Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * Tehuti Networks(R) Network Driver
   3 * ethtool interface implementation
   4 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 */
  11
  12/*
  13 * RX HW/SW interaction overview
  14 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  15 * There are 2 types of RX communication channels between driver and NIC.
  16 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
  17 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
  18 * info about buffer's location, size and ID. An ID field is used to identify a
  19 * buffer when it's returned with data via RXD Fifo (see below)
  20 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
  21 * filled by HW and is readen by SW. Each descriptor holds status and ID.
  22 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
  23 * via dma moves it into host memory, builds new RXD descriptor with same ID,
  24 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
  25 *
  26 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
  27 * One holds 1.5K packets and another - 26K packets. Depending on incoming
  28 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
  29 * filled with data, HW builds new RXD descriptor for it and push it into single
  30 * RXD Fifo.
  31 *
  32 * RX SW Data Structures
  33 * ~~~~~~~~~~~~~~~~~~~~~
  34 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
  35 * For RX case, ownership lasts from allocating new empty skb for RXF until
  36 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
  37 * skb db. Implemented as array with bitmask.
  38 * fifo - keeps info about fifo's size and location, relevant HW registers,
  39 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  40 * Implemented as simple struct.
  41 *
  42 * RX SW Execution Flow
  43 * ~~~~~~~~~~~~~~~~~~~~
  44 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
  45 * relevant registers. At the end of init phase, driver enables interrupts.
  46 * NIC sees that there is no RXF buffers and raises
  47 * RD_INTR interrupt, isr fills skbs and Rx begins.
  48 * Driver has two receive operation modes:
  49 *    NAPI - interrupt-driven mixed with polling
  50 *    interrupt-driven only
  51 *
  52 * Interrupt-driven only flow is following. When buffer is ready, HW raises
  53 * interrupt and isr is called. isr collects all available packets
  54 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
  55
  56 * Rx buffer allocation note
  57 * ~~~~~~~~~~~~~~~~~~~~~~~~~
  58 * Driver cares to feed such amount of RxF descriptors that respective amount of
  59 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
  60 * overflow check in Bordeaux for RxD fifo free/used size.
  61 * FIXME: this is NOT fully implemented, more work should be done
  62 *
  63 */
  64
  65#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  66
  67#include "tehuti.h"
  68
  69static DEFINE_PCI_DEVICE_TABLE(bdx_pci_tbl) = {
  70	{0x1FC9, 0x3009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  71	{0x1FC9, 0x3010, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  72	{0x1FC9, 0x3014, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  73	{0}
  74};
  75
  76MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
  77
  78/* Definitions needed by ISR or NAPI functions */
  79static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
  80static void bdx_tx_cleanup(struct bdx_priv *priv);
  81static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
  82
  83/* Definitions needed by FW loading */
  84static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
  85
  86/* Definitions needed by hw_start */
  87static int bdx_tx_init(struct bdx_priv *priv);
  88static int bdx_rx_init(struct bdx_priv *priv);
  89
  90/* Definitions needed by bdx_close */
  91static void bdx_rx_free(struct bdx_priv *priv);
  92static void bdx_tx_free(struct bdx_priv *priv);
  93
  94/* Definitions needed by bdx_probe */
  95static void bdx_set_ethtool_ops(struct net_device *netdev);
  96
  97/*************************************************************************
  98 *    Print Info                                                         *
  99 *************************************************************************/
 100
 101static void print_hw_id(struct pci_dev *pdev)
 102{
 103	struct pci_nic *nic = pci_get_drvdata(pdev);
 104	u16 pci_link_status = 0;
 105	u16 pci_ctrl = 0;
 106
 107	pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
 108	pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
 109
 110	pr_info("%s%s\n", BDX_NIC_NAME,
 111		nic->port_num == 1 ? "" : ", 2-Port");
 112	pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
 113		readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
 114		readl(nic->regs + FPGA_SEED),
 115		GET_LINK_STATUS_LANES(pci_link_status),
 116		GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
 117}
 118
 119static void print_fw_id(struct pci_nic *nic)
 120{
 121	pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
 122}
 123
 124static void print_eth_id(struct net_device *ndev)
 125{
 126	netdev_info(ndev, "%s, Port %c\n",
 127		    BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
 128
 129}
 130
 131/*************************************************************************
 132 *    Code                                                               *
 133 *************************************************************************/
 134
 135#define bdx_enable_interrupts(priv)	\
 136	do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
 137#define bdx_disable_interrupts(priv)	\
 138	do { WRITE_REG(priv, regIMR, 0); } while (0)
 139
 140/* bdx_fifo_init
 141 * create TX/RX descriptor fifo for host-NIC communication.
 142 * 1K extra space is allocated at the end of the fifo to simplify
 143 * processing of descriptors that wraps around fifo's end
 144 * @priv - NIC private structure
 145 * @f - fifo to initialize
 146 * @fsz_type - fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
 147 * @reg_XXX - offsets of registers relative to base address
 148 *
 149 * Returns 0 on success, negative value on failure
 150 *
 151 */
 152static int
 153bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
 154	      u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
 155{
 156	u16 memsz = FIFO_SIZE * (1 << fsz_type);
 157
 158	memset(f, 0, sizeof(struct fifo));
 159	/* pci_alloc_consistent gives us 4k-aligned memory */
 160	f->va = pci_alloc_consistent(priv->pdev,
 161				     memsz + FIFO_EXTRA_SPACE, &f->da);
 162	if (!f->va) {
 163		pr_err("pci_alloc_consistent failed\n");
 164		RET(-ENOMEM);
 165	}
 166	f->reg_CFG0 = reg_CFG0;
 167	f->reg_CFG1 = reg_CFG1;
 168	f->reg_RPTR = reg_RPTR;
 169	f->reg_WPTR = reg_WPTR;
 170	f->rptr = 0;
 171	f->wptr = 0;
 172	f->memsz = memsz;
 173	f->size_mask = memsz - 1;
 174	WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
 175	WRITE_REG(priv, reg_CFG1, H32_64(f->da));
 176
 177	RET(0);
 178}
 179
 180/* bdx_fifo_free - free all resources used by fifo
 181 * @priv - NIC private structure
 182 * @f - fifo to release
 183 */
 184static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
 185{
 186	ENTER;
 187	if (f->va) {
 188		pci_free_consistent(priv->pdev,
 189				    f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
 190		f->va = NULL;
 191	}
 192	RET();
 193}
 194
 195/*
 196 * bdx_link_changed - notifies OS about hw link state.
 197 * @bdx_priv - hw adapter structure
 198 */
 199static void bdx_link_changed(struct bdx_priv *priv)
 200{
 201	u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
 202
 203	if (!link) {
 204		if (netif_carrier_ok(priv->ndev)) {
 205			netif_stop_queue(priv->ndev);
 206			netif_carrier_off(priv->ndev);
 207			netdev_err(priv->ndev, "Link Down\n");
 208		}
 209	} else {
 210		if (!netif_carrier_ok(priv->ndev)) {
 211			netif_wake_queue(priv->ndev);
 212			netif_carrier_on(priv->ndev);
 213			netdev_err(priv->ndev, "Link Up\n");
 214		}
 215	}
 216}
 217
 218static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
 219{
 220	if (isr & IR_RX_FREE_0) {
 221		bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
 222		DBG("RX_FREE_0\n");
 223	}
 224
 225	if (isr & IR_LNKCHG0)
 226		bdx_link_changed(priv);
 227
 228	if (isr & IR_PCIE_LINK)
 229		netdev_err(priv->ndev, "PCI-E Link Fault\n");
 230
 231	if (isr & IR_PCIE_TOUT)
 232		netdev_err(priv->ndev, "PCI-E Time Out\n");
 233
 234}
 235
 236/* bdx_isr - Interrupt Service Routine for Bordeaux NIC
 237 * @irq - interrupt number
 238 * @ndev - network device
 239 * @regs - CPU registers
 240 *
 241 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
 242 *
 243 * It reads ISR register to know interrupt reasons, and proceed them one by one.
 244 * Reasons of interest are:
 245 *    RX_DESC - new packet has arrived and RXD fifo holds its descriptor
 246 *    RX_FREE - number of free Rx buffers in RXF fifo gets low
 247 *    TX_FREE - packet was transmited and RXF fifo holds its descriptor
 248 */
 249
 250static irqreturn_t bdx_isr_napi(int irq, void *dev)
 251{
 252	struct net_device *ndev = dev;
 253	struct bdx_priv *priv = netdev_priv(ndev);
 254	u32 isr;
 255
 256	ENTER;
 257	isr = (READ_REG(priv, regISR) & IR_RUN);
 258	if (unlikely(!isr)) {
 259		bdx_enable_interrupts(priv);
 260		return IRQ_NONE;	/* Not our interrupt */
 261	}
 262
 263	if (isr & IR_EXTRA)
 264		bdx_isr_extra(priv, isr);
 265
 266	if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
 267		if (likely(napi_schedule_prep(&priv->napi))) {
 268			__napi_schedule(&priv->napi);
 269			RET(IRQ_HANDLED);
 270		} else {
 271			/* NOTE: we get here if intr has slipped into window
 272			 * between these lines in bdx_poll:
 273			 *    bdx_enable_interrupts(priv);
 274			 *    return 0;
 275			 * currently intrs are disabled (since we read ISR),
 276			 * and we have failed to register next poll.
 277			 * so we read the regs to trigger chip
 278			 * and allow further interupts. */
 279			READ_REG(priv, regTXF_WPTR_0);
 280			READ_REG(priv, regRXD_WPTR_0);
 281		}
 282	}
 283
 284	bdx_enable_interrupts(priv);
 285	RET(IRQ_HANDLED);
 286}
 287
 288static int bdx_poll(struct napi_struct *napi, int budget)
 289{
 290	struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
 291	int work_done;
 292
 293	ENTER;
 294	bdx_tx_cleanup(priv);
 295	work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
 296	if ((work_done < budget) ||
 297	    (priv->napi_stop++ >= 30)) {
 298		DBG("rx poll is done. backing to isr-driven\n");
 299
 300		/* from time to time we exit to let NAPI layer release
 301		 * device lock and allow waiting tasks (eg rmmod) to advance) */
 302		priv->napi_stop = 0;
 303
 304		napi_complete(napi);
 305		bdx_enable_interrupts(priv);
 306	}
 307	return work_done;
 308}
 309
 310/* bdx_fw_load - loads firmware to NIC
 311 * @priv - NIC private structure
 312 * Firmware is loaded via TXD fifo, so it must be initialized first.
 313 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
 314 * can have few of them). So all drivers use semaphore register to choose one
 315 * that will actually load FW to NIC.
 316 */
 317
 318static int bdx_fw_load(struct bdx_priv *priv)
 319{
 320	const struct firmware *fw = NULL;
 321	int master, i;
 322	int rc;
 323
 324	ENTER;
 325	master = READ_REG(priv, regINIT_SEMAPHORE);
 326	if (!READ_REG(priv, regINIT_STATUS) && master) {
 327		rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev);
 328		if (rc)
 329			goto out;
 330		bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
 331		mdelay(100);
 332	}
 333	for (i = 0; i < 200; i++) {
 334		if (READ_REG(priv, regINIT_STATUS)) {
 335			rc = 0;
 336			goto out;
 337		}
 338		mdelay(2);
 339	}
 340	rc = -EIO;
 341out:
 342	if (master)
 343		WRITE_REG(priv, regINIT_SEMAPHORE, 1);
 344	if (fw)
 345		release_firmware(fw);
 346
 347	if (rc) {
 348		netdev_err(priv->ndev, "firmware loading failed\n");
 349		if (rc == -EIO)
 350			DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
 351			    READ_REG(priv, regVPC),
 352			    READ_REG(priv, regVIC),
 353			    READ_REG(priv, regINIT_STATUS), i);
 354		RET(rc);
 355	} else {
 356		DBG("%s: firmware loading success\n", priv->ndev->name);
 357		RET(0);
 358	}
 359}
 360
 361static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
 362{
 363	u32 val;
 364
 365	ENTER;
 366	DBG("mac0=%x mac1=%x mac2=%x\n",
 367	    READ_REG(priv, regUNC_MAC0_A),
 368	    READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
 369
 370	val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
 371	WRITE_REG(priv, regUNC_MAC2_A, val);
 372	val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
 373	WRITE_REG(priv, regUNC_MAC1_A, val);
 374	val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
 375	WRITE_REG(priv, regUNC_MAC0_A, val);
 376
 377	DBG("mac0=%x mac1=%x mac2=%x\n",
 378	    READ_REG(priv, regUNC_MAC0_A),
 379	    READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
 380	RET();
 381}
 382
 383/* bdx_hw_start - inits registers and starts HW's Rx and Tx engines
 384 * @priv - NIC private structure
 385 */
 386static int bdx_hw_start(struct bdx_priv *priv)
 387{
 388	int rc = -EIO;
 389	struct net_device *ndev = priv->ndev;
 390
 391	ENTER;
 392	bdx_link_changed(priv);
 393
 394	/* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
 395	WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
 396	WRITE_REG(priv, regPAUSE_QUANT, 0x96);
 397	WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
 398	WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
 399	WRITE_REG(priv, regRX_FULLNESS, 0);
 400	WRITE_REG(priv, regTX_FULLNESS, 0);
 401	WRITE_REG(priv, regCTRLST,
 402		  regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
 403
 404	WRITE_REG(priv, regVGLB, 0);
 405	WRITE_REG(priv, regMAX_FRAME_A,
 406		  priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
 407
 408	DBG("RDINTCM=%08x\n", priv->rdintcm);	/*NOTE: test script uses this */
 409	WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
 410	WRITE_REG(priv, regRDINTCM2, 0);	/*cpu_to_le32(rcm.val)); */
 411
 412	DBG("TDINTCM=%08x\n", priv->tdintcm);	/*NOTE: test script uses this */
 413	WRITE_REG(priv, regTDINTCM0, priv->tdintcm);	/* old val = 0x300064 */
 414
 415	/* Enable timer interrupt once in 2 secs. */
 416	/*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
 417	bdx_restore_mac(priv->ndev, priv);
 418
 419	WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
 420		  GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
 421
 422#define BDX_IRQ_TYPE	((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
 423
 424	rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
 425			 ndev->name, ndev);
 426	if (rc)
 427		goto err_irq;
 428	bdx_enable_interrupts(priv);
 429
 430	RET(0);
 431
 432err_irq:
 433	RET(rc);
 434}
 435
 436static void bdx_hw_stop(struct bdx_priv *priv)
 437{
 438	ENTER;
 439	bdx_disable_interrupts(priv);
 440	free_irq(priv->pdev->irq, priv->ndev);
 441
 442	netif_carrier_off(priv->ndev);
 443	netif_stop_queue(priv->ndev);
 444
 445	RET();
 446}
 447
 448static int bdx_hw_reset_direct(void __iomem *regs)
 449{
 450	u32 val, i;
 451	ENTER;
 452
 453	/* reset sequences: read, write 1, read, write 0 */
 454	val = readl(regs + regCLKPLL);
 455	writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
 456	udelay(50);
 457	val = readl(regs + regCLKPLL);
 458	writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
 459
 460	/* check that the PLLs are locked and reset ended */
 461	for (i = 0; i < 70; i++, mdelay(10))
 462		if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
 463			/* do any PCI-E read transaction */
 464			readl(regs + regRXD_CFG0_0);
 465			return 0;
 466		}
 467	pr_err("HW reset failed\n");
 468	return 1;		/* failure */
 469}
 470
 471static int bdx_hw_reset(struct bdx_priv *priv)
 472{
 473	u32 val, i;
 474	ENTER;
 475
 476	if (priv->port == 0) {
 477		/* reset sequences: read, write 1, read, write 0 */
 478		val = READ_REG(priv, regCLKPLL);
 479		WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
 480		udelay(50);
 481		val = READ_REG(priv, regCLKPLL);
 482		WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
 483	}
 484	/* check that the PLLs are locked and reset ended */
 485	for (i = 0; i < 70; i++, mdelay(10))
 486		if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
 487			/* do any PCI-E read transaction */
 488			READ_REG(priv, regRXD_CFG0_0);
 489			return 0;
 490		}
 491	pr_err("HW reset failed\n");
 492	return 1;		/* failure */
 493}
 494
 495static int bdx_sw_reset(struct bdx_priv *priv)
 496{
 497	int i;
 498
 499	ENTER;
 500	/* 1. load MAC (obsolete) */
 501	/* 2. disable Rx (and Tx) */
 502	WRITE_REG(priv, regGMAC_RXF_A, 0);
 503	mdelay(100);
 504	/* 3. disable port */
 505	WRITE_REG(priv, regDIS_PORT, 1);
 506	/* 4. disable queue */
 507	WRITE_REG(priv, regDIS_QU, 1);
 508	/* 5. wait until hw is disabled */
 509	for (i = 0; i < 50; i++) {
 510		if (READ_REG(priv, regRST_PORT) & 1)
 511			break;
 512		mdelay(10);
 513	}
 514	if (i == 50)
 515		netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
 516
 517	/* 6. disable intrs */
 518	WRITE_REG(priv, regRDINTCM0, 0);
 519	WRITE_REG(priv, regTDINTCM0, 0);
 520	WRITE_REG(priv, regIMR, 0);
 521	READ_REG(priv, regISR);
 522
 523	/* 7. reset queue */
 524	WRITE_REG(priv, regRST_QU, 1);
 525	/* 8. reset port */
 526	WRITE_REG(priv, regRST_PORT, 1);
 527	/* 9. zero all read and write pointers */
 528	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 529		DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
 530	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 531		WRITE_REG(priv, i, 0);
 532	/* 10. unseet port disable */
 533	WRITE_REG(priv, regDIS_PORT, 0);
 534	/* 11. unset queue disable */
 535	WRITE_REG(priv, regDIS_QU, 0);
 536	/* 12. unset queue reset */
 537	WRITE_REG(priv, regRST_QU, 0);
 538	/* 13. unset port reset */
 539	WRITE_REG(priv, regRST_PORT, 0);
 540	/* 14. enable Rx */
 541	/* skiped. will be done later */
 542	/* 15. save MAC (obsolete) */
 543	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 544		DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
 545
 546	RET(0);
 547}
 548
 549/* bdx_reset - performs right type of reset depending on hw type */
 550static int bdx_reset(struct bdx_priv *priv)
 551{
 552	ENTER;
 553	RET((priv->pdev->device == 0x3009)
 554	    ? bdx_hw_reset(priv)
 555	    : bdx_sw_reset(priv));
 556}
 557
 558/**
 559 * bdx_close - Disables a network interface
 560 * @netdev: network interface device structure
 561 *
 562 * Returns 0, this is not allowed to fail
 563 *
 564 * The close entry point is called when an interface is de-activated
 565 * by the OS.  The hardware is still under the drivers control, but
 566 * needs to be disabled.  A global MAC reset is issued to stop the
 567 * hardware, and all transmit and receive resources are freed.
 568 **/
 569static int bdx_close(struct net_device *ndev)
 570{
 571	struct bdx_priv *priv = NULL;
 572
 573	ENTER;
 574	priv = netdev_priv(ndev);
 575
 576	napi_disable(&priv->napi);
 577
 578	bdx_reset(priv);
 579	bdx_hw_stop(priv);
 580	bdx_rx_free(priv);
 581	bdx_tx_free(priv);
 582	RET(0);
 583}
 584
 585/**
 586 * bdx_open - Called when a network interface is made active
 587 * @netdev: network interface device structure
 588 *
 589 * Returns 0 on success, negative value on failure
 590 *
 591 * The open entry point is called when a network interface is made
 592 * active by the system (IFF_UP).  At this point all resources needed
 593 * for transmit and receive operations are allocated, the interrupt
 594 * handler is registered with the OS, the watchdog timer is started,
 595 * and the stack is notified that the interface is ready.
 596 **/
 597static int bdx_open(struct net_device *ndev)
 598{
 599	struct bdx_priv *priv;
 600	int rc;
 601
 602	ENTER;
 603	priv = netdev_priv(ndev);
 604	bdx_reset(priv);
 605	if (netif_running(ndev))
 606		netif_stop_queue(priv->ndev);
 607
 608	if ((rc = bdx_tx_init(priv)) ||
 609	    (rc = bdx_rx_init(priv)) ||
 610	    (rc = bdx_fw_load(priv)))
 611		goto err;
 612
 613	bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
 614
 615	rc = bdx_hw_start(priv);
 616	if (rc)
 617		goto err;
 618
 619	napi_enable(&priv->napi);
 620
 621	print_fw_id(priv->nic);
 622
 623	RET(0);
 624
 625err:
 626	bdx_close(ndev);
 627	RET(rc);
 628}
 629
 630static int bdx_range_check(struct bdx_priv *priv, u32 offset)
 631{
 632	return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
 633		-EINVAL : 0;
 634}
 635
 636static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
 637{
 638	struct bdx_priv *priv = netdev_priv(ndev);
 639	u32 data[3];
 640	int error;
 641
 642	ENTER;
 643
 644	DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
 645	if (cmd != SIOCDEVPRIVATE) {
 646		error = copy_from_user(data, ifr->ifr_data, sizeof(data));
 647		if (error) {
 648			pr_err("can't copy from user\n");
 649			RET(-EFAULT);
 650		}
 651		DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
 652	}
 653
 654	if (!capable(CAP_SYS_RAWIO))
 655		return -EPERM;
 656
 657	switch (data[0]) {
 658
 659	case BDX_OP_READ:
 660		error = bdx_range_check(priv, data[1]);
 661		if (error < 0)
 662			return error;
 663		data[2] = READ_REG(priv, data[1]);
 664		DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
 665		    data[2]);
 666		error = copy_to_user(ifr->ifr_data, data, sizeof(data));
 667		if (error)
 668			RET(-EFAULT);
 669		break;
 670
 671	case BDX_OP_WRITE:
 672		error = bdx_range_check(priv, data[1]);
 673		if (error < 0)
 674			return error;
 675		WRITE_REG(priv, data[1], data[2]);
 676		DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
 677		break;
 678
 679	default:
 680		RET(-EOPNOTSUPP);
 681	}
 682	return 0;
 683}
 684
 685static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
 686{
 687	ENTER;
 688	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
 689		RET(bdx_ioctl_priv(ndev, ifr, cmd));
 690	else
 691		RET(-EOPNOTSUPP);
 692}
 693
 694/*
 695 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
 696 *                     by passing VLAN filter table to hardware
 697 * @ndev network device
 698 * @vid  VLAN vid
 699 * @op   add or kill operation
 700 */
 701static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
 702{
 703	struct bdx_priv *priv = netdev_priv(ndev);
 704	u32 reg, bit, val;
 705
 706	ENTER;
 707	DBG2("vid=%d value=%d\n", (int)vid, enable);
 708	if (unlikely(vid >= 4096)) {
 709		pr_err("invalid VID: %u (> 4096)\n", vid);
 710		RET();
 711	}
 712	reg = regVLAN_0 + (vid / 32) * 4;
 713	bit = 1 << vid % 32;
 714	val = READ_REG(priv, reg);
 715	DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
 716	if (enable)
 717		val |= bit;
 718	else
 719		val &= ~bit;
 720	DBG2("new val %x\n", val);
 721	WRITE_REG(priv, reg, val);
 722	RET();
 723}
 724
 725/*
 726 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
 727 * @ndev network device
 728 * @vid  VLAN vid to add
 729 */
 730static void bdx_vlan_rx_add_vid(struct net_device *ndev, uint16_t vid)
 731{
 732	__bdx_vlan_rx_vid(ndev, vid, 1);
 733}
 734
 735/*
 736 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
 737 * @ndev network device
 738 * @vid  VLAN vid to kill
 739 */
 740static void bdx_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
 741{
 742	__bdx_vlan_rx_vid(ndev, vid, 0);
 743}
 744
 745/**
 746 * bdx_change_mtu - Change the Maximum Transfer Unit
 747 * @netdev: network interface device structure
 748 * @new_mtu: new value for maximum frame size
 749 *
 750 * Returns 0 on success, negative on failure
 751 */
 752static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
 753{
 754	ENTER;
 755
 756	if (new_mtu == ndev->mtu)
 757		RET(0);
 758
 759	/* enforce minimum frame size */
 760	if (new_mtu < ETH_ZLEN) {
 761		netdev_err(ndev, "mtu %d is less then minimal %d\n",
 762			   new_mtu, ETH_ZLEN);
 763		RET(-EINVAL);
 764	}
 765
 766	ndev->mtu = new_mtu;
 767	if (netif_running(ndev)) {
 768		bdx_close(ndev);
 769		bdx_open(ndev);
 770	}
 771	RET(0);
 772}
 773
 774static void bdx_setmulti(struct net_device *ndev)
 775{
 776	struct bdx_priv *priv = netdev_priv(ndev);
 777
 778	u32 rxf_val =
 779	    GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
 780	int i;
 781
 782	ENTER;
 783	/* IMF - imperfect (hash) rx multicat filter */
 784	/* PMF - perfect rx multicat filter */
 785
 786	/* FIXME: RXE(OFF) */
 787	if (ndev->flags & IFF_PROMISC) {
 788		rxf_val |= GMAC_RX_FILTER_PRM;
 789	} else if (ndev->flags & IFF_ALLMULTI) {
 790		/* set IMF to accept all multicast frmaes */
 791		for (i = 0; i < MAC_MCST_HASH_NUM; i++)
 792			WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
 793	} else if (!netdev_mc_empty(ndev)) {
 794		u8 hash;
 795		struct netdev_hw_addr *ha;
 796		u32 reg, val;
 797
 798		/* set IMF to deny all multicast frames */
 799		for (i = 0; i < MAC_MCST_HASH_NUM; i++)
 800			WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
 801		/* set PMF to deny all multicast frames */
 802		for (i = 0; i < MAC_MCST_NUM; i++) {
 803			WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
 804			WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
 805		}
 806
 807		/* use PMF to accept first MAC_MCST_NUM (15) addresses */
 808		/* TBD: sort addresses and write them in ascending order
 809		 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
 810		 * multicast frames throu IMF */
 811		/* accept the rest of addresses throu IMF */
 812		netdev_for_each_mc_addr(ha, ndev) {
 813			hash = 0;
 814			for (i = 0; i < ETH_ALEN; i++)
 815				hash ^= ha->addr[i];
 816			reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
 817			val = READ_REG(priv, reg);
 818			val |= (1 << (hash % 32));
 819			WRITE_REG(priv, reg, val);
 820		}
 821
 822	} else {
 823		DBG("only own mac %d\n", netdev_mc_count(ndev));
 824		rxf_val |= GMAC_RX_FILTER_AB;
 825	}
 826	WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
 827	/* enable RX */
 828	/* FIXME: RXE(ON) */
 829	RET();
 830}
 831
 832static int bdx_set_mac(struct net_device *ndev, void *p)
 833{
 834	struct bdx_priv *priv = netdev_priv(ndev);
 835	struct sockaddr *addr = p;
 836
 837	ENTER;
 838	/*
 839	   if (netif_running(dev))
 840	   return -EBUSY
 841	 */
 842	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
 843	bdx_restore_mac(ndev, priv);
 844	RET(0);
 845}
 846
 847static int bdx_read_mac(struct bdx_priv *priv)
 848{
 849	u16 macAddress[3], i;
 850	ENTER;
 851
 852	macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
 853	macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
 854	macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
 855	macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
 856	macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
 857	macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
 858	for (i = 0; i < 3; i++) {
 859		priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
 860		priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
 861	}
 862	RET(0);
 863}
 864
 865static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
 866{
 867	u64 val;
 868
 869	val = READ_REG(priv, reg);
 870	val |= ((u64) READ_REG(priv, reg + 8)) << 32;
 871	return val;
 872}
 873
 874/*Do the statistics-update work*/
 875static void bdx_update_stats(struct bdx_priv *priv)
 876{
 877	struct bdx_stats *stats = &priv->hw_stats;
 878	u64 *stats_vector = (u64 *) stats;
 879	int i;
 880	int addr;
 881
 882	/*Fill HW structure */
 883	addr = 0x7200;
 884	/*First 12 statistics - 0x7200 - 0x72B0 */
 885	for (i = 0; i < 12; i++) {
 886		stats_vector[i] = bdx_read_l2stat(priv, addr);
 887		addr += 0x10;
 888	}
 889	BDX_ASSERT(addr != 0x72C0);
 890	/* 0x72C0-0x72E0 RSRV */
 891	addr = 0x72F0;
 892	for (; i < 16; i++) {
 893		stats_vector[i] = bdx_read_l2stat(priv, addr);
 894		addr += 0x10;
 895	}
 896	BDX_ASSERT(addr != 0x7330);
 897	/* 0x7330-0x7360 RSRV */
 898	addr = 0x7370;
 899	for (; i < 19; i++) {
 900		stats_vector[i] = bdx_read_l2stat(priv, addr);
 901		addr += 0x10;
 902	}
 903	BDX_ASSERT(addr != 0x73A0);
 904	/* 0x73A0-0x73B0 RSRV */
 905	addr = 0x73C0;
 906	for (; i < 23; i++) {
 907		stats_vector[i] = bdx_read_l2stat(priv, addr);
 908		addr += 0x10;
 909	}
 910	BDX_ASSERT(addr != 0x7400);
 911	BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
 912}
 913
 914static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
 915		       u16 rxd_vlan);
 916static void print_rxfd(struct rxf_desc *rxfd);
 917
 918/*************************************************************************
 919 *     Rx DB                                                             *
 920 *************************************************************************/
 921
 922static void bdx_rxdb_destroy(struct rxdb *db)
 923{
 924	vfree(db);
 925}
 926
 927static struct rxdb *bdx_rxdb_create(int nelem)
 928{
 929	struct rxdb *db;
 930	int i;
 931
 932	db = vmalloc(sizeof(struct rxdb)
 933		     + (nelem * sizeof(int))
 934		     + (nelem * sizeof(struct rx_map)));
 935	if (likely(db != NULL)) {
 936		db->stack = (int *)(db + 1);
 937		db->elems = (void *)(db->stack + nelem);
 938		db->nelem = nelem;
 939		db->top = nelem;
 940		for (i = 0; i < nelem; i++)
 941			db->stack[i] = nelem - i - 1;	/* to make first allocs
 942							   close to db struct*/
 943	}
 944
 945	return db;
 946}
 947
 948static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
 949{
 950	BDX_ASSERT(db->top <= 0);
 951	return db->stack[--(db->top)];
 952}
 953
 954static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
 955{
 956	BDX_ASSERT((n < 0) || (n >= db->nelem));
 957	return db->elems + n;
 958}
 959
 960static inline int bdx_rxdb_available(struct rxdb *db)
 961{
 962	return db->top;
 963}
 964
 965static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
 966{
 967	BDX_ASSERT((n >= db->nelem) || (n < 0));
 968	db->stack[(db->top)++] = n;
 969}
 970
 971/*************************************************************************
 972 *     Rx Init                                                           *
 973 *************************************************************************/
 974
 975/* bdx_rx_init - initialize RX all related HW and SW resources
 976 * @priv - NIC private structure
 977 *
 978 * Returns 0 on success, negative value on failure
 979 *
 980 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
 981 * skb for rx. It assumes that Rx is desabled in HW
 982 * funcs are grouped for better cache usage
 983 *
 984 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
 985 * filled and packets will be dropped by nic without getting into host or
 986 * cousing interrupt. Anyway, in that condition, host has no chance to process
 987 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
 988 */
 989
 990/* TBD: ensure proper packet size */
 991
 992static int bdx_rx_init(struct bdx_priv *priv)
 993{
 994	ENTER;
 995
 996	if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
 997			  regRXD_CFG0_0, regRXD_CFG1_0,
 998			  regRXD_RPTR_0, regRXD_WPTR_0))
 999		goto err_mem;
1000	if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
1001			  regRXF_CFG0_0, regRXF_CFG1_0,
1002			  regRXF_RPTR_0, regRXF_WPTR_0))
1003		goto err_mem;
1004	priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
1005				     sizeof(struct rxf_desc));
1006	if (!priv->rxdb)
1007		goto err_mem;
1008
1009	priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
1010	return 0;
1011
1012err_mem:
1013	netdev_err(priv->ndev, "Rx init failed\n");
1014	return -ENOMEM;
1015}
1016
1017/* bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1018 * @priv - NIC private structure
1019 * @f - RXF fifo
1020 */
1021static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1022{
1023	struct rx_map *dm;
1024	struct rxdb *db = priv->rxdb;
1025	u16 i;
1026
1027	ENTER;
1028	DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
1029	    db->nelem - bdx_rxdb_available(db));
1030	while (bdx_rxdb_available(db) > 0) {
1031		i = bdx_rxdb_alloc_elem(db);
1032		dm = bdx_rxdb_addr_elem(db, i);
1033		dm->dma = 0;
1034	}
1035	for (i = 0; i < db->nelem; i++) {
1036		dm = bdx_rxdb_addr_elem(db, i);
1037		if (dm->dma) {
1038			pci_unmap_single(priv->pdev,
1039					 dm->dma, f->m.pktsz,
1040					 PCI_DMA_FROMDEVICE);
1041			dev_kfree_skb(dm->skb);
1042		}
1043	}
1044}
1045
1046/* bdx_rx_free - release all Rx resources
1047 * @priv - NIC private structure
1048 * It assumes that Rx is desabled in HW
1049 */
1050static void bdx_rx_free(struct bdx_priv *priv)
1051{
1052	ENTER;
1053	if (priv->rxdb) {
1054		bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
1055		bdx_rxdb_destroy(priv->rxdb);
1056		priv->rxdb = NULL;
1057	}
1058	bdx_fifo_free(priv, &priv->rxf_fifo0.m);
1059	bdx_fifo_free(priv, &priv->rxd_fifo0.m);
1060
1061	RET();
1062}
1063
1064/*************************************************************************
1065 *     Rx Engine                                                         *
1066 *************************************************************************/
1067
1068/* bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1069 * @priv - nic's private structure
1070 * @f - RXF fifo that needs skbs
1071 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1072 * skb's virtual and physical addresses are stored in skb db.
1073 * To calculate free space, func uses cached values of RPTR and WPTR
1074 * When needed, it also updates RPTR and WPTR.
1075 */
1076
1077/* TBD: do not update WPTR if no desc were written */
1078
1079static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1080{
1081	struct sk_buff *skb;
1082	struct rxf_desc *rxfd;
1083	struct rx_map *dm;
1084	int dno, delta, idx;
1085	struct rxdb *db = priv->rxdb;
1086
1087	ENTER;
1088	dno = bdx_rxdb_available(db) - 1;
1089	while (dno > 0) {
1090		skb = dev_alloc_skb(f->m.pktsz + NET_IP_ALIGN);
1091		if (!skb) {
1092			pr_err("NO MEM: dev_alloc_skb failed\n");
1093			break;
1094		}
1095		skb->dev = priv->ndev;
1096		skb_reserve(skb, NET_IP_ALIGN);
1097
1098		idx = bdx_rxdb_alloc_elem(db);
1099		dm = bdx_rxdb_addr_elem(db, idx);
1100		dm->dma = pci_map_single(priv->pdev,
1101					 skb->data, f->m.pktsz,
1102					 PCI_DMA_FROMDEVICE);
1103		dm->skb = skb;
1104		rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1105		rxfd->info = CPU_CHIP_SWAP32(0x10003);	/* INFO=1 BC=3 */
1106		rxfd->va_lo = idx;
1107		rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1108		rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1109		rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1110		print_rxfd(rxfd);
1111
1112		f->m.wptr += sizeof(struct rxf_desc);
1113		delta = f->m.wptr - f->m.memsz;
1114		if (unlikely(delta >= 0)) {
1115			f->m.wptr = delta;
1116			if (delta > 0) {
1117				memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1118				DBG("wrapped descriptor\n");
1119			}
1120		}
1121		dno--;
1122	}
1123	/*TBD: to do - delayed rxf wptr like in txd */
1124	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1125	RET();
1126}
1127
1128static inline void
1129NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
1130	     struct sk_buff *skb)
1131{
1132	ENTER;
1133	DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1));
1134	if (GET_RXD_VTAG(rxd_val1)) {
1135		DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
1136		    priv->ndev->name,
1137		    GET_RXD_VLAN_ID(rxd_vlan),
1138		    GET_RXD_VTAG(rxd_val1));
1139		__vlan_hwaccel_put_tag(skb, GET_RXD_VLAN_TCI(rxd_vlan));
1140	}
1141	netif_receive_skb(skb);
1142}
1143
1144static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
1145{
1146	struct rxf_desc *rxfd;
1147	struct rx_map *dm;
1148	struct rxf_fifo *f;
1149	struct rxdb *db;
1150	struct sk_buff *skb;
1151	int delta;
1152
1153	ENTER;
1154	DBG("priv=%p rxdd=%p\n", priv, rxdd);
1155	f = &priv->rxf_fifo0;
1156	db = priv->rxdb;
1157	DBG("db=%p f=%p\n", db, f);
1158	dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1159	DBG("dm=%p\n", dm);
1160	skb = dm->skb;
1161	rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1162	rxfd->info = CPU_CHIP_SWAP32(0x10003);	/* INFO=1 BC=3 */
1163	rxfd->va_lo = rxdd->va_lo;
1164	rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1165	rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1166	rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1167	print_rxfd(rxfd);
1168
1169	f->m.wptr += sizeof(struct rxf_desc);
1170	delta = f->m.wptr - f->m.memsz;
1171	if (unlikely(delta >= 0)) {
1172		f->m.wptr = delta;
1173		if (delta > 0) {
1174			memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1175			DBG("wrapped descriptor\n");
1176		}
1177	}
1178	RET();
1179}
1180
1181/* bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
1182 * NOTE: a special treatment is given to non-continuous descriptors
1183 * that start near the end, wraps around and continue at the beginning. a second
1184 * part is copied right after the first, and then descriptor is interpreted as
1185 * normal. fifo has an extra space to allow such operations
1186 * @priv - nic's private structure
1187 * @f - RXF fifo that needs skbs
1188 */
1189
1190/* TBD: replace memcpy func call by explicite inline asm */
1191
1192static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
1193{
1194	struct net_device *ndev = priv->ndev;
1195	struct sk_buff *skb, *skb2;
1196	struct rxd_desc *rxdd;
1197	struct rx_map *dm;
1198	struct rxf_fifo *rxf_fifo;
1199	int tmp_len, size;
1200	int done = 0;
1201	int max_done = BDX_MAX_RX_DONE;
1202	struct rxdb *db = NULL;
1203	/* Unmarshalled descriptor - copy of descriptor in host order */
1204	u32 rxd_val1;
1205	u16 len;
1206	u16 rxd_vlan;
1207
1208	ENTER;
1209	max_done = budget;
1210
1211	f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
1212
1213	size = f->m.wptr - f->m.rptr;
1214	if (size < 0)
1215		size = f->m.memsz + size;	/* size is negative :-) */
1216
1217	while (size > 0) {
1218
1219		rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
1220		rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
1221
1222		len = CPU_CHIP_SWAP16(rxdd->len);
1223
1224		rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
1225
1226		print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
1227
1228		tmp_len = GET_RXD_BC(rxd_val1) << 3;
1229		BDX_ASSERT(tmp_len <= 0);
1230		size -= tmp_len;
1231		if (size < 0)	/* test for partially arrived descriptor */
1232			break;
1233
1234		f->m.rptr += tmp_len;
1235
1236		tmp_len = f->m.rptr - f->m.memsz;
1237		if (unlikely(tmp_len >= 0)) {
1238			f->m.rptr = tmp_len;
1239			if (tmp_len > 0) {
1240				DBG("wrapped desc rptr=%d tmp_len=%d\n",
1241				    f->m.rptr, tmp_len);
1242				memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
1243			}
1244		}
1245
1246		if (unlikely(GET_RXD_ERR(rxd_val1))) {
1247			DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
1248			ndev->stats.rx_errors++;
1249			bdx_recycle_skb(priv, rxdd);
1250			continue;
1251		}
1252
1253		rxf_fifo = &priv->rxf_fifo0;
1254		db = priv->rxdb;
1255		dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1256		skb = dm->skb;
1257
1258		if (len < BDX_COPYBREAK &&
1259		    (skb2 = dev_alloc_skb(len + NET_IP_ALIGN))) {
1260			skb_reserve(skb2, NET_IP_ALIGN);
1261			/*skb_put(skb2, len); */
1262			pci_dma_sync_single_for_cpu(priv->pdev,
1263						    dm->dma, rxf_fifo->m.pktsz,
1264						    PCI_DMA_FROMDEVICE);
1265			memcpy(skb2->data, skb->data, len);
1266			bdx_recycle_skb(priv, rxdd);
1267			skb = skb2;
1268		} else {
1269			pci_unmap_single(priv->pdev,
1270					 dm->dma, rxf_fifo->m.pktsz,
1271					 PCI_DMA_FROMDEVICE);
1272			bdx_rxdb_free_elem(db, rxdd->va_lo);
1273		}
1274
1275		ndev->stats.rx_bytes += len;
1276
1277		skb_put(skb, len);
1278		skb->protocol = eth_type_trans(skb, ndev);
1279
1280		/* Non-IP packets aren't checksum-offloaded */
1281		if (GET_RXD_PKT_ID(rxd_val1) == 0)
1282			skb_checksum_none_assert(skb);
1283		else
1284			skb->ip_summed = CHECKSUM_UNNECESSARY;
1285
1286		NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
1287
1288		if (++done >= max_done)
1289			break;
1290	}
1291
1292	ndev->stats.rx_packets += done;
1293
1294	/* FIXME: do smth to minimize pci accesses    */
1295	WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1296
1297	bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
1298
1299	RET(done);
1300}
1301
1302/*************************************************************************
1303 * Debug / Temprorary Code                                               *
1304 *************************************************************************/
1305static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
1306		       u16 rxd_vlan)
1307{
1308	DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
1309	    GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
1310	    GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
1311	    GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
1312	    GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
1313	    GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
1314	    rxdd->va_hi);
1315}
1316
1317static void print_rxfd(struct rxf_desc *rxfd)
1318{
1319	DBG("=== RxF desc CHIP ORDER/ENDIANESS =============\n"
1320	    "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1321	    rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
1322}
1323
1324/*
1325 * TX HW/SW interaction overview
1326 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1327 * There are 2 types of TX communication channels between driver and NIC.
1328 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1329 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1330 *
1331 * Currently NIC supports TSO, checksuming and gather DMA
1332 * UFO and IP fragmentation is on the way
1333 *
1334 * RX SW Data Structures
1335 * ~~~~~~~~~~~~~~~~~~~~~
1336 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1337 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1338 * acknowledges sent by TXF descriptors.
1339 * Implemented as cyclic buffer.
1340 * fifo - keeps info about fifo's size and location, relevant HW registers,
1341 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1342 * Implemented as simple struct.
1343 *
1344 * TX SW Execution Flow
1345 * ~~~~~~~~~~~~~~~~~~~~
1346 * OS calls driver's hard_xmit method with packet to sent.
1347 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1348 * by updating TXD WPTR.
1349 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1350 * To prevent TXD fifo overflow without reading HW registers every time,
1351 * SW deploys "tx level" technique.
1352 * Upon strart up, tx level is initialized to TXD fifo length.
1353 * For every sent packet, SW gets its TXD descriptor sizei
1354 * (from precalculated array) and substructs it from tx level.
1355 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1356 * original TXD descriptor from txdb and adds it to tx level.
1357 * When Tx level drops under some predefined treshhold, the driver
1358 * stops the TX queue. When TX level rises above that level,
1359 * the tx queue is enabled again.
1360 *
1361 * This technique avoids eccessive reading of RPTR and WPTR registers.
1362 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1363 */
1364
1365/*************************************************************************
1366 *     Tx DB                                                             *
1367 *************************************************************************/
1368static inline int bdx_tx_db_size(struct txdb *db)
1369{
1370	int taken = db->wptr - db->rptr;
1371	if (taken < 0)
1372		taken = db->size + 1 + taken;	/* (size + 1) equals memsz */
1373
1374	return db->size - taken;
1375}
1376
1377/* __bdx_tx_ptr_next - helper function, increment read/write pointer + wrap
1378 * @d   - tx data base
1379 * @ptr - read or write pointer
1380 */
1381static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
1382{
1383	BDX_ASSERT(db == NULL || pptr == NULL);	/* sanity */
1384
1385	BDX_ASSERT(*pptr != db->rptr &&	/* expect either read */
1386		   *pptr != db->wptr);	/* or write pointer */
1387
1388	BDX_ASSERT(*pptr < db->start ||	/* pointer has to be */
1389		   *pptr >= db->end);	/* in range */
1390
1391	++*pptr;
1392	if (unlikely(*pptr == db->end))
1393		*pptr = db->start;
1394}
1395
1396/* bdx_tx_db_inc_rptr - increment read pointer
1397 * @d   - tx data base
1398 */
1399static inline void bdx_tx_db_inc_rptr(struct txdb *db)
1400{
1401	BDX_ASSERT(db->rptr == db->wptr);	/* can't read from empty db */
1402	__bdx_tx_db_ptr_next(db, &db->rptr);
1403}
1404
1405/* bdx_tx_db_inc_rptr - increment write pointer
1406 * @d   - tx data base
1407 */
1408static inline void bdx_tx_db_inc_wptr(struct txdb *db)
1409{
1410	__bdx_tx_db_ptr_next(db, &db->wptr);
1411	BDX_ASSERT(db->rptr == db->wptr);	/* we can not get empty db as
1412						   a result of write */
1413}
1414
1415/* bdx_tx_db_init - creates and initializes tx db
1416 * @d       - tx data base
1417 * @sz_type - size of tx fifo
1418 * Returns 0 on success, error code otherwise
1419 */
1420static int bdx_tx_db_init(struct txdb *d, int sz_type)
1421{
1422	int memsz = FIFO_SIZE * (1 << (sz_type + 1));
1423
1424	d->start = vmalloc(memsz);
1425	if (!d->start)
1426		return -ENOMEM;
1427
1428	/*
1429	 * In order to differentiate between db is empty and db is full
1430	 * states at least one element should always be empty in order to
1431	 * avoid rptr == wptr which means db is empty
1432	 */
1433	d->size = memsz / sizeof(struct tx_map) - 1;
1434	d->end = d->start + d->size + 1;	/* just after last element */
1435
1436	/* all dbs are created equally empty */
1437	d->rptr = d->start;
1438	d->wptr = d->start;
1439
1440	return 0;
1441}
1442
1443/* bdx_tx_db_close - closes tx db and frees all memory
1444 * @d - tx data base
1445 */
1446static void bdx_tx_db_close(struct txdb *d)
1447{
1448	BDX_ASSERT(d == NULL);
1449
1450	vfree(d->start);
1451	d->start = NULL;
1452}
1453
1454/*************************************************************************
1455 *     Tx Engine                                                         *
1456 *************************************************************************/
1457
1458/* sizes of tx desc (including padding if needed) as function
1459 * of skb's frag number */
1460static struct {
1461	u16 bytes;
1462	u16 qwords;		/* qword = 64 bit */
1463} txd_sizes[MAX_SKB_FRAGS + 1];
1464
1465/* txdb_map_skb - creates and stores dma mappings for skb's data blocks
1466 * @priv - NIC private structure
1467 * @skb  - socket buffer to map
1468 *
1469 * It makes dma mappings for skb's data blocks and writes them to PBL of
1470 * new tx descriptor. It also stores them in the tx db, so they could be
1471 * unmaped after data was sent. It is reponsibility of a caller to make
1472 * sure that there is enough space in the tx db. Last element holds pointer
1473 * to skb itself and marked with zero length
1474 */
1475static inline void
1476bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
1477	       struct txd_desc *txdd)
1478{
1479	struct txdb *db = &priv->txdb;
1480	struct pbl *pbl = &txdd->pbl[0];
1481	int nr_frags = skb_shinfo(skb)->nr_frags;
1482	int i;
1483
1484	db->wptr->len = skb_headlen(skb);
1485	db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
1486					    db->wptr->len, PCI_DMA_TODEVICE);
1487	pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1488	pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1489	pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1490	DBG("=== pbl   len: 0x%x ================\n", pbl->len);
1491	DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
1492	DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
1493	bdx_tx_db_inc_wptr(db);
1494
1495	for (i = 0; i < nr_frags; i++) {
1496		struct skb_frag_struct *frag;
1497
1498		frag = &skb_shinfo(skb)->frags[i];
1499		db->wptr->len = frag->size;
1500		db->wptr->addr.dma =
1501		    pci_map_page(priv->pdev, frag->page, frag->page_offset,
1502				 frag->size, PCI_DMA_TODEVICE);
1503
1504		pbl++;
1505		pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1506		pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1507		pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1508		bdx_tx_db_inc_wptr(db);
1509	}
1510
1511	/* add skb clean up info. */
1512	db->wptr->len = -txd_sizes[nr_frags].bytes;
1513	db->wptr->addr.skb = skb;
1514	bdx_tx_db_inc_wptr(db);
1515}
1516
1517/* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1518 * number of frags is used as index to fetch correct descriptors size,
1519 * instead of calculating it each time */
1520static void __init init_txd_sizes(void)
1521{
1522	int i, lwords;
1523
1524	/* 7 - is number of lwords in txd with one phys buffer
1525	 * 3 - is number of lwords used for every additional phys buffer */
1526	for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
1527		lwords = 7 + (i * 3);
1528		if (lwords & 1)
1529			lwords++;	/* pad it with 1 lword */
1530		txd_sizes[i].qwords = lwords >> 1;
1531		txd_sizes[i].bytes = lwords << 2;
1532	}
1533}
1534
1535/* bdx_tx_init - initialize all Tx related stuff.
1536 * Namely, TXD and TXF fifos, database etc */
1537static int bdx_tx_init(struct bdx_priv *priv)
1538{
1539	if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
1540			  regTXD_CFG0_0,
1541			  regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
1542		goto err_mem;
1543	if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
1544			  regTXF_CFG0_0,
1545			  regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
1546		goto err_mem;
1547
1548	/* The TX db has to keep mappings for all packets sent (on TxD)
1549	 * and not yet reclaimed (on TxF) */
1550	if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
1551		goto err_mem;
1552
1553	priv->tx_level = BDX_MAX_TX_LEVEL;
1554#ifdef BDX_DELAY_WPTR
1555	priv->tx_update_mark = priv->tx_level - 1024;
1556#endif
1557	return 0;
1558
1559err_mem:
1560	netdev_err(priv->ndev, "Tx init failed\n");
1561	return -ENOMEM;
1562}
1563
1564/*
1565 * bdx_tx_space - calculates available space in TX fifo
1566 * @priv - NIC private structure
1567 * Returns available space in TX fifo in bytes
1568 */
1569static inline int bdx_tx_space(struct bdx_priv *priv)
1570{
1571	struct txd_fifo *f = &priv->txd_fifo0;
1572	int fsize;
1573
1574	f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
1575	fsize = f->m.rptr - f->m.wptr;
1576	if (fsize <= 0)
1577		fsize = f->m.memsz + fsize;
1578	return fsize;
1579}
1580
1581/* bdx_tx_transmit - send packet to NIC
1582 * @skb - packet to send
1583 * ndev - network device assigned to NIC
1584 * Return codes:
1585 * o NETDEV_TX_OK everything ok.
1586 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1587 *   Usually a bug, means queue start/stop flow control is broken in
1588 *   the driver. Note: the driver must NOT put the skb in its DMA ring.
1589 * o NETDEV_TX_LOCKED Locking failed, please retry quickly.
1590 */
1591static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
1592				   struct net_device *ndev)
1593{
1594	struct bdx_priv *priv = netdev_priv(ndev);
1595	struct txd_fifo *f = &priv->txd_fifo0;
1596	int txd_checksum = 7;	/* full checksum */
1597	int txd_lgsnd = 0;
1598	int txd_vlan_id = 0;
1599	int txd_vtag = 0;
1600	int txd_mss = 0;
1601
1602	int nr_frags = skb_shinfo(skb)->nr_frags;
1603	struct txd_desc *txdd;
1604	int len;
1605	unsigned long flags;
1606
1607	ENTER;
1608	local_irq_save(flags);
1609	if (!spin_trylock(&priv->tx_lock)) {
1610		local_irq_restore(flags);
1611		DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
1612		    BDX_DRV_NAME, ndev->name);
1613		return NETDEV_TX_LOCKED;
1614	}
1615
1616	/* build tx descriptor */
1617	BDX_ASSERT(f->m.wptr >= f->m.memsz);	/* started with valid wptr */
1618	txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
1619	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
1620		txd_checksum = 0;
1621
1622	if (skb_shinfo(skb)->gso_size) {
1623		txd_mss = skb_shinfo(skb)->gso_size;
1624		txd_lgsnd = 1;
1625		DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
1626		    txd_mss);
1627	}
1628
1629	if (vlan_tx_tag_present(skb)) {
1630		/*Cut VLAN ID to 12 bits */
1631		txd_vlan_id = vlan_tx_tag_get(skb) & BITS_MASK(12);
1632		txd_vtag = 1;
1633	}
1634
1635	txdd->length = CPU_CHIP_SWAP16(skb->len);
1636	txdd->mss = CPU_CHIP_SWAP16(txd_mss);
1637	txdd->txd_val1 =
1638	    CPU_CHIP_SWAP32(TXD_W1_VAL
1639			    (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
1640			     txd_lgsnd, txd_vlan_id));
1641	DBG("=== TxD desc =====================\n");
1642	DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
1643	DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
1644
1645	bdx_tx_map_skb(priv, skb, txdd);
1646
1647	/* increment TXD write pointer. In case of
1648	   fifo wrapping copy reminder of the descriptor
1649	   to the beginning */
1650	f->m.wptr += txd_sizes[nr_frags].bytes;
1651	len = f->m.wptr - f->m.memsz;
1652	if (unlikely(len >= 0)) {
1653		f->m.wptr = len;
1654		if (len > 0) {
1655			BDX_ASSERT(len > f->m.memsz);
1656			memcpy(f->m.va, f->m.va + f->m.memsz, len);
1657		}
1658	}
1659	BDX_ASSERT(f->m.wptr >= f->m.memsz);	/* finished with valid wptr */
1660
1661	priv->tx_level -= txd_sizes[nr_frags].bytes;
1662	BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1663#ifdef BDX_DELAY_WPTR
1664	if (priv->tx_level > priv->tx_update_mark) {
1665		/* Force memory writes to complete before letting h/w
1666		   know there are new descriptors to fetch.
1667		   (might be needed on platforms like IA64)
1668		   wmb(); */
1669		WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1670	} else {
1671		if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
1672			priv->tx_noupd = 0;
1673			WRITE_REG(priv, f->m.reg_WPTR,
1674				  f->m.wptr & TXF_WPTR_WR_PTR);
1675		}
1676	}
1677#else
1678	/* Force memory writes to complete before letting h/w
1679	   know there are new descriptors to fetch.
1680	   (might be needed on platforms like IA64)
1681	   wmb(); */
1682	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1683
1684#endif
1685#ifdef BDX_LLTX
1686	ndev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
1687#endif
1688	ndev->stats.tx_packets++;
1689	ndev->stats.tx_bytes += skb->len;
1690
1691	if (priv->tx_level < BDX_MIN_TX_LEVEL) {
1692		DBG("%s: %s: TX Q STOP level %d\n",
1693		    BDX_DRV_NAME, ndev->name, priv->tx_level);
1694		netif_stop_queue(ndev);
1695	}
1696
1697	spin_unlock_irqrestore(&priv->tx_lock, flags);
1698	return NETDEV_TX_OK;
1699}
1700
1701/* bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1702 * @priv - bdx adapter
1703 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1704 * that those packets were sent
1705 */
1706static void bdx_tx_cleanup(struct bdx_priv *priv)
1707{
1708	struct txf_fifo *f = &priv->txf_fifo0;
1709	struct txdb *db = &priv->txdb;
1710	int tx_level = 0;
1711
1712	ENTER;
1713	f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
1714	BDX_ASSERT(f->m.rptr >= f->m.memsz);	/* started with valid rptr */
1715
1716	while (f->m.wptr != f->m.rptr) {
1717		f->m.rptr += BDX_TXF_DESC_SZ;
1718		f->m.rptr &= f->m.size_mask;
1719
1720		/* unmap all the fragments */
1721		/* first has to come tx_maps containing dma */
1722		BDX_ASSERT(db->rptr->len == 0);
1723		do {
1724			BDX_ASSERT(db->rptr->addr.dma == 0);
1725			pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1726				       db->rptr->len, PCI_DMA_TODEVICE);
1727			bdx_tx_db_inc_rptr(db);
1728		} while (db->rptr->len > 0);
1729		tx_level -= db->rptr->len;	/* '-' koz len is negative */
1730
1731		/* now should come skb pointer - free it */
1732		dev_kfree_skb_irq(db->rptr->addr.skb);
1733		bdx_tx_db_inc_rptr(db);
1734	}
1735
1736	/* let h/w know which TXF descriptors were cleaned */
1737	BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
1738	WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1739
1740	/* We reclaimed resources, so in case the Q is stopped by xmit callback,
1741	 * we resume the transmition and use tx_lock to synchronize with xmit.*/
1742	spin_lock(&priv->tx_lock);
1743	priv->tx_level += tx_level;
1744	BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1745#ifdef BDX_DELAY_WPTR
1746	if (priv->tx_noupd) {
1747		priv->tx_noupd = 0;
1748		WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
1749			  priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
1750	}
1751#endif
1752
1753	if (unlikely(netif_queue_stopped(priv->ndev) &&
1754		     netif_carrier_ok(priv->ndev) &&
1755		     (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
1756		DBG("%s: %s: TX Q WAKE level %d\n",
1757		    BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
1758		netif_wake_queue(priv->ndev);
1759	}
1760	spin_unlock(&priv->tx_lock);
1761}
1762
1763/* bdx_tx_free_skbs - frees all skbs from TXD fifo.
1764 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1765 */
1766static void bdx_tx_free_skbs(struct bdx_priv *priv)
1767{
1768	struct txdb *db = &priv->txdb;
1769
1770	ENTER;
1771	while (db->rptr != db->wptr) {
1772		if (likely(db->rptr->len))
1773			pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1774				       db->rptr->len, PCI_DMA_TODEVICE);
1775		else
1776			dev_kfree_skb(db->rptr->addr.skb);
1777		bdx_tx_db_inc_rptr(db);
1778	}
1779	RET();
1780}
1781
1782/* bdx_tx_free - frees all Tx resources */
1783static void bdx_tx_free(struct bdx_priv *priv)
1784{
1785	ENTER;
1786	bdx_tx_free_skbs(priv);
1787	bdx_fifo_free(priv, &priv->txd_fifo0.m);
1788	bdx_fifo_free(priv, &priv->txf_fifo0.m);
1789	bdx_tx_db_close(&priv->txdb);
1790}
1791
1792/* bdx_tx_push_desc - push descriptor to TxD fifo
1793 * @priv - NIC private structure
1794 * @data - desc's data
1795 * @size - desc's size
1796 *
1797 * Pushes desc to TxD fifo and overlaps it if needed.
1798 * NOTE: this func does not check for available space. this is responsibility
1799 *    of the caller. Neither does it check that data size is smaller than
1800 *    fifo size.
1801 */
1802static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
1803{
1804	struct txd_fifo *f = &priv->txd_fifo0;
1805	int i = f->m.memsz - f->m.wptr;
1806
1807	if (size == 0)
1808		return;
1809
1810	if (i > size) {
1811		memcpy(f->m.va + f->m.wptr, data, size);
1812		f->m.wptr += size;
1813	} else {
1814		memcpy(f->m.va + f->m.wptr, data, i);
1815		f->m.wptr = size - i;
1816		memcpy(f->m.va, data + i, f->m.wptr);
1817	}
1818	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1819}
1820
1821/* bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1822 * @priv - NIC private structure
1823 * @data - desc's data
1824 * @size - desc's size
1825 *
1826 * NOTE: this func does check for available space and, if necessary, waits for
1827 *   NIC to read existing data before writing new one.
1828 */
1829static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
1830{
1831	int timer = 0;
1832	ENTER;
1833
1834	while (size > 0) {
1835		/* we substruct 8 because when fifo is full rptr == wptr
1836		   which also means that fifo is empty, we can understand
1837		   the difference, but could hw do the same ??? :) */
1838		int avail = bdx_tx_space(priv) - 8;
1839		if (avail <= 0) {
1840			if (timer++ > 300) {	/* prevent endless loop */
1841				DBG("timeout while writing desc to TxD fifo\n");
1842				break;
1843			}
1844			udelay(50);	/* give hw a chance to clean fifo */
1845			continue;
1846		}
1847		avail = min(avail, size);
1848		DBG("about to push  %d bytes starting %p size %d\n", avail,
1849		    data, size);
1850		bdx_tx_push_desc(priv, data, avail);
1851		size -= avail;
1852		data += avail;
1853	}
1854	RET();
1855}
1856
1857static const struct net_device_ops bdx_netdev_ops = {
1858	.ndo_open		= bdx_open,
1859	.ndo_stop		= bdx_close,
1860	.ndo_start_xmit		= bdx_tx_transmit,
1861	.ndo_validate_addr	= eth_validate_addr,
1862	.ndo_do_ioctl		= bdx_ioctl,
1863	.ndo_set_multicast_list = bdx_setmulti,
1864	.ndo_change_mtu		= bdx_change_mtu,
1865	.ndo_set_mac_address	= bdx_set_mac,
1866	.ndo_vlan_rx_add_vid	= bdx_vlan_rx_add_vid,
1867	.ndo_vlan_rx_kill_vid	= bdx_vlan_rx_kill_vid,
1868};
1869
1870/**
1871 * bdx_probe - Device Initialization Routine
1872 * @pdev: PCI device information struct
1873 * @ent: entry in bdx_pci_tbl
1874 *
1875 * Returns 0 on success, negative on failure
1876 *
1877 * bdx_probe initializes an adapter identified by a pci_dev structure.
1878 * The OS initialization, configuring of the adapter private structure,
1879 * and a hardware reset occur.
1880 *
1881 * functions and their order used as explained in
1882 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1883 *
1884 */
1885
1886/* TBD: netif_msg should be checked and implemented. I disable it for now */
1887static int __devinit
1888bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1889{
1890	struct net_device *ndev;
1891	struct bdx_priv *priv;
1892	int err, pci_using_dac, port;
1893	unsigned long pciaddr;
1894	u32 regionSize;
1895	struct pci_nic *nic;
1896
1897	ENTER;
1898
1899	nic = vmalloc(sizeof(*nic));
1900	if (!nic)
1901		RET(-ENOMEM);
1902
1903    /************** pci *****************/
1904	err = pci_enable_device(pdev);
1905	if (err)			/* it triggers interrupt, dunno why. */
1906		goto err_pci;		/* it's not a problem though */
1907
1908	if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) &&
1909	    !(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))) {
1910		pci_using_dac = 1;
1911	} else {
1912		if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) ||
1913		    (err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) {
1914			pr_err("No usable DMA configuration, aborting\n");
1915			goto err_dma;
1916		}
1917		pci_using_dac = 0;
1918	}
1919
1920	err = pci_request_regions(pdev, BDX_DRV_NAME);
1921	if (err)
1922		goto err_dma;
1923
1924	pci_set_master(pdev);
1925
1926	pciaddr = pci_resource_start(pdev, 0);
1927	if (!pciaddr) {
1928		err = -EIO;
1929		pr_err("no MMIO resource\n");
1930		goto err_out_res;
1931	}
1932	regionSize = pci_resource_len(pdev, 0);
1933	if (regionSize < BDX_REGS_SIZE) {
1934		err = -EIO;
1935		pr_err("MMIO resource (%x) too small\n", regionSize);
1936		goto err_out_res;
1937	}
1938
1939	nic->regs = ioremap(pciaddr, regionSize);
1940	if (!nic->regs) {
1941		err = -EIO;
1942		pr_err("ioremap failed\n");
1943		goto err_out_res;
1944	}
1945
1946	if (pdev->irq < 2) {
1947		err = -EIO;
1948		pr_err("invalid irq (%d)\n", pdev->irq);
1949		goto err_out_iomap;
1950	}
1951	pci_set_drvdata(pdev, nic);
1952
1953	if (pdev->device == 0x3014)
1954		nic->port_num = 2;
1955	else
1956		nic->port_num = 1;
1957
1958	print_hw_id(pdev);
1959
1960	bdx_hw_reset_direct(nic->regs);
1961
1962	nic->irq_type = IRQ_INTX;
1963#ifdef BDX_MSI
1964	if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
1965		err = pci_enable_msi(pdev);
1966		if (err)
1967			pr_err("Can't eneble msi. error is %d\n", err);
1968		else
1969			nic->irq_type = IRQ_MSI;
1970	} else
1971		DBG("HW does not support MSI\n");
1972#endif
1973
1974    /************** netdev **************/
1975	for (port = 0; port < nic->port_num; port++) {
1976		ndev = alloc_etherdev(sizeof(struct bdx_priv));
1977		if (!ndev) {
1978			err = -ENOMEM;
1979			pr_err("alloc_etherdev failed\n");
1980			goto err_out_iomap;
1981		}
1982
1983		ndev->netdev_ops = &bdx_netdev_ops;
1984		ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
1985
1986		bdx_set_ethtool_ops(ndev);	/* ethtool interface */
1987
1988		/* these fields are used for info purposes only
1989		 * so we can have them same for all ports of the board */
1990		ndev->if_port = port;
1991		ndev->base_addr = pciaddr;
1992		ndev->mem_start = pciaddr;
1993		ndev->mem_end = pciaddr + regionSize;
1994		ndev->irq = pdev->irq;
1995		ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
1996		    | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
1997		    NETIF_F_HW_VLAN_FILTER | NETIF_F_RXCSUM
1998		    /*| NETIF_F_FRAGLIST */
1999		    ;
2000		ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2001			NETIF_F_TSO | NETIF_F_HW_VLAN_TX;
2002
2003		if (pci_using_dac)
2004			ndev->features |= NETIF_F_HIGHDMA;
2005
2006	/************** priv ****************/
2007		priv = nic->priv[port] = netdev_priv(ndev);
2008
2009		priv->pBdxRegs = nic->regs + port * 0x8000;
2010		priv->port = port;
2011		priv->pdev = pdev;
2012		priv->ndev = ndev;
2013		priv->nic = nic;
2014		priv->msg_enable = BDX_DEF_MSG_ENABLE;
2015
2016		netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
2017
2018		if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
2019			DBG("HW statistics not supported\n");
2020			priv->stats_flag = 0;
2021		} else {
2022			priv->stats_flag = 1;
2023		}
2024
2025		/* Initialize fifo sizes. */
2026		priv->txd_size = 2;
2027		priv->txf_size = 2;
2028		priv->rxd_size = 2;
2029		priv->rxf_size = 3;
2030
2031		/* Initialize the initial coalescing registers. */
2032		priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
2033		priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
2034
2035		/* ndev->xmit_lock spinlock is not used.
2036		 * Private priv->tx_lock is used for synchronization
2037		 * between transmit and TX irq cleanup.  In addition
2038		 * set multicast list callback has to use priv->tx_lock.
2039		 */
2040#ifdef BDX_LLTX
2041		ndev->features |= NETIF_F_LLTX;
2042#endif
2043		spin_lock_init(&priv->tx_lock);
2044
2045		/*bdx_hw_reset(priv); */
2046		if (bdx_read_mac(priv)) {
2047			pr_err("load MAC address failed\n");
2048			goto err_out_iomap;
2049		}
2050		SET_NETDEV_DEV(ndev, &pdev->dev);
2051		err = register_netdev(ndev);
2052		if (err) {
2053			pr_err("register_netdev failed\n");
2054			goto err_out_free;
2055		}
2056		netif_carrier_off(ndev);
2057		netif_stop_queue(ndev);
2058
2059		print_eth_id(ndev);
2060	}
2061	RET(0);
2062
2063err_out_free:
2064	free_netdev(ndev);
2065err_out_iomap:
2066	iounmap(nic->regs);
2067err_out_res:
2068	pci_release_regions(pdev);
2069err_dma:
2070	pci_disable_device(pdev);
2071err_pci:
2072	vfree(nic);
2073
2074	RET(err);
2075}
2076
2077/****************** Ethtool interface *********************/
2078/* get strings for statistics counters */
2079static const char
2080 bdx_stat_names[][ETH_GSTRING_LEN] = {
2081	"InUCast",		/* 0x7200 */
2082	"InMCast",		/* 0x7210 */
2083	"InBCast",		/* 0x7220 */
2084	"InPkts",		/* 0x7230 */
2085	"InErrors",		/* 0x7240 */
2086	"InDropped",		/* 0x7250 */
2087	"FrameTooLong",		/* 0x7260 */
2088	"FrameSequenceErrors",	/* 0x7270 */
2089	"InVLAN",		/* 0x7280 */
2090	"InDroppedDFE",		/* 0x7290 */
2091	"InDroppedIntFull",	/* 0x72A0 */
2092	"InFrameAlignErrors",	/* 0x72B0 */
2093
2094	/* 0x72C0-0x72E0 RSRV */
2095
2096	"OutUCast",		/* 0x72F0 */
2097	"OutMCast",		/* 0x7300 */
2098	"OutBCast",		/* 0x7310 */
2099	"OutPkts",		/* 0x7320 */
2100
2101	/* 0x7330-0x7360 RSRV */
2102
2103	"OutVLAN",		/* 0x7370 */
2104	"InUCastOctects",	/* 0x7380 */
2105	"OutUCastOctects",	/* 0x7390 */
2106
2107	/* 0x73A0-0x73B0 RSRV */
2108
2109	"InBCastOctects",	/* 0x73C0 */
2110	"OutBCastOctects",	/* 0x73D0 */
2111	"InOctects",		/* 0x73E0 */
2112	"OutOctects",		/* 0x73F0 */
2113};
2114
2115/*
2116 * bdx_get_settings - get device-specific settings
2117 * @netdev
2118 * @ecmd
2119 */
2120static int bdx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
2121{
2122	u32 rdintcm;
2123	u32 tdintcm;
2124	struct bdx_priv *priv = netdev_priv(netdev);
2125
2126	rdintcm = priv->rdintcm;
2127	tdintcm = priv->tdintcm;
2128
2129	ecmd->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
2130	ecmd->advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
2131	ethtool_cmd_speed_set(ecmd, SPEED_10000);
2132	ecmd->duplex = DUPLEX_FULL;
2133	ecmd->port = PORT_FIBRE;
2134	ecmd->transceiver = XCVR_EXTERNAL;	/* what does it mean? */
2135	ecmd->autoneg = AUTONEG_DISABLE;
2136
2137	/* PCK_TH measures in multiples of FIFO bytes
2138	   We translate to packets */
2139	ecmd->maxtxpkt =
2140	    ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2141	ecmd->maxrxpkt =
2142	    ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2143
2144	return 0;
2145}
2146
2147/*
2148 * bdx_get_drvinfo - report driver information
2149 * @netdev
2150 * @drvinfo
2151 */
2152static void
2153bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
2154{
2155	struct bdx_priv *priv = netdev_priv(netdev);
2156
2157	strlcat(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
2158	strlcat(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
2159	strlcat(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
2160	strlcat(drvinfo->bus_info, pci_name(priv->pdev),
2161		sizeof(drvinfo->bus_info));
2162
2163	drvinfo->n_stats = ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
2164	drvinfo->testinfo_len = 0;
2165	drvinfo->regdump_len = 0;
2166	drvinfo->eedump_len = 0;
2167}
2168
2169/*
2170 * bdx_get_coalesce - get interrupt coalescing parameters
2171 * @netdev
2172 * @ecoal
2173 */
2174static int
2175bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2176{
2177	u32 rdintcm;
2178	u32 tdintcm;
2179	struct bdx_priv *priv = netdev_priv(netdev);
2180
2181	rdintcm = priv->rdintcm;
2182	tdintcm = priv->tdintcm;
2183
2184	/* PCK_TH measures in multiples of FIFO bytes
2185	   We translate to packets */
2186	ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
2187	ecoal->rx_max_coalesced_frames =
2188	    ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2189
2190	ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
2191	ecoal->tx_max_coalesced_frames =
2192	    ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2193
2194	/* adaptive parameters ignored */
2195	return 0;
2196}
2197
2198/*
2199 * bdx_set_coalesce - set interrupt coalescing parameters
2200 * @netdev
2201 * @ecoal
2202 */
2203static int
2204bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2205{
2206	u32 rdintcm;
2207	u32 tdintcm;
2208	struct bdx_priv *priv = netdev_priv(netdev);
2209	int rx_coal;
2210	int tx_coal;
2211	int rx_max_coal;
2212	int tx_max_coal;
2213
2214	/* Check for valid input */
2215	rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
2216	tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
2217	rx_max_coal = ecoal->rx_max_coalesced_frames;
2218	tx_max_coal = ecoal->tx_max_coalesced_frames;
2219
2220	/* Translate from packets to multiples of FIFO bytes */
2221	rx_max_coal =
2222	    (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
2223	     / PCK_TH_MULT);
2224	tx_max_coal =
2225	    (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
2226	     / PCK_TH_MULT);
2227
2228	if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
2229	    (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
2230		return -EINVAL;
2231
2232	rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
2233			      GET_RXF_TH(priv->rdintcm), rx_max_coal);
2234	tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
2235			      tx_max_coal);
2236
2237	priv->rdintcm = rdintcm;
2238	priv->tdintcm = tdintcm;
2239
2240	WRITE_REG(priv, regRDINTCM0, rdintcm);
2241	WRITE_REG(priv, regTDINTCM0, tdintcm);
2242
2243	return 0;
2244}
2245
2246/* Convert RX fifo size to number of pending packets */
2247static inline int bdx_rx_fifo_size_to_packets(int rx_size)
2248{
2249	return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
2250}
2251
2252/* Convert TX fifo size to number of pending packets */
2253static inline int bdx_tx_fifo_size_to_packets(int tx_size)
2254{
2255	return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
2256}
2257
2258/*
2259 * bdx_get_ringparam - report ring sizes
2260 * @netdev
2261 * @ring
2262 */
2263static void
2264bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2265{
2266	struct bdx_priv *priv = netdev_priv(netdev);
2267
2268	/*max_pending - the maximum-sized FIFO we allow */
2269	ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
2270	ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
2271	ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
2272	ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
2273}
2274
2275/*
2276 * bdx_set_ringparam - set ring sizes
2277 * @netdev
2278 * @ring
2279 */
2280static int
2281bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2282{
2283	struct bdx_priv *priv = netdev_priv(netdev);
2284	int rx_size = 0;
2285	int tx_size = 0;
2286
2287	for (; rx_size < 4; rx_size++) {
2288		if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
2289			break;
2290	}
2291	if (rx_size == 4)
2292		rx_size = 3;
2293
2294	for (; tx_size < 4; tx_size++) {
2295		if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
2296			break;
2297	}
2298	if (tx_size == 4)
2299		tx_size = 3;
2300
2301	/*Is there anything to do? */
2302	if ((rx_size == priv->rxf_size) &&
2303	    (tx_size == priv->txd_size))
2304		return 0;
2305
2306	priv->rxf_size = rx_size;
2307	if (rx_size > 1)
2308		priv->rxd_size = rx_size - 1;
2309	else
2310		priv->rxd_size = rx_size;
2311
2312	priv->txf_size = priv->txd_size = tx_size;
2313
2314	if (netif_running(netdev)) {
2315		bdx_close(netdev);
2316		bdx_open(netdev);
2317	}
2318	return 0;
2319}
2320
2321/*
2322 * bdx_get_strings - return a set of strings that describe the requested objects
2323 * @netdev
2324 * @data
2325 */
2326static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2327{
2328	switch (stringset) {
2329	case ETH_SS_STATS:
2330		memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
2331		break;
2332	}
2333}
2334
2335/*
2336 * bdx_get_sset_count - return number of statistics or tests
2337 * @netdev
2338 */
2339static int bdx_get_sset_count(struct net_device *netdev, int stringset)
2340{
2341	struct bdx_priv *priv = netdev_priv(netdev);
2342
2343	switch (stringset) {
2344	case ETH_SS_STATS:
2345		BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
2346			   != sizeof(struct bdx_stats) / sizeof(u64));
2347		return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names)	: 0;
2348	}
2349
2350	return -EINVAL;
2351}
2352
2353/*
2354 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2355 * @netdev
2356 * @stats
2357 * @data
2358 */
2359static void bdx_get_ethtool_stats(struct net_device *netdev,
2360				  struct ethtool_stats *stats, u64 *data)
2361{
2362	struct bdx_priv *priv = netdev_priv(netdev);
2363
2364	if (priv->stats_flag) {
2365
2366		/* Update stats from HW */
2367		bdx_update_stats(priv);
2368
2369		/* Copy data to user buffer */
2370		memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
2371	}
2372}
2373
2374/*
2375 * bdx_set_ethtool_ops - ethtool interface implementation
2376 * @netdev
2377 */
2378static void bdx_set_ethtool_ops(struct net_device *netdev)
2379{
2380	static const struct ethtool_ops bdx_ethtool_ops = {
2381		.get_settings = bdx_get_settings,
2382		.get_drvinfo = bdx_get_drvinfo,
2383		.get_link = ethtool_op_get_link,
2384		.get_coalesce = bdx_get_coalesce,
2385		.set_coalesce = bdx_set_coalesce,
2386		.get_ringparam = bdx_get_ringparam,
2387		.set_ringparam = bdx_set_ringparam,
2388		.get_strings = bdx_get_strings,
2389		.get_sset_count = bdx_get_sset_count,
2390		.get_ethtool_stats = bdx_get_ethtool_stats,
2391	};
2392
2393	SET_ETHTOOL_OPS(netdev, &bdx_ethtool_ops);
2394}
2395
2396/**
2397 * bdx_remove - Device Removal Routine
2398 * @pdev: PCI device information struct
2399 *
2400 * bdx_remove is called by the PCI subsystem to alert the driver
2401 * that it should release a PCI device.  The could be caused by a
2402 * Hot-Plug event, or because the driver is going to be removed from
2403 * memory.
2404 **/
2405static void __devexit bdx_remove(struct pci_dev *pdev)
2406{
2407	struct pci_nic *nic = pci_get_drvdata(pdev);
2408	struct net_device *ndev;
2409	int port;
2410
2411	for (port = 0; port < nic->port_num; port++) {
2412		ndev = nic->priv[port]->ndev;
2413		unregister_netdev(ndev);
2414		free_netdev(ndev);
2415	}
2416
2417	/*bdx_hw_reset_direct(nic->regs); */
2418#ifdef BDX_MSI
2419	if (nic->irq_type == IRQ_MSI)
2420		pci_disable_msi(pdev);
2421#endif
2422
2423	iounmap(nic->regs);
2424	pci_release_regions(pdev);
2425	pci_disable_device(pdev);
2426	pci_set_drvdata(pdev, NULL);
2427	vfree(nic);
2428
2429	RET();
2430}
2431
2432static struct pci_driver bdx_pci_driver = {
2433	.name = BDX_DRV_NAME,
2434	.id_table = bdx_pci_tbl,
2435	.probe = bdx_probe,
2436	.remove = __devexit_p(bdx_remove),
2437};
2438
2439/*
2440 * print_driver_id - print parameters of the driver build
2441 */
2442static void __init print_driver_id(void)
2443{
2444	pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
2445	pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
2446}
2447
2448static int __init bdx_module_init(void)
2449{
2450	ENTER;
2451	init_txd_sizes();
2452	print_driver_id();
2453	RET(pci_register_driver(&bdx_pci_driver));
2454}
2455
2456module_init(bdx_module_init);
2457
2458static void __exit bdx_module_exit(void)
2459{
2460	ENTER;
2461	pci_unregister_driver(&bdx_pci_driver);
2462	RET();
2463}
2464
2465module_exit(bdx_module_exit);
2466
2467MODULE_LICENSE("GPL");
2468MODULE_AUTHOR(DRIVER_AUTHOR);
2469MODULE_DESCRIPTION(BDX_DRV_DESC);
2470MODULE_FIRMWARE("tehuti/bdx.bin");