Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*******************************************************************************
   2
   3  Copyright(c) 2006 Tundra Semiconductor Corporation.
   4
   5  This program is free software; you can redistribute it and/or modify it
   6  under the terms of the GNU General Public License as published by the Free
   7  Software Foundation; either version 2 of the License, or (at your option)
   8  any later version.
   9
  10  This program is distributed in the hope that it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc., 59
  17  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  18
  19*******************************************************************************/
  20
  21/* This driver is based on the driver code originally developed
  22 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
  23 * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
  24 *
  25 * Currently changes from original version are:
  26 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
  27 * - modifications to handle two ports independently and support for
  28 *   additional PHY devices (alexandre.bounine@tundra.com)
  29 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
  30 *
  31 */
  32
  33#include <linux/module.h>
  34#include <linux/types.h>
  35#include <linux/init.h>
  36#include <linux/interrupt.h>
  37#include <linux/net.h>
  38#include <linux/netdevice.h>
  39#include <linux/etherdevice.h>
  40#include <linux/ethtool.h>
  41#include <linux/skbuff.h>
  42#include <linux/spinlock.h>
  43#include <linux/delay.h>
  44#include <linux/crc32.h>
  45#include <linux/mii.h>
  46#include <linux/device.h>
  47#include <linux/pci.h>
  48#include <linux/rtnetlink.h>
  49#include <linux/timer.h>
  50#include <linux/platform_device.h>
  51#include <linux/gfp.h>
  52
  53#include <asm/system.h>
  54#include <asm/io.h>
  55#include <asm/tsi108.h>
  56
  57#include "tsi108_eth.h"
  58
  59#define MII_READ_DELAY 10000	/* max link wait time in msec */
  60
  61#define TSI108_RXRING_LEN     256
  62
  63/* NOTE: The driver currently does not support receiving packets
  64 * larger than the buffer size, so don't decrease this (unless you
  65 * want to add such support).
  66 */
  67#define TSI108_RXBUF_SIZE     1536
  68
  69#define TSI108_TXRING_LEN     256
  70
  71#define TSI108_TX_INT_FREQ    64
  72
  73/* Check the phy status every half a second. */
  74#define CHECK_PHY_INTERVAL (HZ/2)
  75
  76static int tsi108_init_one(struct platform_device *pdev);
  77static int tsi108_ether_remove(struct platform_device *pdev);
  78
  79struct tsi108_prv_data {
  80	void  __iomem *regs;	/* Base of normal regs */
  81	void  __iomem *phyregs;	/* Base of register bank used for PHY access */
  82
  83	struct net_device *dev;
  84	struct napi_struct napi;
  85
  86	unsigned int phy;		/* Index of PHY for this interface */
  87	unsigned int irq_num;
  88	unsigned int id;
  89	unsigned int phy_type;
  90
  91	struct timer_list timer;/* Timer that triggers the check phy function */
  92	unsigned int rxtail;	/* Next entry in rxring to read */
  93	unsigned int rxhead;	/* Next entry in rxring to give a new buffer */
  94	unsigned int rxfree;	/* Number of free, allocated RX buffers */
  95
  96	unsigned int rxpending;	/* Non-zero if there are still descriptors
  97				 * to be processed from a previous descriptor
  98				 * interrupt condition that has been cleared */
  99
 100	unsigned int txtail;	/* Next TX descriptor to check status on */
 101	unsigned int txhead;	/* Next TX descriptor to use */
 102
 103	/* Number of free TX descriptors.  This could be calculated from
 104	 * rxhead and rxtail if one descriptor were left unused to disambiguate
 105	 * full and empty conditions, but it's simpler to just keep track
 106	 * explicitly. */
 107
 108	unsigned int txfree;
 109
 110	unsigned int phy_ok;		/* The PHY is currently powered on. */
 111
 112	/* PHY status (duplex is 1 for half, 2 for full,
 113	 * so that the default 0 indicates that neither has
 114	 * yet been configured). */
 115
 116	unsigned int link_up;
 117	unsigned int speed;
 118	unsigned int duplex;
 119
 120	tx_desc *txring;
 121	rx_desc *rxring;
 122	struct sk_buff *txskbs[TSI108_TXRING_LEN];
 123	struct sk_buff *rxskbs[TSI108_RXRING_LEN];
 124
 125	dma_addr_t txdma, rxdma;
 126
 127	/* txlock nests in misclock and phy_lock */
 128
 129	spinlock_t txlock, misclock;
 130
 131	/* stats is used to hold the upper bits of each hardware counter,
 132	 * and tmpstats is used to hold the full values for returning
 133	 * to the caller of get_stats().  They must be separate in case
 134	 * an overflow interrupt occurs before the stats are consumed.
 135	 */
 136
 137	struct net_device_stats stats;
 138	struct net_device_stats tmpstats;
 139
 140	/* These stats are kept separate in hardware, thus require individual
 141	 * fields for handling carry.  They are combined in get_stats.
 142	 */
 143
 144	unsigned long rx_fcs;	/* Add to rx_frame_errors */
 145	unsigned long rx_short_fcs;	/* Add to rx_frame_errors */
 146	unsigned long rx_long_fcs;	/* Add to rx_frame_errors */
 147	unsigned long rx_underruns;	/* Add to rx_length_errors */
 148	unsigned long rx_overruns;	/* Add to rx_length_errors */
 149
 150	unsigned long tx_coll_abort;	/* Add to tx_aborted_errors/collisions */
 151	unsigned long tx_pause_drop;	/* Add to tx_aborted_errors */
 152
 153	unsigned long mc_hash[16];
 154	u32 msg_enable;			/* debug message level */
 155	struct mii_if_info mii_if;
 156	unsigned int init_media;
 157};
 158
 159/* Structure for a device driver */
 160
 161static struct platform_driver tsi_eth_driver = {
 162	.probe = tsi108_init_one,
 163	.remove = tsi108_ether_remove,
 164	.driver	= {
 165		.name = "tsi-ethernet",
 166		.owner = THIS_MODULE,
 167	},
 168};
 169
 170static void tsi108_timed_checker(unsigned long dev_ptr);
 171
 172static void dump_eth_one(struct net_device *dev)
 173{
 174	struct tsi108_prv_data *data = netdev_priv(dev);
 175
 176	printk("Dumping %s...\n", dev->name);
 177	printk("intstat %x intmask %x phy_ok %d"
 178	       " link %d speed %d duplex %d\n",
 179	       TSI_READ(TSI108_EC_INTSTAT),
 180	       TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
 181	       data->link_up, data->speed, data->duplex);
 182
 183	printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
 184	       data->txhead, data->txtail, data->txfree,
 185	       TSI_READ(TSI108_EC_TXSTAT),
 186	       TSI_READ(TSI108_EC_TXESTAT),
 187	       TSI_READ(TSI108_EC_TXERR));
 188
 189	printk("RX: head %d, tail %d, free %d, stat %x,"
 190	       " estat %x, err %x, pending %d\n\n",
 191	       data->rxhead, data->rxtail, data->rxfree,
 192	       TSI_READ(TSI108_EC_RXSTAT),
 193	       TSI_READ(TSI108_EC_RXESTAT),
 194	       TSI_READ(TSI108_EC_RXERR), data->rxpending);
 195}
 196
 197/* Synchronization is needed between the thread and up/down events.
 198 * Note that the PHY is accessed through the same registers for both
 199 * interfaces, so this can't be made interface-specific.
 200 */
 201
 202static DEFINE_SPINLOCK(phy_lock);
 203
 204static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
 205{
 206	unsigned i;
 207
 208	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
 209				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
 210				(reg << TSI108_MAC_MII_ADDR_REG));
 211	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
 212	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
 213	for (i = 0; i < 100; i++) {
 214		if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
 215		      (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
 216			break;
 217		udelay(10);
 218	}
 219
 220	if (i == 100)
 221		return 0xffff;
 222	else
 223		return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
 224}
 225
 226static void tsi108_write_mii(struct tsi108_prv_data *data,
 227				int reg, u16 val)
 228{
 229	unsigned i = 100;
 230	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
 231				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
 232				(reg << TSI108_MAC_MII_ADDR_REG));
 233	TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
 234	while (i--) {
 235		if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
 236			TSI108_MAC_MII_IND_BUSY))
 237			break;
 238		udelay(10);
 239	}
 240}
 241
 242static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
 243{
 244	struct tsi108_prv_data *data = netdev_priv(dev);
 245	return tsi108_read_mii(data, reg);
 246}
 247
 248static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
 249{
 250	struct tsi108_prv_data *data = netdev_priv(dev);
 251	tsi108_write_mii(data, reg, val);
 252}
 253
 254static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
 255					int reg, u16 val)
 256{
 257	unsigned i = 1000;
 258	TSI_WRITE(TSI108_MAC_MII_ADDR,
 259			     (0x1e << TSI108_MAC_MII_ADDR_PHY)
 260			     | (reg << TSI108_MAC_MII_ADDR_REG));
 261	TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
 262	while(i--) {
 263		if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
 264			return;
 265		udelay(10);
 266	}
 267	printk(KERN_ERR "%s function time out\n", __func__);
 268}
 269
 270static int mii_speed(struct mii_if_info *mii)
 271{
 272	int advert, lpa, val, media;
 273	int lpa2 = 0;
 274	int speed;
 275
 276	if (!mii_link_ok(mii))
 277		return 0;
 278
 279	val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
 280	if ((val & BMSR_ANEGCOMPLETE) == 0)
 281		return 0;
 282
 283	advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
 284	lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
 285	media = mii_nway_result(advert & lpa);
 286
 287	if (mii->supports_gmii)
 288		lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
 289
 290	speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
 291			(media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
 292	return speed;
 293}
 294
 295static void tsi108_check_phy(struct net_device *dev)
 296{
 297	struct tsi108_prv_data *data = netdev_priv(dev);
 298	u32 mac_cfg2_reg, portctrl_reg;
 299	u32 duplex;
 300	u32 speed;
 301	unsigned long flags;
 302
 303	spin_lock_irqsave(&phy_lock, flags);
 304
 305	if (!data->phy_ok)
 306		goto out;
 307
 308	duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
 309	data->init_media = 0;
 310
 311	if (netif_carrier_ok(dev)) {
 312
 313		speed = mii_speed(&data->mii_if);
 314
 315		if ((speed != data->speed) || duplex) {
 316
 317			mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
 318			portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
 319
 320			mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
 321
 322			if (speed == 1000) {
 323				mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
 324				portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
 325			} else {
 326				mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
 327				portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
 328			}
 329
 330			data->speed = speed;
 331
 332			if (data->mii_if.full_duplex) {
 333				mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
 334				portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
 335				data->duplex = 2;
 336			} else {
 337				mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
 338				portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
 339				data->duplex = 1;
 340			}
 341
 342			TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
 343			TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
 344		}
 345
 346		if (data->link_up == 0) {
 347			/* The manual says it can take 3-4 usecs for the speed change
 348			 * to take effect.
 349			 */
 350			udelay(5);
 351
 352			spin_lock(&data->txlock);
 353			if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
 354				netif_wake_queue(dev);
 355
 356			data->link_up = 1;
 357			spin_unlock(&data->txlock);
 358		}
 359	} else {
 360		if (data->link_up == 1) {
 361			netif_stop_queue(dev);
 362			data->link_up = 0;
 363			printk(KERN_NOTICE "%s : link is down\n", dev->name);
 364		}
 365
 366		goto out;
 367	}
 368
 369
 370out:
 371	spin_unlock_irqrestore(&phy_lock, flags);
 372}
 373
 374static inline void
 375tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
 376		      unsigned long *upper)
 377{
 378	if (carry & carry_bit)
 379		*upper += carry_shift;
 380}
 381
 382static void tsi108_stat_carry(struct net_device *dev)
 383{
 384	struct tsi108_prv_data *data = netdev_priv(dev);
 385	u32 carry1, carry2;
 386
 387	spin_lock_irq(&data->misclock);
 388
 389	carry1 = TSI_READ(TSI108_STAT_CARRY1);
 390	carry2 = TSI_READ(TSI108_STAT_CARRY2);
 391
 392	TSI_WRITE(TSI108_STAT_CARRY1, carry1);
 393	TSI_WRITE(TSI108_STAT_CARRY2, carry2);
 394
 395	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
 396			      TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
 397
 398	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
 399			      TSI108_STAT_RXPKTS_CARRY,
 400			      &data->stats.rx_packets);
 401
 402	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
 403			      TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
 404
 405	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
 406			      TSI108_STAT_RXMCAST_CARRY,
 407			      &data->stats.multicast);
 408
 409	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
 410			      TSI108_STAT_RXALIGN_CARRY,
 411			      &data->stats.rx_frame_errors);
 412
 413	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
 414			      TSI108_STAT_RXLENGTH_CARRY,
 415			      &data->stats.rx_length_errors);
 416
 417	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
 418			      TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
 419
 420	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
 421			      TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
 422
 423	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
 424			      TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
 425
 426	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
 427			      TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
 428
 429	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
 430			      TSI108_STAT_RXDROP_CARRY,
 431			      &data->stats.rx_missed_errors);
 432
 433	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
 434			      TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
 435
 436	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
 437			      TSI108_STAT_TXPKTS_CARRY,
 438			      &data->stats.tx_packets);
 439
 440	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
 441			      TSI108_STAT_TXEXDEF_CARRY,
 442			      &data->stats.tx_aborted_errors);
 443
 444	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
 445			      TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
 446
 447	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
 448			      TSI108_STAT_TXTCOL_CARRY,
 449			      &data->stats.collisions);
 450
 451	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
 452			      TSI108_STAT_TXPAUSEDROP_CARRY,
 453			      &data->tx_pause_drop);
 454
 455	spin_unlock_irq(&data->misclock);
 456}
 457
 458/* Read a stat counter atomically with respect to carries.
 459 * data->misclock must be held.
 460 */
 461static inline unsigned long
 462tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
 463		 int carry_shift, unsigned long *upper)
 464{
 465	int carryreg;
 466	unsigned long val;
 467
 468	if (reg < 0xb0)
 469		carryreg = TSI108_STAT_CARRY1;
 470	else
 471		carryreg = TSI108_STAT_CARRY2;
 472
 473      again:
 474	val = TSI_READ(reg) | *upper;
 475
 476	/* Check to see if it overflowed, but the interrupt hasn't
 477	 * been serviced yet.  If so, handle the carry here, and
 478	 * try again.
 479	 */
 480
 481	if (unlikely(TSI_READ(carryreg) & carry_bit)) {
 482		*upper += carry_shift;
 483		TSI_WRITE(carryreg, carry_bit);
 484		goto again;
 485	}
 486
 487	return val;
 488}
 489
 490static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
 491{
 492	unsigned long excol;
 493
 494	struct tsi108_prv_data *data = netdev_priv(dev);
 495	spin_lock_irq(&data->misclock);
 496
 497	data->tmpstats.rx_packets =
 498	    tsi108_read_stat(data, TSI108_STAT_RXPKTS,
 499			     TSI108_STAT_CARRY1_RXPKTS,
 500			     TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
 501
 502	data->tmpstats.tx_packets =
 503	    tsi108_read_stat(data, TSI108_STAT_TXPKTS,
 504			     TSI108_STAT_CARRY2_TXPKTS,
 505			     TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
 506
 507	data->tmpstats.rx_bytes =
 508	    tsi108_read_stat(data, TSI108_STAT_RXBYTES,
 509			     TSI108_STAT_CARRY1_RXBYTES,
 510			     TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
 511
 512	data->tmpstats.tx_bytes =
 513	    tsi108_read_stat(data, TSI108_STAT_TXBYTES,
 514			     TSI108_STAT_CARRY2_TXBYTES,
 515			     TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
 516
 517	data->tmpstats.multicast =
 518	    tsi108_read_stat(data, TSI108_STAT_RXMCAST,
 519			     TSI108_STAT_CARRY1_RXMCAST,
 520			     TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
 521
 522	excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
 523				 TSI108_STAT_CARRY2_TXEXCOL,
 524				 TSI108_STAT_TXEXCOL_CARRY,
 525				 &data->tx_coll_abort);
 526
 527	data->tmpstats.collisions =
 528	    tsi108_read_stat(data, TSI108_STAT_TXTCOL,
 529			     TSI108_STAT_CARRY2_TXTCOL,
 530			     TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
 531
 532	data->tmpstats.collisions += excol;
 533
 534	data->tmpstats.rx_length_errors =
 535	    tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
 536			     TSI108_STAT_CARRY1_RXLENGTH,
 537			     TSI108_STAT_RXLENGTH_CARRY,
 538			     &data->stats.rx_length_errors);
 539
 540	data->tmpstats.rx_length_errors +=
 541	    tsi108_read_stat(data, TSI108_STAT_RXRUNT,
 542			     TSI108_STAT_CARRY1_RXRUNT,
 543			     TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
 544
 545	data->tmpstats.rx_length_errors +=
 546	    tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
 547			     TSI108_STAT_CARRY1_RXJUMBO,
 548			     TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
 549
 550	data->tmpstats.rx_frame_errors =
 551	    tsi108_read_stat(data, TSI108_STAT_RXALIGN,
 552			     TSI108_STAT_CARRY1_RXALIGN,
 553			     TSI108_STAT_RXALIGN_CARRY,
 554			     &data->stats.rx_frame_errors);
 555
 556	data->tmpstats.rx_frame_errors +=
 557	    tsi108_read_stat(data, TSI108_STAT_RXFCS,
 558			     TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
 559			     &data->rx_fcs);
 560
 561	data->tmpstats.rx_frame_errors +=
 562	    tsi108_read_stat(data, TSI108_STAT_RXFRAG,
 563			     TSI108_STAT_CARRY1_RXFRAG,
 564			     TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
 565
 566	data->tmpstats.rx_missed_errors =
 567	    tsi108_read_stat(data, TSI108_STAT_RXDROP,
 568			     TSI108_STAT_CARRY1_RXDROP,
 569			     TSI108_STAT_RXDROP_CARRY,
 570			     &data->stats.rx_missed_errors);
 571
 572	/* These three are maintained by software. */
 573	data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
 574	data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
 575
 576	data->tmpstats.tx_aborted_errors =
 577	    tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
 578			     TSI108_STAT_CARRY2_TXEXDEF,
 579			     TSI108_STAT_TXEXDEF_CARRY,
 580			     &data->stats.tx_aborted_errors);
 581
 582	data->tmpstats.tx_aborted_errors +=
 583	    tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
 584			     TSI108_STAT_CARRY2_TXPAUSE,
 585			     TSI108_STAT_TXPAUSEDROP_CARRY,
 586			     &data->tx_pause_drop);
 587
 588	data->tmpstats.tx_aborted_errors += excol;
 589
 590	data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
 591	data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
 592	    data->tmpstats.rx_crc_errors +
 593	    data->tmpstats.rx_frame_errors +
 594	    data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
 595
 596	spin_unlock_irq(&data->misclock);
 597	return &data->tmpstats;
 598}
 599
 600static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
 601{
 602	TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
 603			     TSI108_EC_RXQ_PTRHIGH_VALID);
 604
 605	TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
 606			     | TSI108_EC_RXCTRL_QUEUE0);
 607}
 608
 609static void tsi108_restart_tx(struct tsi108_prv_data * data)
 610{
 611	TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
 612			     TSI108_EC_TXQ_PTRHIGH_VALID);
 613
 614	TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
 615			     TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
 616}
 617
 618/* txlock must be held by caller, with IRQs disabled, and
 619 * with permission to re-enable them when the lock is dropped.
 620 */
 621static void tsi108_complete_tx(struct net_device *dev)
 622{
 623	struct tsi108_prv_data *data = netdev_priv(dev);
 624	int tx;
 625	struct sk_buff *skb;
 626	int release = 0;
 627
 628	while (!data->txfree || data->txhead != data->txtail) {
 629		tx = data->txtail;
 630
 631		if (data->txring[tx].misc & TSI108_TX_OWN)
 632			break;
 633
 634		skb = data->txskbs[tx];
 635
 636		if (!(data->txring[tx].misc & TSI108_TX_OK))
 637			printk("%s: bad tx packet, misc %x\n",
 638			       dev->name, data->txring[tx].misc);
 639
 640		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
 641		data->txfree++;
 642
 643		if (data->txring[tx].misc & TSI108_TX_EOF) {
 644			dev_kfree_skb_any(skb);
 645			release++;
 646		}
 647	}
 648
 649	if (release) {
 650		if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
 651			netif_wake_queue(dev);
 652	}
 653}
 654
 655static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
 656{
 657	struct tsi108_prv_data *data = netdev_priv(dev);
 658	int frags = skb_shinfo(skb)->nr_frags + 1;
 659	int i;
 660
 661	if (!data->phy_ok && net_ratelimit())
 662		printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
 663
 664	if (!data->link_up) {
 665		printk(KERN_ERR "%s: Transmit while link is down!\n",
 666		       dev->name);
 667		netif_stop_queue(dev);
 668		return NETDEV_TX_BUSY;
 669	}
 670
 671	if (data->txfree < MAX_SKB_FRAGS + 1) {
 672		netif_stop_queue(dev);
 673
 674		if (net_ratelimit())
 675			printk(KERN_ERR "%s: Transmit with full tx ring!\n",
 676			       dev->name);
 677		return NETDEV_TX_BUSY;
 678	}
 679
 680	if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
 681		netif_stop_queue(dev);
 682	}
 683
 684	spin_lock_irq(&data->txlock);
 685
 686	for (i = 0; i < frags; i++) {
 687		int misc = 0;
 688		int tx = data->txhead;
 689
 690		/* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
 691		 * the interrupt bit.  TX descriptor-complete interrupts are
 692		 * enabled when the queue fills up, and masked when there is
 693		 * still free space.  This way, when saturating the outbound
 694		 * link, the tx interrupts are kept to a reasonable level.
 695		 * When the queue is not full, reclamation of skbs still occurs
 696		 * as new packets are transmitted, or on a queue-empty
 697		 * interrupt.
 698		 */
 699
 700		if ((tx % TSI108_TX_INT_FREQ == 0) &&
 701		    ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
 702			misc = TSI108_TX_INT;
 703
 704		data->txskbs[tx] = skb;
 705
 706		if (i == 0) {
 707			data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
 708					skb_headlen(skb), DMA_TO_DEVICE);
 709			data->txring[tx].len = skb_headlen(skb);
 710			misc |= TSI108_TX_SOF;
 711		} else {
 712			skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
 713
 714			data->txring[tx].buf0 =
 715			    dma_map_page(NULL, frag->page, frag->page_offset,
 716					    frag->size, DMA_TO_DEVICE);
 717			data->txring[tx].len = frag->size;
 718		}
 719
 720		if (i == frags - 1)
 721			misc |= TSI108_TX_EOF;
 722
 723		if (netif_msg_pktdata(data)) {
 724			int i;
 725			printk("%s: Tx Frame contents (%d)\n", dev->name,
 726			       skb->len);
 727			for (i = 0; i < skb->len; i++)
 728				printk(" %2.2x", skb->data[i]);
 729			printk(".\n");
 730		}
 731		data->txring[tx].misc = misc | TSI108_TX_OWN;
 732
 733		data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
 734		data->txfree--;
 735	}
 736
 737	tsi108_complete_tx(dev);
 738
 739	/* This must be done after the check for completed tx descriptors,
 740	 * so that the tail pointer is correct.
 741	 */
 742
 743	if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
 744		tsi108_restart_tx(data);
 745
 746	spin_unlock_irq(&data->txlock);
 747	return NETDEV_TX_OK;
 748}
 749
 750static int tsi108_complete_rx(struct net_device *dev, int budget)
 751{
 752	struct tsi108_prv_data *data = netdev_priv(dev);
 753	int done = 0;
 754
 755	while (data->rxfree && done != budget) {
 756		int rx = data->rxtail;
 757		struct sk_buff *skb;
 758
 759		if (data->rxring[rx].misc & TSI108_RX_OWN)
 760			break;
 761
 762		skb = data->rxskbs[rx];
 763		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
 764		data->rxfree--;
 765		done++;
 766
 767		if (data->rxring[rx].misc & TSI108_RX_BAD) {
 768			spin_lock_irq(&data->misclock);
 769
 770			if (data->rxring[rx].misc & TSI108_RX_CRC)
 771				data->stats.rx_crc_errors++;
 772			if (data->rxring[rx].misc & TSI108_RX_OVER)
 773				data->stats.rx_fifo_errors++;
 774
 775			spin_unlock_irq(&data->misclock);
 776
 777			dev_kfree_skb_any(skb);
 778			continue;
 779		}
 780		if (netif_msg_pktdata(data)) {
 781			int i;
 782			printk("%s: Rx Frame contents (%d)\n",
 783			       dev->name, data->rxring[rx].len);
 784			for (i = 0; i < data->rxring[rx].len; i++)
 785				printk(" %2.2x", skb->data[i]);
 786			printk(".\n");
 787		}
 788
 789		skb_put(skb, data->rxring[rx].len);
 790		skb->protocol = eth_type_trans(skb, dev);
 791		netif_receive_skb(skb);
 792	}
 793
 794	return done;
 795}
 796
 797static int tsi108_refill_rx(struct net_device *dev, int budget)
 798{
 799	struct tsi108_prv_data *data = netdev_priv(dev);
 800	int done = 0;
 801
 802	while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
 803		int rx = data->rxhead;
 804		struct sk_buff *skb;
 805
 806		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
 807		data->rxskbs[rx] = skb;
 808		if (!skb)
 809			break;
 810
 811		data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
 812							TSI108_RX_SKB_SIZE,
 813							DMA_FROM_DEVICE);
 814
 815		/* Sometimes the hardware sets blen to zero after packet
 816		 * reception, even though the manual says that it's only ever
 817		 * modified by the driver.
 818		 */
 819
 820		data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
 821		data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
 822
 823		data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
 824		data->rxfree++;
 825		done++;
 826	}
 827
 828	if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
 829			   TSI108_EC_RXSTAT_QUEUE0))
 830		tsi108_restart_rx(data, dev);
 831
 832	return done;
 833}
 834
 835static int tsi108_poll(struct napi_struct *napi, int budget)
 836{
 837	struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
 838	struct net_device *dev = data->dev;
 839	u32 estat = TSI_READ(TSI108_EC_RXESTAT);
 840	u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
 841	int num_received = 0, num_filled = 0;
 842
 843	intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
 844	    TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
 845
 846	TSI_WRITE(TSI108_EC_RXESTAT, estat);
 847	TSI_WRITE(TSI108_EC_INTSTAT, intstat);
 848
 849	if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
 850		num_received = tsi108_complete_rx(dev, budget);
 851
 852	/* This should normally fill no more slots than the number of
 853	 * packets received in tsi108_complete_rx().  The exception
 854	 * is when we previously ran out of memory for RX SKBs.  In that
 855	 * case, it's helpful to obey the budget, not only so that the
 856	 * CPU isn't hogged, but so that memory (which may still be low)
 857	 * is not hogged by one device.
 858	 *
 859	 * A work unit is considered to be two SKBs to allow us to catch
 860	 * up when the ring has shrunk due to out-of-memory but we're
 861	 * still removing the full budget's worth of packets each time.
 862	 */
 863
 864	if (data->rxfree < TSI108_RXRING_LEN)
 865		num_filled = tsi108_refill_rx(dev, budget * 2);
 866
 867	if (intstat & TSI108_INT_RXERROR) {
 868		u32 err = TSI_READ(TSI108_EC_RXERR);
 869		TSI_WRITE(TSI108_EC_RXERR, err);
 870
 871		if (err) {
 872			if (net_ratelimit())
 873				printk(KERN_DEBUG "%s: RX error %x\n",
 874				       dev->name, err);
 875
 876			if (!(TSI_READ(TSI108_EC_RXSTAT) &
 877			      TSI108_EC_RXSTAT_QUEUE0))
 878				tsi108_restart_rx(data, dev);
 879		}
 880	}
 881
 882	if (intstat & TSI108_INT_RXOVERRUN) {
 883		spin_lock_irq(&data->misclock);
 884		data->stats.rx_fifo_errors++;
 885		spin_unlock_irq(&data->misclock);
 886	}
 887
 888	if (num_received < budget) {
 889		data->rxpending = 0;
 890		napi_complete(napi);
 891
 892		TSI_WRITE(TSI108_EC_INTMASK,
 893				     TSI_READ(TSI108_EC_INTMASK)
 894				     & ~(TSI108_INT_RXQUEUE0
 895					 | TSI108_INT_RXTHRESH |
 896					 TSI108_INT_RXOVERRUN |
 897					 TSI108_INT_RXERROR |
 898					 TSI108_INT_RXWAIT));
 899	} else {
 900		data->rxpending = 1;
 901	}
 902
 903	return num_received;
 904}
 905
 906static void tsi108_rx_int(struct net_device *dev)
 907{
 908	struct tsi108_prv_data *data = netdev_priv(dev);
 909
 910	/* A race could cause dev to already be scheduled, so it's not an
 911	 * error if that happens (and interrupts shouldn't be re-masked,
 912	 * because that can cause harmful races, if poll has already
 913	 * unmasked them but not cleared LINK_STATE_SCHED).
 914	 *
 915	 * This can happen if this code races with tsi108_poll(), which masks
 916	 * the interrupts after tsi108_irq_one() read the mask, but before
 917	 * napi_schedule is called.  It could also happen due to calls
 918	 * from tsi108_check_rxring().
 919	 */
 920
 921	if (napi_schedule_prep(&data->napi)) {
 922		/* Mask, rather than ack, the receive interrupts.  The ack
 923		 * will happen in tsi108_poll().
 924		 */
 925
 926		TSI_WRITE(TSI108_EC_INTMASK,
 927				     TSI_READ(TSI108_EC_INTMASK) |
 928				     TSI108_INT_RXQUEUE0
 929				     | TSI108_INT_RXTHRESH |
 930				     TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
 931				     TSI108_INT_RXWAIT);
 932		__napi_schedule(&data->napi);
 933	} else {
 934		if (!netif_running(dev)) {
 935			/* This can happen if an interrupt occurs while the
 936			 * interface is being brought down, as the START
 937			 * bit is cleared before the stop function is called.
 938			 *
 939			 * In this case, the interrupts must be masked, or
 940			 * they will continue indefinitely.
 941			 *
 942			 * There's a race here if the interface is brought down
 943			 * and then up in rapid succession, as the device could
 944			 * be made running after the above check and before
 945			 * the masking below.  This will only happen if the IRQ
 946			 * thread has a lower priority than the task brining
 947			 * up the interface.  Fixing this race would likely
 948			 * require changes in generic code.
 949			 */
 950
 951			TSI_WRITE(TSI108_EC_INTMASK,
 952					     TSI_READ
 953					     (TSI108_EC_INTMASK) |
 954					     TSI108_INT_RXQUEUE0 |
 955					     TSI108_INT_RXTHRESH |
 956					     TSI108_INT_RXOVERRUN |
 957					     TSI108_INT_RXERROR |
 958					     TSI108_INT_RXWAIT);
 959		}
 960	}
 961}
 962
 963/* If the RX ring has run out of memory, try periodically
 964 * to allocate some more, as otherwise poll would never
 965 * get called (apart from the initial end-of-queue condition).
 966 *
 967 * This is called once per second (by default) from the thread.
 968 */
 969
 970static void tsi108_check_rxring(struct net_device *dev)
 971{
 972	struct tsi108_prv_data *data = netdev_priv(dev);
 973
 974	/* A poll is scheduled, as opposed to caling tsi108_refill_rx
 975	 * directly, so as to keep the receive path single-threaded
 976	 * (and thus not needing a lock).
 977	 */
 978
 979	if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
 980		tsi108_rx_int(dev);
 981}
 982
 983static void tsi108_tx_int(struct net_device *dev)
 984{
 985	struct tsi108_prv_data *data = netdev_priv(dev);
 986	u32 estat = TSI_READ(TSI108_EC_TXESTAT);
 987
 988	TSI_WRITE(TSI108_EC_TXESTAT, estat);
 989	TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
 990			     TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
 991	if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
 992		u32 err = TSI_READ(TSI108_EC_TXERR);
 993		TSI_WRITE(TSI108_EC_TXERR, err);
 994
 995		if (err && net_ratelimit())
 996			printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
 997	}
 998
 999	if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
1000		spin_lock(&data->txlock);
1001		tsi108_complete_tx(dev);
1002		spin_unlock(&data->txlock);
1003	}
1004}
1005
1006
1007static irqreturn_t tsi108_irq(int irq, void *dev_id)
1008{
1009	struct net_device *dev = dev_id;
1010	struct tsi108_prv_data *data = netdev_priv(dev);
1011	u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1012
1013	if (!(stat & TSI108_INT_ANY))
1014		return IRQ_NONE;	/* Not our interrupt */
1015
1016	stat &= ~TSI_READ(TSI108_EC_INTMASK);
1017
1018	if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1019		    TSI108_INT_TXERROR))
1020		tsi108_tx_int(dev);
1021	if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1022		    TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1023		    TSI108_INT_RXERROR))
1024		tsi108_rx_int(dev);
1025
1026	if (stat & TSI108_INT_SFN) {
1027		if (net_ratelimit())
1028			printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1029		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1030	}
1031
1032	if (stat & TSI108_INT_STATCARRY) {
1033		tsi108_stat_carry(dev);
1034		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1035	}
1036
1037	return IRQ_HANDLED;
1038}
1039
1040static void tsi108_stop_ethernet(struct net_device *dev)
1041{
1042	struct tsi108_prv_data *data = netdev_priv(dev);
1043	int i = 1000;
1044	/* Disable all TX and RX queues ... */
1045	TSI_WRITE(TSI108_EC_TXCTRL, 0);
1046	TSI_WRITE(TSI108_EC_RXCTRL, 0);
1047
1048	/* ...and wait for them to become idle */
1049	while(i--) {
1050		if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1051			break;
1052		udelay(10);
1053	}
1054	i = 1000;
1055	while(i--){
1056		if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1057			return;
1058		udelay(10);
1059	}
1060	printk(KERN_ERR "%s function time out\n", __func__);
1061}
1062
1063static void tsi108_reset_ether(struct tsi108_prv_data * data)
1064{
1065	TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1066	udelay(100);
1067	TSI_WRITE(TSI108_MAC_CFG1, 0);
1068
1069	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1070	udelay(100);
1071	TSI_WRITE(TSI108_EC_PORTCTRL,
1072			     TSI_READ(TSI108_EC_PORTCTRL) &
1073			     ~TSI108_EC_PORTCTRL_STATRST);
1074
1075	TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1076	udelay(100);
1077	TSI_WRITE(TSI108_EC_TXCFG,
1078			     TSI_READ(TSI108_EC_TXCFG) &
1079			     ~TSI108_EC_TXCFG_RST);
1080
1081	TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1082	udelay(100);
1083	TSI_WRITE(TSI108_EC_RXCFG,
1084			     TSI_READ(TSI108_EC_RXCFG) &
1085			     ~TSI108_EC_RXCFG_RST);
1086
1087	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1088			     TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1089			     TSI108_MAC_MII_MGMT_RST);
1090	udelay(100);
1091	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1092			     (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1093			     ~(TSI108_MAC_MII_MGMT_RST |
1094			       TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1095}
1096
1097static int tsi108_get_mac(struct net_device *dev)
1098{
1099	struct tsi108_prv_data *data = netdev_priv(dev);
1100	u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1101	u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1102
1103	/* Note that the octets are reversed from what the manual says,
1104	 * producing an even weirder ordering...
1105	 */
1106	if (word2 == 0 && word1 == 0) {
1107		dev->dev_addr[0] = 0x00;
1108		dev->dev_addr[1] = 0x06;
1109		dev->dev_addr[2] = 0xd2;
1110		dev->dev_addr[3] = 0x00;
1111		dev->dev_addr[4] = 0x00;
1112		if (0x8 == data->phy)
1113			dev->dev_addr[5] = 0x01;
1114		else
1115			dev->dev_addr[5] = 0x02;
1116
1117		word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1118
1119		word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1120		    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1121
1122		TSI_WRITE(TSI108_MAC_ADDR1, word1);
1123		TSI_WRITE(TSI108_MAC_ADDR2, word2);
1124	} else {
1125		dev->dev_addr[0] = (word2 >> 16) & 0xff;
1126		dev->dev_addr[1] = (word2 >> 24) & 0xff;
1127		dev->dev_addr[2] = (word1 >> 0) & 0xff;
1128		dev->dev_addr[3] = (word1 >> 8) & 0xff;
1129		dev->dev_addr[4] = (word1 >> 16) & 0xff;
1130		dev->dev_addr[5] = (word1 >> 24) & 0xff;
1131	}
1132
1133	if (!is_valid_ether_addr(dev->dev_addr)) {
1134		printk(KERN_ERR
1135		       "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1136		       dev->name, word1, word2);
1137		return -EINVAL;
1138	}
1139
1140	return 0;
1141}
1142
1143static int tsi108_set_mac(struct net_device *dev, void *addr)
1144{
1145	struct tsi108_prv_data *data = netdev_priv(dev);
1146	u32 word1, word2;
1147	int i;
1148
1149	if (!is_valid_ether_addr(addr))
1150		return -EINVAL;
1151
1152	for (i = 0; i < 6; i++)
1153		/* +2 is for the offset of the HW addr type */
1154		dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1155
1156	word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1157
1158	word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1159	    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1160
1161	spin_lock_irq(&data->misclock);
1162	TSI_WRITE(TSI108_MAC_ADDR1, word1);
1163	TSI_WRITE(TSI108_MAC_ADDR2, word2);
1164	spin_lock(&data->txlock);
1165
1166	if (data->txfree && data->link_up)
1167		netif_wake_queue(dev);
1168
1169	spin_unlock(&data->txlock);
1170	spin_unlock_irq(&data->misclock);
1171	return 0;
1172}
1173
1174/* Protected by dev->xmit_lock. */
1175static void tsi108_set_rx_mode(struct net_device *dev)
1176{
1177	struct tsi108_prv_data *data = netdev_priv(dev);
1178	u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1179
1180	if (dev->flags & IFF_PROMISC) {
1181		rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1182		rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1183		goto out;
1184	}
1185
1186	rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1187
1188	if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1189		int i;
1190		struct netdev_hw_addr *ha;
1191		rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1192
1193		memset(data->mc_hash, 0, sizeof(data->mc_hash));
1194
1195		netdev_for_each_mc_addr(ha, dev) {
1196			u32 hash, crc;
1197
1198			crc = ether_crc(6, ha->addr);
1199			hash = crc >> 23;
1200			__set_bit(hash, &data->mc_hash[0]);
1201		}
1202
1203		TSI_WRITE(TSI108_EC_HASHADDR,
1204				     TSI108_EC_HASHADDR_AUTOINC |
1205				     TSI108_EC_HASHADDR_MCAST);
1206
1207		for (i = 0; i < 16; i++) {
1208			/* The manual says that the hardware may drop
1209			 * back-to-back writes to the data register.
1210			 */
1211			udelay(1);
1212			TSI_WRITE(TSI108_EC_HASHDATA,
1213					     data->mc_hash[i]);
1214		}
1215	}
1216
1217      out:
1218	TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1219}
1220
1221static void tsi108_init_phy(struct net_device *dev)
1222{
1223	struct tsi108_prv_data *data = netdev_priv(dev);
1224	u32 i = 0;
1225	u16 phyval = 0;
1226	unsigned long flags;
1227
1228	spin_lock_irqsave(&phy_lock, flags);
1229
1230	tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1231	while (--i) {
1232		if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1233			break;
1234		udelay(10);
1235	}
1236	if (i == 0)
1237		printk(KERN_ERR "%s function time out\n", __func__);
1238
1239	if (data->phy_type == TSI108_PHY_BCM54XX) {
1240		tsi108_write_mii(data, 0x09, 0x0300);
1241		tsi108_write_mii(data, 0x10, 0x1020);
1242		tsi108_write_mii(data, 0x1c, 0x8c00);
1243	}
1244
1245	tsi108_write_mii(data,
1246			 MII_BMCR,
1247			 BMCR_ANENABLE | BMCR_ANRESTART);
1248	while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1249		cpu_relax();
1250
1251	/* Set G/MII mode and receive clock select in TBI control #2.  The
1252	 * second port won't work if this isn't done, even though we don't
1253	 * use TBI mode.
1254	 */
1255
1256	tsi108_write_tbi(data, 0x11, 0x30);
1257
1258	/* FIXME: It seems to take more than 2 back-to-back reads to the
1259	 * PHY_STAT register before the link up status bit is set.
1260	 */
1261
1262	data->link_up = 0;
1263
1264	while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1265		 BMSR_LSTATUS)) {
1266		if (i++ > (MII_READ_DELAY / 10)) {
1267			break;
1268		}
1269		spin_unlock_irqrestore(&phy_lock, flags);
1270		msleep(10);
1271		spin_lock_irqsave(&phy_lock, flags);
1272	}
1273
1274	data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1275	printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1276	data->phy_ok = 1;
1277	data->init_media = 1;
1278	spin_unlock_irqrestore(&phy_lock, flags);
1279}
1280
1281static void tsi108_kill_phy(struct net_device *dev)
1282{
1283	struct tsi108_prv_data *data = netdev_priv(dev);
1284	unsigned long flags;
1285
1286	spin_lock_irqsave(&phy_lock, flags);
1287	tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1288	data->phy_ok = 0;
1289	spin_unlock_irqrestore(&phy_lock, flags);
1290}
1291
1292static int tsi108_open(struct net_device *dev)
1293{
1294	int i;
1295	struct tsi108_prv_data *data = netdev_priv(dev);
1296	unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1297	unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1298
1299	i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1300	if (i != 0) {
1301		printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1302		       data->id, data->irq_num);
1303		return i;
1304	} else {
1305		dev->irq = data->irq_num;
1306		printk(KERN_NOTICE
1307		       "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1308		       data->id, dev->irq, dev->name);
1309	}
1310
1311	data->rxring = dma_alloc_coherent(NULL, rxring_size,
1312			&data->rxdma, GFP_KERNEL);
1313
1314	if (!data->rxring) {
1315		printk(KERN_DEBUG
1316		       "TSI108_ETH: failed to allocate memory for rxring!\n");
1317		return -ENOMEM;
1318	} else {
1319		memset(data->rxring, 0, rxring_size);
1320	}
1321
1322	data->txring = dma_alloc_coherent(NULL, txring_size,
1323			&data->txdma, GFP_KERNEL);
1324
1325	if (!data->txring) {
1326		printk(KERN_DEBUG
1327		       "TSI108_ETH: failed to allocate memory for txring!\n");
1328		pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
1329		return -ENOMEM;
1330	} else {
1331		memset(data->txring, 0, txring_size);
1332	}
1333
1334	for (i = 0; i < TSI108_RXRING_LEN; i++) {
1335		data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1336		data->rxring[i].blen = TSI108_RXBUF_SIZE;
1337		data->rxring[i].vlan = 0;
1338	}
1339
1340	data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1341
1342	data->rxtail = 0;
1343	data->rxhead = 0;
1344
1345	for (i = 0; i < TSI108_RXRING_LEN; i++) {
1346		struct sk_buff *skb;
1347
1348		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1349		if (!skb) {
1350			/* Bah.  No memory for now, but maybe we'll get
1351			 * some more later.
1352			 * For now, we'll live with the smaller ring.
1353			 */
1354			printk(KERN_WARNING
1355			       "%s: Could only allocate %d receive skb(s).\n",
1356			       dev->name, i);
1357			data->rxhead = i;
1358			break;
1359		}
1360
1361		data->rxskbs[i] = skb;
1362		data->rxskbs[i] = skb;
1363		data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1364		data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1365	}
1366
1367	data->rxfree = i;
1368	TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1369
1370	for (i = 0; i < TSI108_TXRING_LEN; i++) {
1371		data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1372		data->txring[i].misc = 0;
1373	}
1374
1375	data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1376	data->txtail = 0;
1377	data->txhead = 0;
1378	data->txfree = TSI108_TXRING_LEN;
1379	TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1380	tsi108_init_phy(dev);
1381
1382	napi_enable(&data->napi);
1383
1384	setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1385	mod_timer(&data->timer, jiffies + 1);
1386
1387	tsi108_restart_rx(data, dev);
1388
1389	TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1390
1391	TSI_WRITE(TSI108_EC_INTMASK,
1392			     ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1393			       TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1394			       TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1395			       TSI108_INT_SFN | TSI108_INT_STATCARRY));
1396
1397	TSI_WRITE(TSI108_MAC_CFG1,
1398			     TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1399	netif_start_queue(dev);
1400	return 0;
1401}
1402
1403static int tsi108_close(struct net_device *dev)
1404{
1405	struct tsi108_prv_data *data = netdev_priv(dev);
1406
1407	netif_stop_queue(dev);
1408	napi_disable(&data->napi);
1409
1410	del_timer_sync(&data->timer);
1411
1412	tsi108_stop_ethernet(dev);
1413	tsi108_kill_phy(dev);
1414	TSI_WRITE(TSI108_EC_INTMASK, ~0);
1415	TSI_WRITE(TSI108_MAC_CFG1, 0);
1416
1417	/* Check for any pending TX packets, and drop them. */
1418
1419	while (!data->txfree || data->txhead != data->txtail) {
1420		int tx = data->txtail;
1421		struct sk_buff *skb;
1422		skb = data->txskbs[tx];
1423		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1424		data->txfree++;
1425		dev_kfree_skb(skb);
1426	}
1427
1428	free_irq(data->irq_num, dev);
1429
1430	/* Discard the RX ring. */
1431
1432	while (data->rxfree) {
1433		int rx = data->rxtail;
1434		struct sk_buff *skb;
1435
1436		skb = data->rxskbs[rx];
1437		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1438		data->rxfree--;
1439		dev_kfree_skb(skb);
1440	}
1441
1442	dma_free_coherent(0,
1443			    TSI108_RXRING_LEN * sizeof(rx_desc),
1444			    data->rxring, data->rxdma);
1445	dma_free_coherent(0,
1446			    TSI108_TXRING_LEN * sizeof(tx_desc),
1447			    data->txring, data->txdma);
1448
1449	return 0;
1450}
1451
1452static void tsi108_init_mac(struct net_device *dev)
1453{
1454	struct tsi108_prv_data *data = netdev_priv(dev);
1455
1456	TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1457			     TSI108_MAC_CFG2_PADCRC);
1458
1459	TSI_WRITE(TSI108_EC_TXTHRESH,
1460			     (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1461			     (192 << TSI108_EC_TXTHRESH_STOPFILL));
1462
1463	TSI_WRITE(TSI108_STAT_CARRYMASK1,
1464			     ~(TSI108_STAT_CARRY1_RXBYTES |
1465			       TSI108_STAT_CARRY1_RXPKTS |
1466			       TSI108_STAT_CARRY1_RXFCS |
1467			       TSI108_STAT_CARRY1_RXMCAST |
1468			       TSI108_STAT_CARRY1_RXALIGN |
1469			       TSI108_STAT_CARRY1_RXLENGTH |
1470			       TSI108_STAT_CARRY1_RXRUNT |
1471			       TSI108_STAT_CARRY1_RXJUMBO |
1472			       TSI108_STAT_CARRY1_RXFRAG |
1473			       TSI108_STAT_CARRY1_RXJABBER |
1474			       TSI108_STAT_CARRY1_RXDROP));
1475
1476	TSI_WRITE(TSI108_STAT_CARRYMASK2,
1477			     ~(TSI108_STAT_CARRY2_TXBYTES |
1478			       TSI108_STAT_CARRY2_TXPKTS |
1479			       TSI108_STAT_CARRY2_TXEXDEF |
1480			       TSI108_STAT_CARRY2_TXEXCOL |
1481			       TSI108_STAT_CARRY2_TXTCOL |
1482			       TSI108_STAT_CARRY2_TXPAUSE));
1483
1484	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1485	TSI_WRITE(TSI108_MAC_CFG1, 0);
1486
1487	TSI_WRITE(TSI108_EC_RXCFG,
1488			     TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1489
1490	TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1491			     TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1492			     TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1493						TSI108_EC_TXQ_CFG_SFNPORT));
1494
1495	TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1496			     TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1497			     TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1498						TSI108_EC_RXQ_CFG_SFNPORT));
1499
1500	TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1501			     TSI108_EC_TXQ_BUFCFG_BURST256 |
1502			     TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1503						TSI108_EC_TXQ_BUFCFG_SFNPORT));
1504
1505	TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1506			     TSI108_EC_RXQ_BUFCFG_BURST256 |
1507			     TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1508						TSI108_EC_RXQ_BUFCFG_SFNPORT));
1509
1510	TSI_WRITE(TSI108_EC_INTMASK, ~0);
1511}
1512
1513static int tsi108_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1514{
1515	struct tsi108_prv_data *data = netdev_priv(dev);
1516	unsigned long flags;
1517	int rc;
1518
1519	spin_lock_irqsave(&data->txlock, flags);
1520	rc = mii_ethtool_gset(&data->mii_if, cmd);
1521	spin_unlock_irqrestore(&data->txlock, flags);
1522
1523	return rc;
1524}
1525
1526static int tsi108_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1527{
1528	struct tsi108_prv_data *data = netdev_priv(dev);
1529	unsigned long flags;
1530	int rc;
1531
1532	spin_lock_irqsave(&data->txlock, flags);
1533	rc = mii_ethtool_sset(&data->mii_if, cmd);
1534	spin_unlock_irqrestore(&data->txlock, flags);
1535
1536	return rc;
1537}
1538
1539static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1540{
1541	struct tsi108_prv_data *data = netdev_priv(dev);
1542	if (!netif_running(dev))
1543		return -EINVAL;
1544	return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1545}
1546
1547static const struct ethtool_ops tsi108_ethtool_ops = {
1548	.get_link 	= ethtool_op_get_link,
1549	.get_settings	= tsi108_get_settings,
1550	.set_settings	= tsi108_set_settings,
1551};
1552
1553static const struct net_device_ops tsi108_netdev_ops = {
1554	.ndo_open		= tsi108_open,
1555	.ndo_stop		= tsi108_close,
1556	.ndo_start_xmit		= tsi108_send_packet,
1557	.ndo_set_multicast_list	= tsi108_set_rx_mode,
1558	.ndo_get_stats		= tsi108_get_stats,
1559	.ndo_do_ioctl		= tsi108_do_ioctl,
1560	.ndo_set_mac_address	= tsi108_set_mac,
1561	.ndo_validate_addr	= eth_validate_addr,
1562	.ndo_change_mtu		= eth_change_mtu,
1563};
1564
1565static int
1566tsi108_init_one(struct platform_device *pdev)
1567{
1568	struct net_device *dev = NULL;
1569	struct tsi108_prv_data *data = NULL;
1570	hw_info *einfo;
1571	int err = 0;
1572
1573	einfo = pdev->dev.platform_data;
1574
1575	if (NULL == einfo) {
1576		printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1577		       pdev->id);
1578		return -ENODEV;
1579	}
1580
1581	/* Create an ethernet device instance */
1582
1583	dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1584	if (!dev) {
1585		printk("tsi108_eth: Could not allocate a device structure\n");
1586		return -ENOMEM;
1587	}
1588
1589	printk("tsi108_eth%d: probe...\n", pdev->id);
1590	data = netdev_priv(dev);
1591	data->dev = dev;
1592
1593	pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1594			pdev->id, einfo->regs, einfo->phyregs,
1595			einfo->phy, einfo->irq_num);
1596
1597	data->regs = ioremap(einfo->regs, 0x400);
1598	if (NULL == data->regs) {
1599		err = -ENOMEM;
1600		goto regs_fail;
1601	}
1602
1603	data->phyregs = ioremap(einfo->phyregs, 0x400);
1604	if (NULL == data->phyregs) {
1605		err = -ENOMEM;
1606		goto regs_fail;
1607	}
1608/* MII setup */
1609	data->mii_if.dev = dev;
1610	data->mii_if.mdio_read = tsi108_mdio_read;
1611	data->mii_if.mdio_write = tsi108_mdio_write;
1612	data->mii_if.phy_id = einfo->phy;
1613	data->mii_if.phy_id_mask = 0x1f;
1614	data->mii_if.reg_num_mask = 0x1f;
1615
1616	data->phy = einfo->phy;
1617	data->phy_type = einfo->phy_type;
1618	data->irq_num = einfo->irq_num;
1619	data->id = pdev->id;
1620	netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1621	dev->netdev_ops = &tsi108_netdev_ops;
1622	dev->ethtool_ops = &tsi108_ethtool_ops;
1623
1624	/* Apparently, the Linux networking code won't use scatter-gather
1625	 * if the hardware doesn't do checksums.  However, it's faster
1626	 * to checksum in place and use SG, as (among other reasons)
1627	 * the cache won't be dirtied (which then has to be flushed
1628	 * before DMA).  The checksumming is done by the driver (via
1629	 * a new function skb_csum_dev() in net/core/skbuff.c).
1630	 */
1631
1632	dev->features = NETIF_F_HIGHDMA;
1633
1634	spin_lock_init(&data->txlock);
1635	spin_lock_init(&data->misclock);
1636
1637	tsi108_reset_ether(data);
1638	tsi108_kill_phy(dev);
1639
1640	if ((err = tsi108_get_mac(dev)) != 0) {
1641		printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1642		       dev->name);
1643		goto register_fail;
1644	}
1645
1646	tsi108_init_mac(dev);
1647	err = register_netdev(dev);
1648	if (err) {
1649		printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1650				dev->name);
1651		goto register_fail;
1652	}
1653
1654	platform_set_drvdata(pdev, dev);
1655	printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1656	       dev->name, dev->dev_addr);
1657#ifdef DEBUG
1658	data->msg_enable = DEBUG;
1659	dump_eth_one(dev);
1660#endif
1661
1662	return 0;
1663
1664register_fail:
1665	iounmap(data->regs);
1666	iounmap(data->phyregs);
1667
1668regs_fail:
1669	free_netdev(dev);
1670	return err;
1671}
1672
1673/* There's no way to either get interrupts from the PHY when
1674 * something changes, or to have the Tsi108 automatically communicate
1675 * with the PHY to reconfigure itself.
1676 *
1677 * Thus, we have to do it using a timer.
1678 */
1679
1680static void tsi108_timed_checker(unsigned long dev_ptr)
1681{
1682	struct net_device *dev = (struct net_device *)dev_ptr;
1683	struct tsi108_prv_data *data = netdev_priv(dev);
1684
1685	tsi108_check_phy(dev);
1686	tsi108_check_rxring(dev);
1687	mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1688}
1689
1690static int tsi108_ether_init(void)
1691{
1692	int ret;
1693	ret = platform_driver_register (&tsi_eth_driver);
1694	if (ret < 0){
1695		printk("tsi108_ether_init: error initializing ethernet "
1696		       "device\n");
1697		return ret;
1698	}
1699	return 0;
1700}
1701
1702static int tsi108_ether_remove(struct platform_device *pdev)
1703{
1704	struct net_device *dev = platform_get_drvdata(pdev);
1705	struct tsi108_prv_data *priv = netdev_priv(dev);
1706
1707	unregister_netdev(dev);
1708	tsi108_stop_ethernet(dev);
1709	platform_set_drvdata(pdev, NULL);
1710	iounmap(priv->regs);
1711	iounmap(priv->phyregs);
1712	free_netdev(dev);
1713
1714	return 0;
1715}
1716static void tsi108_ether_exit(void)
1717{
1718	platform_driver_unregister(&tsi_eth_driver);
1719}
1720
1721module_init(tsi108_ether_init);
1722module_exit(tsi108_ether_exit);
1723
1724MODULE_AUTHOR("Tundra Semiconductor Corporation");
1725MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1726MODULE_LICENSE("GPL");
1727MODULE_ALIAS("platform:tsi-ethernet");