == FST_TXQ_DEPTH)
1320 port->txqs = 0;
1321
1322 spin_unlock_irqrestore(&card->card_lock, flags);
1323 /* copy the data and set the required indicators on the
1324 * card.
1325 */
1326 FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1327 cnv_bcnt(skb->len));
1328 if (skb->len < FST_MIN_DMA_LEN ||
1329 card->family == FST_FAMILY_TXP) {
1330 /* Enqueue the packet with normal io */
1331 memcpy_toio(card->mem +
1332 BUF_OFFSET(txBuffer[pi]
1333 [port->
1334 txpos][0]),
1335 skb->data, skb->len);
1336 FST_WRB(card,
1337 txDescrRing[pi][port->txpos].
1338 bits,
1339 DMA_OWN | TX_STP | TX_ENP);
1340 dev->stats.tx_packets++;
1341 dev->stats.tx_bytes += skb->len;
1342 netif_trans_update(dev);
1343 } else {
1344 /* Or do it through dma */
1345 memcpy(card->tx_dma_handle_host,
1346 skb->data, skb->len);
1347 card->dma_port_tx = port;
1348 card->dma_len_tx = skb->len;
1349 card->dma_txpos = port->txpos;
1350 fst_tx_dma(card,
1351 card->tx_dma_handle_card,
1352 BUF_OFFSET(txBuffer[pi]
1353 [port->txpos][0]),
1354 skb->len);
1355 }
1356 if (++port->txpos >= NUM_TX_BUFFER)
1357 port->txpos = 0;
1358 /* If we have flow control on, can we now release it?
1359 */
1360 if (port->start) {
1361 if (txq_length < fst_txq_low) {
1362 netif_wake_queue(port_to_dev
1363 (port));
1364 port->start = 0;
1365 }
1366 }
1367 dev_kfree_skb(skb);
1368 } else {
1369 /* Nothing to send so break out of the while loop
1370 */
1371 break;
1372 }
1373 }
1374 }
1375}
1376
1377static void
1378do_bottom_half_rx(struct fst_card_info *card)
1379{
1380 struct fst_port_info *port;
1381 int pi;
1382 int rx_count = 0;
1383
1384 /* Check for rx completions on all ports on this card */
1385 dbg(DBG_RX, "do_bottom_half_rx\n");
1386 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1387 if (!port->run)
1388 continue;
1389
1390 while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1391 & DMA_OWN) && !(card->dmarx_in_progress)) {
1392 if (rx_count > fst_max_reads) {
1393 /* Don't spend forever in receive processing
1394 * Schedule another event
1395 */
1396 fst_q_work_item(&fst_work_intq, card->card_no);
1397 tasklet_schedule(&fst_int_task);
1398 break; /* Leave the loop */
1399 }
1400 fst_intr_rx(card, port);
1401 rx_count++;
1402 }
1403 }
1404}
1405
1406/* The interrupt service routine
1407 * Dev_id is our fst_card_info pointer
1408 */
1409static irqreturn_t
1410fst_intr(int dummy, void *dev_id)
1411{
1412 struct fst_card_info *card = dev_id;
1413 struct fst_port_info *port;
1414 int rdidx; /* Event buffer indices */
1415 int wridx;
1416 int event; /* Actual event for processing */
1417 unsigned int dma_intcsr = 0;
1418 unsigned int do_card_interrupt;
1419 unsigned int int_retry_count;
1420
1421 /* Check to see if the interrupt was for this card
1422 * return if not
1423 * Note that the call to clear the interrupt is important
1424 */
1425 dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1426 if (card->state != FST_RUNNING) {
1427 pr_err("Interrupt received for card %d in a non running state (%d)\n",
1428 card->card_no, card->state);
1429
1430 /* It is possible to really be running, i.e. we have re-loaded
1431 * a running card
1432 * Clear and reprime the interrupt source
1433 */
1434 fst_clear_intr(card);
1435 return IRQ_HANDLED;
1436 }
1437
1438 /* Clear and reprime the interrupt source */
1439 fst_clear_intr(card);
1440
1441 /* Is the interrupt for this card (handshake == 1)
1442 */
1443 do_card_interrupt = 0;
1444 if (FST_RDB(card, interruptHandshake) == 1) {
1445 do_card_interrupt += FST_CARD_INT;
1446 /* Set the software acknowledge */
1447 FST_WRB(card, interruptHandshake, 0xEE);
1448 }
1449 if (card->family == FST_FAMILY_TXU) {
1450 /* Is it a DMA Interrupt
1451 */
1452 dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1453 if (dma_intcsr & 0x00200000) {
1454 /* DMA Channel 0 (Rx transfer complete)
1455 */
1456 dbg(DBG_RX, "DMA Rx xfer complete\n");
1457 outb(0x8, card->pci_conf + DMACSR0);
1458 fst_rx_dma_complete(card, card->dma_port_rx,
1459 card->dma_len_rx, card->dma_skb_rx,
1460 card->dma_rxpos);
1461 card->dmarx_in_progress = 0;
1462 do_card_interrupt += FST_RX_DMA_INT;
1463 }
1464 if (dma_intcsr & 0x00400000) {
1465 /* DMA Channel 1 (Tx transfer complete)
1466 */
1467 dbg(DBG_TX, "DMA Tx xfer complete\n");
1468 outb(0x8, card->pci_conf + DMACSR1);
1469 fst_tx_dma_complete(card, card->dma_port_tx,
1470 card->dma_len_tx, card->dma_txpos);
1471 card->dmatx_in_progress = 0;
1472 do_card_interrupt += FST_TX_DMA_INT;
1473 }
1474 }
1475
1476 /* Have we been missing Interrupts
1477 */
1478 int_retry_count = FST_RDL(card, interruptRetryCount);
1479 if (int_retry_count) {
1480 dbg(DBG_ASS, "Card %d int_retry_count is %d\n",
1481 card->card_no, int_retry_count);
1482 FST_WRL(card, interruptRetryCount, 0);
1483 }
1484
1485 if (!do_card_interrupt)
1486 return IRQ_HANDLED;
1487
1488 /* Scehdule the bottom half of the ISR */
1489 fst_q_work_item(&fst_work_intq, card->card_no);
1490 tasklet_schedule(&fst_int_task);
1491
1492 /* Drain the event queue */
1493 rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1494 wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1495 while (rdidx != wridx) {
1496 event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1497 port = &card->ports[event & 0x03];
1498
1499 dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1500
1501 switch (event) {
1502 case TE1_ALMA:
1503 dbg(DBG_INTR, "TE1 Alarm intr\n");
1504 if (port->run)
1505 fst_intr_te1_alarm(card, port);
1506 break;
1507
1508 case CTLA_CHG:
1509 case CTLB_CHG:
1510 case CTLC_CHG:
1511 case CTLD_CHG:
1512 if (port->run)
1513 fst_intr_ctlchg(card, port);
1514 break;
1515
1516 case ABTA_SENT:
1517 case ABTB_SENT:
1518 case ABTC_SENT:
1519 case ABTD_SENT:
1520 dbg(DBG_TX, "Abort complete port %d\n", port->index);
1521 break;
1522
1523 case TXA_UNDF:
1524 case TXB_UNDF:
1525 case TXC_UNDF:
1526 case TXD_UNDF:
1527 /* Difficult to see how we'd get this given that we
1528 * always load up the entire packet for DMA.
1529 */
1530 dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1531 port_to_dev(port)->stats.tx_errors++;
1532 port_to_dev(port)->stats.tx_fifo_errors++;
1533 dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1534 card->card_no, port->index);
1535 break;
1536
1537 case INIT_CPLT:
1538 dbg(DBG_INIT, "Card init OK intr\n");
1539 break;
1540
1541 case INIT_FAIL:
1542 dbg(DBG_INIT, "Card init FAILED intr\n");
1543 card->state = FST_IFAILED;
1544 break;
1545
1546 default:
1547 pr_err("intr: unknown card event %d. ignored\n", event);
1548 break;
1549 }
1550
1551 /* Bump and wrap the index */
1552 if (++rdidx >= MAX_CIRBUFF)
1553 rdidx = 0;
1554 }
1555 FST_WRB(card, interruptEvent.rdindex, rdidx);
1556 return IRQ_HANDLED;
1557}
1558
1559/* Check that the shared memory configuration is one that we can handle
1560 * and that some basic parameters are correct
1561 */
1562static void
1563check_started_ok(struct fst_card_info *card)
1564{
1565 int i;
1566
1567 /* Check structure version and end marker */
1568 if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1569 pr_err("Bad shared memory version %d expected %d\n",
1570 FST_RDW(card, smcVersion), SMC_VERSION);
1571 card->state = FST_BADVERSION;
1572 return;
1573 }
1574 if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1575 pr_err("Missing shared memory signature\n");
1576 card->state = FST_BADVERSION;
1577 return;
1578 }
1579 /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1580 i = FST_RDB(card, taskStatus);
1581 if (i == 0x01) {
1582 card->state = FST_RUNNING;
1583 } else if (i == 0xFF) {
1584 pr_err("Firmware initialisation failed. Card halted\n");
1585 card->state = FST_HALTED;
1586 return;
1587 } else if (i != 0x00) {
1588 pr_err("Unknown firmware status 0x%x\n", i);
1589 card->state = FST_HALTED;
1590 return;
1591 }
1592
1593 /* Finally check the number of ports reported by firmware against the
1594 * number we assumed at card detection. Should never happen with
1595 * existing firmware etc so we just report it for the moment.
1596 */
1597 if (FST_RDL(card, numberOfPorts) != card->nports) {
1598 pr_warn("Port count mismatch on card %d. Firmware thinks %d we say %d\n",
1599 card->card_no,
1600 FST_RDL(card, numberOfPorts), card->nports);
1601 }
1602}
1603
1604static int
1605set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1606 struct fstioc_info *info)
1607{
1608 int err;
1609 unsigned char my_framing;
1610
1611 /* Set things according to the user set valid flags
1612 * Several of the old options have been invalidated/replaced by the
1613 * generic hdlc package.
1614 */
1615 err = 0;
1616 if (info->valid & FSTVAL_PROTO) {
1617 if (info->proto == FST_RAW)
1618 port->mode = FST_RAW;
1619 else
1620 port->mode = FST_GEN_HDLC;
1621 }
1622
1623 if (info->valid & FSTVAL_CABLE)
1624 err = -EINVAL;
1625
1626 if (info->valid & FSTVAL_SPEED)
1627 err = -EINVAL;
1628
1629 if (info->valid & FSTVAL_PHASE)
1630 FST_WRB(card, portConfig[port->index].invertClock,
1631 info->invertClock);
1632 if (info->valid & FSTVAL_MODE)
1633 FST_WRW(card, cardMode, info->cardMode);
1634 if (info->valid & FSTVAL_TE1) {
1635 FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1636 FST_WRB(card, suConfig.clocking, info->clockSource);
1637 my_framing = FRAMING_E1;
1638 if (info->framing == E1)
1639 my_framing = FRAMING_E1;
1640 if (info->framing == T1)
1641 my_framing = FRAMING_T1;
1642 if (info->framing == J1)
1643 my_framing = FRAMING_J1;
1644 FST_WRB(card, suConfig.framing, my_framing);
1645 FST_WRB(card, suConfig.structure, info->structure);
1646 FST_WRB(card, suConfig.interface, info->interface);
1647 FST_WRB(card, suConfig.coding, info->coding);
1648 FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1649 FST_WRB(card, suConfig.equalizer, info->equalizer);
1650 FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1651 FST_WRB(card, suConfig.loopMode, info->loopMode);
1652 FST_WRB(card, suConfig.range, info->range);
1653 FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1654 FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1655 FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1656 FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1657 if (info->idleCode)
1658 FST_WRB(card, suConfig.enableIdleCode, 1);
1659 else
1660 FST_WRB(card, suConfig.enableIdleCode, 0);
1661 FST_WRB(card, suConfig.idleCode, info->idleCode);
1662#if FST_DEBUG
1663 if (info->valid & FSTVAL_TE1) {
1664 printk("Setting TE1 data\n");
1665 printk("Line Speed = %d\n", info->lineSpeed);
1666 printk("Start slot = %d\n", info->startingSlot);
1667 printk("Clock source = %d\n", info->clockSource);
1668 printk("Framing = %d\n", my_framing);
1669 printk("Structure = %d\n", info->structure);
1670 printk("interface = %d\n", info->interface);
1671 printk("Coding = %d\n", info->coding);
1672 printk("Line build out = %d\n", info->lineBuildOut);
1673 printk("Equaliser = %d\n", info->equalizer);
1674 printk("Transparent mode = %d\n",
1675 info->transparentMode);
1676 printk("Loop mode = %d\n", info->loopMode);
1677 printk("Range = %d\n", info->range);
1678 printk("Tx Buffer mode = %d\n", info->txBufferMode);
1679 printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1680 printk("LOS Threshold = %d\n", info->losThreshold);
1681 printk("Idle Code = %d\n", info->idleCode);
1682 }
1683#endif
1684 }
1685#if FST_DEBUG
1686 if (info->valid & FSTVAL_DEBUG)
1687 fst_debug_mask = info->debug;
1688#endif
1689
1690 return err;
1691}
1692
1693static void
1694gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1695 struct fstioc_info *info)
1696{
1697 int i;
1698
1699 memset(info, 0, sizeof(struct fstioc_info));
1700
1701 i = port->index;
1702 info->kernelVersion = LINUX_VERSION_CODE;
1703 info->nports = card->nports;
1704 info->type = card->type;
1705 info->state = card->state;
1706 info->proto = FST_GEN_HDLC;
1707 info->index = i;
1708#if FST_DEBUG
1709 info->debug = fst_debug_mask;
1710#endif
1711
1712 /* Only mark information as valid if card is running.
1713 * Copy the data anyway in case it is useful for diagnostics
1714 */
1715 info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1716#if FST_DEBUG
1717 | FSTVAL_DEBUG
1718#endif
1719 ;
1720
1721 info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1722 info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1723 info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1724 info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1725 info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1726 info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1727 info->clockStatus = FST_RDW(card, clockStatus[i]);
1728 info->cableStatus = FST_RDW(card, cableStatus);
1729 info->cardMode = FST_RDW(card, cardMode);
1730 info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1731
1732 /* The T2U can report cable presence for both A or B
1733 * in bits 0 and 1 of cableStatus. See which port we are and
1734 * do the mapping.
1735 */
1736 if (card->family == FST_FAMILY_TXU) {
1737 if (port->index == 0) {
1738 /* Port A
1739 */
1740 info->cableStatus = info->cableStatus & 1;
1741 } else {
1742 /* Port B
1743 */
1744 info->cableStatus = info->cableStatus >> 1;
1745 info->cableStatus = info->cableStatus & 1;
1746 }
1747 }
1748 /* Some additional bits if we are TE1
1749 */
1750 if (card->type == FST_TYPE_TE1) {
1751 info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1752 info->clockSource = FST_RDB(card, suConfig.clocking);
1753 info->framing = FST_RDB(card, suConfig.framing);
1754 info->structure = FST_RDB(card, suConfig.structure);
1755 info->interface = FST_RDB(card, suConfig.interface);
1756 info->coding = FST_RDB(card, suConfig.coding);
1757 info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1758 info->equalizer = FST_RDB(card, suConfig.equalizer);
1759 info->loopMode = FST_RDB(card, suConfig.loopMode);
1760 info->range = FST_RDB(card, suConfig.range);
1761 info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1762 info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1763 info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1764 info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1765 if (FST_RDB(card, suConfig.enableIdleCode))
1766 info->idleCode = FST_RDB(card, suConfig.idleCode);
1767 else
1768 info->idleCode = 0;
1769 info->receiveBufferDelay =
1770 FST_RDL(card, suStatus.receiveBufferDelay);
1771 info->framingErrorCount =
1772 FST_RDL(card, suStatus.framingErrorCount);
1773 info->codeViolationCount =
1774 FST_RDL(card, suStatus.codeViolationCount);
1775 info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1776 info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1777 info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1778 info->receiveRemoteAlarm =
1779 FST_RDB(card, suStatus.receiveRemoteAlarm);
1780 info->alarmIndicationSignal =
1781 FST_RDB(card, suStatus.alarmIndicationSignal);
1782 }
1783}
1784
1785static int
1786fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1787 struct if_settings *ifs)
1788{
1789 sync_serial_settings sync;
1790 int i;
1791
1792 if (ifs->size != sizeof(sync))
1793 return -ENOMEM;
1794
1795 if (copy_from_user(&sync, ifs->ifs_ifsu.sync, sizeof(sync)))
1796 return -EFAULT;
1797
1798 if (sync.loopback)
1799 return -EINVAL;
1800
1801 i = port->index;
1802
1803 switch (ifs->type) {
1804 case IF_IFACE_V35:
1805 FST_WRW(card, portConfig[i].lineInterface, V35);
1806 port->hwif = V35;
1807 break;
1808
1809 case IF_IFACE_V24:
1810 FST_WRW(card, portConfig[i].lineInterface, V24);
1811 port->hwif = V24;
1812 break;
1813
1814 case IF_IFACE_X21:
1815 FST_WRW(card, portConfig[i].lineInterface, X21);
1816 port->hwif = X21;
1817 break;
1818
1819 case IF_IFACE_X21D:
1820 FST_WRW(card, portConfig[i].lineInterface, X21D);
1821 port->hwif = X21D;
1822 break;
1823
1824 case IF_IFACE_T1:
1825 FST_WRW(card, portConfig[i].lineInterface, T1);
1826 port->hwif = T1;
1827 break;
1828
1829 case IF_IFACE_E1:
1830 FST_WRW(card, portConfig[i].lineInterface, E1);
1831 port->hwif = E1;
1832 break;
1833
1834 case IF_IFACE_SYNC_SERIAL:
1835 break;
1836
1837 default:
1838 return -EINVAL;
1839 }
1840
1841 switch (sync.clock_type) {
1842 case CLOCK_EXT:
1843 FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1844 break;
1845
1846 case CLOCK_INT:
1847 FST_WRB(card, portConfig[i].internalClock, INTCLK);
1848 break;
1849
1850 default:
1851 return -EINVAL;
1852 }
1853 FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1854 return 0;
1855}
1856
1857static int
1858fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1859 struct if_settings *ifs)
1860{
1861 sync_serial_settings sync;
1862 int i;
1863
1864 /* First check what line type is set, we'll default to reporting X.21
1865 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1866 * changed
1867 */
1868 switch (port->hwif) {
1869 case E1:
1870 ifs->type = IF_IFACE_E1;
1871 break;
1872 case T1:
1873 ifs->type = IF_IFACE_T1;
1874 break;
1875 case V35:
1876 ifs->type = IF_IFACE_V35;
1877 break;
1878 case V24:
1879 ifs->type = IF_IFACE_V24;
1880 break;
1881 case X21D:
1882 ifs->type = IF_IFACE_X21D;
1883 break;
1884 case X21:
1885 default:
1886 ifs->type = IF_IFACE_X21;
1887 break;
1888 }
1889 if (!ifs->size)
1890 return 0; /* only type requested */
1891
1892 if (ifs->size < sizeof(sync))
1893 return -ENOMEM;
1894
1895 i = port->index;
1896 memset(&sync, 0, sizeof(sync));
1897 sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1898 /* Lucky card and linux use same encoding here */
1899 sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1900 INTCLK ? CLOCK_INT : CLOCK_EXT;
1901 sync.loopback = 0;
1902
1903 if (copy_to_user(ifs->ifs_ifsu.sync, &sync, sizeof(sync)))
1904 return -EFAULT;
1905
1906 ifs->size = sizeof(sync);
1907 return 0;
1908}
1909
1910static int
1911fst_siocdevprivate(struct net_device *dev, struct ifreq *ifr, void __user *data, int cmd)
1912{
1913 struct fst_card_info *card;
1914 struct fst_port_info *port;
1915 struct fstioc_write wrthdr;
1916 struct fstioc_info info;
1917 unsigned long flags;
1918 void *buf;
1919
1920 dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, data);
1921
1922 port = dev_to_port(dev);
1923 card = port->card;
1924
1925 if (!capable(CAP_NET_ADMIN))
1926 return -EPERM;
1927
1928 switch (cmd) {
1929 case FSTCPURESET:
1930 fst_cpureset(card);
1931 card->state = FST_RESET;
1932 return 0;
1933
1934 case FSTCPURELEASE:
1935 fst_cpurelease(card);
1936 card->state = FST_STARTING;
1937 return 0;
1938
1939 case FSTWRITE: /* Code write (download) */
1940
1941 /* First copy in the header with the length and offset of data
1942 * to write
1943 */
1944 if (!data)
1945 return -EINVAL;
1946
1947 if (copy_from_user(&wrthdr, data, sizeof(struct fstioc_write)))
1948 return -EFAULT;
1949
1950 /* Sanity check the parameters. We don't support partial writes
1951 * when going over the top
1952 */
1953 if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
1954 wrthdr.size + wrthdr.offset > FST_MEMSIZE)
1955 return -ENXIO;
1956
1957 /* Now copy the data to the card. */
1958
1959 buf = memdup_user(data + sizeof(struct fstioc_write),
1960 wrthdr.size);
1961 if (IS_ERR(buf))
1962 return PTR_ERR(buf);
1963
1964 memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
1965 kfree(buf);
1966
1967 /* Writes to the memory of a card in the reset state constitute
1968 * a download
1969 */
1970 if (card->state == FST_RESET)
1971 card->state = FST_DOWNLOAD;
1972
1973 return 0;
1974
1975 case FSTGETCONF:
1976
1977 /* If card has just been started check the shared memory config
1978 * version and marker
1979 */
1980 if (card->state == FST_STARTING) {
1981 check_started_ok(card);
1982
1983 /* If everything checked out enable card interrupts */
1984 if (card->state == FST_RUNNING) {
1985 spin_lock_irqsave(&card->card_lock, flags);
1986 fst_enable_intr(card);
1987 FST_WRB(card, interruptHandshake, 0xEE);
1988 spin_unlock_irqrestore(&card->card_lock, flags);
1989 }
1990 }
1991
1992 if (!data)
1993 return -EINVAL;
1994
1995 gather_conf_info(card, port, &info);
1996
1997 if (copy_to_user(data, &info, sizeof(info)))
1998 return -EFAULT;
1999
2000 return 0;
2001
2002 case FSTSETCONF:
2003 /* Most of the settings have been moved to the generic ioctls
2004 * this just covers debug and board ident now
2005 */
2006
2007 if (card->state != FST_RUNNING) {
2008 pr_err("Attempt to configure card %d in non-running state (%d)\n",
2009 card->card_no, card->state);
2010 return -EIO;
2011 }
2012 if (copy_from_user(&info, data, sizeof(info)))
2013 return -EFAULT;
2014
2015 return set_conf_from_info(card, port, &info);
2016 default:
2017 return -EINVAL;
2018 }
2019}
2020
2021static int
2022fst_ioctl(struct net_device *dev, struct if_settings *ifs)
2023{
2024 struct fst_card_info *card;
2025 struct fst_port_info *port;
2026
2027 dbg(DBG_IOCTL, "SIOCDEVPRIVATE, %x\n", ifs->type);
2028
2029 port = dev_to_port(dev);
2030 card = port->card;
2031
2032 if (!capable(CAP_NET_ADMIN))
2033 return -EPERM;
2034
2035 switch (ifs->type) {
2036 case IF_GET_IFACE:
2037 return fst_get_iface(card, port, ifs);
2038
2039 case IF_IFACE_SYNC_SERIAL:
2040 case IF_IFACE_V35:
2041 case IF_IFACE_V24:
2042 case IF_IFACE_X21:
2043 case IF_IFACE_X21D:
2044 case IF_IFACE_T1:
2045 case IF_IFACE_E1:
2046 return fst_set_iface(card, port, ifs);
2047
2048 case IF_PROTO_RAW:
2049 port->mode = FST_RAW;
2050 return 0;
2051
2052 case IF_GET_PROTO:
2053 if (port->mode == FST_RAW) {
2054 ifs->type = IF_PROTO_RAW;
2055 return 0;
2056 }
2057 return hdlc_ioctl(dev, ifs);
2058
2059 default:
2060 port->mode = FST_GEN_HDLC;
2061 dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2062 ifs->type);
2063 return hdlc_ioctl(dev, ifs);
2064 }
2065}
2066
2067static void
2068fst_openport(struct fst_port_info *port)
2069{
2070 int signals;
2071
2072 /* Only init things if card is actually running. This allows open to
2073 * succeed for downloads etc.
2074 */
2075 if (port->card->state == FST_RUNNING) {
2076 if (port->run) {
2077 dbg(DBG_OPEN, "open: found port already running\n");
2078
2079 fst_issue_cmd(port, STOPPORT);
2080 port->run = 0;
2081 }
2082
2083 fst_rx_config(port);
2084 fst_tx_config(port);
2085 fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2086
2087 fst_issue_cmd(port, STARTPORT);
2088 port->run = 1;
2089
2090 signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2091 if (signals & ((port->hwif == X21 || port->hwif == X21D)
2092 ? IPSTS_INDICATE : IPSTS_DCD))
2093 netif_carrier_on(port_to_dev(port));
2094 else
2095 netif_carrier_off(port_to_dev(port));
2096
2097 port->txqe = 0;
2098 port->txqs = 0;
2099 }
2100}
2101
2102static void
2103fst_closeport(struct fst_port_info *port)
2104{
2105 if (port->card->state == FST_RUNNING) {
2106 if (port->run) {
2107 port->run = 0;
2108 fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2109
2110 fst_issue_cmd(port, STOPPORT);
2111 } else {
2112 dbg(DBG_OPEN, "close: port not running\n");
2113 }
2114 }
2115}
2116
2117static int
2118fst_open(struct net_device *dev)
2119{
2120 int err;
2121 struct fst_port_info *port;
2122
2123 port = dev_to_port(dev);
2124 if (!try_module_get(THIS_MODULE))
2125 return -EBUSY;
2126
2127 if (port->mode != FST_RAW) {
2128 err = hdlc_open(dev);
2129 if (err) {
2130 module_put(THIS_MODULE);
2131 return err;
2132 }
2133 }
2134
2135 fst_openport(port);
2136 netif_wake_queue(dev);
2137 return 0;
2138}
2139
2140static int
2141fst_close(struct net_device *dev)
2142{
2143 struct fst_port_info *port;
2144 struct fst_card_info *card;
2145 unsigned char tx_dma_done;
2146 unsigned char rx_dma_done;
2147
2148 port = dev_to_port(dev);
2149 card = port->card;
2150
2151 tx_dma_done = inb(card->pci_conf + DMACSR1);
2152 rx_dma_done = inb(card->pci_conf + DMACSR0);
2153 dbg(DBG_OPEN,
2154 "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2155 card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2156 rx_dma_done);
2157
2158 netif_stop_queue(dev);
2159 fst_closeport(dev_to_port(dev));
2160 if (port->mode != FST_RAW)
2161 hdlc_close(dev);
2162
2163 module_put(THIS_MODULE);
2164 return 0;
2165}
2166
2167static int
2168fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2169{
2170 /* Setting currently fixed in FarSync card so we check and forget
2171 */
2172 if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2173 return -EINVAL;
2174 return 0;
2175}
2176
2177static void
2178fst_tx_timeout(struct net_device *dev, unsigned int txqueue)
2179{
2180 struct fst_port_info *port;
2181 struct fst_card_info *card;
2182
2183 port = dev_to_port(dev);
2184 card = port->card;
2185 dev->stats.tx_errors++;
2186 dev->stats.tx_aborted_errors++;
2187 dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2188 card->card_no, port->index);
2189 fst_issue_cmd(port, ABORTTX);
2190
2191 netif_trans_update(dev);
2192 netif_wake_queue(dev);
2193 port->start = 0;
2194}
2195
2196static netdev_tx_t
2197fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2198{
2199 struct fst_card_info *card;
2200 struct fst_port_info *port;
2201 unsigned long flags;
2202 int txq_length;
2203
2204 port = dev_to_port(dev);
2205 card = port->card;
2206 dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2207
2208 /* Drop packet with error if we don't have carrier */
2209 if (!netif_carrier_ok(dev)) {
2210 dev_kfree_skb(skb);
2211 dev->stats.tx_errors++;
2212 dev->stats.tx_carrier_errors++;
2213 dbg(DBG_ASS,
2214 "Tried to transmit but no carrier on card %d port %d\n",
2215 card->card_no, port->index);
2216 return NETDEV_TX_OK;
2217 }
2218
2219 /* Drop it if it's too big! MTU failure ? */
2220 if (skb->len > LEN_TX_BUFFER) {
2221 dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2222 LEN_TX_BUFFER);
2223 dev_kfree_skb(skb);
2224 dev->stats.tx_errors++;
2225 return NETDEV_TX_OK;
2226 }
2227
2228 /* We are always going to queue the packet
2229 * so that the bottom half is the only place we tx from
2230 * Check there is room in the port txq
2231 */
2232 spin_lock_irqsave(&card->card_lock, flags);
2233 txq_length = port->txqe - port->txqs;
2234 if (txq_length < 0) {
2235 /* This is the case where the next free has wrapped but the
2236 * last used hasn't
2237 */
2238 txq_length = txq_length + FST_TXQ_DEPTH;
2239 }
2240 spin_unlock_irqrestore(&card->card_lock, flags);
2241 if (txq_length > fst_txq_high) {
2242 /* We have got enough buffers in the pipeline. Ask the network
2243 * layer to stop sending frames down
2244 */
2245 netif_stop_queue(dev);
2246 port->start = 1; /* I'm using this to signal stop sent up */
2247 }
2248
2249 if (txq_length == FST_TXQ_DEPTH - 1) {
2250 /* This shouldn't have happened but such is life
2251 */
2252 dev_kfree_skb(skb);
2253 dev->stats.tx_errors++;
2254 dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2255 card->card_no, port->index);
2256 return NETDEV_TX_OK;
2257 }
2258
2259 /* queue the buffer
2260 */
2261 spin_lock_irqsave(&card->card_lock, flags);
2262 port->txq[port->txqe] = skb;
2263 port->txqe++;
2264 if (port->txqe == FST_TXQ_DEPTH)
2265 port->txqe = 0;
2266 spin_unlock_irqrestore(&card->card_lock, flags);
2267
2268 /* Scehdule the bottom half which now does transmit processing */
2269 fst_q_work_item(&fst_work_txq, card->card_no);
2270 tasklet_schedule(&fst_tx_task);
2271
2272 return NETDEV_TX_OK;
2273}
2274
2275/* Card setup having checked hardware resources.
2276 * Should be pretty bizarre if we get an error here (kernel memory
2277 * exhaustion is one possibility). If we do see a problem we report it
2278 * via a printk and leave the corresponding interface and all that follow
2279 * disabled.
2280 */
2281static char *type_strings[] = {
2282 "no hardware", /* Should never be seen */
2283 "FarSync T2P",
2284 "FarSync T4P",
2285 "FarSync T1U",
2286 "FarSync T2U",
2287 "FarSync T4U",
2288 "FarSync TE1"
2289};
2290
2291static int
2292fst_init_card(struct fst_card_info *card)
2293{
2294 int i;
2295 int err;
2296
2297 /* We're working on a number of ports based on the card ID. If the
2298 * firmware detects something different later (should never happen)
2299 * we'll have to revise it in some way then.
2300 */
2301 for (i = 0; i < card->nports; i++) {
2302 err = register_hdlc_device(card->ports[i].dev);
2303 if (err < 0) {
2304 pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2305 i, -err);
2306 while (i--)
2307 unregister_hdlc_device(card->ports[i].dev);
2308 return err;
2309 }
2310 }
2311
2312 pr_info("%s-%s: %s IRQ%d, %d ports\n",
2313 port_to_dev(&card->ports[0])->name,
2314 port_to_dev(&card->ports[card->nports - 1])->name,
2315 type_strings[card->type], card->irq, card->nports);
2316 return 0;
2317}
2318
2319static const struct net_device_ops fst_ops = {
2320 .ndo_open = fst_open,
2321 .ndo_stop = fst_close,
2322 .ndo_start_xmit = hdlc_start_xmit,
2323 .ndo_siocwandev = fst_ioctl,
2324 .ndo_siocdevprivate = fst_siocdevprivate,
2325 .ndo_tx_timeout = fst_tx_timeout,
2326};
2327
2328/* Initialise card when detected.
2329 * Returns 0 to indicate success, or errno otherwise.
2330 */
2331static int
2332fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2333{
2334 static int no_of_cards_added;
2335 struct fst_card_info *card;
2336 int err = 0;
2337 int i;
2338
2339 printk_once(KERN_INFO
2340 pr_fmt("FarSync WAN driver " FST_USER_VERSION
2341 " (c) 2001-2004 FarSite Communications Ltd.\n"));
2342#if FST_DEBUG
2343 dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2344#endif
2345 /* We are going to be clever and allow certain cards not to be
2346 * configured. An exclude list can be provided in /etc/modules.conf
2347 */
2348 if (fst_excluded_cards != 0) {
2349 /* There are cards to exclude
2350 *
2351 */
2352 for (i = 0; i < fst_excluded_cards; i++) {
2353 if (pdev->devfn >> 3 == fst_excluded_list[i]) {
2354 pr_info("FarSync PCI device %d not assigned\n",
2355 (pdev->devfn) >> 3);
2356 return -EBUSY;
2357 }
2358 }
2359 }
2360
2361 /* Allocate driver private data */
2362 card = kzalloc(sizeof(struct fst_card_info), GFP_KERNEL);
2363 if (!card)
2364 return -ENOMEM;
2365
2366 /* Try to enable the device */
2367 err = pci_enable_device(pdev);
2368 if (err) {
2369 pr_err("Failed to enable card. Err %d\n", -err);
2370 goto enable_fail;
2371 }
2372
2373 err = pci_request_regions(pdev, "FarSync");
2374 if (err) {
2375 pr_err("Failed to allocate regions. Err %d\n", -err);
2376 goto regions_fail;
2377 }
2378
2379 /* Get virtual addresses of memory regions */
2380 card->pci_conf = pci_resource_start(pdev, 1);
2381 card->phys_mem = pci_resource_start(pdev, 2);
2382 card->phys_ctlmem = pci_resource_start(pdev, 3);
2383 card->mem = ioremap(card->phys_mem, FST_MEMSIZE);
2384 if (!card->mem) {
2385 pr_err("Physical memory remap failed\n");
2386 err = -ENODEV;
2387 goto ioremap_physmem_fail;
2388 }
2389 card->ctlmem = ioremap(card->phys_ctlmem, 0x10);
2390 if (!card->ctlmem) {
2391 pr_err("Control memory remap failed\n");
2392 err = -ENODEV;
2393 goto ioremap_ctlmem_fail;
2394 }
2395 dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2396
2397 /* Register the interrupt handler */
2398 if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2399 pr_err("Unable to register interrupt %d\n", card->irq);
2400 err = -ENODEV;
2401 goto irq_fail;
2402 }
2403
2404 /* Record info we need */
2405 card->irq = pdev->irq;
2406 card->type = ent->driver_data;
2407 card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2408 (ent->driver_data == FST_TYPE_T4P))
2409 ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2410 if (ent->driver_data == FST_TYPE_T1U ||
2411 ent->driver_data == FST_TYPE_TE1)
2412 card->nports = 1;
2413 else
2414 card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2415 (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2416
2417 card->state = FST_UNINIT;
2418 spin_lock_init(&card->card_lock);
2419
2420 for (i = 0; i < card->nports; i++) {
2421 struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2422 hdlc_device *hdlc;
2423
2424 if (!dev) {
2425 while (i--)
2426 free_netdev(card->ports[i].dev);
2427 pr_err("FarSync: out of memory\n");
2428 err = -ENOMEM;
2429 goto hdlcdev_fail;
2430 }
2431 card->ports[i].dev = dev;
2432 card->ports[i].card = card;
2433 card->ports[i].index = i;
2434 card->ports[i].run = 0;
2435
2436 hdlc = dev_to_hdlc(dev);
2437
2438 /* Fill in the net device info */
2439 /* Since this is a PCI setup this is purely
2440 * informational. Give them the buffer addresses
2441 * and basic card I/O.
2442 */
2443 dev->mem_start = card->phys_mem
2444 + BUF_OFFSET(txBuffer[i][0][0]);
2445 dev->mem_end = card->phys_mem
2446 + BUF_OFFSET(txBuffer[i][NUM_TX_BUFFER - 1][LEN_RX_BUFFER - 1]);
2447 dev->base_addr = card->pci_conf;
2448 dev->irq = card->irq;
2449
2450 dev->netdev_ops = &fst_ops;
2451 dev->tx_queue_len = FST_TX_QUEUE_LEN;
2452 dev->watchdog_timeo = FST_TX_TIMEOUT;
2453 hdlc->attach = fst_attach;
2454 hdlc->xmit = fst_start_xmit;
2455 }
2456
2457 card->device = pdev;
2458
2459 dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2460 card->nports, card->irq);
2461 dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2462 card->pci_conf, card->phys_mem, card->phys_ctlmem);
2463
2464 /* Reset the card's processor */
2465 fst_cpureset(card);
2466 card->state = FST_RESET;
2467
2468 /* Initialise DMA (if required) */
2469 fst_init_dma(card);
2470
2471 /* Record driver data for later use */
2472 pci_set_drvdata(pdev, card);
2473
2474 /* Remainder of card setup */
2475 if (no_of_cards_added >= FST_MAX_CARDS) {
2476 pr_err("FarSync: too many cards\n");
2477 err = -ENOMEM;
2478 goto card_array_fail;
2479 }
2480 fst_card_array[no_of_cards_added] = card;
2481 card->card_no = no_of_cards_added++; /* Record instance and bump it */
2482 err = fst_init_card(card);
2483 if (err)
2484 goto init_card_fail;
2485 if (card->family == FST_FAMILY_TXU) {
2486 /* Allocate a dma buffer for transmit and receives
2487 */
2488 card->rx_dma_handle_host =
2489 dma_alloc_coherent(&card->device->dev, FST_MAX_MTU,
2490 &card->rx_dma_handle_card, GFP_KERNEL);
2491 if (!card->rx_dma_handle_host) {
2492 pr_err("Could not allocate rx dma buffer\n");
2493 err = -ENOMEM;
2494 goto rx_dma_fail;
2495 }
2496 card->tx_dma_handle_host =
2497 dma_alloc_coherent(&card->device->dev, FST_MAX_MTU,
2498 &card->tx_dma_handle_card, GFP_KERNEL);
2499 if (!card->tx_dma_handle_host) {
2500 pr_err("Could not allocate tx dma buffer\n");
2501 err = -ENOMEM;
2502 goto tx_dma_fail;
2503 }
2504 }
2505 return 0; /* Success */
2506
2507tx_dma_fail:
2508 dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2509 card->rx_dma_handle_host, card->rx_dma_handle_card);
2510rx_dma_fail:
2511 fst_disable_intr(card);
2512 for (i = 0 ; i < card->nports ; i++)
2513 unregister_hdlc_device(card->ports[i].dev);
2514init_card_fail:
2515 fst_card_array[card->card_no] = NULL;
2516card_array_fail:
2517 for (i = 0 ; i < card->nports ; i++)
2518 free_netdev(card->ports[i].dev);
2519hdlcdev_fail:
2520 free_irq(card->irq, card);
2521irq_fail:
2522 iounmap(card->ctlmem);
2523ioremap_ctlmem_fail:
2524 iounmap(card->mem);
2525ioremap_physmem_fail:
2526 pci_release_regions(pdev);
2527regions_fail:
2528 pci_disable_device(pdev);
2529enable_fail:
2530 kfree(card);
2531 return err;
2532}
2533
2534/* Cleanup and close down a card
2535 */
2536static void
2537fst_remove_one(struct pci_dev *pdev)
2538{
2539 struct fst_card_info *card;
2540 int i;
2541
2542 card = pci_get_drvdata(pdev);
2543
2544 for (i = 0; i < card->nports; i++) {
2545 struct net_device *dev = port_to_dev(&card->ports[i]);
2546
2547 unregister_hdlc_device(dev);
2548 free_netdev(dev);
2549 }
2550
2551 fst_disable_intr(card);
2552 free_irq(card->irq, card);
2553
2554 iounmap(card->ctlmem);
2555 iounmap(card->mem);
2556 pci_release_regions(pdev);
2557 if (card->family == FST_FAMILY_TXU) {
2558 /* Free dma buffers
2559 */
2560 dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2561 card->rx_dma_handle_host,
2562 card->rx_dma_handle_card);
2563 dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2564 card->tx_dma_handle_host,
2565 card->tx_dma_handle_card);
2566 }
2567 fst_card_array[card->card_no] = NULL;
2568 kfree(card);
2569}
2570
2571static struct pci_driver fst_driver = {
2572 .name = FST_NAME,
2573 .id_table = fst_pci_dev_id,
2574 .probe = fst_add_one,
2575 .remove = fst_remove_one,
2576};
2577
2578static int __init
2579fst_init(void)
2580{
2581 int i;
2582
2583 for (i = 0; i < FST_MAX_CARDS; i++)
2584 fst_card_array[i] = NULL;
2585 return pci_register_driver(&fst_driver);
2586}
2587
2588static void __exit
2589fst_cleanup_module(void)
2590{
2591 pr_info("FarSync WAN driver unloading\n");
2592 pci_unregister_driver(&fst_driver);
2593}
2594
2595module_init(fst_init);
2596module_exit(fst_cleanup_module);
1/*
2 * FarSync WAN driver for Linux (2.6.x kernel version)
3 *
4 * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
5 *
6 * Copyright (C) 2001-2004 FarSite Communications Ltd.
7 * www.farsite.co.uk
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 *
14 * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk>
15 * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk>
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/module.h>
21#include <linux/kernel.h>
22#include <linux/version.h>
23#include <linux/pci.h>
24#include <linux/sched.h>
25#include <linux/slab.h>
26#include <linux/ioport.h>
27#include <linux/init.h>
28#include <linux/interrupt.h>
29#include <linux/if.h>
30#include <linux/hdlc.h>
31#include <asm/io.h>
32#include <asm/uaccess.h>
33
34#include "farsync.h"
35
36/*
37 * Module info
38 */
39MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
40MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
41MODULE_LICENSE("GPL");
42
43/* Driver configuration and global parameters
44 * ==========================================
45 */
46
47/* Number of ports (per card) and cards supported
48 */
49#define FST_MAX_PORTS 4
50#define FST_MAX_CARDS 32
51
52/* Default parameters for the link
53 */
54#define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is
55 * useful */
56#define FST_TXQ_DEPTH 16 /* This one is for the buffering
57 * of frames on the way down to the card
58 * so that we can keep the card busy
59 * and maximise throughput
60 */
61#define FST_HIGH_WATER_MARK 12 /* Point at which we flow control
62 * network layer */
63#define FST_LOW_WATER_MARK 8 /* Point at which we remove flow
64 * control from network layer */
65#define FST_MAX_MTU 8000 /* Huge but possible */
66#define FST_DEF_MTU 1500 /* Common sane value */
67
68#define FST_TX_TIMEOUT (2*HZ)
69
70#ifdef ARPHRD_RAWHDLC
71#define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */
72#else
73#define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */
74#endif
75
76/*
77 * Modules parameters and associated variables
78 */
79static int fst_txq_low = FST_LOW_WATER_MARK;
80static int fst_txq_high = FST_HIGH_WATER_MARK;
81static int fst_max_reads = 7;
82static int fst_excluded_cards = 0;
83static int fst_excluded_list[FST_MAX_CARDS];
84
85module_param(fst_txq_low, int, 0);
86module_param(fst_txq_high, int, 0);
87module_param(fst_max_reads, int, 0);
88module_param(fst_excluded_cards, int, 0);
89module_param_array(fst_excluded_list, int, NULL, 0);
90
91/* Card shared memory layout
92 * =========================
93 */
94#pragma pack(1)
95
96/* This information is derived in part from the FarSite FarSync Smc.h
97 * file. Unfortunately various name clashes and the non-portability of the
98 * bit field declarations in that file have meant that I have chosen to
99 * recreate the information here.
100 *
101 * The SMC (Shared Memory Configuration) has a version number that is
102 * incremented every time there is a significant change. This number can
103 * be used to check that we have not got out of step with the firmware
104 * contained in the .CDE files.
105 */
106#define SMC_VERSION 24
107
108#define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */
109
110#define SMC_BASE 0x00002000L /* Base offset of the shared memory window main
111 * configuration structure */
112#define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA
113 * buffers */
114
115#define LEN_TX_BUFFER 8192 /* Size of packet buffers */
116#define LEN_RX_BUFFER 8192
117
118#define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
119#define LEN_SMALL_RX_BUFFER 256
120
121#define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */
122#define NUM_RX_BUFFER 8
123
124/* Interrupt retry time in milliseconds */
125#define INT_RETRY_TIME 2
126
127/* The Am186CH/CC processors support a SmartDMA mode using circular pools
128 * of buffer descriptors. The structure is almost identical to that used
129 * in the LANCE Ethernet controllers. Details available as PDF from the
130 * AMD web site: http://www.amd.com/products/epd/processors/\
131 * 2.16bitcont/3.am186cxfa/a21914/21914.pdf
132 */
133struct txdesc { /* Transmit descriptor */
134 volatile u16 ladr; /* Low order address of packet. This is a
135 * linear address in the Am186 memory space
136 */
137 volatile u8 hadr; /* High order address. Low 4 bits only, high 4
138 * bits must be zero
139 */
140 volatile u8 bits; /* Status and config */
141 volatile u16 bcnt; /* 2s complement of packet size in low 15 bits.
142 * Transmit terminal count interrupt enable in
143 * top bit.
144 */
145 u16 unused; /* Not used in Tx */
146};
147
148struct rxdesc { /* Receive descriptor */
149 volatile u16 ladr; /* Low order address of packet */
150 volatile u8 hadr; /* High order address */
151 volatile u8 bits; /* Status and config */
152 volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits.
153 * Receive terminal count interrupt enable in
154 * top bit.
155 */
156 volatile u16 mcnt; /* Message byte count (15 bits) */
157};
158
159/* Convert a length into the 15 bit 2's complement */
160/* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */
161/* Since we need to set the high bit to enable the completion interrupt this
162 * can be made a lot simpler
163 */
164#define cnv_bcnt(len) (-(len))
165
166/* Status and config bits for the above */
167#define DMA_OWN 0x80 /* SmartDMA owns the descriptor */
168#define TX_STP 0x02 /* Tx: start of packet */
169#define TX_ENP 0x01 /* Tx: end of packet */
170#define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */
171#define RX_FRAM 0x20 /* Rx: framing error */
172#define RX_OFLO 0x10 /* Rx: overflow error */
173#define RX_CRC 0x08 /* Rx: CRC error */
174#define RX_HBUF 0x04 /* Rx: buffer error */
175#define RX_STP 0x02 /* Rx: start of packet */
176#define RX_ENP 0x01 /* Rx: end of packet */
177
178/* Interrupts from the card are caused by various events which are presented
179 * in a circular buffer as several events may be processed on one physical int
180 */
181#define MAX_CIRBUFF 32
182
183struct cirbuff {
184 u8 rdindex; /* read, then increment and wrap */
185 u8 wrindex; /* write, then increment and wrap */
186 u8 evntbuff[MAX_CIRBUFF];
187};
188
189/* Interrupt event codes.
190 * Where appropriate the two low order bits indicate the port number
191 */
192#define CTLA_CHG 0x18 /* Control signal changed */
193#define CTLB_CHG 0x19
194#define CTLC_CHG 0x1A
195#define CTLD_CHG 0x1B
196
197#define INIT_CPLT 0x20 /* Initialisation complete */
198#define INIT_FAIL 0x21 /* Initialisation failed */
199
200#define ABTA_SENT 0x24 /* Abort sent */
201#define ABTB_SENT 0x25
202#define ABTC_SENT 0x26
203#define ABTD_SENT 0x27
204
205#define TXA_UNDF 0x28 /* Transmission underflow */
206#define TXB_UNDF 0x29
207#define TXC_UNDF 0x2A
208#define TXD_UNDF 0x2B
209
210#define F56_INT 0x2C
211#define M32_INT 0x2D
212
213#define TE1_ALMA 0x30
214
215/* Port physical configuration. See farsync.h for field values */
216struct port_cfg {
217 u16 lineInterface; /* Physical interface type */
218 u8 x25op; /* Unused at present */
219 u8 internalClock; /* 1 => internal clock, 0 => external */
220 u8 transparentMode; /* 1 => on, 0 => off */
221 u8 invertClock; /* 0 => normal, 1 => inverted */
222 u8 padBytes[6]; /* Padding */
223 u32 lineSpeed; /* Speed in bps */
224};
225
226/* TE1 port physical configuration */
227struct su_config {
228 u32 dataRate;
229 u8 clocking;
230 u8 framing;
231 u8 structure;
232 u8 interface;
233 u8 coding;
234 u8 lineBuildOut;
235 u8 equalizer;
236 u8 transparentMode;
237 u8 loopMode;
238 u8 range;
239 u8 txBufferMode;
240 u8 rxBufferMode;
241 u8 startingSlot;
242 u8 losThreshold;
243 u8 enableIdleCode;
244 u8 idleCode;
245 u8 spare[44];
246};
247
248/* TE1 Status */
249struct su_status {
250 u32 receiveBufferDelay;
251 u32 framingErrorCount;
252 u32 codeViolationCount;
253 u32 crcErrorCount;
254 u32 lineAttenuation;
255 u8 portStarted;
256 u8 lossOfSignal;
257 u8 receiveRemoteAlarm;
258 u8 alarmIndicationSignal;
259 u8 spare[40];
260};
261
262/* Finally sling all the above together into the shared memory structure.
263 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
264 * evolving under NT for some time so I guess we're stuck with it.
265 * The structure starts at offset SMC_BASE.
266 * See farsync.h for some field values.
267 */
268struct fst_shared {
269 /* DMA descriptor rings */
270 struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
271 struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
272
273 /* Obsolete small buffers */
274 u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
275 u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
276
277 u8 taskStatus; /* 0x00 => initialising, 0x01 => running,
278 * 0xFF => halted
279 */
280
281 u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt,
282 * set to 0xEE by host to acknowledge interrupt
283 */
284
285 u16 smcVersion; /* Must match SMC_VERSION */
286
287 u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
288 * version, RR = revision and BB = build
289 */
290
291 u16 txa_done; /* Obsolete completion flags */
292 u16 rxa_done;
293 u16 txb_done;
294 u16 rxb_done;
295 u16 txc_done;
296 u16 rxc_done;
297 u16 txd_done;
298 u16 rxd_done;
299
300 u16 mailbox[4]; /* Diagnostics mailbox. Not used */
301
302 struct cirbuff interruptEvent; /* interrupt causes */
303
304 u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */
305 u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */
306
307 struct port_cfg portConfig[FST_MAX_PORTS];
308
309 u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
310
311 u16 cableStatus; /* lsb: 0=> present, 1=> absent */
312
313 u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */
314 u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */
315
316 u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */
317 u16 cardMailbox[4]; /* Not used */
318
319 /* Number of times the card thinks the host has
320 * missed an interrupt by not acknowledging
321 * within 2mS (I guess NT has problems)
322 */
323 u32 interruptRetryCount;
324
325 /* Driver private data used as an ID. We'll not
326 * use this as I'd rather keep such things
327 * in main memory rather than on the PCI bus
328 */
329 u32 portHandle[FST_MAX_PORTS];
330
331 /* Count of Tx underflows for stats */
332 u32 transmitBufferUnderflow[FST_MAX_PORTS];
333
334 /* Debounced V.24 control input status */
335 u32 v24DebouncedSts[FST_MAX_PORTS];
336
337 /* Adapter debounce timers. Don't touch */
338 u32 ctsTimer[FST_MAX_PORTS];
339 u32 ctsTimerRun[FST_MAX_PORTS];
340 u32 dcdTimer[FST_MAX_PORTS];
341 u32 dcdTimerRun[FST_MAX_PORTS];
342
343 u32 numberOfPorts; /* Number of ports detected at startup */
344
345 u16 _reserved[64];
346
347 u16 cardMode; /* Bit-mask to enable features:
348 * Bit 0: 1 enables LED identify mode
349 */
350
351 u16 portScheduleOffset;
352
353 struct su_config suConfig; /* TE1 Bits */
354 struct su_status suStatus;
355
356 u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of
357 * the structure and marks the end of shared
358 * memory. Adapter code initializes it as
359 * END_SIG.
360 */
361};
362
363/* endOfSmcSignature value */
364#define END_SIG 0x12345678
365
366/* Mailbox values. (portMailbox) */
367#define NOP 0 /* No operation */
368#define ACK 1 /* Positive acknowledgement to PC driver */
369#define NAK 2 /* Negative acknowledgement to PC driver */
370#define STARTPORT 3 /* Start an HDLC port */
371#define STOPPORT 4 /* Stop an HDLC port */
372#define ABORTTX 5 /* Abort the transmitter for a port */
373#define SETV24O 6 /* Set V24 outputs */
374
375/* PLX Chip Register Offsets */
376#define CNTRL_9052 0x50 /* Control Register */
377#define CNTRL_9054 0x6c /* Control Register */
378
379#define INTCSR_9052 0x4c /* Interrupt control/status register */
380#define INTCSR_9054 0x68 /* Interrupt control/status register */
381
382/* 9054 DMA Registers */
383/*
384 * Note that we will be using DMA Channel 0 for copying rx data
385 * and Channel 1 for copying tx data
386 */
387#define DMAMODE0 0x80
388#define DMAPADR0 0x84
389#define DMALADR0 0x88
390#define DMASIZ0 0x8c
391#define DMADPR0 0x90
392#define DMAMODE1 0x94
393#define DMAPADR1 0x98
394#define DMALADR1 0x9c
395#define DMASIZ1 0xa0
396#define DMADPR1 0xa4
397#define DMACSR0 0xa8
398#define DMACSR1 0xa9
399#define DMAARB 0xac
400#define DMATHR 0xb0
401#define DMADAC0 0xb4
402#define DMADAC1 0xb8
403#define DMAMARBR 0xac
404
405#define FST_MIN_DMA_LEN 64
406#define FST_RX_DMA_INT 0x01
407#define FST_TX_DMA_INT 0x02
408#define FST_CARD_INT 0x04
409
410/* Larger buffers are positioned in memory at offset BFM_BASE */
411struct buf_window {
412 u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
413 u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
414};
415
416/* Calculate offset of a buffer object within the shared memory window */
417#define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X))
418
419#pragma pack()
420
421/* Device driver private information
422 * =================================
423 */
424/* Per port (line or channel) information
425 */
426struct fst_port_info {
427 struct net_device *dev; /* Device struct - must be first */
428 struct fst_card_info *card; /* Card we're associated with */
429 int index; /* Port index on the card */
430 int hwif; /* Line hardware (lineInterface copy) */
431 int run; /* Port is running */
432 int mode; /* Normal or FarSync raw */
433 int rxpos; /* Next Rx buffer to use */
434 int txpos; /* Next Tx buffer to use */
435 int txipos; /* Next Tx buffer to check for free */
436 int start; /* Indication of start/stop to network */
437 /*
438 * A sixteen entry transmit queue
439 */
440 int txqs; /* index to get next buffer to tx */
441 int txqe; /* index to queue next packet */
442 struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */
443 int rxqdepth;
444};
445
446/* Per card information
447 */
448struct fst_card_info {
449 char __iomem *mem; /* Card memory mapped to kernel space */
450 char __iomem *ctlmem; /* Control memory for PCI cards */
451 unsigned int phys_mem; /* Physical memory window address */
452 unsigned int phys_ctlmem; /* Physical control memory address */
453 unsigned int irq; /* Interrupt request line number */
454 unsigned int nports; /* Number of serial ports */
455 unsigned int type; /* Type index of card */
456 unsigned int state; /* State of card */
457 spinlock_t card_lock; /* Lock for SMP access */
458 unsigned short pci_conf; /* PCI card config in I/O space */
459 /* Per port info */
460 struct fst_port_info ports[FST_MAX_PORTS];
461 struct pci_dev *device; /* Information about the pci device */
462 int card_no; /* Inst of the card on the system */
463 int family; /* TxP or TxU */
464 int dmarx_in_progress;
465 int dmatx_in_progress;
466 unsigned long int_count;
467 unsigned long int_time_ave;
468 void *rx_dma_handle_host;
469 dma_addr_t rx_dma_handle_card;
470 void *tx_dma_handle_host;
471 dma_addr_t tx_dma_handle_card;
472 struct sk_buff *dma_skb_rx;
473 struct fst_port_info *dma_port_rx;
474 struct fst_port_info *dma_port_tx;
475 int dma_len_rx;
476 int dma_len_tx;
477 int dma_txpos;
478 int dma_rxpos;
479};
480
481/* Convert an HDLC device pointer into a port info pointer and similar */
482#define dev_to_port(D) (dev_to_hdlc(D)->priv)
483#define port_to_dev(P) ((P)->dev)
484
485
486/*
487 * Shared memory window access macros
488 *
489 * We have a nice memory based structure above, which could be directly
490 * mapped on i386 but might not work on other architectures unless we use
491 * the readb,w,l and writeb,w,l macros. Unfortunately these macros take
492 * physical offsets so we have to convert. The only saving grace is that
493 * this should all collapse back to a simple indirection eventually.
494 */
495#define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X))
496
497#define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E))
498#define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E))
499#define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E))
500
501#define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E))
502#define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E))
503#define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E))
504
505/*
506 * Debug support
507 */
508#if FST_DEBUG
509
510static int fst_debug_mask = { FST_DEBUG };
511
512/* Most common debug activity is to print something if the corresponding bit
513 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
514 * support variable numbers of macro parameters. The inverted if prevents us
515 * eating someone else's else clause.
516 */
517#define dbg(F, fmt, args...) \
518do { \
519 if (fst_debug_mask & (F)) \
520 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
521} while (0)
522#else
523#define dbg(F, fmt, args...) \
524do { \
525 if (0) \
526 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
527} while (0)
528#endif
529
530/*
531 * PCI ID lookup table
532 */
533static DEFINE_PCI_DEVICE_TABLE(fst_pci_dev_id) = {
534 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
535 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
536
537 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
538 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
539
540 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
541 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
542
543 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
544 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
545
546 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
547 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
548
549 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
550 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
551
552 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
553 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
554 {0,} /* End */
555};
556
557MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
558
559/*
560 * Device Driver Work Queues
561 *
562 * So that we don't spend too much time processing events in the
563 * Interrupt Service routine, we will declare a work queue per Card
564 * and make the ISR schedule a task in the queue for later execution.
565 * In the 2.4 Kernel we used to use the immediate queue for BH's
566 * Now that they are gone, tasklets seem to be much better than work
567 * queues.
568 */
569
570static void do_bottom_half_tx(struct fst_card_info *card);
571static void do_bottom_half_rx(struct fst_card_info *card);
572static void fst_process_tx_work_q(unsigned long work_q);
573static void fst_process_int_work_q(unsigned long work_q);
574
575static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
576static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
577
578static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
579static spinlock_t fst_work_q_lock;
580static u64 fst_work_txq;
581static u64 fst_work_intq;
582
583static void
584fst_q_work_item(u64 * queue, int card_index)
585{
586 unsigned long flags;
587 u64 mask;
588
589 /*
590 * Grab the queue exclusively
591 */
592 spin_lock_irqsave(&fst_work_q_lock, flags);
593
594 /*
595 * Making an entry in the queue is simply a matter of setting
596 * a bit for the card indicating that there is work to do in the
597 * bottom half for the card. Note the limitation of 64 cards.
598 * That ought to be enough
599 */
600 mask = 1 << card_index;
601 *queue |= mask;
602 spin_unlock_irqrestore(&fst_work_q_lock, flags);
603}
604
605static void
606fst_process_tx_work_q(unsigned long /*void **/work_q)
607{
608 unsigned long flags;
609 u64 work_txq;
610 int i;
611
612 /*
613 * Grab the queue exclusively
614 */
615 dbg(DBG_TX, "fst_process_tx_work_q\n");
616 spin_lock_irqsave(&fst_work_q_lock, flags);
617 work_txq = fst_work_txq;
618 fst_work_txq = 0;
619 spin_unlock_irqrestore(&fst_work_q_lock, flags);
620
621 /*
622 * Call the bottom half for each card with work waiting
623 */
624 for (i = 0; i < FST_MAX_CARDS; i++) {
625 if (work_txq & 0x01) {
626 if (fst_card_array[i] != NULL) {
627 dbg(DBG_TX, "Calling tx bh for card %d\n", i);
628 do_bottom_half_tx(fst_card_array[i]);
629 }
630 }
631 work_txq = work_txq >> 1;
632 }
633}
634
635static void
636fst_process_int_work_q(unsigned long /*void **/work_q)
637{
638 unsigned long flags;
639 u64 work_intq;
640 int i;
641
642 /*
643 * Grab the queue exclusively
644 */
645 dbg(DBG_INTR, "fst_process_int_work_q\n");
646 spin_lock_irqsave(&fst_work_q_lock, flags);
647 work_intq = fst_work_intq;
648 fst_work_intq = 0;
649 spin_unlock_irqrestore(&fst_work_q_lock, flags);
650
651 /*
652 * Call the bottom half for each card with work waiting
653 */
654 for (i = 0; i < FST_MAX_CARDS; i++) {
655 if (work_intq & 0x01) {
656 if (fst_card_array[i] != NULL) {
657 dbg(DBG_INTR,
658 "Calling rx & tx bh for card %d\n", i);
659 do_bottom_half_rx(fst_card_array[i]);
660 do_bottom_half_tx(fst_card_array[i]);
661 }
662 }
663 work_intq = work_intq >> 1;
664 }
665}
666
667/* Card control functions
668 * ======================
669 */
670/* Place the processor in reset state
671 *
672 * Used to be a simple write to card control space but a glitch in the latest
673 * AMD Am186CH processor means that we now have to do it by asserting and de-
674 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
675 * at offset 9052_CNTRL. Note the updates for the TXU.
676 */
677static inline void
678fst_cpureset(struct fst_card_info *card)
679{
680 unsigned char interrupt_line_register;
681 unsigned long j = jiffies + 1;
682 unsigned int regval;
683
684 if (card->family == FST_FAMILY_TXU) {
685 if (pci_read_config_byte
686 (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
687 dbg(DBG_ASS,
688 "Error in reading interrupt line register\n");
689 }
690 /*
691 * Assert PLX software reset and Am186 hardware reset
692 * and then deassert the PLX software reset but 186 still in reset
693 */
694 outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
695 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
696 /*
697 * We are delaying here to allow the 9054 to reset itself
698 */
699 j = jiffies + 1;
700 while (jiffies < j)
701 /* Do nothing */ ;
702 outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
703 /*
704 * We are delaying here to allow the 9054 to reload its eeprom
705 */
706 j = jiffies + 1;
707 while (jiffies < j)
708 /* Do nothing */ ;
709 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
710
711 if (pci_write_config_byte
712 (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
713 dbg(DBG_ASS,
714 "Error in writing interrupt line register\n");
715 }
716
717 } else {
718 regval = inl(card->pci_conf + CNTRL_9052);
719
720 outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
721 outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
722 }
723}
724
725/* Release the processor from reset
726 */
727static inline void
728fst_cpurelease(struct fst_card_info *card)
729{
730 if (card->family == FST_FAMILY_TXU) {
731 /*
732 * Force posted writes to complete
733 */
734 (void) readb(card->mem);
735
736 /*
737 * Release LRESET DO = 1
738 * Then release Local Hold, DO = 1
739 */
740 outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
741 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
742 } else {
743 (void) readb(card->ctlmem);
744 }
745}
746
747/* Clear the cards interrupt flag
748 */
749static inline void
750fst_clear_intr(struct fst_card_info *card)
751{
752 if (card->family == FST_FAMILY_TXU) {
753 (void) readb(card->ctlmem);
754 } else {
755 /* Poke the appropriate PLX chip register (same as enabling interrupts)
756 */
757 outw(0x0543, card->pci_conf + INTCSR_9052);
758 }
759}
760
761/* Enable card interrupts
762 */
763static inline void
764fst_enable_intr(struct fst_card_info *card)
765{
766 if (card->family == FST_FAMILY_TXU) {
767 outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
768 } else {
769 outw(0x0543, card->pci_conf + INTCSR_9052);
770 }
771}
772
773/* Disable card interrupts
774 */
775static inline void
776fst_disable_intr(struct fst_card_info *card)
777{
778 if (card->family == FST_FAMILY_TXU) {
779 outl(0x00000000, card->pci_conf + INTCSR_9054);
780 } else {
781 outw(0x0000, card->pci_conf + INTCSR_9052);
782 }
783}
784
785/* Process the result of trying to pass a received frame up the stack
786 */
787static void
788fst_process_rx_status(int rx_status, char *name)
789{
790 switch (rx_status) {
791 case NET_RX_SUCCESS:
792 {
793 /*
794 * Nothing to do here
795 */
796 break;
797 }
798 case NET_RX_DROP:
799 {
800 dbg(DBG_ASS, "%s: Received packet dropped\n", name);
801 break;
802 }
803 }
804}
805
806/* Initilaise DMA for PLX 9054
807 */
808static inline void
809fst_init_dma(struct fst_card_info *card)
810{
811 /*
812 * This is only required for the PLX 9054
813 */
814 if (card->family == FST_FAMILY_TXU) {
815 pci_set_master(card->device);
816 outl(0x00020441, card->pci_conf + DMAMODE0);
817 outl(0x00020441, card->pci_conf + DMAMODE1);
818 outl(0x0, card->pci_conf + DMATHR);
819 }
820}
821
822/* Tx dma complete interrupt
823 */
824static void
825fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
826 int len, int txpos)
827{
828 struct net_device *dev = port_to_dev(port);
829
830 /*
831 * Everything is now set, just tell the card to go
832 */
833 dbg(DBG_TX, "fst_tx_dma_complete\n");
834 FST_WRB(card, txDescrRing[port->index][txpos].bits,
835 DMA_OWN | TX_STP | TX_ENP);
836 dev->stats.tx_packets++;
837 dev->stats.tx_bytes += len;
838 dev->trans_start = jiffies;
839}
840
841/*
842 * Mark it for our own raw sockets interface
843 */
844static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
845{
846 skb->dev = dev;
847 skb_reset_mac_header(skb);
848 skb->pkt_type = PACKET_HOST;
849 return htons(ETH_P_CUST);
850}
851
852/* Rx dma complete interrupt
853 */
854static void
855fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
856 int len, struct sk_buff *skb, int rxp)
857{
858 struct net_device *dev = port_to_dev(port);
859 int pi;
860 int rx_status;
861
862 dbg(DBG_TX, "fst_rx_dma_complete\n");
863 pi = port->index;
864 memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
865
866 /* Reset buffer descriptor */
867 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
868
869 /* Update stats */
870 dev->stats.rx_packets++;
871 dev->stats.rx_bytes += len;
872
873 /* Push upstream */
874 dbg(DBG_RX, "Pushing the frame up the stack\n");
875 if (port->mode == FST_RAW)
876 skb->protocol = farsync_type_trans(skb, dev);
877 else
878 skb->protocol = hdlc_type_trans(skb, dev);
879 rx_status = netif_rx(skb);
880 fst_process_rx_status(rx_status, port_to_dev(port)->name);
881 if (rx_status == NET_RX_DROP)
882 dev->stats.rx_dropped++;
883}
884
885/*
886 * Receive a frame through the DMA
887 */
888static inline void
889fst_rx_dma(struct fst_card_info *card, dma_addr_t skb,
890 dma_addr_t mem, int len)
891{
892 /*
893 * This routine will setup the DMA and start it
894 */
895
896 dbg(DBG_RX, "In fst_rx_dma %lx %lx %d\n",
897 (unsigned long) skb, (unsigned long) mem, len);
898 if (card->dmarx_in_progress) {
899 dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
900 }
901
902 outl(skb, card->pci_conf + DMAPADR0); /* Copy to here */
903 outl(mem, card->pci_conf + DMALADR0); /* from here */
904 outl(len, card->pci_conf + DMASIZ0); /* for this length */
905 outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */
906
907 /*
908 * We use the dmarx_in_progress flag to flag the channel as busy
909 */
910 card->dmarx_in_progress = 1;
911 outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */
912}
913
914/*
915 * Send a frame through the DMA
916 */
917static inline void
918fst_tx_dma(struct fst_card_info *card, unsigned char *skb,
919 unsigned char *mem, int len)
920{
921 /*
922 * This routine will setup the DMA and start it.
923 */
924
925 dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len);
926 if (card->dmatx_in_progress) {
927 dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
928 }
929
930 outl((unsigned long) skb, card->pci_conf + DMAPADR1); /* Copy from here */
931 outl((unsigned long) mem, card->pci_conf + DMALADR1); /* to here */
932 outl(len, card->pci_conf + DMASIZ1); /* for this length */
933 outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */
934
935 /*
936 * We use the dmatx_in_progress to flag the channel as busy
937 */
938 card->dmatx_in_progress = 1;
939 outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */
940}
941
942/* Issue a Mailbox command for a port.
943 * Note we issue them on a fire and forget basis, not expecting to see an
944 * error and not waiting for completion.
945 */
946static void
947fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
948{
949 struct fst_card_info *card;
950 unsigned short mbval;
951 unsigned long flags;
952 int safety;
953
954 card = port->card;
955 spin_lock_irqsave(&card->card_lock, flags);
956 mbval = FST_RDW(card, portMailbox[port->index][0]);
957
958 safety = 0;
959 /* Wait for any previous command to complete */
960 while (mbval > NAK) {
961 spin_unlock_irqrestore(&card->card_lock, flags);
962 schedule_timeout_uninterruptible(1);
963 spin_lock_irqsave(&card->card_lock, flags);
964
965 if (++safety > 2000) {
966 pr_err("Mailbox safety timeout\n");
967 break;
968 }
969
970 mbval = FST_RDW(card, portMailbox[port->index][0]);
971 }
972 if (safety > 0) {
973 dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
974 }
975 if (mbval == NAK) {
976 dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
977 }
978
979 FST_WRW(card, portMailbox[port->index][0], cmd);
980
981 if (cmd == ABORTTX || cmd == STARTPORT) {
982 port->txpos = 0;
983 port->txipos = 0;
984 port->start = 0;
985 }
986
987 spin_unlock_irqrestore(&card->card_lock, flags);
988}
989
990/* Port output signals control
991 */
992static inline void
993fst_op_raise(struct fst_port_info *port, unsigned int outputs)
994{
995 outputs |= FST_RDL(port->card, v24OpSts[port->index]);
996 FST_WRL(port->card, v24OpSts[port->index], outputs);
997
998 if (port->run)
999 fst_issue_cmd(port, SETV24O);
1000}
1001
1002static inline void
1003fst_op_lower(struct fst_port_info *port, unsigned int outputs)
1004{
1005 outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
1006 FST_WRL(port->card, v24OpSts[port->index], outputs);
1007
1008 if (port->run)
1009 fst_issue_cmd(port, SETV24O);
1010}
1011
1012/*
1013 * Setup port Rx buffers
1014 */
1015static void
1016fst_rx_config(struct fst_port_info *port)
1017{
1018 int i;
1019 int pi;
1020 unsigned int offset;
1021 unsigned long flags;
1022 struct fst_card_info *card;
1023
1024 pi = port->index;
1025 card = port->card;
1026 spin_lock_irqsave(&card->card_lock, flags);
1027 for (i = 0; i < NUM_RX_BUFFER; i++) {
1028 offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1029
1030 FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1031 FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1032 FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1033 FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1034 FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1035 }
1036 port->rxpos = 0;
1037 spin_unlock_irqrestore(&card->card_lock, flags);
1038}
1039
1040/*
1041 * Setup port Tx buffers
1042 */
1043static void
1044fst_tx_config(struct fst_port_info *port)
1045{
1046 int i;
1047 int pi;
1048 unsigned int offset;
1049 unsigned long flags;
1050 struct fst_card_info *card;
1051
1052 pi = port->index;
1053 card = port->card;
1054 spin_lock_irqsave(&card->card_lock, flags);
1055 for (i = 0; i < NUM_TX_BUFFER; i++) {
1056 offset = BUF_OFFSET(txBuffer[pi][i][0]);
1057
1058 FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1059 FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1060 FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1061 FST_WRB(card, txDescrRing[pi][i].bits, 0);
1062 }
1063 port->txpos = 0;
1064 port->txipos = 0;
1065 port->start = 0;
1066 spin_unlock_irqrestore(&card->card_lock, flags);
1067}
1068
1069/* TE1 Alarm change interrupt event
1070 */
1071static void
1072fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1073{
1074 u8 los;
1075 u8 rra;
1076 u8 ais;
1077
1078 los = FST_RDB(card, suStatus.lossOfSignal);
1079 rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1080 ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1081
1082 if (los) {
1083 /*
1084 * Lost the link
1085 */
1086 if (netif_carrier_ok(port_to_dev(port))) {
1087 dbg(DBG_INTR, "Net carrier off\n");
1088 netif_carrier_off(port_to_dev(port));
1089 }
1090 } else {
1091 /*
1092 * Link available
1093 */
1094 if (!netif_carrier_ok(port_to_dev(port))) {
1095 dbg(DBG_INTR, "Net carrier on\n");
1096 netif_carrier_on(port_to_dev(port));
1097 }
1098 }
1099
1100 if (los)
1101 dbg(DBG_INTR, "Assert LOS Alarm\n");
1102 else
1103 dbg(DBG_INTR, "De-assert LOS Alarm\n");
1104 if (rra)
1105 dbg(DBG_INTR, "Assert RRA Alarm\n");
1106 else
1107 dbg(DBG_INTR, "De-assert RRA Alarm\n");
1108
1109 if (ais)
1110 dbg(DBG_INTR, "Assert AIS Alarm\n");
1111 else
1112 dbg(DBG_INTR, "De-assert AIS Alarm\n");
1113}
1114
1115/* Control signal change interrupt event
1116 */
1117static void
1118fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1119{
1120 int signals;
1121
1122 signals = FST_RDL(card, v24DebouncedSts[port->index]);
1123
1124 if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1125 ? IPSTS_INDICATE : IPSTS_DCD)) {
1126 if (!netif_carrier_ok(port_to_dev(port))) {
1127 dbg(DBG_INTR, "DCD active\n");
1128 netif_carrier_on(port_to_dev(port));
1129 }
1130 } else {
1131 if (netif_carrier_ok(port_to_dev(port))) {
1132 dbg(DBG_INTR, "DCD lost\n");
1133 netif_carrier_off(port_to_dev(port));
1134 }
1135 }
1136}
1137
1138/* Log Rx Errors
1139 */
1140static void
1141fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1142 unsigned char dmabits, int rxp, unsigned short len)
1143{
1144 struct net_device *dev = port_to_dev(port);
1145
1146 /*
1147 * Increment the appropriate error counter
1148 */
1149 dev->stats.rx_errors++;
1150 if (dmabits & RX_OFLO) {
1151 dev->stats.rx_fifo_errors++;
1152 dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1153 card->card_no, port->index, rxp);
1154 }
1155 if (dmabits & RX_CRC) {
1156 dev->stats.rx_crc_errors++;
1157 dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1158 card->card_no, port->index);
1159 }
1160 if (dmabits & RX_FRAM) {
1161 dev->stats.rx_frame_errors++;
1162 dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1163 card->card_no, port->index);
1164 }
1165 if (dmabits == (RX_STP | RX_ENP)) {
1166 dev->stats.rx_length_errors++;
1167 dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1168 len, card->card_no, port->index);
1169 }
1170}
1171
1172/* Rx Error Recovery
1173 */
1174static void
1175fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1176 unsigned char dmabits, int rxp, unsigned short len)
1177{
1178 int i;
1179 int pi;
1180
1181 pi = port->index;
1182 /*
1183 * Discard buffer descriptors until we see the start of the
1184 * next frame. Note that for long frames this could be in
1185 * a subsequent interrupt.
1186 */
1187 i = 0;
1188 while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1189 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1190 rxp = (rxp+1) % NUM_RX_BUFFER;
1191 if (++i > NUM_RX_BUFFER) {
1192 dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1193 " than we have\n");
1194 break;
1195 }
1196 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1197 dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1198 }
1199 dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1200
1201 /* Discard the terminal buffer */
1202 if (!(dmabits & DMA_OWN)) {
1203 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1204 rxp = (rxp+1) % NUM_RX_BUFFER;
1205 }
1206 port->rxpos = rxp;
1207 return;
1208
1209}
1210
1211/* Rx complete interrupt
1212 */
1213static void
1214fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1215{
1216 unsigned char dmabits;
1217 int pi;
1218 int rxp;
1219 int rx_status;
1220 unsigned short len;
1221 struct sk_buff *skb;
1222 struct net_device *dev = port_to_dev(port);
1223
1224 /* Check we have a buffer to process */
1225 pi = port->index;
1226 rxp = port->rxpos;
1227 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1228 if (dmabits & DMA_OWN) {
1229 dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1230 pi, rxp);
1231 return;
1232 }
1233 if (card->dmarx_in_progress) {
1234 return;
1235 }
1236
1237 /* Get buffer length */
1238 len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1239 /* Discard the CRC */
1240 len -= 2;
1241 if (len == 0) {
1242 /*
1243 * This seems to happen on the TE1 interface sometimes
1244 * so throw the frame away and log the event.
1245 */
1246 pr_err("Frame received with 0 length. Card %d Port %d\n",
1247 card->card_no, port->index);
1248 /* Return descriptor to card */
1249 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1250
1251 rxp = (rxp+1) % NUM_RX_BUFFER;
1252 port->rxpos = rxp;
1253 return;
1254 }
1255
1256 /* Check buffer length and for other errors. We insist on one packet
1257 * in one buffer. This simplifies things greatly and since we've
1258 * allocated 8K it shouldn't be a real world limitation
1259 */
1260 dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1261 if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1262 fst_log_rx_error(card, port, dmabits, rxp, len);
1263 fst_recover_rx_error(card, port, dmabits, rxp, len);
1264 return;
1265 }
1266
1267 /* Allocate SKB */
1268 if ((skb = dev_alloc_skb(len)) == NULL) {
1269 dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1270
1271 dev->stats.rx_dropped++;
1272
1273 /* Return descriptor to card */
1274 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1275
1276 rxp = (rxp+1) % NUM_RX_BUFFER;
1277 port->rxpos = rxp;
1278 return;
1279 }
1280
1281 /*
1282 * We know the length we need to receive, len.
1283 * It's not worth using the DMA for reads of less than
1284 * FST_MIN_DMA_LEN
1285 */
1286
1287 if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1288 memcpy_fromio(skb_put(skb, len),
1289 card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1290 len);
1291
1292 /* Reset buffer descriptor */
1293 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1294
1295 /* Update stats */
1296 dev->stats.rx_packets++;
1297 dev->stats.rx_bytes += len;
1298
1299 /* Push upstream */
1300 dbg(DBG_RX, "Pushing frame up the stack\n");
1301 if (port->mode == FST_RAW)
1302 skb->protocol = farsync_type_trans(skb, dev);
1303 else
1304 skb->protocol = hdlc_type_trans(skb, dev);
1305 rx_status = netif_rx(skb);
1306 fst_process_rx_status(rx_status, port_to_dev(port)->name);
1307 if (rx_status == NET_RX_DROP)
1308 dev->stats.rx_dropped++;
1309 } else {
1310 card->dma_skb_rx = skb;
1311 card->dma_port_rx = port;
1312 card->dma_len_rx = len;
1313 card->dma_rxpos = rxp;
1314 fst_rx_dma(card, card->rx_dma_handle_card,
1315 BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1316 }
1317 if (rxp != port->rxpos) {
1318 dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1319 dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1320 }
1321 rxp = (rxp+1) % NUM_RX_BUFFER;
1322 port->rxpos = rxp;
1323}
1324
1325/*
1326 * The bottom halfs to the ISR
1327 *
1328 */
1329
1330static void
1331do_bottom_half_tx(struct fst_card_info *card)
1332{
1333 struct fst_port_info *port;
1334 int pi;
1335 int txq_length;
1336 struct sk_buff *skb;
1337 unsigned long flags;
1338 struct net_device *dev;
1339
1340 /*
1341 * Find a free buffer for the transmit
1342 * Step through each port on this card
1343 */
1344
1345 dbg(DBG_TX, "do_bottom_half_tx\n");
1346 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1347 if (!port->run)
1348 continue;
1349
1350 dev = port_to_dev(port);
1351 while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1352 DMA_OWN) &&
1353 !(card->dmatx_in_progress)) {
1354 /*
1355 * There doesn't seem to be a txdone event per-se
1356 * We seem to have to deduce it, by checking the DMA_OWN
1357 * bit on the next buffer we think we can use
1358 */
1359 spin_lock_irqsave(&card->card_lock, flags);
1360 if ((txq_length = port->txqe - port->txqs) < 0) {
1361 /*
1362 * This is the case where one has wrapped and the
1363 * maths gives us a negative number
1364 */
1365 txq_length = txq_length + FST_TXQ_DEPTH;
1366 }
1367 spin_unlock_irqrestore(&card->card_lock, flags);
1368 if (txq_length > 0) {
1369 /*
1370 * There is something to send
1371 */
1372 spin_lock_irqsave(&card->card_lock, flags);
1373 skb = port->txq[port->txqs];
1374 port->txqs++;
1375 if (port->txqs == FST_TXQ_DEPTH) {
1376 port->txqs = 0;
1377 }
1378 spin_unlock_irqrestore(&card->card_lock, flags);
1379 /*
1380 * copy the data and set the required indicators on the
1381 * card.
1382 */
1383 FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1384 cnv_bcnt(skb->len));
1385 if ((skb->len < FST_MIN_DMA_LEN) ||
1386 (card->family == FST_FAMILY_TXP)) {
1387 /* Enqueue the packet with normal io */
1388 memcpy_toio(card->mem +
1389 BUF_OFFSET(txBuffer[pi]
1390 [port->
1391 txpos][0]),
1392 skb->data, skb->len);
1393 FST_WRB(card,
1394 txDescrRing[pi][port->txpos].
1395 bits,
1396 DMA_OWN | TX_STP | TX_ENP);
1397 dev->stats.tx_packets++;
1398 dev->stats.tx_bytes += skb->len;
1399 dev->trans_start = jiffies;
1400 } else {
1401 /* Or do it through dma */
1402 memcpy(card->tx_dma_handle_host,
1403 skb->data, skb->len);
1404 card->dma_port_tx = port;
1405 card->dma_len_tx = skb->len;
1406 card->dma_txpos = port->txpos;
1407 fst_tx_dma(card,
1408 (char *) card->
1409 tx_dma_handle_card,
1410 (char *)
1411 BUF_OFFSET(txBuffer[pi]
1412 [port->txpos][0]),
1413 skb->len);
1414 }
1415 if (++port->txpos >= NUM_TX_BUFFER)
1416 port->txpos = 0;
1417 /*
1418 * If we have flow control on, can we now release it?
1419 */
1420 if (port->start) {
1421 if (txq_length < fst_txq_low) {
1422 netif_wake_queue(port_to_dev
1423 (port));
1424 port->start = 0;
1425 }
1426 }
1427 dev_kfree_skb(skb);
1428 } else {
1429 /*
1430 * Nothing to send so break out of the while loop
1431 */
1432 break;
1433 }
1434 }
1435 }
1436}
1437
1438static void
1439do_bottom_half_rx(struct fst_card_info *card)
1440{
1441 struct fst_port_info *port;
1442 int pi;
1443 int rx_count = 0;
1444
1445 /* Check for rx completions on all ports on this card */
1446 dbg(DBG_RX, "do_bottom_half_rx\n");
1447 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1448 if (!port->run)
1449 continue;
1450
1451 while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1452 & DMA_OWN) && !(card->dmarx_in_progress)) {
1453 if (rx_count > fst_max_reads) {
1454 /*
1455 * Don't spend forever in receive processing
1456 * Schedule another event
1457 */
1458 fst_q_work_item(&fst_work_intq, card->card_no);
1459 tasklet_schedule(&fst_int_task);
1460 break; /* Leave the loop */
1461 }
1462 fst_intr_rx(card, port);
1463 rx_count++;
1464 }
1465 }
1466}
1467
1468/*
1469 * The interrupt service routine
1470 * Dev_id is our fst_card_info pointer
1471 */
1472static irqreturn_t
1473fst_intr(int dummy, void *dev_id)
1474{
1475 struct fst_card_info *card = dev_id;
1476 struct fst_port_info *port;
1477 int rdidx; /* Event buffer indices */
1478 int wridx;
1479 int event; /* Actual event for processing */
1480 unsigned int dma_intcsr = 0;
1481 unsigned int do_card_interrupt;
1482 unsigned int int_retry_count;
1483
1484 /*
1485 * Check to see if the interrupt was for this card
1486 * return if not
1487 * Note that the call to clear the interrupt is important
1488 */
1489 dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1490 if (card->state != FST_RUNNING) {
1491 pr_err("Interrupt received for card %d in a non running state (%d)\n",
1492 card->card_no, card->state);
1493
1494 /*
1495 * It is possible to really be running, i.e. we have re-loaded
1496 * a running card
1497 * Clear and reprime the interrupt source
1498 */
1499 fst_clear_intr(card);
1500 return IRQ_HANDLED;
1501 }
1502
1503 /* Clear and reprime the interrupt source */
1504 fst_clear_intr(card);
1505
1506 /*
1507 * Is the interrupt for this card (handshake == 1)
1508 */
1509 do_card_interrupt = 0;
1510 if (FST_RDB(card, interruptHandshake) == 1) {
1511 do_card_interrupt += FST_CARD_INT;
1512 /* Set the software acknowledge */
1513 FST_WRB(card, interruptHandshake, 0xEE);
1514 }
1515 if (card->family == FST_FAMILY_TXU) {
1516 /*
1517 * Is it a DMA Interrupt
1518 */
1519 dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1520 if (dma_intcsr & 0x00200000) {
1521 /*
1522 * DMA Channel 0 (Rx transfer complete)
1523 */
1524 dbg(DBG_RX, "DMA Rx xfer complete\n");
1525 outb(0x8, card->pci_conf + DMACSR0);
1526 fst_rx_dma_complete(card, card->dma_port_rx,
1527 card->dma_len_rx, card->dma_skb_rx,
1528 card->dma_rxpos);
1529 card->dmarx_in_progress = 0;
1530 do_card_interrupt += FST_RX_DMA_INT;
1531 }
1532 if (dma_intcsr & 0x00400000) {
1533 /*
1534 * DMA Channel 1 (Tx transfer complete)
1535 */
1536 dbg(DBG_TX, "DMA Tx xfer complete\n");
1537 outb(0x8, card->pci_conf + DMACSR1);
1538 fst_tx_dma_complete(card, card->dma_port_tx,
1539 card->dma_len_tx, card->dma_txpos);
1540 card->dmatx_in_progress = 0;
1541 do_card_interrupt += FST_TX_DMA_INT;
1542 }
1543 }
1544
1545 /*
1546 * Have we been missing Interrupts
1547 */
1548 int_retry_count = FST_RDL(card, interruptRetryCount);
1549 if (int_retry_count) {
1550 dbg(DBG_ASS, "Card %d int_retry_count is %d\n",
1551 card->card_no, int_retry_count);
1552 FST_WRL(card, interruptRetryCount, 0);
1553 }
1554
1555 if (!do_card_interrupt) {
1556 return IRQ_HANDLED;
1557 }
1558
1559 /* Scehdule the bottom half of the ISR */
1560 fst_q_work_item(&fst_work_intq, card->card_no);
1561 tasklet_schedule(&fst_int_task);
1562
1563 /* Drain the event queue */
1564 rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1565 wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1566 while (rdidx != wridx) {
1567 event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1568 port = &card->ports[event & 0x03];
1569
1570 dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1571
1572 switch (event) {
1573 case TE1_ALMA:
1574 dbg(DBG_INTR, "TE1 Alarm intr\n");
1575 if (port->run)
1576 fst_intr_te1_alarm(card, port);
1577 break;
1578
1579 case CTLA_CHG:
1580 case CTLB_CHG:
1581 case CTLC_CHG:
1582 case CTLD_CHG:
1583 if (port->run)
1584 fst_intr_ctlchg(card, port);
1585 break;
1586
1587 case ABTA_SENT:
1588 case ABTB_SENT:
1589 case ABTC_SENT:
1590 case ABTD_SENT:
1591 dbg(DBG_TX, "Abort complete port %d\n", port->index);
1592 break;
1593
1594 case TXA_UNDF:
1595 case TXB_UNDF:
1596 case TXC_UNDF:
1597 case TXD_UNDF:
1598 /* Difficult to see how we'd get this given that we
1599 * always load up the entire packet for DMA.
1600 */
1601 dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1602 port_to_dev(port)->stats.tx_errors++;
1603 port_to_dev(port)->stats.tx_fifo_errors++;
1604 dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1605 card->card_no, port->index);
1606 break;
1607
1608 case INIT_CPLT:
1609 dbg(DBG_INIT, "Card init OK intr\n");
1610 break;
1611
1612 case INIT_FAIL:
1613 dbg(DBG_INIT, "Card init FAILED intr\n");
1614 card->state = FST_IFAILED;
1615 break;
1616
1617 default:
1618 pr_err("intr: unknown card event %d. ignored\n", event);
1619 break;
1620 }
1621
1622 /* Bump and wrap the index */
1623 if (++rdidx >= MAX_CIRBUFF)
1624 rdidx = 0;
1625 }
1626 FST_WRB(card, interruptEvent.rdindex, rdidx);
1627 return IRQ_HANDLED;
1628}
1629
1630/* Check that the shared memory configuration is one that we can handle
1631 * and that some basic parameters are correct
1632 */
1633static void
1634check_started_ok(struct fst_card_info *card)
1635{
1636 int i;
1637
1638 /* Check structure version and end marker */
1639 if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1640 pr_err("Bad shared memory version %d expected %d\n",
1641 FST_RDW(card, smcVersion), SMC_VERSION);
1642 card->state = FST_BADVERSION;
1643 return;
1644 }
1645 if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1646 pr_err("Missing shared memory signature\n");
1647 card->state = FST_BADVERSION;
1648 return;
1649 }
1650 /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1651 if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1652 card->state = FST_RUNNING;
1653 } else if (i == 0xFF) {
1654 pr_err("Firmware initialisation failed. Card halted\n");
1655 card->state = FST_HALTED;
1656 return;
1657 } else if (i != 0x00) {
1658 pr_err("Unknown firmware status 0x%x\n", i);
1659 card->state = FST_HALTED;
1660 return;
1661 }
1662
1663 /* Finally check the number of ports reported by firmware against the
1664 * number we assumed at card detection. Should never happen with
1665 * existing firmware etc so we just report it for the moment.
1666 */
1667 if (FST_RDL(card, numberOfPorts) != card->nports) {
1668 pr_warn("Port count mismatch on card %d. Firmware thinks %d we say %d\n",
1669 card->card_no,
1670 FST_RDL(card, numberOfPorts), card->nports);
1671 }
1672}
1673
1674static int
1675set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1676 struct fstioc_info *info)
1677{
1678 int err;
1679 unsigned char my_framing;
1680
1681 /* Set things according to the user set valid flags
1682 * Several of the old options have been invalidated/replaced by the
1683 * generic hdlc package.
1684 */
1685 err = 0;
1686 if (info->valid & FSTVAL_PROTO) {
1687 if (info->proto == FST_RAW)
1688 port->mode = FST_RAW;
1689 else
1690 port->mode = FST_GEN_HDLC;
1691 }
1692
1693 if (info->valid & FSTVAL_CABLE)
1694 err = -EINVAL;
1695
1696 if (info->valid & FSTVAL_SPEED)
1697 err = -EINVAL;
1698
1699 if (info->valid & FSTVAL_PHASE)
1700 FST_WRB(card, portConfig[port->index].invertClock,
1701 info->invertClock);
1702 if (info->valid & FSTVAL_MODE)
1703 FST_WRW(card, cardMode, info->cardMode);
1704 if (info->valid & FSTVAL_TE1) {
1705 FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1706 FST_WRB(card, suConfig.clocking, info->clockSource);
1707 my_framing = FRAMING_E1;
1708 if (info->framing == E1)
1709 my_framing = FRAMING_E1;
1710 if (info->framing == T1)
1711 my_framing = FRAMING_T1;
1712 if (info->framing == J1)
1713 my_framing = FRAMING_J1;
1714 FST_WRB(card, suConfig.framing, my_framing);
1715 FST_WRB(card, suConfig.structure, info->structure);
1716 FST_WRB(card, suConfig.interface, info->interface);
1717 FST_WRB(card, suConfig.coding, info->coding);
1718 FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1719 FST_WRB(card, suConfig.equalizer, info->equalizer);
1720 FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1721 FST_WRB(card, suConfig.loopMode, info->loopMode);
1722 FST_WRB(card, suConfig.range, info->range);
1723 FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1724 FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1725 FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1726 FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1727 if (info->idleCode)
1728 FST_WRB(card, suConfig.enableIdleCode, 1);
1729 else
1730 FST_WRB(card, suConfig.enableIdleCode, 0);
1731 FST_WRB(card, suConfig.idleCode, info->idleCode);
1732#if FST_DEBUG
1733 if (info->valid & FSTVAL_TE1) {
1734 printk("Setting TE1 data\n");
1735 printk("Line Speed = %d\n", info->lineSpeed);
1736 printk("Start slot = %d\n", info->startingSlot);
1737 printk("Clock source = %d\n", info->clockSource);
1738 printk("Framing = %d\n", my_framing);
1739 printk("Structure = %d\n", info->structure);
1740 printk("interface = %d\n", info->interface);
1741 printk("Coding = %d\n", info->coding);
1742 printk("Line build out = %d\n", info->lineBuildOut);
1743 printk("Equaliser = %d\n", info->equalizer);
1744 printk("Transparent mode = %d\n",
1745 info->transparentMode);
1746 printk("Loop mode = %d\n", info->loopMode);
1747 printk("Range = %d\n", info->range);
1748 printk("Tx Buffer mode = %d\n", info->txBufferMode);
1749 printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1750 printk("LOS Threshold = %d\n", info->losThreshold);
1751 printk("Idle Code = %d\n", info->idleCode);
1752 }
1753#endif
1754 }
1755#if FST_DEBUG
1756 if (info->valid & FSTVAL_DEBUG) {
1757 fst_debug_mask = info->debug;
1758 }
1759#endif
1760
1761 return err;
1762}
1763
1764static void
1765gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1766 struct fstioc_info *info)
1767{
1768 int i;
1769
1770 memset(info, 0, sizeof (struct fstioc_info));
1771
1772 i = port->index;
1773 info->kernelVersion = LINUX_VERSION_CODE;
1774 info->nports = card->nports;
1775 info->type = card->type;
1776 info->state = card->state;
1777 info->proto = FST_GEN_HDLC;
1778 info->index = i;
1779#if FST_DEBUG
1780 info->debug = fst_debug_mask;
1781#endif
1782
1783 /* Only mark information as valid if card is running.
1784 * Copy the data anyway in case it is useful for diagnostics
1785 */
1786 info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1787#if FST_DEBUG
1788 | FSTVAL_DEBUG
1789#endif
1790 ;
1791
1792 info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1793 info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1794 info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1795 info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1796 info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1797 info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1798 info->clockStatus = FST_RDW(card, clockStatus[i]);
1799 info->cableStatus = FST_RDW(card, cableStatus);
1800 info->cardMode = FST_RDW(card, cardMode);
1801 info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1802
1803 /*
1804 * The T2U can report cable presence for both A or B
1805 * in bits 0 and 1 of cableStatus. See which port we are and
1806 * do the mapping.
1807 */
1808 if (card->family == FST_FAMILY_TXU) {
1809 if (port->index == 0) {
1810 /*
1811 * Port A
1812 */
1813 info->cableStatus = info->cableStatus & 1;
1814 } else {
1815 /*
1816 * Port B
1817 */
1818 info->cableStatus = info->cableStatus >> 1;
1819 info->cableStatus = info->cableStatus & 1;
1820 }
1821 }
1822 /*
1823 * Some additional bits if we are TE1
1824 */
1825 if (card->type == FST_TYPE_TE1) {
1826 info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1827 info->clockSource = FST_RDB(card, suConfig.clocking);
1828 info->framing = FST_RDB(card, suConfig.framing);
1829 info->structure = FST_RDB(card, suConfig.structure);
1830 info->interface = FST_RDB(card, suConfig.interface);
1831 info->coding = FST_RDB(card, suConfig.coding);
1832 info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1833 info->equalizer = FST_RDB(card, suConfig.equalizer);
1834 info->loopMode = FST_RDB(card, suConfig.loopMode);
1835 info->range = FST_RDB(card, suConfig.range);
1836 info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1837 info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1838 info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1839 info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1840 if (FST_RDB(card, suConfig.enableIdleCode))
1841 info->idleCode = FST_RDB(card, suConfig.idleCode);
1842 else
1843 info->idleCode = 0;
1844 info->receiveBufferDelay =
1845 FST_RDL(card, suStatus.receiveBufferDelay);
1846 info->framingErrorCount =
1847 FST_RDL(card, suStatus.framingErrorCount);
1848 info->codeViolationCount =
1849 FST_RDL(card, suStatus.codeViolationCount);
1850 info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1851 info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1852 info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1853 info->receiveRemoteAlarm =
1854 FST_RDB(card, suStatus.receiveRemoteAlarm);
1855 info->alarmIndicationSignal =
1856 FST_RDB(card, suStatus.alarmIndicationSignal);
1857 }
1858}
1859
1860static int
1861fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1862 struct ifreq *ifr)
1863{
1864 sync_serial_settings sync;
1865 int i;
1866
1867 if (ifr->ifr_settings.size != sizeof (sync)) {
1868 return -ENOMEM;
1869 }
1870
1871 if (copy_from_user
1872 (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1873 return -EFAULT;
1874 }
1875
1876 if (sync.loopback)
1877 return -EINVAL;
1878
1879 i = port->index;
1880
1881 switch (ifr->ifr_settings.type) {
1882 case IF_IFACE_V35:
1883 FST_WRW(card, portConfig[i].lineInterface, V35);
1884 port->hwif = V35;
1885 break;
1886
1887 case IF_IFACE_V24:
1888 FST_WRW(card, portConfig[i].lineInterface, V24);
1889 port->hwif = V24;
1890 break;
1891
1892 case IF_IFACE_X21:
1893 FST_WRW(card, portConfig[i].lineInterface, X21);
1894 port->hwif = X21;
1895 break;
1896
1897 case IF_IFACE_X21D:
1898 FST_WRW(card, portConfig[i].lineInterface, X21D);
1899 port->hwif = X21D;
1900 break;
1901
1902 case IF_IFACE_T1:
1903 FST_WRW(card, portConfig[i].lineInterface, T1);
1904 port->hwif = T1;
1905 break;
1906
1907 case IF_IFACE_E1:
1908 FST_WRW(card, portConfig[i].lineInterface, E1);
1909 port->hwif = E1;
1910 break;
1911
1912 case IF_IFACE_SYNC_SERIAL:
1913 break;
1914
1915 default:
1916 return -EINVAL;
1917 }
1918
1919 switch (sync.clock_type) {
1920 case CLOCK_EXT:
1921 FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1922 break;
1923
1924 case CLOCK_INT:
1925 FST_WRB(card, portConfig[i].internalClock, INTCLK);
1926 break;
1927
1928 default:
1929 return -EINVAL;
1930 }
1931 FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1932 return 0;
1933}
1934
1935static int
1936fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1937 struct ifreq *ifr)
1938{
1939 sync_serial_settings sync;
1940 int i;
1941
1942 /* First check what line type is set, we'll default to reporting X.21
1943 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1944 * changed
1945 */
1946 switch (port->hwif) {
1947 case E1:
1948 ifr->ifr_settings.type = IF_IFACE_E1;
1949 break;
1950 case T1:
1951 ifr->ifr_settings.type = IF_IFACE_T1;
1952 break;
1953 case V35:
1954 ifr->ifr_settings.type = IF_IFACE_V35;
1955 break;
1956 case V24:
1957 ifr->ifr_settings.type = IF_IFACE_V24;
1958 break;
1959 case X21D:
1960 ifr->ifr_settings.type = IF_IFACE_X21D;
1961 break;
1962 case X21:
1963 default:
1964 ifr->ifr_settings.type = IF_IFACE_X21;
1965 break;
1966 }
1967 if (ifr->ifr_settings.size == 0) {
1968 return 0; /* only type requested */
1969 }
1970 if (ifr->ifr_settings.size < sizeof (sync)) {
1971 return -ENOMEM;
1972 }
1973
1974 i = port->index;
1975 sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1976 /* Lucky card and linux use same encoding here */
1977 sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1978 INTCLK ? CLOCK_INT : CLOCK_EXT;
1979 sync.loopback = 0;
1980
1981 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
1982 return -EFAULT;
1983 }
1984
1985 ifr->ifr_settings.size = sizeof (sync);
1986 return 0;
1987}
1988
1989static int
1990fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1991{
1992 struct fst_card_info *card;
1993 struct fst_port_info *port;
1994 struct fstioc_write wrthdr;
1995 struct fstioc_info info;
1996 unsigned long flags;
1997 void *buf;
1998
1999 dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
2000
2001 port = dev_to_port(dev);
2002 card = port->card;
2003
2004 if (!capable(CAP_NET_ADMIN))
2005 return -EPERM;
2006
2007 switch (cmd) {
2008 case FSTCPURESET:
2009 fst_cpureset(card);
2010 card->state = FST_RESET;
2011 return 0;
2012
2013 case FSTCPURELEASE:
2014 fst_cpurelease(card);
2015 card->state = FST_STARTING;
2016 return 0;
2017
2018 case FSTWRITE: /* Code write (download) */
2019
2020 /* First copy in the header with the length and offset of data
2021 * to write
2022 */
2023 if (ifr->ifr_data == NULL) {
2024 return -EINVAL;
2025 }
2026 if (copy_from_user(&wrthdr, ifr->ifr_data,
2027 sizeof (struct fstioc_write))) {
2028 return -EFAULT;
2029 }
2030
2031 /* Sanity check the parameters. We don't support partial writes
2032 * when going over the top
2033 */
2034 if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
2035 wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2036 return -ENXIO;
2037 }
2038
2039 /* Now copy the data to the card. */
2040
2041 buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write),
2042 wrthdr.size);
2043 if (IS_ERR(buf))
2044 return PTR_ERR(buf);
2045
2046 memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2047 kfree(buf);
2048
2049 /* Writes to the memory of a card in the reset state constitute
2050 * a download
2051 */
2052 if (card->state == FST_RESET) {
2053 card->state = FST_DOWNLOAD;
2054 }
2055 return 0;
2056
2057 case FSTGETCONF:
2058
2059 /* If card has just been started check the shared memory config
2060 * version and marker
2061 */
2062 if (card->state == FST_STARTING) {
2063 check_started_ok(card);
2064
2065 /* If everything checked out enable card interrupts */
2066 if (card->state == FST_RUNNING) {
2067 spin_lock_irqsave(&card->card_lock, flags);
2068 fst_enable_intr(card);
2069 FST_WRB(card, interruptHandshake, 0xEE);
2070 spin_unlock_irqrestore(&card->card_lock, flags);
2071 }
2072 }
2073
2074 if (ifr->ifr_data == NULL) {
2075 return -EINVAL;
2076 }
2077
2078 gather_conf_info(card, port, &info);
2079
2080 if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2081 return -EFAULT;
2082 }
2083 return 0;
2084
2085 case FSTSETCONF:
2086
2087 /*
2088 * Most of the settings have been moved to the generic ioctls
2089 * this just covers debug and board ident now
2090 */
2091
2092 if (card->state != FST_RUNNING) {
2093 pr_err("Attempt to configure card %d in non-running state (%d)\n",
2094 card->card_no, card->state);
2095 return -EIO;
2096 }
2097 if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2098 return -EFAULT;
2099 }
2100
2101 return set_conf_from_info(card, port, &info);
2102
2103 case SIOCWANDEV:
2104 switch (ifr->ifr_settings.type) {
2105 case IF_GET_IFACE:
2106 return fst_get_iface(card, port, ifr);
2107
2108 case IF_IFACE_SYNC_SERIAL:
2109 case IF_IFACE_V35:
2110 case IF_IFACE_V24:
2111 case IF_IFACE_X21:
2112 case IF_IFACE_X21D:
2113 case IF_IFACE_T1:
2114 case IF_IFACE_E1:
2115 return fst_set_iface(card, port, ifr);
2116
2117 case IF_PROTO_RAW:
2118 port->mode = FST_RAW;
2119 return 0;
2120
2121 case IF_GET_PROTO:
2122 if (port->mode == FST_RAW) {
2123 ifr->ifr_settings.type = IF_PROTO_RAW;
2124 return 0;
2125 }
2126 return hdlc_ioctl(dev, ifr, cmd);
2127
2128 default:
2129 port->mode = FST_GEN_HDLC;
2130 dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2131 ifr->ifr_settings.type);
2132 return hdlc_ioctl(dev, ifr, cmd);
2133 }
2134
2135 default:
2136 /* Not one of ours. Pass through to HDLC package */
2137 return hdlc_ioctl(dev, ifr, cmd);
2138 }
2139}
2140
2141static void
2142fst_openport(struct fst_port_info *port)
2143{
2144 int signals;
2145 int txq_length;
2146
2147 /* Only init things if card is actually running. This allows open to
2148 * succeed for downloads etc.
2149 */
2150 if (port->card->state == FST_RUNNING) {
2151 if (port->run) {
2152 dbg(DBG_OPEN, "open: found port already running\n");
2153
2154 fst_issue_cmd(port, STOPPORT);
2155 port->run = 0;
2156 }
2157
2158 fst_rx_config(port);
2159 fst_tx_config(port);
2160 fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2161
2162 fst_issue_cmd(port, STARTPORT);
2163 port->run = 1;
2164
2165 signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2166 if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2167 ? IPSTS_INDICATE : IPSTS_DCD))
2168 netif_carrier_on(port_to_dev(port));
2169 else
2170 netif_carrier_off(port_to_dev(port));
2171
2172 txq_length = port->txqe - port->txqs;
2173 port->txqe = 0;
2174 port->txqs = 0;
2175 }
2176
2177}
2178
2179static void
2180fst_closeport(struct fst_port_info *port)
2181{
2182 if (port->card->state == FST_RUNNING) {
2183 if (port->run) {
2184 port->run = 0;
2185 fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2186
2187 fst_issue_cmd(port, STOPPORT);
2188 } else {
2189 dbg(DBG_OPEN, "close: port not running\n");
2190 }
2191 }
2192}
2193
2194static int
2195fst_open(struct net_device *dev)
2196{
2197 int err;
2198 struct fst_port_info *port;
2199
2200 port = dev_to_port(dev);
2201 if (!try_module_get(THIS_MODULE))
2202 return -EBUSY;
2203
2204 if (port->mode != FST_RAW) {
2205 err = hdlc_open(dev);
2206 if (err) {
2207 module_put(THIS_MODULE);
2208 return err;
2209 }
2210 }
2211
2212 fst_openport(port);
2213 netif_wake_queue(dev);
2214 return 0;
2215}
2216
2217static int
2218fst_close(struct net_device *dev)
2219{
2220 struct fst_port_info *port;
2221 struct fst_card_info *card;
2222 unsigned char tx_dma_done;
2223 unsigned char rx_dma_done;
2224
2225 port = dev_to_port(dev);
2226 card = port->card;
2227
2228 tx_dma_done = inb(card->pci_conf + DMACSR1);
2229 rx_dma_done = inb(card->pci_conf + DMACSR0);
2230 dbg(DBG_OPEN,
2231 "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2232 card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2233 rx_dma_done);
2234
2235 netif_stop_queue(dev);
2236 fst_closeport(dev_to_port(dev));
2237 if (port->mode != FST_RAW) {
2238 hdlc_close(dev);
2239 }
2240 module_put(THIS_MODULE);
2241 return 0;
2242}
2243
2244static int
2245fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2246{
2247 /*
2248 * Setting currently fixed in FarSync card so we check and forget
2249 */
2250 if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2251 return -EINVAL;
2252 return 0;
2253}
2254
2255static void
2256fst_tx_timeout(struct net_device *dev)
2257{
2258 struct fst_port_info *port;
2259 struct fst_card_info *card;
2260
2261 port = dev_to_port(dev);
2262 card = port->card;
2263 dev->stats.tx_errors++;
2264 dev->stats.tx_aborted_errors++;
2265 dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2266 card->card_no, port->index);
2267 fst_issue_cmd(port, ABORTTX);
2268
2269 dev->trans_start = jiffies;
2270 netif_wake_queue(dev);
2271 port->start = 0;
2272}
2273
2274static netdev_tx_t
2275fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2276{
2277 struct fst_card_info *card;
2278 struct fst_port_info *port;
2279 unsigned long flags;
2280 int txq_length;
2281
2282 port = dev_to_port(dev);
2283 card = port->card;
2284 dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2285
2286 /* Drop packet with error if we don't have carrier */
2287 if (!netif_carrier_ok(dev)) {
2288 dev_kfree_skb(skb);
2289 dev->stats.tx_errors++;
2290 dev->stats.tx_carrier_errors++;
2291 dbg(DBG_ASS,
2292 "Tried to transmit but no carrier on card %d port %d\n",
2293 card->card_no, port->index);
2294 return NETDEV_TX_OK;
2295 }
2296
2297 /* Drop it if it's too big! MTU failure ? */
2298 if (skb->len > LEN_TX_BUFFER) {
2299 dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2300 LEN_TX_BUFFER);
2301 dev_kfree_skb(skb);
2302 dev->stats.tx_errors++;
2303 return NETDEV_TX_OK;
2304 }
2305
2306 /*
2307 * We are always going to queue the packet
2308 * so that the bottom half is the only place we tx from
2309 * Check there is room in the port txq
2310 */
2311 spin_lock_irqsave(&card->card_lock, flags);
2312 if ((txq_length = port->txqe - port->txqs) < 0) {
2313 /*
2314 * This is the case where the next free has wrapped but the
2315 * last used hasn't
2316 */
2317 txq_length = txq_length + FST_TXQ_DEPTH;
2318 }
2319 spin_unlock_irqrestore(&card->card_lock, flags);
2320 if (txq_length > fst_txq_high) {
2321 /*
2322 * We have got enough buffers in the pipeline. Ask the network
2323 * layer to stop sending frames down
2324 */
2325 netif_stop_queue(dev);
2326 port->start = 1; /* I'm using this to signal stop sent up */
2327 }
2328
2329 if (txq_length == FST_TXQ_DEPTH - 1) {
2330 /*
2331 * This shouldn't have happened but such is life
2332 */
2333 dev_kfree_skb(skb);
2334 dev->stats.tx_errors++;
2335 dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2336 card->card_no, port->index);
2337 return NETDEV_TX_OK;
2338 }
2339
2340 /*
2341 * queue the buffer
2342 */
2343 spin_lock_irqsave(&card->card_lock, flags);
2344 port->txq[port->txqe] = skb;
2345 port->txqe++;
2346 if (port->txqe == FST_TXQ_DEPTH)
2347 port->txqe = 0;
2348 spin_unlock_irqrestore(&card->card_lock, flags);
2349
2350 /* Scehdule the bottom half which now does transmit processing */
2351 fst_q_work_item(&fst_work_txq, card->card_no);
2352 tasklet_schedule(&fst_tx_task);
2353
2354 return NETDEV_TX_OK;
2355}
2356
2357/*
2358 * Card setup having checked hardware resources.
2359 * Should be pretty bizarre if we get an error here (kernel memory
2360 * exhaustion is one possibility). If we do see a problem we report it
2361 * via a printk and leave the corresponding interface and all that follow
2362 * disabled.
2363 */
2364static char *type_strings[] __devinitdata = {
2365 "no hardware", /* Should never be seen */
2366 "FarSync T2P",
2367 "FarSync T4P",
2368 "FarSync T1U",
2369 "FarSync T2U",
2370 "FarSync T4U",
2371 "FarSync TE1"
2372};
2373
2374static void __devinit
2375fst_init_card(struct fst_card_info *card)
2376{
2377 int i;
2378 int err;
2379
2380 /* We're working on a number of ports based on the card ID. If the
2381 * firmware detects something different later (should never happen)
2382 * we'll have to revise it in some way then.
2383 */
2384 for (i = 0; i < card->nports; i++) {
2385 err = register_hdlc_device(card->ports[i].dev);
2386 if (err < 0) {
2387 int j;
2388 pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2389 i, -err);
2390 for (j = i; j < card->nports; j++) {
2391 free_netdev(card->ports[j].dev);
2392 card->ports[j].dev = NULL;
2393 }
2394 card->nports = i;
2395 break;
2396 }
2397 }
2398
2399 pr_info("%s-%s: %s IRQ%d, %d ports\n",
2400 port_to_dev(&card->ports[0])->name,
2401 port_to_dev(&card->ports[card->nports - 1])->name,
2402 type_strings[card->type], card->irq, card->nports);
2403}
2404
2405static const struct net_device_ops fst_ops = {
2406 .ndo_open = fst_open,
2407 .ndo_stop = fst_close,
2408 .ndo_change_mtu = hdlc_change_mtu,
2409 .ndo_start_xmit = hdlc_start_xmit,
2410 .ndo_do_ioctl = fst_ioctl,
2411 .ndo_tx_timeout = fst_tx_timeout,
2412};
2413
2414/*
2415 * Initialise card when detected.
2416 * Returns 0 to indicate success, or errno otherwise.
2417 */
2418static int __devinit
2419fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2420{
2421 static int no_of_cards_added = 0;
2422 struct fst_card_info *card;
2423 int err = 0;
2424 int i;
2425
2426 printk_once(KERN_INFO
2427 pr_fmt("FarSync WAN driver " FST_USER_VERSION
2428 " (c) 2001-2004 FarSite Communications Ltd.\n"));
2429#if FST_DEBUG
2430 dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2431#endif
2432 /*
2433 * We are going to be clever and allow certain cards not to be
2434 * configured. An exclude list can be provided in /etc/modules.conf
2435 */
2436 if (fst_excluded_cards != 0) {
2437 /*
2438 * There are cards to exclude
2439 *
2440 */
2441 for (i = 0; i < fst_excluded_cards; i++) {
2442 if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2443 pr_info("FarSync PCI device %d not assigned\n",
2444 (pdev->devfn) >> 3);
2445 return -EBUSY;
2446 }
2447 }
2448 }
2449
2450 /* Allocate driver private data */
2451 card = kzalloc(sizeof (struct fst_card_info), GFP_KERNEL);
2452 if (card == NULL) {
2453 pr_err("FarSync card found but insufficient memory for driver storage\n");
2454 return -ENOMEM;
2455 }
2456
2457 /* Try to enable the device */
2458 if ((err = pci_enable_device(pdev)) != 0) {
2459 pr_err("Failed to enable card. Err %d\n", -err);
2460 kfree(card);
2461 return err;
2462 }
2463
2464 if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2465 pr_err("Failed to allocate regions. Err %d\n", -err);
2466 pci_disable_device(pdev);
2467 kfree(card);
2468 return err;
2469 }
2470
2471 /* Get virtual addresses of memory regions */
2472 card->pci_conf = pci_resource_start(pdev, 1);
2473 card->phys_mem = pci_resource_start(pdev, 2);
2474 card->phys_ctlmem = pci_resource_start(pdev, 3);
2475 if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2476 pr_err("Physical memory remap failed\n");
2477 pci_release_regions(pdev);
2478 pci_disable_device(pdev);
2479 kfree(card);
2480 return -ENODEV;
2481 }
2482 if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2483 pr_err("Control memory remap failed\n");
2484 pci_release_regions(pdev);
2485 pci_disable_device(pdev);
2486 kfree(card);
2487 return -ENODEV;
2488 }
2489 dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2490
2491 /* Register the interrupt handler */
2492 if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2493 pr_err("Unable to register interrupt %d\n", card->irq);
2494 pci_release_regions(pdev);
2495 pci_disable_device(pdev);
2496 iounmap(card->ctlmem);
2497 iounmap(card->mem);
2498 kfree(card);
2499 return -ENODEV;
2500 }
2501
2502 /* Record info we need */
2503 card->irq = pdev->irq;
2504 card->type = ent->driver_data;
2505 card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2506 (ent->driver_data == FST_TYPE_T4P))
2507 ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2508 if ((ent->driver_data == FST_TYPE_T1U) ||
2509 (ent->driver_data == FST_TYPE_TE1))
2510 card->nports = 1;
2511 else
2512 card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2513 (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2514
2515 card->state = FST_UNINIT;
2516 spin_lock_init ( &card->card_lock );
2517
2518 for ( i = 0 ; i < card->nports ; i++ ) {
2519 struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2520 hdlc_device *hdlc;
2521 if (!dev) {
2522 while (i--)
2523 free_netdev(card->ports[i].dev);
2524 pr_err("FarSync: out of memory\n");
2525 free_irq(card->irq, card);
2526 pci_release_regions(pdev);
2527 pci_disable_device(pdev);
2528 iounmap(card->ctlmem);
2529 iounmap(card->mem);
2530 kfree(card);
2531 return -ENODEV;
2532 }
2533 card->ports[i].dev = dev;
2534 card->ports[i].card = card;
2535 card->ports[i].index = i;
2536 card->ports[i].run = 0;
2537
2538 hdlc = dev_to_hdlc(dev);
2539
2540 /* Fill in the net device info */
2541 /* Since this is a PCI setup this is purely
2542 * informational. Give them the buffer addresses
2543 * and basic card I/O.
2544 */
2545 dev->mem_start = card->phys_mem
2546 + BUF_OFFSET ( txBuffer[i][0][0]);
2547 dev->mem_end = card->phys_mem
2548 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
2549 dev->base_addr = card->pci_conf;
2550 dev->irq = card->irq;
2551
2552 dev->netdev_ops = &fst_ops;
2553 dev->tx_queue_len = FST_TX_QUEUE_LEN;
2554 dev->watchdog_timeo = FST_TX_TIMEOUT;
2555 hdlc->attach = fst_attach;
2556 hdlc->xmit = fst_start_xmit;
2557 }
2558
2559 card->device = pdev;
2560
2561 dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2562 card->nports, card->irq);
2563 dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2564 card->pci_conf, card->phys_mem, card->phys_ctlmem);
2565
2566 /* Reset the card's processor */
2567 fst_cpureset(card);
2568 card->state = FST_RESET;
2569
2570 /* Initialise DMA (if required) */
2571 fst_init_dma(card);
2572
2573 /* Record driver data for later use */
2574 pci_set_drvdata(pdev, card);
2575
2576 /* Remainder of card setup */
2577 fst_card_array[no_of_cards_added] = card;
2578 card->card_no = no_of_cards_added++; /* Record instance and bump it */
2579 fst_init_card(card);
2580 if (card->family == FST_FAMILY_TXU) {
2581 /*
2582 * Allocate a dma buffer for transmit and receives
2583 */
2584 card->rx_dma_handle_host =
2585 pci_alloc_consistent(card->device, FST_MAX_MTU,
2586 &card->rx_dma_handle_card);
2587 if (card->rx_dma_handle_host == NULL) {
2588 pr_err("Could not allocate rx dma buffer\n");
2589 fst_disable_intr(card);
2590 pci_release_regions(pdev);
2591 pci_disable_device(pdev);
2592 iounmap(card->ctlmem);
2593 iounmap(card->mem);
2594 kfree(card);
2595 return -ENOMEM;
2596 }
2597 card->tx_dma_handle_host =
2598 pci_alloc_consistent(card->device, FST_MAX_MTU,
2599 &card->tx_dma_handle_card);
2600 if (card->tx_dma_handle_host == NULL) {
2601 pr_err("Could not allocate tx dma buffer\n");
2602 fst_disable_intr(card);
2603 pci_release_regions(pdev);
2604 pci_disable_device(pdev);
2605 iounmap(card->ctlmem);
2606 iounmap(card->mem);
2607 kfree(card);
2608 return -ENOMEM;
2609 }
2610 }
2611 return 0; /* Success */
2612}
2613
2614/*
2615 * Cleanup and close down a card
2616 */
2617static void __devexit
2618fst_remove_one(struct pci_dev *pdev)
2619{
2620 struct fst_card_info *card;
2621 int i;
2622
2623 card = pci_get_drvdata(pdev);
2624
2625 for (i = 0; i < card->nports; i++) {
2626 struct net_device *dev = port_to_dev(&card->ports[i]);
2627 unregister_hdlc_device(dev);
2628 }
2629
2630 fst_disable_intr(card);
2631 free_irq(card->irq, card);
2632
2633 iounmap(card->ctlmem);
2634 iounmap(card->mem);
2635 pci_release_regions(pdev);
2636 if (card->family == FST_FAMILY_TXU) {
2637 /*
2638 * Free dma buffers
2639 */
2640 pci_free_consistent(card->device, FST_MAX_MTU,
2641 card->rx_dma_handle_host,
2642 card->rx_dma_handle_card);
2643 pci_free_consistent(card->device, FST_MAX_MTU,
2644 card->tx_dma_handle_host,
2645 card->tx_dma_handle_card);
2646 }
2647 fst_card_array[card->card_no] = NULL;
2648}
2649
2650static struct pci_driver fst_driver = {
2651 .name = FST_NAME,
2652 .id_table = fst_pci_dev_id,
2653 .probe = fst_add_one,
2654 .remove = __devexit_p(fst_remove_one),
2655 .suspend = NULL,
2656 .resume = NULL,
2657};
2658
2659static int __init
2660fst_init(void)
2661{
2662 int i;
2663
2664 for (i = 0; i < FST_MAX_CARDS; i++)
2665 fst_card_array[i] = NULL;
2666 spin_lock_init(&fst_work_q_lock);
2667 return pci_register_driver(&fst_driver);
2668}
2669
2670static void __exit
2671fst_cleanup_module(void)
2672{
2673 pr_info("FarSync WAN driver unloading\n");
2674 pci_unregister_driver(&fst_driver);
2675}
2676
2677module_init(fst_init);
2678module_exit(fst_cleanup_module);