Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
   2 *           auto carrier detecting ethernet driver.  Also known as the
   3 *           "Happy Meal Ethernet" found on SunSwift SBUS cards.
   4 *
   5 * Copyright (C) 1996, 1998, 1999, 2002, 2003,
   6 *		2006, 2008 David S. Miller (davem@davemloft.net)
   7 *
   8 * Changes :
   9 * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
  10 *   - port to non-sparc architectures. Tested only on x86 and
  11 *     only currently works with QFE PCI cards.
  12 *   - ability to specify the MAC address at module load time by passing this
  13 *     argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
  14 */
  15
  16#include <linux/module.h>
  17#include <linux/kernel.h>
  18#include <linux/types.h>
  19#include <linux/fcntl.h>
  20#include <linux/interrupt.h>
  21#include <linux/ioport.h>
  22#include <linux/in.h>
  23#include <linux/slab.h>
  24#include <linux/string.h>
  25#include <linux/delay.h>
  26#include <linux/init.h>
  27#include <linux/ethtool.h>
  28#include <linux/mii.h>
  29#include <linux/crc32.h>
  30#include <linux/random.h>
  31#include <linux/errno.h>
  32#include <linux/netdevice.h>
  33#include <linux/etherdevice.h>
  34#include <linux/skbuff.h>
  35#include <linux/mm.h>
  36#include <linux/bitops.h>
  37#include <linux/dma-mapping.h>
  38
  39#include <asm/system.h>
  40#include <asm/io.h>
  41#include <asm/dma.h>
  42#include <asm/byteorder.h>
  43
  44#ifdef CONFIG_SPARC
  45#include <linux/of.h>
  46#include <linux/of_device.h>
  47#include <asm/idprom.h>
  48#include <asm/openprom.h>
  49#include <asm/oplib.h>
  50#include <asm/prom.h>
  51#include <asm/auxio.h>
  52#endif
  53#include <asm/uaccess.h>
  54
  55#include <asm/pgtable.h>
  56#include <asm/irq.h>
  57
  58#ifdef CONFIG_PCI
  59#include <linux/pci.h>
  60#endif
  61
  62#include "sunhme.h"
  63
  64#define DRV_NAME	"sunhme"
  65#define DRV_VERSION	"3.10"
  66#define DRV_RELDATE	"August 26, 2008"
  67#define DRV_AUTHOR	"David S. Miller (davem@davemloft.net)"
  68
  69static char version[] =
  70	DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
  71
  72MODULE_VERSION(DRV_VERSION);
  73MODULE_AUTHOR(DRV_AUTHOR);
  74MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
  75MODULE_LICENSE("GPL");
  76
  77static int macaddr[6];
  78
  79/* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
  80module_param_array(macaddr, int, NULL, 0);
  81MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
  82
  83#ifdef CONFIG_SBUS
  84static struct quattro *qfe_sbus_list;
  85#endif
  86
  87#ifdef CONFIG_PCI
  88static struct quattro *qfe_pci_list;
  89#endif
  90
  91#undef HMEDEBUG
  92#undef SXDEBUG
  93#undef RXDEBUG
  94#undef TXDEBUG
  95#undef TXLOGGING
  96
  97#ifdef TXLOGGING
  98struct hme_tx_logent {
  99	unsigned int tstamp;
 100	int tx_new, tx_old;
 101	unsigned int action;
 102#define TXLOG_ACTION_IRQ	0x01
 103#define TXLOG_ACTION_TXMIT	0x02
 104#define TXLOG_ACTION_TBUSY	0x04
 105#define TXLOG_ACTION_NBUFS	0x08
 106	unsigned int status;
 107};
 108#define TX_LOG_LEN	128
 109static struct hme_tx_logent tx_log[TX_LOG_LEN];
 110static int txlog_cur_entry;
 111static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
 112{
 113	struct hme_tx_logent *tlp;
 114	unsigned long flags;
 115
 116	local_irq_save(flags);
 117	tlp = &tx_log[txlog_cur_entry];
 118	tlp->tstamp = (unsigned int)jiffies;
 119	tlp->tx_new = hp->tx_new;
 120	tlp->tx_old = hp->tx_old;
 121	tlp->action = a;
 122	tlp->status = s;
 123	txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
 124	local_irq_restore(flags);
 125}
 126static __inline__ void tx_dump_log(void)
 127{
 128	int i, this;
 129
 130	this = txlog_cur_entry;
 131	for (i = 0; i < TX_LOG_LEN; i++) {
 132		printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
 133		       tx_log[this].tstamp,
 134		       tx_log[this].tx_new, tx_log[this].tx_old,
 135		       tx_log[this].action, tx_log[this].status);
 136		this = (this + 1) & (TX_LOG_LEN - 1);
 137	}
 138}
 139static __inline__ void tx_dump_ring(struct happy_meal *hp)
 140{
 141	struct hmeal_init_block *hb = hp->happy_block;
 142	struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
 143	int i;
 144
 145	for (i = 0; i < TX_RING_SIZE; i+=4) {
 146		printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
 147		       i, i + 4,
 148		       le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
 149		       le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
 150		       le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
 151		       le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
 152	}
 153}
 154#else
 155#define tx_add_log(hp, a, s)		do { } while(0)
 156#define tx_dump_log()			do { } while(0)
 157#define tx_dump_ring(hp)		do { } while(0)
 158#endif
 159
 160#ifdef HMEDEBUG
 161#define HMD(x)  printk x
 162#else
 163#define HMD(x)
 164#endif
 165
 166/* #define AUTO_SWITCH_DEBUG */
 167
 168#ifdef AUTO_SWITCH_DEBUG
 169#define ASD(x)  printk x
 170#else
 171#define ASD(x)
 172#endif
 173
 174#define DEFAULT_IPG0      16 /* For lance-mode only */
 175#define DEFAULT_IPG1       8 /* For all modes */
 176#define DEFAULT_IPG2       4 /* For all modes */
 177#define DEFAULT_JAMSIZE    4 /* Toe jam */
 178
 179/* NOTE: In the descriptor writes one _must_ write the address
 180 *	 member _first_.  The card must not be allowed to see
 181 *	 the updated descriptor flags until the address is
 182 *	 correct.  I've added a write memory barrier between
 183 *	 the two stores so that I can sleep well at night... -DaveM
 184 */
 185
 186#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
 187static void sbus_hme_write32(void __iomem *reg, u32 val)
 188{
 189	sbus_writel(val, reg);
 190}
 191
 192static u32 sbus_hme_read32(void __iomem *reg)
 193{
 194	return sbus_readl(reg);
 195}
 196
 197static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
 198{
 199	rxd->rx_addr = (__force hme32)addr;
 200	wmb();
 201	rxd->rx_flags = (__force hme32)flags;
 202}
 203
 204static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
 205{
 206	txd->tx_addr = (__force hme32)addr;
 207	wmb();
 208	txd->tx_flags = (__force hme32)flags;
 209}
 210
 211static u32 sbus_hme_read_desc32(hme32 *p)
 212{
 213	return (__force u32)*p;
 214}
 215
 216static void pci_hme_write32(void __iomem *reg, u32 val)
 217{
 218	writel(val, reg);
 219}
 220
 221static u32 pci_hme_read32(void __iomem *reg)
 222{
 223	return readl(reg);
 224}
 225
 226static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
 227{
 228	rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
 229	wmb();
 230	rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
 231}
 232
 233static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
 234{
 235	txd->tx_addr = (__force hme32)cpu_to_le32(addr);
 236	wmb();
 237	txd->tx_flags = (__force hme32)cpu_to_le32(flags);
 238}
 239
 240static u32 pci_hme_read_desc32(hme32 *p)
 241{
 242	return le32_to_cpup((__le32 *)p);
 243}
 244
 245#define hme_write32(__hp, __reg, __val) \
 246	((__hp)->write32((__reg), (__val)))
 247#define hme_read32(__hp, __reg) \
 248	((__hp)->read32(__reg))
 249#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
 250	((__hp)->write_rxd((__rxd), (__flags), (__addr)))
 251#define hme_write_txd(__hp, __txd, __flags, __addr) \
 252	((__hp)->write_txd((__txd), (__flags), (__addr)))
 253#define hme_read_desc32(__hp, __p) \
 254	((__hp)->read_desc32(__p))
 255#define hme_dma_map(__hp, __ptr, __size, __dir) \
 256	((__hp)->dma_map((__hp)->dma_dev, (__ptr), (__size), (__dir)))
 257#define hme_dma_unmap(__hp, __addr, __size, __dir) \
 258	((__hp)->dma_unmap((__hp)->dma_dev, (__addr), (__size), (__dir)))
 259#define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
 260	((__hp)->dma_sync_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir)))
 261#define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
 262	((__hp)->dma_sync_for_device((__hp)->dma_dev, (__addr), (__size), (__dir)))
 263#else
 264#ifdef CONFIG_SBUS
 265/* SBUS only compilation */
 266#define hme_write32(__hp, __reg, __val) \
 267	sbus_writel((__val), (__reg))
 268#define hme_read32(__hp, __reg) \
 269	sbus_readl(__reg)
 270#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
 271do {	(__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
 272	wmb(); \
 273	(__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
 274} while(0)
 275#define hme_write_txd(__hp, __txd, __flags, __addr) \
 276do {	(__txd)->tx_addr = (__force hme32)(u32)(__addr); \
 277	wmb(); \
 278	(__txd)->tx_flags = (__force hme32)(u32)(__flags); \
 279} while(0)
 280#define hme_read_desc32(__hp, __p)	((__force u32)(hme32)*(__p))
 281#define hme_dma_map(__hp, __ptr, __size, __dir) \
 282	dma_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
 283#define hme_dma_unmap(__hp, __addr, __size, __dir) \
 284	dma_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
 285#define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
 286	dma_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
 287#define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
 288	dma_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
 289#else
 290/* PCI only compilation */
 291#define hme_write32(__hp, __reg, __val) \
 292	writel((__val), (__reg))
 293#define hme_read32(__hp, __reg) \
 294	readl(__reg)
 295#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
 296do {	(__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
 297	wmb(); \
 298	(__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
 299} while(0)
 300#define hme_write_txd(__hp, __txd, __flags, __addr) \
 301do {	(__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
 302	wmb(); \
 303	(__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
 304} while(0)
 305static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
 306{
 307	return le32_to_cpup((__le32 *)p);
 308}
 309#define hme_dma_map(__hp, __ptr, __size, __dir) \
 310	pci_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
 311#define hme_dma_unmap(__hp, __addr, __size, __dir) \
 312	pci_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
 313#define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
 314	pci_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
 315#define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
 316	pci_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
 317#endif
 318#endif
 319
 320
 321/* Oh yes, the MIF BitBang is mighty fun to program.  BitBucket is more like it. */
 322static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
 323{
 324	hme_write32(hp, tregs + TCVR_BBDATA, bit);
 325	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
 326	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
 327}
 328
 329#if 0
 330static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
 331{
 332	u32 ret;
 333
 334	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
 335	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
 336	ret = hme_read32(hp, tregs + TCVR_CFG);
 337	if (internal)
 338		ret &= TCV_CFG_MDIO0;
 339	else
 340		ret &= TCV_CFG_MDIO1;
 341
 342	return ret;
 343}
 344#endif
 345
 346static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
 347{
 348	u32 retval;
 349
 350	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
 351	udelay(1);
 352	retval = hme_read32(hp, tregs + TCVR_CFG);
 353	if (internal)
 354		retval &= TCV_CFG_MDIO0;
 355	else
 356		retval &= TCV_CFG_MDIO1;
 357	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
 358
 359	return retval;
 360}
 361
 362#define TCVR_FAILURE      0x80000000     /* Impossible MIF read value */
 363
 364static int happy_meal_bb_read(struct happy_meal *hp,
 365			      void __iomem *tregs, int reg)
 366{
 367	u32 tmp;
 368	int retval = 0;
 369	int i;
 370
 371	ASD(("happy_meal_bb_read: reg=%d ", reg));
 372
 373	/* Enable the MIF BitBang outputs. */
 374	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
 375
 376	/* Force BitBang into the idle state. */
 377	for (i = 0; i < 32; i++)
 378		BB_PUT_BIT(hp, tregs, 1);
 379
 380	/* Give it the read sequence. */
 381	BB_PUT_BIT(hp, tregs, 0);
 382	BB_PUT_BIT(hp, tregs, 1);
 383	BB_PUT_BIT(hp, tregs, 1);
 384	BB_PUT_BIT(hp, tregs, 0);
 385
 386	/* Give it the PHY address. */
 387	tmp = hp->paddr & 0xff;
 388	for (i = 4; i >= 0; i--)
 389		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 390
 391	/* Tell it what register we want to read. */
 392	tmp = (reg & 0xff);
 393	for (i = 4; i >= 0; i--)
 394		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 395
 396	/* Close down the MIF BitBang outputs. */
 397	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
 398
 399	/* Now read in the value. */
 400	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 401	for (i = 15; i >= 0; i--)
 402		retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 403	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 404	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 405	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 406	ASD(("value=%x\n", retval));
 407	return retval;
 408}
 409
 410static void happy_meal_bb_write(struct happy_meal *hp,
 411				void __iomem *tregs, int reg,
 412				unsigned short value)
 413{
 414	u32 tmp;
 415	int i;
 416
 417	ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
 418
 419	/* Enable the MIF BitBang outputs. */
 420	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
 421
 422	/* Force BitBang into the idle state. */
 423	for (i = 0; i < 32; i++)
 424		BB_PUT_BIT(hp, tregs, 1);
 425
 426	/* Give it write sequence. */
 427	BB_PUT_BIT(hp, tregs, 0);
 428	BB_PUT_BIT(hp, tregs, 1);
 429	BB_PUT_BIT(hp, tregs, 0);
 430	BB_PUT_BIT(hp, tregs, 1);
 431
 432	/* Give it the PHY address. */
 433	tmp = (hp->paddr & 0xff);
 434	for (i = 4; i >= 0; i--)
 435		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 436
 437	/* Tell it what register we will be writing. */
 438	tmp = (reg & 0xff);
 439	for (i = 4; i >= 0; i--)
 440		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 441
 442	/* Tell it to become ready for the bits. */
 443	BB_PUT_BIT(hp, tregs, 1);
 444	BB_PUT_BIT(hp, tregs, 0);
 445
 446	for (i = 15; i >= 0; i--)
 447		BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
 448
 449	/* Close down the MIF BitBang outputs. */
 450	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
 451}
 452
 453#define TCVR_READ_TRIES   16
 454
 455static int happy_meal_tcvr_read(struct happy_meal *hp,
 456				void __iomem *tregs, int reg)
 457{
 458	int tries = TCVR_READ_TRIES;
 459	int retval;
 460
 461	ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
 462	if (hp->tcvr_type == none) {
 463		ASD(("no transceiver, value=TCVR_FAILURE\n"));
 464		return TCVR_FAILURE;
 465	}
 466
 467	if (!(hp->happy_flags & HFLAG_FENABLE)) {
 468		ASD(("doing bit bang\n"));
 469		return happy_meal_bb_read(hp, tregs, reg);
 470	}
 471
 472	hme_write32(hp, tregs + TCVR_FRAME,
 473		    (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
 474	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
 475		udelay(20);
 476	if (!tries) {
 477		printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
 478		return TCVR_FAILURE;
 479	}
 480	retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
 481	ASD(("value=%04x\n", retval));
 482	return retval;
 483}
 484
 485#define TCVR_WRITE_TRIES  16
 486
 487static void happy_meal_tcvr_write(struct happy_meal *hp,
 488				  void __iomem *tregs, int reg,
 489				  unsigned short value)
 490{
 491	int tries = TCVR_WRITE_TRIES;
 492
 493	ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
 494
 495	/* Welcome to Sun Microsystems, can I take your order please? */
 496	if (!(hp->happy_flags & HFLAG_FENABLE)) {
 497		happy_meal_bb_write(hp, tregs, reg, value);
 498		return;
 499	}
 500
 501	/* Would you like fries with that? */
 502	hme_write32(hp, tregs + TCVR_FRAME,
 503		    (FRAME_WRITE | (hp->paddr << 23) |
 504		     ((reg & 0xff) << 18) | (value & 0xffff)));
 505	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
 506		udelay(20);
 507
 508	/* Anything else? */
 509	if (!tries)
 510		printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
 511
 512	/* Fifty-two cents is your change, have a nice day. */
 513}
 514
 515/* Auto negotiation.  The scheme is very simple.  We have a timer routine
 516 * that keeps watching the auto negotiation process as it progresses.
 517 * The DP83840 is first told to start doing it's thing, we set up the time
 518 * and place the timer state machine in it's initial state.
 519 *
 520 * Here the timer peeks at the DP83840 status registers at each click to see
 521 * if the auto negotiation has completed, we assume here that the DP83840 PHY
 522 * will time out at some point and just tell us what (didn't) happen.  For
 523 * complete coverage we only allow so many of the ticks at this level to run,
 524 * when this has expired we print a warning message and try another strategy.
 525 * This "other" strategy is to force the interface into various speed/duplex
 526 * configurations and we stop when we see a link-up condition before the
 527 * maximum number of "peek" ticks have occurred.
 528 *
 529 * Once a valid link status has been detected we configure the BigMAC and
 530 * the rest of the Happy Meal to speak the most efficient protocol we could
 531 * get a clean link for.  The priority for link configurations, highest first
 532 * is:
 533 *                 100 Base-T Full Duplex
 534 *                 100 Base-T Half Duplex
 535 *                 10 Base-T Full Duplex
 536 *                 10 Base-T Half Duplex
 537 *
 538 * We start a new timer now, after a successful auto negotiation status has
 539 * been detected.  This timer just waits for the link-up bit to get set in
 540 * the BMCR of the DP83840.  When this occurs we print a kernel log message
 541 * describing the link type in use and the fact that it is up.
 542 *
 543 * If a fatal error of some sort is signalled and detected in the interrupt
 544 * service routine, and the chip is reset, or the link is ifconfig'd down
 545 * and then back up, this entire process repeats itself all over again.
 546 */
 547static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
 548{
 549	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 550
 551	/* Downgrade from full to half duplex.  Only possible
 552	 * via ethtool.
 553	 */
 554	if (hp->sw_bmcr & BMCR_FULLDPLX) {
 555		hp->sw_bmcr &= ~(BMCR_FULLDPLX);
 556		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 557		return 0;
 558	}
 559
 560	/* Downgrade from 100 to 10. */
 561	if (hp->sw_bmcr & BMCR_SPEED100) {
 562		hp->sw_bmcr &= ~(BMCR_SPEED100);
 563		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 564		return 0;
 565	}
 566
 567	/* We've tried everything. */
 568	return -1;
 569}
 570
 571static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
 572{
 573	printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
 574	if (hp->tcvr_type == external)
 575		printk("external ");
 576	else
 577		printk("internal ");
 578	printk("transceiver at ");
 579	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
 580	if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
 581		if (hp->sw_lpa & LPA_100FULL)
 582			printk("100Mb/s, Full Duplex.\n");
 583		else
 584			printk("100Mb/s, Half Duplex.\n");
 585	} else {
 586		if (hp->sw_lpa & LPA_10FULL)
 587			printk("10Mb/s, Full Duplex.\n");
 588		else
 589			printk("10Mb/s, Half Duplex.\n");
 590	}
 591}
 592
 593static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
 594{
 595	printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
 596	if (hp->tcvr_type == external)
 597		printk("external ");
 598	else
 599		printk("internal ");
 600	printk("transceiver at ");
 601	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 602	if (hp->sw_bmcr & BMCR_SPEED100)
 603		printk("100Mb/s, ");
 604	else
 605		printk("10Mb/s, ");
 606	if (hp->sw_bmcr & BMCR_FULLDPLX)
 607		printk("Full Duplex.\n");
 608	else
 609		printk("Half Duplex.\n");
 610}
 611
 612static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
 613{
 614	int full;
 615
 616	/* All we care about is making sure the bigmac tx_cfg has a
 617	 * proper duplex setting.
 618	 */
 619	if (hp->timer_state == arbwait) {
 620		hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
 621		if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
 622			goto no_response;
 623		if (hp->sw_lpa & LPA_100FULL)
 624			full = 1;
 625		else if (hp->sw_lpa & LPA_100HALF)
 626			full = 0;
 627		else if (hp->sw_lpa & LPA_10FULL)
 628			full = 1;
 629		else
 630			full = 0;
 631	} else {
 632		/* Forcing a link mode. */
 633		hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 634		if (hp->sw_bmcr & BMCR_FULLDPLX)
 635			full = 1;
 636		else
 637			full = 0;
 638	}
 639
 640	/* Before changing other bits in the tx_cfg register, and in
 641	 * general any of other the TX config registers too, you
 642	 * must:
 643	 * 1) Clear Enable
 644	 * 2) Poll with reads until that bit reads back as zero
 645	 * 3) Make TX configuration changes
 646	 * 4) Set Enable once more
 647	 */
 648	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 649		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
 650		    ~(BIGMAC_TXCFG_ENABLE));
 651	while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
 652		barrier();
 653	if (full) {
 654		hp->happy_flags |= HFLAG_FULL;
 655		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 656			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
 657			    BIGMAC_TXCFG_FULLDPLX);
 658	} else {
 659		hp->happy_flags &= ~(HFLAG_FULL);
 660		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 661			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
 662			    ~(BIGMAC_TXCFG_FULLDPLX));
 663	}
 664	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 665		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
 666		    BIGMAC_TXCFG_ENABLE);
 667	return 0;
 668no_response:
 669	return 1;
 670}
 671
 672static int happy_meal_init(struct happy_meal *hp);
 673
 674static int is_lucent_phy(struct happy_meal *hp)
 675{
 676	void __iomem *tregs = hp->tcvregs;
 677	unsigned short mr2, mr3;
 678	int ret = 0;
 679
 680	mr2 = happy_meal_tcvr_read(hp, tregs, 2);
 681	mr3 = happy_meal_tcvr_read(hp, tregs, 3);
 682	if ((mr2 & 0xffff) == 0x0180 &&
 683	    ((mr3 & 0xffff) >> 10) == 0x1d)
 684		ret = 1;
 685
 686	return ret;
 687}
 688
 689static void happy_meal_timer(unsigned long data)
 690{
 691	struct happy_meal *hp = (struct happy_meal *) data;
 692	void __iomem *tregs = hp->tcvregs;
 693	int restart_timer = 0;
 694
 695	spin_lock_irq(&hp->happy_lock);
 696
 697	hp->timer_ticks++;
 698	switch(hp->timer_state) {
 699	case arbwait:
 700		/* Only allow for 5 ticks, thats 10 seconds and much too
 701		 * long to wait for arbitration to complete.
 702		 */
 703		if (hp->timer_ticks >= 10) {
 704			/* Enter force mode. */
 705	do_force_mode:
 706			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 707			printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
 708			       hp->dev->name);
 709			hp->sw_bmcr = BMCR_SPEED100;
 710			happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 711
 712			if (!is_lucent_phy(hp)) {
 713				/* OK, seems we need do disable the transceiver for the first
 714				 * tick to make sure we get an accurate link state at the
 715				 * second tick.
 716				 */
 717				hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
 718				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
 719				happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
 720			}
 721			hp->timer_state = ltrywait;
 722			hp->timer_ticks = 0;
 723			restart_timer = 1;
 724		} else {
 725			/* Anything interesting happen? */
 726			hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 727			if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
 728				int ret;
 729
 730				/* Just what we've been waiting for... */
 731				ret = set_happy_link_modes(hp, tregs);
 732				if (ret) {
 733					/* Ooops, something bad happened, go to force
 734					 * mode.
 735					 *
 736					 * XXX Broken hubs which don't support 802.3u
 737					 * XXX auto-negotiation make this happen as well.
 738					 */
 739					goto do_force_mode;
 740				}
 741
 742				/* Success, at least so far, advance our state engine. */
 743				hp->timer_state = lupwait;
 744				restart_timer = 1;
 745			} else {
 746				restart_timer = 1;
 747			}
 748		}
 749		break;
 750
 751	case lupwait:
 752		/* Auto negotiation was successful and we are awaiting a
 753		 * link up status.  I have decided to let this timer run
 754		 * forever until some sort of error is signalled, reporting
 755		 * a message to the user at 10 second intervals.
 756		 */
 757		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 758		if (hp->sw_bmsr & BMSR_LSTATUS) {
 759			/* Wheee, it's up, display the link mode in use and put
 760			 * the timer to sleep.
 761			 */
 762			display_link_mode(hp, tregs);
 763			hp->timer_state = asleep;
 764			restart_timer = 0;
 765		} else {
 766			if (hp->timer_ticks >= 10) {
 767				printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
 768				       "not completely up.\n", hp->dev->name);
 769				hp->timer_ticks = 0;
 770				restart_timer = 1;
 771			} else {
 772				restart_timer = 1;
 773			}
 774		}
 775		break;
 776
 777	case ltrywait:
 778		/* Making the timeout here too long can make it take
 779		 * annoyingly long to attempt all of the link mode
 780		 * permutations, but then again this is essentially
 781		 * error recovery code for the most part.
 782		 */
 783		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 784		hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
 785		if (hp->timer_ticks == 1) {
 786			if (!is_lucent_phy(hp)) {
 787				/* Re-enable transceiver, we'll re-enable the transceiver next
 788				 * tick, then check link state on the following tick.
 789				 */
 790				hp->sw_csconfig |= CSCONFIG_TCVDISAB;
 791				happy_meal_tcvr_write(hp, tregs,
 792						      DP83840_CSCONFIG, hp->sw_csconfig);
 793			}
 794			restart_timer = 1;
 795			break;
 796		}
 797		if (hp->timer_ticks == 2) {
 798			if (!is_lucent_phy(hp)) {
 799				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
 800				happy_meal_tcvr_write(hp, tregs,
 801						      DP83840_CSCONFIG, hp->sw_csconfig);
 802			}
 803			restart_timer = 1;
 804			break;
 805		}
 806		if (hp->sw_bmsr & BMSR_LSTATUS) {
 807			/* Force mode selection success. */
 808			display_forced_link_mode(hp, tregs);
 809			set_happy_link_modes(hp, tregs); /* XXX error? then what? */
 810			hp->timer_state = asleep;
 811			restart_timer = 0;
 812		} else {
 813			if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
 814				int ret;
 815
 816				ret = try_next_permutation(hp, tregs);
 817				if (ret == -1) {
 818					/* Aieee, tried them all, reset the
 819					 * chip and try all over again.
 820					 */
 821
 822					/* Let the user know... */
 823					printk(KERN_NOTICE "%s: Link down, cable problem?\n",
 824					       hp->dev->name);
 825
 826					ret = happy_meal_init(hp);
 827					if (ret) {
 828						/* ho hum... */
 829						printk(KERN_ERR "%s: Error, cannot re-init the "
 830						       "Happy Meal.\n", hp->dev->name);
 831					}
 832					goto out;
 833				}
 834				if (!is_lucent_phy(hp)) {
 835					hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
 836									       DP83840_CSCONFIG);
 837					hp->sw_csconfig |= CSCONFIG_TCVDISAB;
 838					happy_meal_tcvr_write(hp, tregs,
 839							      DP83840_CSCONFIG, hp->sw_csconfig);
 840				}
 841				hp->timer_ticks = 0;
 842				restart_timer = 1;
 843			} else {
 844				restart_timer = 1;
 845			}
 846		}
 847		break;
 848
 849	case asleep:
 850	default:
 851		/* Can't happens.... */
 852		printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
 853		       hp->dev->name);
 854		restart_timer = 0;
 855		hp->timer_ticks = 0;
 856		hp->timer_state = asleep; /* foo on you */
 857		break;
 858	}
 859
 860	if (restart_timer) {
 861		hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
 862		add_timer(&hp->happy_timer);
 863	}
 864
 865out:
 866	spin_unlock_irq(&hp->happy_lock);
 867}
 868
 869#define TX_RESET_TRIES     32
 870#define RX_RESET_TRIES     32
 871
 872/* hp->happy_lock must be held */
 873static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
 874{
 875	int tries = TX_RESET_TRIES;
 876
 877	HMD(("happy_meal_tx_reset: reset, "));
 878
 879	/* Would you like to try our SMCC Delux? */
 880	hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
 881	while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
 882		udelay(20);
 883
 884	/* Lettuce, tomato, buggy hardware (no extra charge)? */
 885	if (!tries)
 886		printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
 887
 888	/* Take care. */
 889	HMD(("done\n"));
 890}
 891
 892/* hp->happy_lock must be held */
 893static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
 894{
 895	int tries = RX_RESET_TRIES;
 896
 897	HMD(("happy_meal_rx_reset: reset, "));
 898
 899	/* We have a special on GNU/Viking hardware bugs today. */
 900	hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
 901	while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
 902		udelay(20);
 903
 904	/* Will that be all? */
 905	if (!tries)
 906		printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
 907
 908	/* Don't forget your vik_1137125_wa.  Have a nice day. */
 909	HMD(("done\n"));
 910}
 911
 912#define STOP_TRIES         16
 913
 914/* hp->happy_lock must be held */
 915static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
 916{
 917	int tries = STOP_TRIES;
 918
 919	HMD(("happy_meal_stop: reset, "));
 920
 921	/* We're consolidating our STB products, it's your lucky day. */
 922	hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
 923	while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
 924		udelay(20);
 925
 926	/* Come back next week when we are "Sun Microelectronics". */
 927	if (!tries)
 928		printk(KERN_ERR "happy meal: Fry guys.");
 929
 930	/* Remember: "Different name, same old buggy as shit hardware." */
 931	HMD(("done\n"));
 932}
 933
 934/* hp->happy_lock must be held */
 935static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
 936{
 937	struct net_device_stats *stats = &hp->net_stats;
 938
 939	stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
 940	hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
 941
 942	stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
 943	hme_write32(hp, bregs + BMAC_UNALECTR, 0);
 944
 945	stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
 946	hme_write32(hp, bregs + BMAC_GLECTR, 0);
 947
 948	stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
 949
 950	stats->collisions +=
 951		(hme_read32(hp, bregs + BMAC_EXCTR) +
 952		 hme_read32(hp, bregs + BMAC_LTCTR));
 953	hme_write32(hp, bregs + BMAC_EXCTR, 0);
 954	hme_write32(hp, bregs + BMAC_LTCTR, 0);
 955}
 956
 957/* hp->happy_lock must be held */
 958static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
 959{
 960	ASD(("happy_meal_poll_stop: "));
 961
 962	/* If polling disabled or not polling already, nothing to do. */
 963	if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
 964	   (HFLAG_POLLENABLE | HFLAG_POLL)) {
 965		HMD(("not polling, return\n"));
 966		return;
 967	}
 968
 969	/* Shut up the MIF. */
 970	ASD(("were polling, mif ints off, "));
 971	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
 972
 973	/* Turn off polling. */
 974	ASD(("polling off, "));
 975	hme_write32(hp, tregs + TCVR_CFG,
 976		    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
 977
 978	/* We are no longer polling. */
 979	hp->happy_flags &= ~(HFLAG_POLL);
 980
 981	/* Let the bits set. */
 982	udelay(200);
 983	ASD(("done\n"));
 984}
 985
 986/* Only Sun can take such nice parts and fuck up the programming interface
 987 * like this.  Good job guys...
 988 */
 989#define TCVR_RESET_TRIES       16 /* It should reset quickly        */
 990#define TCVR_UNISOLATE_TRIES   32 /* Dis-isolation can take longer. */
 991
 992/* hp->happy_lock must be held */
 993static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
 994{
 995	u32 tconfig;
 996	int result, tries = TCVR_RESET_TRIES;
 997
 998	tconfig = hme_read32(hp, tregs + TCVR_CFG);
 999	ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
1000	if (hp->tcvr_type == external) {
1001		ASD(("external<"));
1002		hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1003		hp->tcvr_type = internal;
1004		hp->paddr = TCV_PADDR_ITX;
1005		ASD(("ISOLATE,"));
1006		happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1007				      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1008		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1009		if (result == TCVR_FAILURE) {
1010			ASD(("phyread_fail>\n"));
1011			return -1;
1012		}
1013		ASD(("phyread_ok,PSELECT>"));
1014		hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1015		hp->tcvr_type = external;
1016		hp->paddr = TCV_PADDR_ETX;
1017	} else {
1018		if (tconfig & TCV_CFG_MDIO1) {
1019			ASD(("internal<PSELECT,"));
1020			hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1021			ASD(("ISOLATE,"));
1022			happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1023					      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1024			result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1025			if (result == TCVR_FAILURE) {
1026				ASD(("phyread_fail>\n"));
1027				return -1;
1028			}
1029			ASD(("phyread_ok,~PSELECT>"));
1030			hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1031			hp->tcvr_type = internal;
1032			hp->paddr = TCV_PADDR_ITX;
1033		}
1034	}
1035
1036	ASD(("BMCR_RESET "));
1037	happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1038
1039	while (--tries) {
1040		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1041		if (result == TCVR_FAILURE)
1042			return -1;
1043		hp->sw_bmcr = result;
1044		if (!(result & BMCR_RESET))
1045			break;
1046		udelay(20);
1047	}
1048	if (!tries) {
1049		ASD(("BMCR RESET FAILED!\n"));
1050		return -1;
1051	}
1052	ASD(("RESET_OK\n"));
1053
1054	/* Get fresh copies of the PHY registers. */
1055	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1056	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1057	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1058	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1059
1060	ASD(("UNISOLATE"));
1061	hp->sw_bmcr &= ~(BMCR_ISOLATE);
1062	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1063
1064	tries = TCVR_UNISOLATE_TRIES;
1065	while (--tries) {
1066		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1067		if (result == TCVR_FAILURE)
1068			return -1;
1069		if (!(result & BMCR_ISOLATE))
1070			break;
1071		udelay(20);
1072	}
1073	if (!tries) {
1074		ASD((" FAILED!\n"));
1075		return -1;
1076	}
1077	ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1078	if (!is_lucent_phy(hp)) {
1079		result = happy_meal_tcvr_read(hp, tregs,
1080					      DP83840_CSCONFIG);
1081		happy_meal_tcvr_write(hp, tregs,
1082				      DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1083	}
1084	return 0;
1085}
1086
1087/* Figure out whether we have an internal or external transceiver.
1088 *
1089 * hp->happy_lock must be held
1090 */
1091static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1092{
1093	unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1094
1095	ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1096	if (hp->happy_flags & HFLAG_POLL) {
1097		/* If we are polling, we must stop to get the transceiver type. */
1098		ASD(("<polling> "));
1099		if (hp->tcvr_type == internal) {
1100			if (tconfig & TCV_CFG_MDIO1) {
1101				ASD(("<internal> <poll stop> "));
1102				happy_meal_poll_stop(hp, tregs);
1103				hp->paddr = TCV_PADDR_ETX;
1104				hp->tcvr_type = external;
1105				ASD(("<external>\n"));
1106				tconfig &= ~(TCV_CFG_PENABLE);
1107				tconfig |= TCV_CFG_PSELECT;
1108				hme_write32(hp, tregs + TCVR_CFG, tconfig);
1109			}
1110		} else {
1111			if (hp->tcvr_type == external) {
1112				ASD(("<external> "));
1113				if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1114					ASD(("<poll stop> "));
1115					happy_meal_poll_stop(hp, tregs);
1116					hp->paddr = TCV_PADDR_ITX;
1117					hp->tcvr_type = internal;
1118					ASD(("<internal>\n"));
1119					hme_write32(hp, tregs + TCVR_CFG,
1120						    hme_read32(hp, tregs + TCVR_CFG) &
1121						    ~(TCV_CFG_PSELECT));
1122				}
1123				ASD(("\n"));
1124			} else {
1125				ASD(("<none>\n"));
1126			}
1127		}
1128	} else {
1129		u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1130
1131		/* Else we can just work off of the MDIO bits. */
1132		ASD(("<not polling> "));
1133		if (reread & TCV_CFG_MDIO1) {
1134			hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1135			hp->paddr = TCV_PADDR_ETX;
1136			hp->tcvr_type = external;
1137			ASD(("<external>\n"));
1138		} else {
1139			if (reread & TCV_CFG_MDIO0) {
1140				hme_write32(hp, tregs + TCVR_CFG,
1141					    tconfig & ~(TCV_CFG_PSELECT));
1142				hp->paddr = TCV_PADDR_ITX;
1143				hp->tcvr_type = internal;
1144				ASD(("<internal>\n"));
1145			} else {
1146				printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1147				hp->tcvr_type = none; /* Grrr... */
1148				ASD(("<none>\n"));
1149			}
1150		}
1151	}
1152}
1153
1154/* The receive ring buffers are a bit tricky to get right.  Here goes...
1155 *
1156 * The buffers we dma into must be 64 byte aligned.  So we use a special
1157 * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1158 * we really need.
1159 *
1160 * We use skb_reserve() to align the data block we get in the skb.  We
1161 * also program the etxregs->cfg register to use an offset of 2.  This
1162 * imperical constant plus the ethernet header size will always leave
1163 * us with a nicely aligned ip header once we pass things up to the
1164 * protocol layers.
1165 *
1166 * The numbers work out to:
1167 *
1168 *         Max ethernet frame size         1518
1169 *         Ethernet header size              14
1170 *         Happy Meal base offset             2
1171 *
1172 * Say a skb data area is at 0xf001b010, and its size alloced is
1173 * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1174 *
1175 * First our alloc_skb() routine aligns the data base to a 64 byte
1176 * boundary.  We now have 0xf001b040 as our skb data address.  We
1177 * plug this into the receive descriptor address.
1178 *
1179 * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1180 * So now the data we will end up looking at starts at 0xf001b042.  When
1181 * the packet arrives, we will check out the size received and subtract
1182 * this from the skb->length.  Then we just pass the packet up to the
1183 * protocols as is, and allocate a new skb to replace this slot we have
1184 * just received from.
1185 *
1186 * The ethernet layer will strip the ether header from the front of the
1187 * skb we just sent to it, this leaves us with the ip header sitting
1188 * nicely aligned at 0xf001b050.  Also, for tcp and udp packets the
1189 * Happy Meal has even checksummed the tcp/udp data for us.  The 16
1190 * bit checksum is obtained from the low bits of the receive descriptor
1191 * flags, thus:
1192 *
1193 * 	skb->csum = rxd->rx_flags & 0xffff;
1194 * 	skb->ip_summed = CHECKSUM_COMPLETE;
1195 *
1196 * before sending off the skb to the protocols, and we are good as gold.
1197 */
1198static void happy_meal_clean_rings(struct happy_meal *hp)
1199{
1200	int i;
1201
1202	for (i = 0; i < RX_RING_SIZE; i++) {
1203		if (hp->rx_skbs[i] != NULL) {
1204			struct sk_buff *skb = hp->rx_skbs[i];
1205			struct happy_meal_rxd *rxd;
1206			u32 dma_addr;
1207
1208			rxd = &hp->happy_block->happy_meal_rxd[i];
1209			dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1210			dma_unmap_single(hp->dma_dev, dma_addr,
1211					 RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1212			dev_kfree_skb_any(skb);
1213			hp->rx_skbs[i] = NULL;
1214		}
1215	}
1216
1217	for (i = 0; i < TX_RING_SIZE; i++) {
1218		if (hp->tx_skbs[i] != NULL) {
1219			struct sk_buff *skb = hp->tx_skbs[i];
1220			struct happy_meal_txd *txd;
1221			u32 dma_addr;
1222			int frag;
1223
1224			hp->tx_skbs[i] = NULL;
1225
1226			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1227				txd = &hp->happy_block->happy_meal_txd[i];
1228				dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1229				if (!frag)
1230					dma_unmap_single(hp->dma_dev, dma_addr,
1231							 (hme_read_desc32(hp, &txd->tx_flags)
1232							  & TXFLAG_SIZE),
1233							 DMA_TO_DEVICE);
1234				else
1235					dma_unmap_page(hp->dma_dev, dma_addr,
1236							 (hme_read_desc32(hp, &txd->tx_flags)
1237							  & TXFLAG_SIZE),
1238							 DMA_TO_DEVICE);
1239
1240				if (frag != skb_shinfo(skb)->nr_frags)
1241					i++;
1242			}
1243
1244			dev_kfree_skb_any(skb);
1245		}
1246	}
1247}
1248
1249/* hp->happy_lock must be held */
1250static void happy_meal_init_rings(struct happy_meal *hp)
1251{
1252	struct hmeal_init_block *hb = hp->happy_block;
1253	struct net_device *dev = hp->dev;
1254	int i;
1255
1256	HMD(("happy_meal_init_rings: counters to zero, "));
1257	hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1258
1259	/* Free any skippy bufs left around in the rings. */
1260	HMD(("clean, "));
1261	happy_meal_clean_rings(hp);
1262
1263	/* Now get new skippy bufs for the receive ring. */
1264	HMD(("init rxring, "));
1265	for (i = 0; i < RX_RING_SIZE; i++) {
1266		struct sk_buff *skb;
1267
1268		skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1269		if (!skb) {
1270			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1271			continue;
1272		}
1273		hp->rx_skbs[i] = skb;
1274		skb->dev = dev;
1275
1276		/* Because we reserve afterwards. */
1277		skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1278		hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1279			      (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1280			      dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE,
1281					     DMA_FROM_DEVICE));
1282		skb_reserve(skb, RX_OFFSET);
1283	}
1284
1285	HMD(("init txring, "));
1286	for (i = 0; i < TX_RING_SIZE; i++)
1287		hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1288
1289	HMD(("done\n"));
1290}
1291
1292/* hp->happy_lock must be held */
1293static void happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1294					      void __iomem *tregs,
1295					      struct ethtool_cmd *ep)
1296{
1297	int timeout;
1298
1299	/* Read all of the registers we are interested in now. */
1300	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1301	hp->sw_bmcr      = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1302	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1303	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1304
1305	/* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1306
1307	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1308	if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1309		/* Advertise everything we can support. */
1310		if (hp->sw_bmsr & BMSR_10HALF)
1311			hp->sw_advertise |= (ADVERTISE_10HALF);
1312		else
1313			hp->sw_advertise &= ~(ADVERTISE_10HALF);
1314
1315		if (hp->sw_bmsr & BMSR_10FULL)
1316			hp->sw_advertise |= (ADVERTISE_10FULL);
1317		else
1318			hp->sw_advertise &= ~(ADVERTISE_10FULL);
1319		if (hp->sw_bmsr & BMSR_100HALF)
1320			hp->sw_advertise |= (ADVERTISE_100HALF);
1321		else
1322			hp->sw_advertise &= ~(ADVERTISE_100HALF);
1323		if (hp->sw_bmsr & BMSR_100FULL)
1324			hp->sw_advertise |= (ADVERTISE_100FULL);
1325		else
1326			hp->sw_advertise &= ~(ADVERTISE_100FULL);
1327		happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1328
1329		/* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1330		 * XXX and this is because the DP83840 does not support it, changes
1331		 * XXX would need to be made to the tx/rx logic in the driver as well
1332		 * XXX so I completely skip checking for it in the BMSR for now.
1333		 */
1334
1335#ifdef AUTO_SWITCH_DEBUG
1336		ASD(("%s: Advertising [ ", hp->dev->name));
1337		if (hp->sw_advertise & ADVERTISE_10HALF)
1338			ASD(("10H "));
1339		if (hp->sw_advertise & ADVERTISE_10FULL)
1340			ASD(("10F "));
1341		if (hp->sw_advertise & ADVERTISE_100HALF)
1342			ASD(("100H "));
1343		if (hp->sw_advertise & ADVERTISE_100FULL)
1344			ASD(("100F "));
1345#endif
1346
1347		/* Enable Auto-Negotiation, this is usually on already... */
1348		hp->sw_bmcr |= BMCR_ANENABLE;
1349		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1350
1351		/* Restart it to make sure it is going. */
1352		hp->sw_bmcr |= BMCR_ANRESTART;
1353		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1354
1355		/* BMCR_ANRESTART self clears when the process has begun. */
1356
1357		timeout = 64;  /* More than enough. */
1358		while (--timeout) {
1359			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1360			if (!(hp->sw_bmcr & BMCR_ANRESTART))
1361				break; /* got it. */
1362			udelay(10);
1363		}
1364		if (!timeout) {
1365			printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1366			       "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1367			printk(KERN_NOTICE "%s: Performing force link detection.\n",
1368			       hp->dev->name);
1369			goto force_link;
1370		} else {
1371			hp->timer_state = arbwait;
1372		}
1373	} else {
1374force_link:
1375		/* Force the link up, trying first a particular mode.
1376		 * Either we are here at the request of ethtool or
1377		 * because the Happy Meal would not start to autoneg.
1378		 */
1379
1380		/* Disable auto-negotiation in BMCR, enable the duplex and
1381		 * speed setting, init the timer state machine, and fire it off.
1382		 */
1383		if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1384			hp->sw_bmcr = BMCR_SPEED100;
1385		} else {
1386			if (ethtool_cmd_speed(ep) == SPEED_100)
1387				hp->sw_bmcr = BMCR_SPEED100;
1388			else
1389				hp->sw_bmcr = 0;
1390			if (ep->duplex == DUPLEX_FULL)
1391				hp->sw_bmcr |= BMCR_FULLDPLX;
1392		}
1393		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1394
1395		if (!is_lucent_phy(hp)) {
1396			/* OK, seems we need do disable the transceiver for the first
1397			 * tick to make sure we get an accurate link state at the
1398			 * second tick.
1399			 */
1400			hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1401							       DP83840_CSCONFIG);
1402			hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1403			happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1404					      hp->sw_csconfig);
1405		}
1406		hp->timer_state = ltrywait;
1407	}
1408
1409	hp->timer_ticks = 0;
1410	hp->happy_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
1411	hp->happy_timer.data = (unsigned long) hp;
1412	hp->happy_timer.function = happy_meal_timer;
1413	add_timer(&hp->happy_timer);
1414}
1415
1416/* hp->happy_lock must be held */
1417static int happy_meal_init(struct happy_meal *hp)
1418{
1419	void __iomem *gregs        = hp->gregs;
1420	void __iomem *etxregs      = hp->etxregs;
1421	void __iomem *erxregs      = hp->erxregs;
1422	void __iomem *bregs        = hp->bigmacregs;
1423	void __iomem *tregs        = hp->tcvregs;
1424	u32 regtmp, rxcfg;
1425	unsigned char *e = &hp->dev->dev_addr[0];
1426
1427	/* If auto-negotiation timer is running, kill it. */
1428	del_timer(&hp->happy_timer);
1429
1430	HMD(("happy_meal_init: happy_flags[%08x] ",
1431	     hp->happy_flags));
1432	if (!(hp->happy_flags & HFLAG_INIT)) {
1433		HMD(("set HFLAG_INIT, "));
1434		hp->happy_flags |= HFLAG_INIT;
1435		happy_meal_get_counters(hp, bregs);
1436	}
1437
1438	/* Stop polling. */
1439	HMD(("to happy_meal_poll_stop\n"));
1440	happy_meal_poll_stop(hp, tregs);
1441
1442	/* Stop transmitter and receiver. */
1443	HMD(("happy_meal_init: to happy_meal_stop\n"));
1444	happy_meal_stop(hp, gregs);
1445
1446	/* Alloc and reset the tx/rx descriptor chains. */
1447	HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1448	happy_meal_init_rings(hp);
1449
1450	/* Shut up the MIF. */
1451	HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1452	     hme_read32(hp, tregs + TCVR_IMASK)));
1453	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1454
1455	/* See if we can enable the MIF frame on this card to speak to the DP83840. */
1456	if (hp->happy_flags & HFLAG_FENABLE) {
1457		HMD(("use frame old[%08x], ",
1458		     hme_read32(hp, tregs + TCVR_CFG)));
1459		hme_write32(hp, tregs + TCVR_CFG,
1460			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1461	} else {
1462		HMD(("use bitbang old[%08x], ",
1463		     hme_read32(hp, tregs + TCVR_CFG)));
1464		hme_write32(hp, tregs + TCVR_CFG,
1465			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1466	}
1467
1468	/* Check the state of the transceiver. */
1469	HMD(("to happy_meal_transceiver_check\n"));
1470	happy_meal_transceiver_check(hp, tregs);
1471
1472	/* Put the Big Mac into a sane state. */
1473	HMD(("happy_meal_init: "));
1474	switch(hp->tcvr_type) {
1475	case none:
1476		/* Cannot operate if we don't know the transceiver type! */
1477		HMD(("AAIEEE no transceiver type, EAGAIN"));
1478		return -EAGAIN;
1479
1480	case internal:
1481		/* Using the MII buffers. */
1482		HMD(("internal, using MII, "));
1483		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1484		break;
1485
1486	case external:
1487		/* Not using the MII, disable it. */
1488		HMD(("external, disable MII, "));
1489		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1490		break;
1491	}
1492
1493	if (happy_meal_tcvr_reset(hp, tregs))
1494		return -EAGAIN;
1495
1496	/* Reset the Happy Meal Big Mac transceiver and the receiver. */
1497	HMD(("tx/rx reset, "));
1498	happy_meal_tx_reset(hp, bregs);
1499	happy_meal_rx_reset(hp, bregs);
1500
1501	/* Set jam size and inter-packet gaps to reasonable defaults. */
1502	HMD(("jsize/ipg1/ipg2, "));
1503	hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1504	hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1505	hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1506
1507	/* Load up the MAC address and random seed. */
1508	HMD(("rseed/macaddr, "));
1509
1510	/* The docs recommend to use the 10LSB of our MAC here. */
1511	hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1512
1513	hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1514	hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1515	hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1516
1517	HMD(("htable, "));
1518	if ((hp->dev->flags & IFF_ALLMULTI) ||
1519	    (netdev_mc_count(hp->dev) > 64)) {
1520		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1521		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1522		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1523		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1524	} else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1525		u16 hash_table[4];
1526		struct netdev_hw_addr *ha;
1527		u32 crc;
1528
1529		memset(hash_table, 0, sizeof(hash_table));
1530		netdev_for_each_mc_addr(ha, hp->dev) {
1531			crc = ether_crc_le(6, ha->addr);
1532			crc >>= 26;
1533			hash_table[crc >> 4] |= 1 << (crc & 0xf);
1534		}
1535		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1536		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1537		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1538		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1539	} else {
1540		hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1541		hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1542		hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1543		hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1544	}
1545
1546	/* Set the RX and TX ring ptrs. */
1547	HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1548	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1549	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1550	hme_write32(hp, erxregs + ERX_RING,
1551		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1552	hme_write32(hp, etxregs + ETX_RING,
1553		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1554
1555	/* Parity issues in the ERX unit of some HME revisions can cause some
1556	 * registers to not be written unless their parity is even.  Detect such
1557	 * lost writes and simply rewrite with a low bit set (which will be ignored
1558	 * since the rxring needs to be 2K aligned).
1559	 */
1560	if (hme_read32(hp, erxregs + ERX_RING) !=
1561	    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1562		hme_write32(hp, erxregs + ERX_RING,
1563			    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1564			    | 0x4);
1565
1566	/* Set the supported burst sizes. */
1567	HMD(("happy_meal_init: old[%08x] bursts<",
1568	     hme_read32(hp, gregs + GREG_CFG)));
1569
1570#ifndef CONFIG_SPARC
1571	/* It is always PCI and can handle 64byte bursts. */
1572	hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1573#else
1574	if ((hp->happy_bursts & DMA_BURST64) &&
1575	    ((hp->happy_flags & HFLAG_PCI) != 0
1576#ifdef CONFIG_SBUS
1577	     || sbus_can_burst64()
1578#endif
1579	     || 0)) {
1580		u32 gcfg = GREG_CFG_BURST64;
1581
1582		/* I have no idea if I should set the extended
1583		 * transfer mode bit for Cheerio, so for now I
1584		 * do not.  -DaveM
1585		 */
1586#ifdef CONFIG_SBUS
1587		if ((hp->happy_flags & HFLAG_PCI) == 0) {
1588			struct platform_device *op = hp->happy_dev;
1589			if (sbus_can_dma_64bit()) {
1590				sbus_set_sbus64(&op->dev,
1591						hp->happy_bursts);
1592				gcfg |= GREG_CFG_64BIT;
1593			}
1594		}
1595#endif
1596
1597		HMD(("64>"));
1598		hme_write32(hp, gregs + GREG_CFG, gcfg);
1599	} else if (hp->happy_bursts & DMA_BURST32) {
1600		HMD(("32>"));
1601		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1602	} else if (hp->happy_bursts & DMA_BURST16) {
1603		HMD(("16>"));
1604		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1605	} else {
1606		HMD(("XXX>"));
1607		hme_write32(hp, gregs + GREG_CFG, 0);
1608	}
1609#endif /* CONFIG_SPARC */
1610
1611	/* Turn off interrupts we do not want to hear. */
1612	HMD((", enable global interrupts, "));
1613	hme_write32(hp, gregs + GREG_IMASK,
1614		    (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1615		     GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1616
1617	/* Set the transmit ring buffer size. */
1618	HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1619	     hme_read32(hp, etxregs + ETX_RSIZE)));
1620	hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1621
1622	/* Enable transmitter DVMA. */
1623	HMD(("tx dma enable old[%08x], ",
1624	     hme_read32(hp, etxregs + ETX_CFG)));
1625	hme_write32(hp, etxregs + ETX_CFG,
1626		    hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1627
1628	/* This chip really rots, for the receiver sometimes when you
1629	 * write to its control registers not all the bits get there
1630	 * properly.  I cannot think of a sane way to provide complete
1631	 * coverage for this hardware bug yet.
1632	 */
1633	HMD(("erx regs bug old[%08x]\n",
1634	     hme_read32(hp, erxregs + ERX_CFG)));
1635	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1636	regtmp = hme_read32(hp, erxregs + ERX_CFG);
1637	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1638	if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1639		printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1640		printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1641		       ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1642		/* XXX Should return failure here... */
1643	}
1644
1645	/* Enable Big Mac hash table filter. */
1646	HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1647	     hme_read32(hp, bregs + BMAC_RXCFG)));
1648	rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1649	if (hp->dev->flags & IFF_PROMISC)
1650		rxcfg |= BIGMAC_RXCFG_PMISC;
1651	hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1652
1653	/* Let the bits settle in the chip. */
1654	udelay(10);
1655
1656	/* Ok, configure the Big Mac transmitter. */
1657	HMD(("BIGMAC init, "));
1658	regtmp = 0;
1659	if (hp->happy_flags & HFLAG_FULL)
1660		regtmp |= BIGMAC_TXCFG_FULLDPLX;
1661
1662	/* Don't turn on the "don't give up" bit for now.  It could cause hme
1663	 * to deadlock with the PHY if a Jabber occurs.
1664	 */
1665	hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1666
1667	/* Give up after 16 TX attempts. */
1668	hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1669
1670	/* Enable the output drivers no matter what. */
1671	regtmp = BIGMAC_XCFG_ODENABLE;
1672
1673	/* If card can do lance mode, enable it. */
1674	if (hp->happy_flags & HFLAG_LANCE)
1675		regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1676
1677	/* Disable the MII buffers if using external transceiver. */
1678	if (hp->tcvr_type == external)
1679		regtmp |= BIGMAC_XCFG_MIIDISAB;
1680
1681	HMD(("XIF config old[%08x], ",
1682	     hme_read32(hp, bregs + BMAC_XIFCFG)));
1683	hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1684
1685	/* Start things up. */
1686	HMD(("tx old[%08x] and rx [%08x] ON!\n",
1687	     hme_read32(hp, bregs + BMAC_TXCFG),
1688	     hme_read32(hp, bregs + BMAC_RXCFG)));
1689
1690	/* Set larger TX/RX size to allow for 802.1q */
1691	hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1692	hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1693
1694	hme_write32(hp, bregs + BMAC_TXCFG,
1695		    hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1696	hme_write32(hp, bregs + BMAC_RXCFG,
1697		    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1698
1699	/* Get the autonegotiation started, and the watch timer ticking. */
1700	happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1701
1702	/* Success. */
1703	return 0;
1704}
1705
1706/* hp->happy_lock must be held */
1707static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1708{
1709	void __iomem *tregs	= hp->tcvregs;
1710	void __iomem *bregs	= hp->bigmacregs;
1711	void __iomem *gregs	= hp->gregs;
1712
1713	happy_meal_stop(hp, gregs);
1714	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1715	if (hp->happy_flags & HFLAG_FENABLE)
1716		hme_write32(hp, tregs + TCVR_CFG,
1717			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1718	else
1719		hme_write32(hp, tregs + TCVR_CFG,
1720			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1721	happy_meal_transceiver_check(hp, tregs);
1722	switch(hp->tcvr_type) {
1723	case none:
1724		return;
1725	case internal:
1726		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1727		break;
1728	case external:
1729		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1730		break;
1731	}
1732	if (happy_meal_tcvr_reset(hp, tregs))
1733		return;
1734
1735	/* Latch PHY registers as of now. */
1736	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1737	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1738
1739	/* Advertise everything we can support. */
1740	if (hp->sw_bmsr & BMSR_10HALF)
1741		hp->sw_advertise |= (ADVERTISE_10HALF);
1742	else
1743		hp->sw_advertise &= ~(ADVERTISE_10HALF);
1744
1745	if (hp->sw_bmsr & BMSR_10FULL)
1746		hp->sw_advertise |= (ADVERTISE_10FULL);
1747	else
1748		hp->sw_advertise &= ~(ADVERTISE_10FULL);
1749	if (hp->sw_bmsr & BMSR_100HALF)
1750		hp->sw_advertise |= (ADVERTISE_100HALF);
1751	else
1752		hp->sw_advertise &= ~(ADVERTISE_100HALF);
1753	if (hp->sw_bmsr & BMSR_100FULL)
1754		hp->sw_advertise |= (ADVERTISE_100FULL);
1755	else
1756		hp->sw_advertise &= ~(ADVERTISE_100FULL);
1757
1758	/* Update the PHY advertisement register. */
1759	happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1760}
1761
1762/* Once status is latched (by happy_meal_interrupt) it is cleared by
1763 * the hardware, so we cannot re-read it and get a correct value.
1764 *
1765 * hp->happy_lock must be held
1766 */
1767static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1768{
1769	int reset = 0;
1770
1771	/* Only print messages for non-counter related interrupts. */
1772	if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1773		      GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1774		      GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1775		      GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1776		      GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1777		      GREG_STAT_SLVPERR))
1778		printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1779		       hp->dev->name, status);
1780
1781	if (status & GREG_STAT_RFIFOVF) {
1782		/* Receive FIFO overflow is harmless and the hardware will take
1783		   care of it, just some packets are lost. Who cares. */
1784		printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1785	}
1786
1787	if (status & GREG_STAT_STSTERR) {
1788		/* BigMAC SQE link test failed. */
1789		printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1790		reset = 1;
1791	}
1792
1793	if (status & GREG_STAT_TFIFO_UND) {
1794		/* Transmit FIFO underrun, again DMA error likely. */
1795		printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1796		       hp->dev->name);
1797		reset = 1;
1798	}
1799
1800	if (status & GREG_STAT_MAXPKTERR) {
1801		/* Driver error, tried to transmit something larger
1802		 * than ethernet max mtu.
1803		 */
1804		printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1805		reset = 1;
1806	}
1807
1808	if (status & GREG_STAT_NORXD) {
1809		/* This is harmless, it just means the system is
1810		 * quite loaded and the incoming packet rate was
1811		 * faster than the interrupt handler could keep up
1812		 * with.
1813		 */
1814		printk(KERN_INFO "%s: Happy Meal out of receive "
1815		       "descriptors, packet dropped.\n",
1816		       hp->dev->name);
1817	}
1818
1819	if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1820		/* All sorts of DMA receive errors. */
1821		printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1822		if (status & GREG_STAT_RXERR)
1823			printk("GenericError ");
1824		if (status & GREG_STAT_RXPERR)
1825			printk("ParityError ");
1826		if (status & GREG_STAT_RXTERR)
1827			printk("RxTagBotch ");
1828		printk("]\n");
1829		reset = 1;
1830	}
1831
1832	if (status & GREG_STAT_EOPERR) {
1833		/* Driver bug, didn't set EOP bit in tx descriptor given
1834		 * to the happy meal.
1835		 */
1836		printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1837		       hp->dev->name);
1838		reset = 1;
1839	}
1840
1841	if (status & GREG_STAT_MIFIRQ) {
1842		/* MIF signalled an interrupt, were we polling it? */
1843		printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1844	}
1845
1846	if (status &
1847	    (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1848		/* All sorts of transmit DMA errors. */
1849		printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1850		if (status & GREG_STAT_TXEACK)
1851			printk("GenericError ");
1852		if (status & GREG_STAT_TXLERR)
1853			printk("LateError ");
1854		if (status & GREG_STAT_TXPERR)
1855			printk("ParityErro ");
1856		if (status & GREG_STAT_TXTERR)
1857			printk("TagBotch ");
1858		printk("]\n");
1859		reset = 1;
1860	}
1861
1862	if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1863		/* Bus or parity error when cpu accessed happy meal registers
1864		 * or it's internal FIFO's.  Should never see this.
1865		 */
1866		printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1867		       hp->dev->name,
1868		       (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1869		reset = 1;
1870	}
1871
1872	if (reset) {
1873		printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1874		happy_meal_init(hp);
1875		return 1;
1876	}
1877	return 0;
1878}
1879
1880/* hp->happy_lock must be held */
1881static void happy_meal_mif_interrupt(struct happy_meal *hp)
1882{
1883	void __iomem *tregs = hp->tcvregs;
1884
1885	printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1886	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1887	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1888
1889	/* Use the fastest transmission protocol possible. */
1890	if (hp->sw_lpa & LPA_100FULL) {
1891		printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1892		hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1893	} else if (hp->sw_lpa & LPA_100HALF) {
1894		printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1895		hp->sw_bmcr |= BMCR_SPEED100;
1896	} else if (hp->sw_lpa & LPA_10FULL) {
1897		printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1898		hp->sw_bmcr |= BMCR_FULLDPLX;
1899	} else {
1900		printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1901	}
1902	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1903
1904	/* Finally stop polling and shut up the MIF. */
1905	happy_meal_poll_stop(hp, tregs);
1906}
1907
1908#ifdef TXDEBUG
1909#define TXD(x) printk x
1910#else
1911#define TXD(x)
1912#endif
1913
1914/* hp->happy_lock must be held */
1915static void happy_meal_tx(struct happy_meal *hp)
1916{
1917	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1918	struct happy_meal_txd *this;
1919	struct net_device *dev = hp->dev;
1920	int elem;
1921
1922	elem = hp->tx_old;
1923	TXD(("TX<"));
1924	while (elem != hp->tx_new) {
1925		struct sk_buff *skb;
1926		u32 flags, dma_addr, dma_len;
1927		int frag;
1928
1929		TXD(("[%d]", elem));
1930		this = &txbase[elem];
1931		flags = hme_read_desc32(hp, &this->tx_flags);
1932		if (flags & TXFLAG_OWN)
1933			break;
1934		skb = hp->tx_skbs[elem];
1935		if (skb_shinfo(skb)->nr_frags) {
1936			int last;
1937
1938			last = elem + skb_shinfo(skb)->nr_frags;
1939			last &= (TX_RING_SIZE - 1);
1940			flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1941			if (flags & TXFLAG_OWN)
1942				break;
1943		}
1944		hp->tx_skbs[elem] = NULL;
1945		hp->net_stats.tx_bytes += skb->len;
1946
1947		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1948			dma_addr = hme_read_desc32(hp, &this->tx_addr);
1949			dma_len = hme_read_desc32(hp, &this->tx_flags);
1950
1951			dma_len &= TXFLAG_SIZE;
1952			if (!frag)
1953				dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1954			else
1955				dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1956
1957			elem = NEXT_TX(elem);
1958			this = &txbase[elem];
1959		}
1960
1961		dev_kfree_skb_irq(skb);
1962		hp->net_stats.tx_packets++;
1963	}
1964	hp->tx_old = elem;
1965	TXD((">"));
1966
1967	if (netif_queue_stopped(dev) &&
1968	    TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1969		netif_wake_queue(dev);
1970}
1971
1972#ifdef RXDEBUG
1973#define RXD(x) printk x
1974#else
1975#define RXD(x)
1976#endif
1977
1978/* Originally I used to handle the allocation failure by just giving back just
1979 * that one ring buffer to the happy meal.  Problem is that usually when that
1980 * condition is triggered, the happy meal expects you to do something reasonable
1981 * with all of the packets it has DMA'd in.  So now I just drop the entire
1982 * ring when we cannot get a new skb and give them all back to the happy meal,
1983 * maybe things will be "happier" now.
1984 *
1985 * hp->happy_lock must be held
1986 */
1987static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1988{
1989	struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1990	struct happy_meal_rxd *this;
1991	int elem = hp->rx_new, drops = 0;
1992	u32 flags;
1993
1994	RXD(("RX<"));
1995	this = &rxbase[elem];
1996	while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
1997		struct sk_buff *skb;
1998		int len = flags >> 16;
1999		u16 csum = flags & RXFLAG_CSUM;
2000		u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
2001
2002		RXD(("[%d ", elem));
2003
2004		/* Check for errors. */
2005		if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
2006			RXD(("ERR(%08x)]", flags));
2007			hp->net_stats.rx_errors++;
2008			if (len < ETH_ZLEN)
2009				hp->net_stats.rx_length_errors++;
2010			if (len & (RXFLAG_OVERFLOW >> 16)) {
2011				hp->net_stats.rx_over_errors++;
2012				hp->net_stats.rx_fifo_errors++;
2013			}
2014
2015			/* Return it to the Happy meal. */
2016	drop_it:
2017			hp->net_stats.rx_dropped++;
2018			hme_write_rxd(hp, this,
2019				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2020				      dma_addr);
2021			goto next;
2022		}
2023		skb = hp->rx_skbs[elem];
2024		if (len > RX_COPY_THRESHOLD) {
2025			struct sk_buff *new_skb;
2026
2027			/* Now refill the entry, if we can. */
2028			new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2029			if (new_skb == NULL) {
2030				drops++;
2031				goto drop_it;
2032			}
2033			dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
2034			hp->rx_skbs[elem] = new_skb;
2035			new_skb->dev = dev;
2036			skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
2037			hme_write_rxd(hp, this,
2038				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2039				      dma_map_single(hp->dma_dev, new_skb->data, RX_BUF_ALLOC_SIZE,
2040						     DMA_FROM_DEVICE));
2041			skb_reserve(new_skb, RX_OFFSET);
2042
2043			/* Trim the original skb for the netif. */
2044			skb_trim(skb, len);
2045		} else {
2046			struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
2047
2048			if (copy_skb == NULL) {
2049				drops++;
2050				goto drop_it;
2051			}
2052
2053			skb_reserve(copy_skb, 2);
2054			skb_put(copy_skb, len);
2055			dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2056			skb_copy_from_linear_data(skb, copy_skb->data, len);
2057			dma_sync_single_for_device(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2058			/* Reuse original ring buffer. */
2059			hme_write_rxd(hp, this,
2060				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2061				      dma_addr);
2062
2063			skb = copy_skb;
2064		}
2065
2066		/* This card is _fucking_ hot... */
2067		skb->csum = csum_unfold(~(__force __sum16)htons(csum));
2068		skb->ip_summed = CHECKSUM_COMPLETE;
2069
2070		RXD(("len=%d csum=%4x]", len, csum));
2071		skb->protocol = eth_type_trans(skb, dev);
2072		netif_rx(skb);
2073
2074		hp->net_stats.rx_packets++;
2075		hp->net_stats.rx_bytes += len;
2076	next:
2077		elem = NEXT_RX(elem);
2078		this = &rxbase[elem];
2079	}
2080	hp->rx_new = elem;
2081	if (drops)
2082		printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2083	RXD((">"));
2084}
2085
2086static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2087{
2088	struct net_device *dev = dev_id;
2089	struct happy_meal *hp  = netdev_priv(dev);
2090	u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2091
2092	HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2093
2094	spin_lock(&hp->happy_lock);
2095
2096	if (happy_status & GREG_STAT_ERRORS) {
2097		HMD(("ERRORS "));
2098		if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2099			goto out;
2100	}
2101
2102	if (happy_status & GREG_STAT_MIFIRQ) {
2103		HMD(("MIFIRQ "));
2104		happy_meal_mif_interrupt(hp);
2105	}
2106
2107	if (happy_status & GREG_STAT_TXALL) {
2108		HMD(("TXALL "));
2109		happy_meal_tx(hp);
2110	}
2111
2112	if (happy_status & GREG_STAT_RXTOHOST) {
2113		HMD(("RXTOHOST "));
2114		happy_meal_rx(hp, dev);
2115	}
2116
2117	HMD(("done\n"));
2118out:
2119	spin_unlock(&hp->happy_lock);
2120
2121	return IRQ_HANDLED;
2122}
2123
2124#ifdef CONFIG_SBUS
2125static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2126{
2127	struct quattro *qp = (struct quattro *) cookie;
2128	int i;
2129
2130	for (i = 0; i < 4; i++) {
2131		struct net_device *dev = qp->happy_meals[i];
2132		struct happy_meal *hp  = netdev_priv(dev);
2133		u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2134
2135		HMD(("quattro_interrupt: status=%08x ", happy_status));
2136
2137		if (!(happy_status & (GREG_STAT_ERRORS |
2138				      GREG_STAT_MIFIRQ |
2139				      GREG_STAT_TXALL |
2140				      GREG_STAT_RXTOHOST)))
2141			continue;
2142
2143		spin_lock(&hp->happy_lock);
2144
2145		if (happy_status & GREG_STAT_ERRORS) {
2146			HMD(("ERRORS "));
2147			if (happy_meal_is_not_so_happy(hp, happy_status))
2148				goto next;
2149		}
2150
2151		if (happy_status & GREG_STAT_MIFIRQ) {
2152			HMD(("MIFIRQ "));
2153			happy_meal_mif_interrupt(hp);
2154		}
2155
2156		if (happy_status & GREG_STAT_TXALL) {
2157			HMD(("TXALL "));
2158			happy_meal_tx(hp);
2159		}
2160
2161		if (happy_status & GREG_STAT_RXTOHOST) {
2162			HMD(("RXTOHOST "));
2163			happy_meal_rx(hp, dev);
2164		}
2165
2166	next:
2167		spin_unlock(&hp->happy_lock);
2168	}
2169	HMD(("done\n"));
2170
2171	return IRQ_HANDLED;
2172}
2173#endif
2174
2175static int happy_meal_open(struct net_device *dev)
2176{
2177	struct happy_meal *hp = netdev_priv(dev);
2178	int res;
2179
2180	HMD(("happy_meal_open: "));
2181
2182	/* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2183	 * into a single source which we register handling at probe time.
2184	 */
2185	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2186		if (request_irq(dev->irq, happy_meal_interrupt,
2187				IRQF_SHARED, dev->name, (void *)dev)) {
2188			HMD(("EAGAIN\n"));
2189			printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2190			       dev->irq);
2191
2192			return -EAGAIN;
2193		}
2194	}
2195
2196	HMD(("to happy_meal_init\n"));
2197
2198	spin_lock_irq(&hp->happy_lock);
2199	res = happy_meal_init(hp);
2200	spin_unlock_irq(&hp->happy_lock);
2201
2202	if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2203		free_irq(dev->irq, dev);
2204	return res;
2205}
2206
2207static int happy_meal_close(struct net_device *dev)
2208{
2209	struct happy_meal *hp = netdev_priv(dev);
2210
2211	spin_lock_irq(&hp->happy_lock);
2212	happy_meal_stop(hp, hp->gregs);
2213	happy_meal_clean_rings(hp);
2214
2215	/* If auto-negotiation timer is running, kill it. */
2216	del_timer(&hp->happy_timer);
2217
2218	spin_unlock_irq(&hp->happy_lock);
2219
2220	/* On Quattro QFE cards, all hme interrupts are concentrated
2221	 * into a single source which we register handling at probe
2222	 * time and never unregister.
2223	 */
2224	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2225		free_irq(dev->irq, dev);
2226
2227	return 0;
2228}
2229
2230#ifdef SXDEBUG
2231#define SXD(x) printk x
2232#else
2233#define SXD(x)
2234#endif
2235
2236static void happy_meal_tx_timeout(struct net_device *dev)
2237{
2238	struct happy_meal *hp = netdev_priv(dev);
2239
2240	printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2241	tx_dump_log();
2242	printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2243		hme_read32(hp, hp->gregs + GREG_STAT),
2244		hme_read32(hp, hp->etxregs + ETX_CFG),
2245		hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2246
2247	spin_lock_irq(&hp->happy_lock);
2248	happy_meal_init(hp);
2249	spin_unlock_irq(&hp->happy_lock);
2250
2251	netif_wake_queue(dev);
2252}
2253
2254static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb,
2255					 struct net_device *dev)
2256{
2257	struct happy_meal *hp = netdev_priv(dev);
2258 	int entry;
2259 	u32 tx_flags;
2260
2261	tx_flags = TXFLAG_OWN;
2262	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2263		const u32 csum_start_off = skb_checksum_start_offset(skb);
2264		const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2265
2266		tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2267			    ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2268			    ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2269	}
2270
2271	spin_lock_irq(&hp->happy_lock);
2272
2273 	if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2274		netif_stop_queue(dev);
2275		spin_unlock_irq(&hp->happy_lock);
2276		printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2277		       dev->name);
2278		return NETDEV_TX_BUSY;
2279	}
2280
2281	entry = hp->tx_new;
2282	SXD(("SX<l[%d]e[%d]>", len, entry));
2283	hp->tx_skbs[entry] = skb;
2284
2285	if (skb_shinfo(skb)->nr_frags == 0) {
2286		u32 mapping, len;
2287
2288		len = skb->len;
2289		mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
2290		tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2291		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2292			      (tx_flags | (len & TXFLAG_SIZE)),
2293			      mapping);
2294		entry = NEXT_TX(entry);
2295	} else {
2296		u32 first_len, first_mapping;
2297		int frag, first_entry = entry;
2298
2299		/* We must give this initial chunk to the device last.
2300		 * Otherwise we could race with the device.
2301		 */
2302		first_len = skb_headlen(skb);
2303		first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
2304					       DMA_TO_DEVICE);
2305		entry = NEXT_TX(entry);
2306
2307		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2308			skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2309			u32 len, mapping, this_txflags;
2310
2311			len = this_frag->size;
2312			mapping = dma_map_page(hp->dma_dev, this_frag->page,
2313					       this_frag->page_offset, len,
2314					       DMA_TO_DEVICE);
2315			this_txflags = tx_flags;
2316			if (frag == skb_shinfo(skb)->nr_frags - 1)
2317				this_txflags |= TXFLAG_EOP;
2318			hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2319				      (this_txflags | (len & TXFLAG_SIZE)),
2320				      mapping);
2321			entry = NEXT_TX(entry);
2322		}
2323		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2324			      (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2325			      first_mapping);
2326	}
2327
2328	hp->tx_new = entry;
2329
2330	if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2331		netif_stop_queue(dev);
2332
2333	/* Get it going. */
2334	hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2335
2336	spin_unlock_irq(&hp->happy_lock);
2337
2338	tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2339	return NETDEV_TX_OK;
2340}
2341
2342static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2343{
2344	struct happy_meal *hp = netdev_priv(dev);
2345
2346	spin_lock_irq(&hp->happy_lock);
2347	happy_meal_get_counters(hp, hp->bigmacregs);
2348	spin_unlock_irq(&hp->happy_lock);
2349
2350	return &hp->net_stats;
2351}
2352
2353static void happy_meal_set_multicast(struct net_device *dev)
2354{
2355	struct happy_meal *hp = netdev_priv(dev);
2356	void __iomem *bregs = hp->bigmacregs;
2357	struct netdev_hw_addr *ha;
2358	u32 crc;
2359
2360	spin_lock_irq(&hp->happy_lock);
2361
2362	if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
2363		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2364		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2365		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2366		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2367	} else if (dev->flags & IFF_PROMISC) {
2368		hme_write32(hp, bregs + BMAC_RXCFG,
2369			    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2370	} else {
2371		u16 hash_table[4];
2372
2373		memset(hash_table, 0, sizeof(hash_table));
2374		netdev_for_each_mc_addr(ha, dev) {
2375			crc = ether_crc_le(6, ha->addr);
2376			crc >>= 26;
2377			hash_table[crc >> 4] |= 1 << (crc & 0xf);
2378		}
2379		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2380		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2381		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2382		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2383	}
2384
2385	spin_unlock_irq(&hp->happy_lock);
2386}
2387
2388/* Ethtool support... */
2389static int hme_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2390{
2391	struct happy_meal *hp = netdev_priv(dev);
2392	u32 speed;
2393
2394	cmd->supported =
2395		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2396		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2397		 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2398
2399	/* XXX hardcoded stuff for now */
2400	cmd->port = PORT_TP; /* XXX no MII support */
2401	cmd->transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */
2402	cmd->phy_address = 0; /* XXX fixed PHYAD */
2403
2404	/* Record PHY settings. */
2405	spin_lock_irq(&hp->happy_lock);
2406	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2407	hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2408	spin_unlock_irq(&hp->happy_lock);
2409
2410	if (hp->sw_bmcr & BMCR_ANENABLE) {
2411		cmd->autoneg = AUTONEG_ENABLE;
2412		speed = ((hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2413			 SPEED_100 : SPEED_10);
2414		if (speed == SPEED_100)
2415			cmd->duplex =
2416				(hp->sw_lpa & (LPA_100FULL)) ?
2417				DUPLEX_FULL : DUPLEX_HALF;
2418		else
2419			cmd->duplex =
2420				(hp->sw_lpa & (LPA_10FULL)) ?
2421				DUPLEX_FULL : DUPLEX_HALF;
2422	} else {
2423		cmd->autoneg = AUTONEG_DISABLE;
2424		speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
2425		cmd->duplex =
2426			(hp->sw_bmcr & BMCR_FULLDPLX) ?
2427			DUPLEX_FULL : DUPLEX_HALF;
2428	}
2429	ethtool_cmd_speed_set(cmd, speed);
2430	return 0;
2431}
2432
2433static int hme_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2434{
2435	struct happy_meal *hp = netdev_priv(dev);
2436
2437	/* Verify the settings we care about. */
2438	if (cmd->autoneg != AUTONEG_ENABLE &&
2439	    cmd->autoneg != AUTONEG_DISABLE)
2440		return -EINVAL;
2441	if (cmd->autoneg == AUTONEG_DISABLE &&
2442	    ((ethtool_cmd_speed(cmd) != SPEED_100 &&
2443	      ethtool_cmd_speed(cmd) != SPEED_10) ||
2444	     (cmd->duplex != DUPLEX_HALF &&
2445	      cmd->duplex != DUPLEX_FULL)))
2446		return -EINVAL;
2447
2448	/* Ok, do it to it. */
2449	spin_lock_irq(&hp->happy_lock);
2450	del_timer(&hp->happy_timer);
2451	happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2452	spin_unlock_irq(&hp->happy_lock);
2453
2454	return 0;
2455}
2456
2457static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2458{
2459	struct happy_meal *hp = netdev_priv(dev);
2460
2461	strcpy(info->driver, "sunhme");
2462	strcpy(info->version, "2.02");
2463	if (hp->happy_flags & HFLAG_PCI) {
2464		struct pci_dev *pdev = hp->happy_dev;
2465		strcpy(info->bus_info, pci_name(pdev));
2466	}
2467#ifdef CONFIG_SBUS
2468	else {
2469		const struct linux_prom_registers *regs;
2470		struct platform_device *op = hp->happy_dev;
2471		regs = of_get_property(op->dev.of_node, "regs", NULL);
2472		if (regs)
2473			sprintf(info->bus_info, "SBUS:%d",
2474				regs->which_io);
2475	}
2476#endif
2477}
2478
2479static u32 hme_get_link(struct net_device *dev)
2480{
2481	struct happy_meal *hp = netdev_priv(dev);
2482
2483	spin_lock_irq(&hp->happy_lock);
2484	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2485	spin_unlock_irq(&hp->happy_lock);
2486
2487	return hp->sw_bmsr & BMSR_LSTATUS;
2488}
2489
2490static const struct ethtool_ops hme_ethtool_ops = {
2491	.get_settings		= hme_get_settings,
2492	.set_settings		= hme_set_settings,
2493	.get_drvinfo		= hme_get_drvinfo,
2494	.get_link		= hme_get_link,
2495};
2496
2497static int hme_version_printed;
2498
2499#ifdef CONFIG_SBUS
2500/* Given a happy meal sbus device, find it's quattro parent.
2501 * If none exist, allocate and return a new one.
2502 *
2503 * Return NULL on failure.
2504 */
2505static struct quattro * __devinit quattro_sbus_find(struct platform_device *child)
2506{
2507	struct device *parent = child->dev.parent;
2508	struct platform_device *op;
2509	struct quattro *qp;
2510
2511	op = to_platform_device(parent);
2512	qp = dev_get_drvdata(&op->dev);
2513	if (qp)
2514		return qp;
2515
2516	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2517	if (qp != NULL) {
2518		int i;
2519
2520		for (i = 0; i < 4; i++)
2521			qp->happy_meals[i] = NULL;
2522
2523		qp->quattro_dev = child;
2524		qp->next = qfe_sbus_list;
2525		qfe_sbus_list = qp;
2526
2527		dev_set_drvdata(&op->dev, qp);
2528	}
2529	return qp;
2530}
2531
2532/* After all quattro cards have been probed, we call these functions
2533 * to register the IRQ handlers for the cards that have been
2534 * successfully probed and skip the cards that failed to initialize
2535 */
2536static int __init quattro_sbus_register_irqs(void)
2537{
2538	struct quattro *qp;
2539
2540	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2541		struct platform_device *op = qp->quattro_dev;
2542		int err, qfe_slot, skip = 0;
2543
2544		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2545			if (!qp->happy_meals[qfe_slot])
2546				skip = 1;
2547		}
2548		if (skip)
2549			continue;
2550
2551		err = request_irq(op->archdata.irqs[0],
2552				  quattro_sbus_interrupt,
2553				  IRQF_SHARED, "Quattro",
2554				  qp);
2555		if (err != 0) {
2556			printk(KERN_ERR "Quattro HME: IRQ registration "
2557			       "error %d.\n", err);
2558			return err;
2559		}
2560	}
2561
2562	return 0;
2563}
2564
2565static void quattro_sbus_free_irqs(void)
2566{
2567	struct quattro *qp;
2568
2569	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2570		struct platform_device *op = qp->quattro_dev;
2571		int qfe_slot, skip = 0;
2572
2573		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2574			if (!qp->happy_meals[qfe_slot])
2575				skip = 1;
2576		}
2577		if (skip)
2578			continue;
2579
2580		free_irq(op->archdata.irqs[0], qp);
2581	}
2582}
2583#endif /* CONFIG_SBUS */
2584
2585#ifdef CONFIG_PCI
2586static struct quattro * __devinit quattro_pci_find(struct pci_dev *pdev)
2587{
2588	struct pci_dev *bdev = pdev->bus->self;
2589	struct quattro *qp;
2590
2591	if (!bdev) return NULL;
2592	for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2593		struct pci_dev *qpdev = qp->quattro_dev;
2594
2595		if (qpdev == bdev)
2596			return qp;
2597	}
2598	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2599	if (qp != NULL) {
2600		int i;
2601
2602		for (i = 0; i < 4; i++)
2603			qp->happy_meals[i] = NULL;
2604
2605		qp->quattro_dev = bdev;
2606		qp->next = qfe_pci_list;
2607		qfe_pci_list = qp;
2608
2609		/* No range tricks necessary on PCI. */
2610		qp->nranges = 0;
2611	}
2612	return qp;
2613}
2614#endif /* CONFIG_PCI */
2615
2616static const struct net_device_ops hme_netdev_ops = {
2617	.ndo_open		= happy_meal_open,
2618	.ndo_stop		= happy_meal_close,
2619	.ndo_start_xmit		= happy_meal_start_xmit,
2620	.ndo_tx_timeout		= happy_meal_tx_timeout,
2621	.ndo_get_stats		= happy_meal_get_stats,
2622	.ndo_set_multicast_list = happy_meal_set_multicast,
2623	.ndo_change_mtu		= eth_change_mtu,
2624	.ndo_set_mac_address 	= eth_mac_addr,
2625	.ndo_validate_addr	= eth_validate_addr,
2626};
2627
2628#ifdef CONFIG_SBUS
2629static int __devinit happy_meal_sbus_probe_one(struct platform_device *op, int is_qfe)
2630{
2631	struct device_node *dp = op->dev.of_node, *sbus_dp;
2632	struct quattro *qp = NULL;
2633	struct happy_meal *hp;
2634	struct net_device *dev;
2635	int i, qfe_slot = -1;
2636	int err = -ENODEV;
2637
2638	sbus_dp = op->dev.parent->of_node;
2639
2640	/* We can match PCI devices too, do not accept those here. */
2641	if (strcmp(sbus_dp->name, "sbus"))
2642		return err;
2643
2644	if (is_qfe) {
2645		qp = quattro_sbus_find(op);
2646		if (qp == NULL)
2647			goto err_out;
2648		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2649			if (qp->happy_meals[qfe_slot] == NULL)
2650				break;
2651		if (qfe_slot == 4)
2652			goto err_out;
2653	}
2654
2655	err = -ENOMEM;
2656	dev = alloc_etherdev(sizeof(struct happy_meal));
2657	if (!dev)
2658		goto err_out;
2659	SET_NETDEV_DEV(dev, &op->dev);
2660
2661	if (hme_version_printed++ == 0)
2662		printk(KERN_INFO "%s", version);
2663
2664	/* If user did not specify a MAC address specifically, use
2665	 * the Quattro local-mac-address property...
2666	 */
2667	for (i = 0; i < 6; i++) {
2668		if (macaddr[i] != 0)
2669			break;
2670	}
2671	if (i < 6) { /* a mac address was given */
2672		for (i = 0; i < 6; i++)
2673			dev->dev_addr[i] = macaddr[i];
2674		macaddr[5]++;
2675	} else {
2676		const unsigned char *addr;
2677		int len;
2678
2679		addr = of_get_property(dp, "local-mac-address", &len);
2680
2681		if (qfe_slot != -1 && addr && len == 6)
2682			memcpy(dev->dev_addr, addr, 6);
2683		else
2684			memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
2685	}
2686
2687	hp = netdev_priv(dev);
2688
2689	hp->happy_dev = op;
2690	hp->dma_dev = &op->dev;
2691
2692	spin_lock_init(&hp->happy_lock);
2693
2694	err = -ENODEV;
2695	if (qp != NULL) {
2696		hp->qfe_parent = qp;
2697		hp->qfe_ent = qfe_slot;
2698		qp->happy_meals[qfe_slot] = dev;
2699	}
2700
2701	hp->gregs = of_ioremap(&op->resource[0], 0,
2702			       GREG_REG_SIZE, "HME Global Regs");
2703	if (!hp->gregs) {
2704		printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2705		goto err_out_free_netdev;
2706	}
2707
2708	hp->etxregs = of_ioremap(&op->resource[1], 0,
2709				 ETX_REG_SIZE, "HME TX Regs");
2710	if (!hp->etxregs) {
2711		printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2712		goto err_out_iounmap;
2713	}
2714
2715	hp->erxregs = of_ioremap(&op->resource[2], 0,
2716				 ERX_REG_SIZE, "HME RX Regs");
2717	if (!hp->erxregs) {
2718		printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2719		goto err_out_iounmap;
2720	}
2721
2722	hp->bigmacregs = of_ioremap(&op->resource[3], 0,
2723				    BMAC_REG_SIZE, "HME BIGMAC Regs");
2724	if (!hp->bigmacregs) {
2725		printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2726		goto err_out_iounmap;
2727	}
2728
2729	hp->tcvregs = of_ioremap(&op->resource[4], 0,
2730				 TCVR_REG_SIZE, "HME Tranceiver Regs");
2731	if (!hp->tcvregs) {
2732		printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2733		goto err_out_iounmap;
2734	}
2735
2736	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2737	if (hp->hm_revision == 0xff)
2738		hp->hm_revision = 0xa0;
2739
2740	/* Now enable the feature flags we can. */
2741	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2742		hp->happy_flags = HFLAG_20_21;
2743	else if (hp->hm_revision != 0xa0)
2744		hp->happy_flags = HFLAG_NOT_A0;
2745
2746	if (qp != NULL)
2747		hp->happy_flags |= HFLAG_QUATTRO;
2748
2749	/* Get the supported DVMA burst sizes from our Happy SBUS. */
2750	hp->happy_bursts = of_getintprop_default(sbus_dp,
2751						 "burst-sizes", 0x00);
2752
2753	hp->happy_block = dma_alloc_coherent(hp->dma_dev,
2754					     PAGE_SIZE,
2755					     &hp->hblock_dvma,
2756					     GFP_ATOMIC);
2757	err = -ENOMEM;
2758	if (!hp->happy_block) {
2759		printk(KERN_ERR "happymeal: Cannot allocate descriptors.\n");
2760		goto err_out_iounmap;
2761	}
2762
2763	/* Force check of the link first time we are brought up. */
2764	hp->linkcheck = 0;
2765
2766	/* Force timer state to 'asleep' with count of zero. */
2767	hp->timer_state = asleep;
2768	hp->timer_ticks = 0;
2769
2770	init_timer(&hp->happy_timer);
2771
2772	hp->dev = dev;
2773	dev->netdev_ops = &hme_netdev_ops;
2774	dev->watchdog_timeo = 5*HZ;
2775	dev->ethtool_ops = &hme_ethtool_ops;
2776
2777	/* Happy Meal can do it all... */
2778	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2779	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2780
2781	dev->irq = op->archdata.irqs[0];
2782
2783#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2784	/* Hook up SBUS register/descriptor accessors. */
2785	hp->read_desc32 = sbus_hme_read_desc32;
2786	hp->write_txd = sbus_hme_write_txd;
2787	hp->write_rxd = sbus_hme_write_rxd;
2788	hp->read32 = sbus_hme_read32;
2789	hp->write32 = sbus_hme_write32;
2790#endif
2791
2792	/* Grrr, Happy Meal comes up by default not advertising
2793	 * full duplex 100baseT capabilities, fix this.
2794	 */
2795	spin_lock_irq(&hp->happy_lock);
2796	happy_meal_set_initial_advertisement(hp);
2797	spin_unlock_irq(&hp->happy_lock);
2798
2799	err = register_netdev(hp->dev);
2800	if (err) {
2801		printk(KERN_ERR "happymeal: Cannot register net device, "
2802		       "aborting.\n");
2803		goto err_out_free_coherent;
2804	}
2805
2806	dev_set_drvdata(&op->dev, hp);
2807
2808	if (qfe_slot != -1)
2809		printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2810		       dev->name, qfe_slot);
2811	else
2812		printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2813		       dev->name);
2814
2815	printk("%pM\n", dev->dev_addr);
2816
2817	return 0;
2818
2819err_out_free_coherent:
2820	dma_free_coherent(hp->dma_dev,
2821			  PAGE_SIZE,
2822			  hp->happy_block,
2823			  hp->hblock_dvma);
2824
2825err_out_iounmap:
2826	if (hp->gregs)
2827		of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
2828	if (hp->etxregs)
2829		of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
2830	if (hp->erxregs)
2831		of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
2832	if (hp->bigmacregs)
2833		of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
2834	if (hp->tcvregs)
2835		of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
2836
2837	if (qp)
2838		qp->happy_meals[qfe_slot] = NULL;
2839
2840err_out_free_netdev:
2841	free_netdev(dev);
2842
2843err_out:
2844	return err;
2845}
2846#endif
2847
2848#ifdef CONFIG_PCI
2849#ifndef CONFIG_SPARC
2850static int is_quattro_p(struct pci_dev *pdev)
2851{
2852	struct pci_dev *busdev = pdev->bus->self;
2853	struct list_head *tmp;
2854	int n_hmes;
2855
2856	if (busdev == NULL ||
2857	    busdev->vendor != PCI_VENDOR_ID_DEC ||
2858	    busdev->device != PCI_DEVICE_ID_DEC_21153)
2859		return 0;
2860
2861	n_hmes = 0;
2862	tmp = pdev->bus->devices.next;
2863	while (tmp != &pdev->bus->devices) {
2864		struct pci_dev *this_pdev = pci_dev_b(tmp);
2865
2866		if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2867		    this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2868			n_hmes++;
2869
2870		tmp = tmp->next;
2871	}
2872
2873	if (n_hmes != 4)
2874		return 0;
2875
2876	return 1;
2877}
2878
2879/* Fetch MAC address from vital product data of PCI ROM. */
2880static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2881{
2882	int this_offset;
2883
2884	for (this_offset = 0x20; this_offset < len; this_offset++) {
2885		void __iomem *p = rom_base + this_offset;
2886
2887		if (readb(p + 0) != 0x90 ||
2888		    readb(p + 1) != 0x00 ||
2889		    readb(p + 2) != 0x09 ||
2890		    readb(p + 3) != 0x4e ||
2891		    readb(p + 4) != 0x41 ||
2892		    readb(p + 5) != 0x06)
2893			continue;
2894
2895		this_offset += 6;
2896		p += 6;
2897
2898		if (index == 0) {
2899			int i;
2900
2901			for (i = 0; i < 6; i++)
2902				dev_addr[i] = readb(p + i);
2903			return 1;
2904		}
2905		index--;
2906	}
2907	return 0;
2908}
2909
2910static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2911{
2912	size_t size;
2913	void __iomem *p = pci_map_rom(pdev, &size);
2914
2915	if (p) {
2916		int index = 0;
2917		int found;
2918
2919		if (is_quattro_p(pdev))
2920			index = PCI_SLOT(pdev->devfn);
2921
2922		found = readb(p) == 0x55 &&
2923			readb(p + 1) == 0xaa &&
2924			find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2925		pci_unmap_rom(pdev, p);
2926		if (found)
2927			return;
2928	}
2929
2930	/* Sun MAC prefix then 3 random bytes. */
2931	dev_addr[0] = 0x08;
2932	dev_addr[1] = 0x00;
2933	dev_addr[2] = 0x20;
2934	get_random_bytes(&dev_addr[3], 3);
2935}
2936#endif /* !(CONFIG_SPARC) */
2937
2938static int __devinit happy_meal_pci_probe(struct pci_dev *pdev,
2939					  const struct pci_device_id *ent)
2940{
2941	struct quattro *qp = NULL;
2942#ifdef CONFIG_SPARC
2943	struct device_node *dp;
2944#endif
2945	struct happy_meal *hp;
2946	struct net_device *dev;
2947	void __iomem *hpreg_base;
2948	unsigned long hpreg_res;
2949	int i, qfe_slot = -1;
2950	char prom_name[64];
2951	int err;
2952
2953	/* Now make sure pci_dev cookie is there. */
2954#ifdef CONFIG_SPARC
2955	dp = pci_device_to_OF_node(pdev);
2956	strcpy(prom_name, dp->name);
2957#else
2958	if (is_quattro_p(pdev))
2959		strcpy(prom_name, "SUNW,qfe");
2960	else
2961		strcpy(prom_name, "SUNW,hme");
2962#endif
2963
2964	err = -ENODEV;
2965
2966	if (pci_enable_device(pdev))
2967		goto err_out;
2968	pci_set_master(pdev);
2969
2970	if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
2971		qp = quattro_pci_find(pdev);
2972		if (qp == NULL)
2973			goto err_out;
2974		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2975			if (qp->happy_meals[qfe_slot] == NULL)
2976				break;
2977		if (qfe_slot == 4)
2978			goto err_out;
2979	}
2980
2981	dev = alloc_etherdev(sizeof(struct happy_meal));
2982	err = -ENOMEM;
2983	if (!dev)
2984		goto err_out;
2985	SET_NETDEV_DEV(dev, &pdev->dev);
2986
2987	if (hme_version_printed++ == 0)
2988		printk(KERN_INFO "%s", version);
2989
2990	dev->base_addr = (long) pdev;
2991
2992	hp = netdev_priv(dev);
2993
2994	hp->happy_dev = pdev;
2995	hp->dma_dev = &pdev->dev;
2996
2997	spin_lock_init(&hp->happy_lock);
2998
2999	if (qp != NULL) {
3000		hp->qfe_parent = qp;
3001		hp->qfe_ent = qfe_slot;
3002		qp->happy_meals[qfe_slot] = dev;
3003	}
3004
3005	hpreg_res = pci_resource_start(pdev, 0);
3006	err = -ENODEV;
3007	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3008		printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
3009		goto err_out_clear_quattro;
3010	}
3011	if (pci_request_regions(pdev, DRV_NAME)) {
3012		printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3013		       "aborting.\n");
3014		goto err_out_clear_quattro;
3015	}
3016
3017	if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == NULL) {
3018		printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3019		goto err_out_free_res;
3020	}
3021
3022	for (i = 0; i < 6; i++) {
3023		if (macaddr[i] != 0)
3024			break;
3025	}
3026	if (i < 6) { /* a mac address was given */
3027		for (i = 0; i < 6; i++)
3028			dev->dev_addr[i] = macaddr[i];
3029		macaddr[5]++;
3030	} else {
3031#ifdef CONFIG_SPARC
3032		const unsigned char *addr;
3033		int len;
3034
3035		if (qfe_slot != -1 &&
3036		    (addr = of_get_property(dp, "local-mac-address", &len))
3037			!= NULL &&
3038		    len == 6) {
3039			memcpy(dev->dev_addr, addr, 6);
3040		} else {
3041			memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
3042		}
3043#else
3044		get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
3045#endif
3046	}
3047
3048	/* Layout registers. */
3049	hp->gregs      = (hpreg_base + 0x0000UL);
3050	hp->etxregs    = (hpreg_base + 0x2000UL);
3051	hp->erxregs    = (hpreg_base + 0x4000UL);
3052	hp->bigmacregs = (hpreg_base + 0x6000UL);
3053	hp->tcvregs    = (hpreg_base + 0x7000UL);
3054
3055#ifdef CONFIG_SPARC
3056	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
3057	if (hp->hm_revision == 0xff)
3058		hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
3059#else
3060	/* works with this on non-sparc hosts */
3061	hp->hm_revision = 0x20;
3062#endif
3063
3064	/* Now enable the feature flags we can. */
3065	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3066		hp->happy_flags = HFLAG_20_21;
3067	else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3068		hp->happy_flags = HFLAG_NOT_A0;
3069
3070	if (qp != NULL)
3071		hp->happy_flags |= HFLAG_QUATTRO;
3072
3073	/* And of course, indicate this is PCI. */
3074	hp->happy_flags |= HFLAG_PCI;
3075
3076#ifdef CONFIG_SPARC
3077	/* Assume PCI happy meals can handle all burst sizes. */
3078	hp->happy_bursts = DMA_BURSTBITS;
3079#endif
3080
3081	hp->happy_block = (struct hmeal_init_block *)
3082		dma_alloc_coherent(&pdev->dev, PAGE_SIZE, &hp->hblock_dvma, GFP_KERNEL);
3083
3084	err = -ENODEV;
3085	if (!hp->happy_block) {
3086		printk(KERN_ERR "happymeal(PCI): Cannot get hme init block.\n");
3087		goto err_out_iounmap;
3088	}
3089
3090	hp->linkcheck = 0;
3091	hp->timer_state = asleep;
3092	hp->timer_ticks = 0;
3093
3094	init_timer(&hp->happy_timer);
3095
3096	hp->dev = dev;
3097	dev->netdev_ops = &hme_netdev_ops;
3098	dev->watchdog_timeo = 5*HZ;
3099	dev->ethtool_ops = &hme_ethtool_ops;
3100	dev->irq = pdev->irq;
3101	dev->dma = 0;
3102
3103	/* Happy Meal can do it all... */
3104	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
3105	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
3106
3107#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3108	/* Hook up PCI register/descriptor accessors. */
3109	hp->read_desc32 = pci_hme_read_desc32;
3110	hp->write_txd = pci_hme_write_txd;
3111	hp->write_rxd = pci_hme_write_rxd;
3112	hp->read32 = pci_hme_read32;
3113	hp->write32 = pci_hme_write32;
3114#endif
3115
3116	/* Grrr, Happy Meal comes up by default not advertising
3117	 * full duplex 100baseT capabilities, fix this.
3118	 */
3119	spin_lock_irq(&hp->happy_lock);
3120	happy_meal_set_initial_advertisement(hp);
3121	spin_unlock_irq(&hp->happy_lock);
3122
3123	err = register_netdev(hp->dev);
3124	if (err) {
3125		printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3126		       "aborting.\n");
3127		goto err_out_iounmap;
3128	}
3129
3130	dev_set_drvdata(&pdev->dev, hp);
3131
3132	if (!qfe_slot) {
3133		struct pci_dev *qpdev = qp->quattro_dev;
3134
3135		prom_name[0] = 0;
3136		if (!strncmp(dev->name, "eth", 3)) {
3137			int i = simple_strtoul(dev->name + 3, NULL, 10);
3138			sprintf(prom_name, "-%d", i + 3);
3139		}
3140		printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3141		if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3142		    qpdev->device == PCI_DEVICE_ID_DEC_21153)
3143			printk("DEC 21153 PCI Bridge\n");
3144		else
3145			printk("unknown bridge %04x.%04x\n",
3146				qpdev->vendor, qpdev->device);
3147	}
3148
3149	if (qfe_slot != -1)
3150		printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3151		       dev->name, qfe_slot);
3152	else
3153		printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3154		       dev->name);
3155
3156	printk("%pM\n", dev->dev_addr);
3157
3158	return 0;
3159
3160err_out_iounmap:
3161	iounmap(hp->gregs);
3162
3163err_out_free_res:
3164	pci_release_regions(pdev);
3165
3166err_out_clear_quattro:
3167	if (qp != NULL)
3168		qp->happy_meals[qfe_slot] = NULL;
3169
3170	free_netdev(dev);
3171
3172err_out:
3173	return err;
3174}
3175
3176static void __devexit happy_meal_pci_remove(struct pci_dev *pdev)
3177{
3178	struct happy_meal *hp = dev_get_drvdata(&pdev->dev);
3179	struct net_device *net_dev = hp->dev;
3180
3181	unregister_netdev(net_dev);
3182
3183	dma_free_coherent(hp->dma_dev, PAGE_SIZE,
3184			  hp->happy_block, hp->hblock_dvma);
3185	iounmap(hp->gregs);
3186	pci_release_regions(hp->happy_dev);
3187
3188	free_netdev(net_dev);
3189
3190	dev_set_drvdata(&pdev->dev, NULL);
3191}
3192
3193static DEFINE_PCI_DEVICE_TABLE(happymeal_pci_ids) = {
3194	{ PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3195	{ }			/* Terminating entry */
3196};
3197
3198MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3199
3200static struct pci_driver hme_pci_driver = {
3201	.name		= "hme",
3202	.id_table	= happymeal_pci_ids,
3203	.probe		= happy_meal_pci_probe,
3204	.remove		= __devexit_p(happy_meal_pci_remove),
3205};
3206
3207static int __init happy_meal_pci_init(void)
3208{
3209	return pci_register_driver(&hme_pci_driver);
3210}
3211
3212static void happy_meal_pci_exit(void)
3213{
3214	pci_unregister_driver(&hme_pci_driver);
3215
3216	while (qfe_pci_list) {
3217		struct quattro *qfe = qfe_pci_list;
3218		struct quattro *next = qfe->next;
3219
3220		kfree(qfe);
3221
3222		qfe_pci_list = next;
3223	}
3224}
3225
3226#endif
3227
3228#ifdef CONFIG_SBUS
3229static const struct of_device_id hme_sbus_match[];
3230static int __devinit hme_sbus_probe(struct platform_device *op)
3231{
3232	const struct of_device_id *match;
3233	struct device_node *dp = op->dev.of_node;
3234	const char *model = of_get_property(dp, "model", NULL);
3235	int is_qfe;
3236
3237	match = of_match_device(hme_sbus_match, &op->dev);
3238	if (!match)
3239		return -EINVAL;
3240	is_qfe = (match->data != NULL);
3241
3242	if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3243		is_qfe = 1;
3244
3245	return happy_meal_sbus_probe_one(op, is_qfe);
3246}
3247
3248static int __devexit hme_sbus_remove(struct platform_device *op)
3249{
3250	struct happy_meal *hp = dev_get_drvdata(&op->dev);
3251	struct net_device *net_dev = hp->dev;
3252
3253	unregister_netdev(net_dev);
3254
3255	/* XXX qfe parent interrupt... */
3256
3257	of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
3258	of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
3259	of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
3260	of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
3261	of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
3262	dma_free_coherent(hp->dma_dev,
3263			  PAGE_SIZE,
3264			  hp->happy_block,
3265			  hp->hblock_dvma);
3266
3267	free_netdev(net_dev);
3268
3269	dev_set_drvdata(&op->dev, NULL);
3270
3271	return 0;
3272}
3273
3274static const struct of_device_id hme_sbus_match[] = {
3275	{
3276		.name = "SUNW,hme",
3277	},
3278	{
3279		.name = "SUNW,qfe",
3280		.data = (void *) 1,
3281	},
3282	{
3283		.name = "qfe",
3284		.data = (void *) 1,
3285	},
3286	{},
3287};
3288
3289MODULE_DEVICE_TABLE(of, hme_sbus_match);
3290
3291static struct platform_driver hme_sbus_driver = {
3292	.driver = {
3293		.name = "hme",
3294		.owner = THIS_MODULE,
3295		.of_match_table = hme_sbus_match,
3296	},
3297	.probe		= hme_sbus_probe,
3298	.remove		= __devexit_p(hme_sbus_remove),
3299};
3300
3301static int __init happy_meal_sbus_init(void)
3302{
3303	int err;
3304
3305	err = platform_driver_register(&hme_sbus_driver);
3306	if (!err)
3307		err = quattro_sbus_register_irqs();
3308
3309	return err;
3310}
3311
3312static void happy_meal_sbus_exit(void)
3313{
3314	platform_driver_unregister(&hme_sbus_driver);
3315	quattro_sbus_free_irqs();
3316
3317	while (qfe_sbus_list) {
3318		struct quattro *qfe = qfe_sbus_list;
3319		struct quattro *next = qfe->next;
3320
3321		kfree(qfe);
3322
3323		qfe_sbus_list = next;
3324	}
3325}
3326#endif
3327
3328static int __init happy_meal_probe(void)
3329{
3330	int err = 0;
3331
3332#ifdef CONFIG_SBUS
3333	err = happy_meal_sbus_init();
3334#endif
3335#ifdef CONFIG_PCI
3336	if (!err) {
3337		err = happy_meal_pci_init();
3338#ifdef CONFIG_SBUS
3339		if (err)
3340			happy_meal_sbus_exit();
3341#endif
3342	}
3343#endif
3344
3345	return err;
3346}
3347
3348
3349static void __exit happy_meal_exit(void)
3350{
3351#ifdef CONFIG_SBUS
3352	happy_meal_sbus_exit();
3353#endif
3354#ifdef CONFIG_PCI
3355	happy_meal_pci_exit();
3356#endif
3357}
3358
3359module_init(happy_meal_probe);
3360module_exit(happy_meal_exit);