Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * PHY drivers for the sungem ethernet driver.
   4 *
   5 * This file could be shared with other drivers.
   6 *
   7 * (c) 2002-2007, Benjamin Herrenscmidt (benh@kernel.crashing.org)
   8 *
   9 * TODO:
  10 *  - Add support for PHYs that provide an IRQ line
  11 *  - Eventually moved the entire polling state machine in
  12 *    there (out of the eth driver), so that it can easily be
  13 *    skipped on PHYs that implement it in hardware.
  14 *  - On LXT971 & BCM5201, Apple uses some chip specific regs
  15 *    to read the link status. Figure out why and if it makes
  16 *    sense to do the same (magic aneg ?)
  17 *  - Apple has some additional power management code for some
  18 *    Broadcom PHYs that they "hide" from the OpenSource version
  19 *    of darwin, still need to reverse engineer that
  20 */
  21
  22
  23#include <linux/module.h>
  24
  25#include <linux/kernel.h>
  26#include <linux/types.h>
  27#include <linux/netdevice.h>
  28#include <linux/etherdevice.h>
  29#include <linux/mii.h>
  30#include <linux/ethtool.h>
  31#include <linux/delay.h>
  32#include <linux/of.h>
  33#include <linux/sungem_phy.h>
 
 
 
 
  34
  35/* Link modes of the BCM5400 PHY */
  36static const int phy_BCM5400_link_table[8][3] = {
  37	{ 0, 0, 0 },	/* No link */
  38	{ 0, 0, 0 },	/* 10BT Half Duplex */
  39	{ 1, 0, 0 },	/* 10BT Full Duplex */
  40	{ 0, 1, 0 },	/* 100BT Half Duplex */
  41	{ 0, 1, 0 },	/* 100BT Half Duplex */
  42	{ 1, 1, 0 },	/* 100BT Full Duplex*/
  43	{ 1, 0, 1 },	/* 1000BT */
  44	{ 1, 0, 1 },	/* 1000BT */
  45};
  46
  47static inline int __sungem_phy_read(struct mii_phy* phy, int id, int reg)
  48{
  49	return phy->mdio_read(phy->dev, id, reg);
  50}
  51
  52static inline void __sungem_phy_write(struct mii_phy* phy, int id, int reg, int val)
  53{
  54	phy->mdio_write(phy->dev, id, reg, val);
  55}
  56
  57static inline int sungem_phy_read(struct mii_phy* phy, int reg)
  58{
  59	return phy->mdio_read(phy->dev, phy->mii_id, reg);
  60}
  61
  62static inline void sungem_phy_write(struct mii_phy* phy, int reg, int val)
  63{
  64	phy->mdio_write(phy->dev, phy->mii_id, reg, val);
  65}
  66
  67static int reset_one_mii_phy(struct mii_phy* phy, int phy_id)
  68{
  69	u16 val;
  70	int limit = 10000;
  71
  72	val = __sungem_phy_read(phy, phy_id, MII_BMCR);
  73	val &= ~(BMCR_ISOLATE | BMCR_PDOWN);
  74	val |= BMCR_RESET;
  75	__sungem_phy_write(phy, phy_id, MII_BMCR, val);
  76
  77	udelay(100);
  78
  79	while (--limit) {
  80		val = __sungem_phy_read(phy, phy_id, MII_BMCR);
  81		if ((val & BMCR_RESET) == 0)
  82			break;
  83		udelay(10);
  84	}
  85	if ((val & BMCR_ISOLATE) && limit > 0)
  86		__sungem_phy_write(phy, phy_id, MII_BMCR, val & ~BMCR_ISOLATE);
  87
  88	return limit <= 0;
  89}
  90
  91static int bcm5201_init(struct mii_phy* phy)
  92{
  93	u16 data;
  94
  95	data = sungem_phy_read(phy, MII_BCM5201_MULTIPHY);
  96	data &= ~MII_BCM5201_MULTIPHY_SUPERISOLATE;
  97	sungem_phy_write(phy, MII_BCM5201_MULTIPHY, data);
  98
  99	sungem_phy_write(phy, MII_BCM5201_INTERRUPT, 0);
 100
 101	return 0;
 102}
 103
 104static int bcm5201_suspend(struct mii_phy* phy)
 105{
 106	sungem_phy_write(phy, MII_BCM5201_INTERRUPT, 0);
 107	sungem_phy_write(phy, MII_BCM5201_MULTIPHY, MII_BCM5201_MULTIPHY_SUPERISOLATE);
 108
 109	return 0;
 110}
 111
 112static int bcm5221_init(struct mii_phy* phy)
 113{
 114	u16 data;
 115
 116	data = sungem_phy_read(phy, MII_BCM5221_TEST);
 117	sungem_phy_write(phy, MII_BCM5221_TEST,
 118		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
 119
 120	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
 121	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
 122		data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
 123
 124	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
 125	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
 126		data | MII_BCM5221_SHDOW_AUX_MODE4_CLKLOPWR);
 127
 128	data = sungem_phy_read(phy, MII_BCM5221_TEST);
 129	sungem_phy_write(phy, MII_BCM5221_TEST,
 130		data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
 131
 132	return 0;
 133}
 134
 135static int bcm5221_suspend(struct mii_phy* phy)
 136{
 137	u16 data;
 138
 139	data = sungem_phy_read(phy, MII_BCM5221_TEST);
 140	sungem_phy_write(phy, MII_BCM5221_TEST,
 141		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
 142
 143	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
 144	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
 145		  data | MII_BCM5221_SHDOW_AUX_MODE4_IDDQMODE);
 146
 147	return 0;
 148}
 149
 150static int bcm5241_init(struct mii_phy* phy)
 151{
 152	u16 data;
 153
 154	data = sungem_phy_read(phy, MII_BCM5221_TEST);
 155	sungem_phy_write(phy, MII_BCM5221_TEST,
 156		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
 157
 158	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
 159	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
 160		data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
 161
 162	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
 163	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
 164		data & ~MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
 165
 166	data = sungem_phy_read(phy, MII_BCM5221_TEST);
 167	sungem_phy_write(phy, MII_BCM5221_TEST,
 168		data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
 169
 170	return 0;
 171}
 172
 173static int bcm5241_suspend(struct mii_phy* phy)
 174{
 175	u16 data;
 176
 177	data = sungem_phy_read(phy, MII_BCM5221_TEST);
 178	sungem_phy_write(phy, MII_BCM5221_TEST,
 179		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
 180
 181	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
 182	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
 183		  data | MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
 184
 185	return 0;
 186}
 187
 188static int bcm5400_init(struct mii_phy* phy)
 189{
 190	u16 data;
 191
 192	/* Configure for gigabit full duplex */
 193	data = sungem_phy_read(phy, MII_BCM5400_AUXCONTROL);
 194	data |= MII_BCM5400_AUXCONTROL_PWR10BASET;
 195	sungem_phy_write(phy, MII_BCM5400_AUXCONTROL, data);
 196
 197	data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
 198	data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
 199	sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, data);
 200
 201	udelay(100);
 202
 203	/* Reset and configure cascaded 10/100 PHY */
 204	(void)reset_one_mii_phy(phy, 0x1f);
 205
 206	data = __sungem_phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
 207	data |= MII_BCM5201_MULTIPHY_SERIALMODE;
 208	__sungem_phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
 209
 210	data = sungem_phy_read(phy, MII_BCM5400_AUXCONTROL);
 211	data &= ~MII_BCM5400_AUXCONTROL_PWR10BASET;
 212	sungem_phy_write(phy, MII_BCM5400_AUXCONTROL, data);
 213
 214	return 0;
 215}
 216
 217static int bcm5400_suspend(struct mii_phy* phy)
 218{
 219#if 0 /* Commented out in Darwin... someone has those dawn docs ? */
 220	sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
 221#endif
 222	return 0;
 223}
 224
 225static int bcm5401_init(struct mii_phy* phy)
 226{
 227	u16 data;
 228	int rev;
 229
 230	rev = sungem_phy_read(phy, MII_PHYSID2) & 0x000f;
 231	if (rev == 0 || rev == 3) {
 232		/* Some revisions of 5401 appear to need this
 233		 * initialisation sequence to disable, according
 234		 * to OF, "tap power management"
 235		 *
 236		 * WARNING ! OF and Darwin don't agree on the
 237		 * register addresses. OF seem to interpret the
 238		 * register numbers below as decimal
 239		 *
 240		 * Note: This should (and does) match tg3_init_5401phy_dsp
 241		 *       in the tg3.c driver. -DaveM
 242		 */
 243		sungem_phy_write(phy, 0x18, 0x0c20);
 244		sungem_phy_write(phy, 0x17, 0x0012);
 245		sungem_phy_write(phy, 0x15, 0x1804);
 246		sungem_phy_write(phy, 0x17, 0x0013);
 247		sungem_phy_write(phy, 0x15, 0x1204);
 248		sungem_phy_write(phy, 0x17, 0x8006);
 249		sungem_phy_write(phy, 0x15, 0x0132);
 250		sungem_phy_write(phy, 0x17, 0x8006);
 251		sungem_phy_write(phy, 0x15, 0x0232);
 252		sungem_phy_write(phy, 0x17, 0x201f);
 253		sungem_phy_write(phy, 0x15, 0x0a20);
 254	}
 255
 256	/* Configure for gigabit full duplex */
 257	data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
 258	data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
 259	sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, data);
 260
 261	udelay(10);
 262
 263	/* Reset and configure cascaded 10/100 PHY */
 264	(void)reset_one_mii_phy(phy, 0x1f);
 265
 266	data = __sungem_phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
 267	data |= MII_BCM5201_MULTIPHY_SERIALMODE;
 268	__sungem_phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
 269
 270	return 0;
 271}
 272
 273static int bcm5401_suspend(struct mii_phy* phy)
 274{
 275#if 0 /* Commented out in Darwin... someone has those dawn docs ? */
 276	sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
 277#endif
 278	return 0;
 279}
 280
 281static int bcm5411_init(struct mii_phy* phy)
 282{
 283	u16 data;
 284
 285	/* Here's some more Apple black magic to setup
 286	 * some voltage stuffs.
 287	 */
 288	sungem_phy_write(phy, 0x1c, 0x8c23);
 289	sungem_phy_write(phy, 0x1c, 0x8ca3);
 290	sungem_phy_write(phy, 0x1c, 0x8c23);
 291
 292	/* Here, Apple seems to want to reset it, do
 293	 * it as well
 294	 */
 295	sungem_phy_write(phy, MII_BMCR, BMCR_RESET);
 296	sungem_phy_write(phy, MII_BMCR, 0x1340);
 297
 298	data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
 299	data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
 300	sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, data);
 301
 302	udelay(10);
 303
 304	/* Reset and configure cascaded 10/100 PHY */
 305	(void)reset_one_mii_phy(phy, 0x1f);
 306
 307	return 0;
 308}
 309
 310static int genmii_setup_aneg(struct mii_phy *phy, u32 advertise)
 311{
 312	u16 ctl, adv;
 313
 314	phy->autoneg = 1;
 315	phy->speed = SPEED_10;
 316	phy->duplex = DUPLEX_HALF;
 317	phy->pause = 0;
 318	phy->advertising = advertise;
 319
 320	/* Setup standard advertise */
 321	adv = sungem_phy_read(phy, MII_ADVERTISE);
 322	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
 323	if (advertise & ADVERTISED_10baseT_Half)
 324		adv |= ADVERTISE_10HALF;
 325	if (advertise & ADVERTISED_10baseT_Full)
 326		adv |= ADVERTISE_10FULL;
 327	if (advertise & ADVERTISED_100baseT_Half)
 328		adv |= ADVERTISE_100HALF;
 329	if (advertise & ADVERTISED_100baseT_Full)
 330		adv |= ADVERTISE_100FULL;
 331	sungem_phy_write(phy, MII_ADVERTISE, adv);
 332
 333	/* Start/Restart aneg */
 334	ctl = sungem_phy_read(phy, MII_BMCR);
 335	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
 336	sungem_phy_write(phy, MII_BMCR, ctl);
 337
 338	return 0;
 339}
 340
 341static int genmii_setup_forced(struct mii_phy *phy, int speed, int fd)
 342{
 343	u16 ctl;
 344
 345	phy->autoneg = 0;
 346	phy->speed = speed;
 347	phy->duplex = fd;
 348	phy->pause = 0;
 349
 350	ctl = sungem_phy_read(phy, MII_BMCR);
 351	ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_ANENABLE);
 352
 353	/* First reset the PHY */
 354	sungem_phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
 355
 356	/* Select speed & duplex */
 357	switch(speed) {
 358	case SPEED_10:
 359		break;
 360	case SPEED_100:
 361		ctl |= BMCR_SPEED100;
 362		break;
 363	case SPEED_1000:
 364	default:
 365		return -EINVAL;
 366	}
 367	if (fd == DUPLEX_FULL)
 368		ctl |= BMCR_FULLDPLX;
 369	sungem_phy_write(phy, MII_BMCR, ctl);
 370
 371	return 0;
 372}
 373
 374static int genmii_poll_link(struct mii_phy *phy)
 375{
 376	u16 status;
 377
 378	(void)sungem_phy_read(phy, MII_BMSR);
 379	status = sungem_phy_read(phy, MII_BMSR);
 380	if ((status & BMSR_LSTATUS) == 0)
 381		return 0;
 382	if (phy->autoneg && !(status & BMSR_ANEGCOMPLETE))
 383		return 0;
 384	return 1;
 385}
 386
 387static int genmii_read_link(struct mii_phy *phy)
 388{
 389	u16 lpa;
 390
 391	if (phy->autoneg) {
 392		lpa = sungem_phy_read(phy, MII_LPA);
 393
 394		if (lpa & (LPA_10FULL | LPA_100FULL))
 395			phy->duplex = DUPLEX_FULL;
 396		else
 397			phy->duplex = DUPLEX_HALF;
 398		if (lpa & (LPA_100FULL | LPA_100HALF))
 399			phy->speed = SPEED_100;
 400		else
 401			phy->speed = SPEED_10;
 402		phy->pause = 0;
 403	}
 404	/* On non-aneg, we assume what we put in BMCR is the speed,
 405	 * though magic-aneg shouldn't prevent this case from occurring
 406	 */
 407
 408	return 0;
 409}
 410
 411static int generic_suspend(struct mii_phy* phy)
 412{
 413	sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
 414
 415	return 0;
 416}
 417
 418static int bcm5421_init(struct mii_phy* phy)
 419{
 420	u16 data;
 421	unsigned int id;
 422
 423	id = (sungem_phy_read(phy, MII_PHYSID1) << 16 | sungem_phy_read(phy, MII_PHYSID2));
 424
 425	/* Revision 0 of 5421 needs some fixups */
 426	if (id == 0x002060e0) {
 427		/* This is borrowed from MacOS
 428		 */
 429		sungem_phy_write(phy, 0x18, 0x1007);
 430		data = sungem_phy_read(phy, 0x18);
 431		sungem_phy_write(phy, 0x18, data | 0x0400);
 432		sungem_phy_write(phy, 0x18, 0x0007);
 433		data = sungem_phy_read(phy, 0x18);
 434		sungem_phy_write(phy, 0x18, data | 0x0800);
 435		sungem_phy_write(phy, 0x17, 0x000a);
 436		data = sungem_phy_read(phy, 0x15);
 437		sungem_phy_write(phy, 0x15, data | 0x0200);
 438	}
 439
 440	/* Pick up some init code from OF for K2 version */
 441	if ((id & 0xfffffff0) == 0x002062e0) {
 442		sungem_phy_write(phy, 4, 0x01e1);
 443		sungem_phy_write(phy, 9, 0x0300);
 444	}
 445
 446	/* Check if we can enable automatic low power */
 447#ifdef CONFIG_PPC_PMAC
 448	if (phy->platform_data) {
 449		struct device_node *np = of_get_parent(phy->platform_data);
 450		int can_low_power = 1;
 451		if (np == NULL || of_get_property(np, "no-autolowpower", NULL))
 452			can_low_power = 0;
 453		of_node_put(np);
 454		if (can_low_power) {
 455			/* Enable automatic low-power */
 456			sungem_phy_write(phy, 0x1c, 0x9002);
 457			sungem_phy_write(phy, 0x1c, 0xa821);
 458			sungem_phy_write(phy, 0x1c, 0x941d);
 459		}
 460	}
 461#endif /* CONFIG_PPC_PMAC */
 462
 463	return 0;
 464}
 465
 466static int bcm54xx_setup_aneg(struct mii_phy *phy, u32 advertise)
 467{
 468	u16 ctl, adv;
 469
 470	phy->autoneg = 1;
 471	phy->speed = SPEED_10;
 472	phy->duplex = DUPLEX_HALF;
 473	phy->pause = 0;
 474	phy->advertising = advertise;
 475
 476	/* Setup standard advertise */
 477	adv = sungem_phy_read(phy, MII_ADVERTISE);
 478	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
 479	if (advertise & ADVERTISED_10baseT_Half)
 480		adv |= ADVERTISE_10HALF;
 481	if (advertise & ADVERTISED_10baseT_Full)
 482		adv |= ADVERTISE_10FULL;
 483	if (advertise & ADVERTISED_100baseT_Half)
 484		adv |= ADVERTISE_100HALF;
 485	if (advertise & ADVERTISED_100baseT_Full)
 486		adv |= ADVERTISE_100FULL;
 487	if (advertise & ADVERTISED_Pause)
 488		adv |= ADVERTISE_PAUSE_CAP;
 489	if (advertise & ADVERTISED_Asym_Pause)
 490		adv |= ADVERTISE_PAUSE_ASYM;
 491	sungem_phy_write(phy, MII_ADVERTISE, adv);
 492
 493	/* Setup 1000BT advertise */
 494	adv = sungem_phy_read(phy, MII_1000BASETCONTROL);
 495	adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP|MII_1000BASETCONTROL_HALFDUPLEXCAP);
 496	if (advertise & SUPPORTED_1000baseT_Half)
 497		adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
 498	if (advertise & SUPPORTED_1000baseT_Full)
 499		adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
 500	sungem_phy_write(phy, MII_1000BASETCONTROL, adv);
 501
 502	/* Start/Restart aneg */
 503	ctl = sungem_phy_read(phy, MII_BMCR);
 504	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
 505	sungem_phy_write(phy, MII_BMCR, ctl);
 506
 507	return 0;
 508}
 509
 510static int bcm54xx_setup_forced(struct mii_phy *phy, int speed, int fd)
 511{
 512	u16 ctl;
 513
 514	phy->autoneg = 0;
 515	phy->speed = speed;
 516	phy->duplex = fd;
 517	phy->pause = 0;
 518
 519	ctl = sungem_phy_read(phy, MII_BMCR);
 520	ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
 521
 522	/* First reset the PHY */
 523	sungem_phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
 524
 525	/* Select speed & duplex */
 526	switch(speed) {
 527	case SPEED_10:
 528		break;
 529	case SPEED_100:
 530		ctl |= BMCR_SPEED100;
 531		break;
 532	case SPEED_1000:
 533		ctl |= BMCR_SPD2;
 534	}
 535	if (fd == DUPLEX_FULL)
 536		ctl |= BMCR_FULLDPLX;
 537
 538	// XXX Should we set the sungem to GII now on 1000BT ?
 539
 540	sungem_phy_write(phy, MII_BMCR, ctl);
 541
 542	return 0;
 543}
 544
 545static int bcm54xx_read_link(struct mii_phy *phy)
 546{
 547	int link_mode;
 548	u16 val;
 549
 550	if (phy->autoneg) {
 551	    	val = sungem_phy_read(phy, MII_BCM5400_AUXSTATUS);
 552		link_mode = ((val & MII_BCM5400_AUXSTATUS_LINKMODE_MASK) >>
 553			     MII_BCM5400_AUXSTATUS_LINKMODE_SHIFT);
 554		phy->duplex = phy_BCM5400_link_table[link_mode][0] ?
 555			DUPLEX_FULL : DUPLEX_HALF;
 556		phy->speed = phy_BCM5400_link_table[link_mode][2] ?
 557				SPEED_1000 :
 558				(phy_BCM5400_link_table[link_mode][1] ?
 559				 SPEED_100 : SPEED_10);
 560		val = sungem_phy_read(phy, MII_LPA);
 561		phy->pause = (phy->duplex == DUPLEX_FULL) &&
 562			((val & LPA_PAUSE) != 0);
 563	}
 564	/* On non-aneg, we assume what we put in BMCR is the speed,
 565	 * though magic-aneg shouldn't prevent this case from occurring
 566	 */
 567
 568	return 0;
 569}
 570
 571static int marvell88e1111_init(struct mii_phy* phy)
 572{
 573	u16 rev;
 574
 575	/* magic init sequence for rev 0 */
 576	rev = sungem_phy_read(phy, MII_PHYSID2) & 0x000f;
 577	if (rev == 0) {
 578		sungem_phy_write(phy, 0x1d, 0x000a);
 579		sungem_phy_write(phy, 0x1e, 0x0821);
 580
 581		sungem_phy_write(phy, 0x1d, 0x0006);
 582		sungem_phy_write(phy, 0x1e, 0x8600);
 583
 584		sungem_phy_write(phy, 0x1d, 0x000b);
 585		sungem_phy_write(phy, 0x1e, 0x0100);
 586
 587		sungem_phy_write(phy, 0x1d, 0x0004);
 588		sungem_phy_write(phy, 0x1e, 0x4850);
 589	}
 590	return 0;
 591}
 592
 593#define BCM5421_MODE_MASK	(1 << 5)
 594
 595static int bcm5421_poll_link(struct mii_phy* phy)
 596{
 597	u32 phy_reg;
 598	int mode;
 599
 600	/* find out in what mode we are */
 601	sungem_phy_write(phy, MII_NCONFIG, 0x1000);
 602	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 603
 604	mode = (phy_reg & BCM5421_MODE_MASK) >> 5;
 605
 606	if ( mode == BCM54XX_COPPER)
 607		return genmii_poll_link(phy);
 608
 609	/* try to find out whether we have a link */
 610	sungem_phy_write(phy, MII_NCONFIG, 0x2000);
 611	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 612
 613	if (phy_reg & 0x0020)
 614		return 0;
 615	else
 616		return 1;
 617}
 618
 619static int bcm5421_read_link(struct mii_phy* phy)
 620{
 621	u32 phy_reg;
 622	int mode;
 623
 624	/* find out in what mode we are */
 625	sungem_phy_write(phy, MII_NCONFIG, 0x1000);
 626	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 627
 628	mode = (phy_reg & BCM5421_MODE_MASK ) >> 5;
 629
 630	if ( mode == BCM54XX_COPPER)
 631		return bcm54xx_read_link(phy);
 632
 633	phy->speed = SPEED_1000;
 634
 635	/* find out whether we are running half- or full duplex */
 636	sungem_phy_write(phy, MII_NCONFIG, 0x2000);
 637	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 638
 639	if ( (phy_reg & 0x0080) >> 7)
 640		phy->duplex |=  DUPLEX_HALF;
 641	else
 642		phy->duplex |=  DUPLEX_FULL;
 643
 644	return 0;
 645}
 646
 647static int bcm5421_enable_fiber(struct mii_phy* phy, int autoneg)
 648{
 649	/* enable fiber mode */
 650	sungem_phy_write(phy, MII_NCONFIG, 0x9020);
 651	/* LEDs active in both modes, autosense prio = fiber */
 652	sungem_phy_write(phy, MII_NCONFIG, 0x945f);
 653
 654	if (!autoneg) {
 655		/* switch off fibre autoneg */
 656		sungem_phy_write(phy, MII_NCONFIG, 0xfc01);
 657		sungem_phy_write(phy, 0x0b, 0x0004);
 658	}
 659
 660	phy->autoneg = autoneg;
 661
 662	return 0;
 663}
 664
 665#define BCM5461_FIBER_LINK	(1 << 2)
 666#define BCM5461_MODE_MASK	(3 << 1)
 667
 668static int bcm5461_poll_link(struct mii_phy* phy)
 669{
 670	u32 phy_reg;
 671	int mode;
 672
 673	/* find out in what mode we are */
 674	sungem_phy_write(phy, MII_NCONFIG, 0x7c00);
 675	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 676
 677	mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
 678
 679	if ( mode == BCM54XX_COPPER)
 680		return genmii_poll_link(phy);
 681
 682	/* find out whether we have a link */
 683	sungem_phy_write(phy, MII_NCONFIG, 0x7000);
 684	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 685
 686	if (phy_reg & BCM5461_FIBER_LINK)
 687		return 1;
 688	else
 689		return 0;
 690}
 691
 692#define BCM5461_FIBER_DUPLEX	(1 << 3)
 693
 694static int bcm5461_read_link(struct mii_phy* phy)
 695{
 696	u32 phy_reg;
 697	int mode;
 698
 699	/* find out in what mode we are */
 700	sungem_phy_write(phy, MII_NCONFIG, 0x7c00);
 701	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 702
 703	mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
 704
 705	if ( mode == BCM54XX_COPPER) {
 706		return bcm54xx_read_link(phy);
 707	}
 708
 709	phy->speed = SPEED_1000;
 710
 711	/* find out whether we are running half- or full duplex */
 712	sungem_phy_write(phy, MII_NCONFIG, 0x7000);
 713	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 714
 715	if (phy_reg & BCM5461_FIBER_DUPLEX)
 716		phy->duplex |=  DUPLEX_FULL;
 717	else
 718		phy->duplex |=  DUPLEX_HALF;
 719
 720	return 0;
 721}
 722
 723static int bcm5461_enable_fiber(struct mii_phy* phy, int autoneg)
 724{
 725	/* select fiber mode, enable 1000 base-X registers */
 726	sungem_phy_write(phy, MII_NCONFIG, 0xfc0b);
 727
 728	if (autoneg) {
 729		/* enable fiber with no autonegotiation */
 730		sungem_phy_write(phy, MII_ADVERTISE, 0x01e0);
 731		sungem_phy_write(phy, MII_BMCR, 0x1140);
 732	} else {
 733		/* enable fiber with autonegotiation */
 734		sungem_phy_write(phy, MII_BMCR, 0x0140);
 735	}
 736
 737	phy->autoneg = autoneg;
 738
 739	return 0;
 740}
 741
 742static int marvell_setup_aneg(struct mii_phy *phy, u32 advertise)
 743{
 744	u16 ctl, adv;
 745
 746	phy->autoneg = 1;
 747	phy->speed = SPEED_10;
 748	phy->duplex = DUPLEX_HALF;
 749	phy->pause = 0;
 750	phy->advertising = advertise;
 751
 752	/* Setup standard advertise */
 753	adv = sungem_phy_read(phy, MII_ADVERTISE);
 754	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
 755	if (advertise & ADVERTISED_10baseT_Half)
 756		adv |= ADVERTISE_10HALF;
 757	if (advertise & ADVERTISED_10baseT_Full)
 758		adv |= ADVERTISE_10FULL;
 759	if (advertise & ADVERTISED_100baseT_Half)
 760		adv |= ADVERTISE_100HALF;
 761	if (advertise & ADVERTISED_100baseT_Full)
 762		adv |= ADVERTISE_100FULL;
 763	if (advertise & ADVERTISED_Pause)
 764		adv |= ADVERTISE_PAUSE_CAP;
 765	if (advertise & ADVERTISED_Asym_Pause)
 766		adv |= ADVERTISE_PAUSE_ASYM;
 767	sungem_phy_write(phy, MII_ADVERTISE, adv);
 768
 769	/* Setup 1000BT advertise & enable crossover detect
 770	 * XXX How do we advertise 1000BT ? Darwin source is
 771	 * confusing here, they read from specific control and
 772	 * write to control... Someone has specs for those
 773	 * beasts ?
 774	 */
 775	adv = sungem_phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
 776	adv |= MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX;
 777	adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP |
 778			MII_1000BASETCONTROL_HALFDUPLEXCAP);
 779	if (advertise & SUPPORTED_1000baseT_Half)
 780		adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
 781	if (advertise & SUPPORTED_1000baseT_Full)
 782		adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
 783	sungem_phy_write(phy, MII_1000BASETCONTROL, adv);
 784
 785	/* Start/Restart aneg */
 786	ctl = sungem_phy_read(phy, MII_BMCR);
 787	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
 788	sungem_phy_write(phy, MII_BMCR, ctl);
 789
 790	return 0;
 791}
 792
 793static int marvell_setup_forced(struct mii_phy *phy, int speed, int fd)
 794{
 795	u16 ctl, ctl2;
 796
 797	phy->autoneg = 0;
 798	phy->speed = speed;
 799	phy->duplex = fd;
 800	phy->pause = 0;
 801
 802	ctl = sungem_phy_read(phy, MII_BMCR);
 803	ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
 804	ctl |= BMCR_RESET;
 805
 806	/* Select speed & duplex */
 807	switch(speed) {
 808	case SPEED_10:
 809		break;
 810	case SPEED_100:
 811		ctl |= BMCR_SPEED100;
 812		break;
 813	/* I'm not sure about the one below, again, Darwin source is
 814	 * quite confusing and I lack chip specs
 815	 */
 816	case SPEED_1000:
 817		ctl |= BMCR_SPD2;
 818	}
 819	if (fd == DUPLEX_FULL)
 820		ctl |= BMCR_FULLDPLX;
 821
 822	/* Disable crossover. Again, the way Apple does it is strange,
 823	 * though I don't assume they are wrong ;)
 824	 */
 825	ctl2 = sungem_phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
 826	ctl2 &= ~(MII_M1011_PHY_SPEC_CONTROL_MANUAL_MDIX |
 827		MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX |
 828		MII_1000BASETCONTROL_FULLDUPLEXCAP |
 829		MII_1000BASETCONTROL_HALFDUPLEXCAP);
 830	if (speed == SPEED_1000)
 831		ctl2 |= (fd == DUPLEX_FULL) ?
 832			MII_1000BASETCONTROL_FULLDUPLEXCAP :
 833			MII_1000BASETCONTROL_HALFDUPLEXCAP;
 834	sungem_phy_write(phy, MII_1000BASETCONTROL, ctl2);
 835
 836	// XXX Should we set the sungem to GII now on 1000BT ?
 837
 838	sungem_phy_write(phy, MII_BMCR, ctl);
 839
 840	return 0;
 841}
 842
 843static int marvell_read_link(struct mii_phy *phy)
 844{
 845	u16 status, pmask;
 846
 847	if (phy->autoneg) {
 848		status = sungem_phy_read(phy, MII_M1011_PHY_SPEC_STATUS);
 849		if ((status & MII_M1011_PHY_SPEC_STATUS_RESOLVED) == 0)
 850			return -EAGAIN;
 851		if (status & MII_M1011_PHY_SPEC_STATUS_1000)
 852			phy->speed = SPEED_1000;
 853		else if (status & MII_M1011_PHY_SPEC_STATUS_100)
 854			phy->speed = SPEED_100;
 855		else
 856			phy->speed = SPEED_10;
 857		if (status & MII_M1011_PHY_SPEC_STATUS_FULLDUPLEX)
 858			phy->duplex = DUPLEX_FULL;
 859		else
 860			phy->duplex = DUPLEX_HALF;
 861		pmask = MII_M1011_PHY_SPEC_STATUS_TX_PAUSE |
 862			MII_M1011_PHY_SPEC_STATUS_RX_PAUSE;
 863		phy->pause = (status & pmask) == pmask;
 864	}
 865	/* On non-aneg, we assume what we put in BMCR is the speed,
 866	 * though magic-aneg shouldn't prevent this case from occurring
 867	 */
 868
 869	return 0;
 870}
 871
 872#define MII_BASIC_FEATURES \
 873	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |	\
 874	 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |	\
 875	 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII |	\
 876	 SUPPORTED_Pause)
 877
 878/* On gigabit capable PHYs, we advertise Pause support but not asym pause
 879 * support for now as I'm not sure it's supported and Darwin doesn't do
 880 * it neither. --BenH.
 881 */
 882#define MII_GBIT_FEATURES \
 883	(MII_BASIC_FEATURES |	\
 884	 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
 885
 886/* Broadcom BCM 5201 */
 887static const struct mii_phy_ops bcm5201_phy_ops = {
 888	.init		= bcm5201_init,
 889	.suspend	= bcm5201_suspend,
 890	.setup_aneg	= genmii_setup_aneg,
 891	.setup_forced	= genmii_setup_forced,
 892	.poll_link	= genmii_poll_link,
 893	.read_link	= genmii_read_link,
 894};
 895
 896static struct mii_phy_def bcm5201_phy_def = {
 897	.phy_id		= 0x00406210,
 898	.phy_id_mask	= 0xfffffff0,
 899	.name		= "BCM5201",
 900	.features	= MII_BASIC_FEATURES,
 901	.magic_aneg	= 1,
 902	.ops		= &bcm5201_phy_ops
 903};
 904
 905/* Broadcom BCM 5221 */
 906static const struct mii_phy_ops bcm5221_phy_ops = {
 907	.suspend	= bcm5221_suspend,
 908	.init		= bcm5221_init,
 909	.setup_aneg	= genmii_setup_aneg,
 910	.setup_forced	= genmii_setup_forced,
 911	.poll_link	= genmii_poll_link,
 912	.read_link	= genmii_read_link,
 913};
 914
 915static struct mii_phy_def bcm5221_phy_def = {
 916	.phy_id		= 0x004061e0,
 917	.phy_id_mask	= 0xfffffff0,
 918	.name		= "BCM5221",
 919	.features	= MII_BASIC_FEATURES,
 920	.magic_aneg	= 1,
 921	.ops		= &bcm5221_phy_ops
 922};
 923
 924/* Broadcom BCM 5241 */
 925static const struct mii_phy_ops bcm5241_phy_ops = {
 926	.suspend	= bcm5241_suspend,
 927	.init		= bcm5241_init,
 928	.setup_aneg	= genmii_setup_aneg,
 929	.setup_forced	= genmii_setup_forced,
 930	.poll_link	= genmii_poll_link,
 931	.read_link	= genmii_read_link,
 932};
 933static struct mii_phy_def bcm5241_phy_def = {
 934	.phy_id		= 0x0143bc30,
 935	.phy_id_mask	= 0xfffffff0,
 936	.name		= "BCM5241",
 937	.features	= MII_BASIC_FEATURES,
 938	.magic_aneg	= 1,
 939	.ops		= &bcm5241_phy_ops
 940};
 941
 942/* Broadcom BCM 5400 */
 943static const struct mii_phy_ops bcm5400_phy_ops = {
 944	.init		= bcm5400_init,
 945	.suspend	= bcm5400_suspend,
 946	.setup_aneg	= bcm54xx_setup_aneg,
 947	.setup_forced	= bcm54xx_setup_forced,
 948	.poll_link	= genmii_poll_link,
 949	.read_link	= bcm54xx_read_link,
 950};
 951
 952static struct mii_phy_def bcm5400_phy_def = {
 953	.phy_id		= 0x00206040,
 954	.phy_id_mask	= 0xfffffff0,
 955	.name		= "BCM5400",
 956	.features	= MII_GBIT_FEATURES,
 957	.magic_aneg	= 1,
 958	.ops		= &bcm5400_phy_ops
 959};
 960
 961/* Broadcom BCM 5401 */
 962static const struct mii_phy_ops bcm5401_phy_ops = {
 963	.init		= bcm5401_init,
 964	.suspend	= bcm5401_suspend,
 965	.setup_aneg	= bcm54xx_setup_aneg,
 966	.setup_forced	= bcm54xx_setup_forced,
 967	.poll_link	= genmii_poll_link,
 968	.read_link	= bcm54xx_read_link,
 969};
 970
 971static struct mii_phy_def bcm5401_phy_def = {
 972	.phy_id		= 0x00206050,
 973	.phy_id_mask	= 0xfffffff0,
 974	.name		= "BCM5401",
 975	.features	= MII_GBIT_FEATURES,
 976	.magic_aneg	= 1,
 977	.ops		= &bcm5401_phy_ops
 978};
 979
 980/* Broadcom BCM 5411 */
 981static const struct mii_phy_ops bcm5411_phy_ops = {
 982	.init		= bcm5411_init,
 983	.suspend	= generic_suspend,
 984	.setup_aneg	= bcm54xx_setup_aneg,
 985	.setup_forced	= bcm54xx_setup_forced,
 986	.poll_link	= genmii_poll_link,
 987	.read_link	= bcm54xx_read_link,
 988};
 989
 990static struct mii_phy_def bcm5411_phy_def = {
 991	.phy_id		= 0x00206070,
 992	.phy_id_mask	= 0xfffffff0,
 993	.name		= "BCM5411",
 994	.features	= MII_GBIT_FEATURES,
 995	.magic_aneg	= 1,
 996	.ops		= &bcm5411_phy_ops
 997};
 998
 999/* Broadcom BCM 5421 */
1000static const struct mii_phy_ops bcm5421_phy_ops = {
1001	.init		= bcm5421_init,
1002	.suspend	= generic_suspend,
1003	.setup_aneg	= bcm54xx_setup_aneg,
1004	.setup_forced	= bcm54xx_setup_forced,
1005	.poll_link	= bcm5421_poll_link,
1006	.read_link	= bcm5421_read_link,
1007	.enable_fiber   = bcm5421_enable_fiber,
1008};
1009
1010static struct mii_phy_def bcm5421_phy_def = {
1011	.phy_id		= 0x002060e0,
1012	.phy_id_mask	= 0xfffffff0,
1013	.name		= "BCM5421",
1014	.features	= MII_GBIT_FEATURES,
1015	.magic_aneg	= 1,
1016	.ops		= &bcm5421_phy_ops
1017};
1018
1019/* Broadcom BCM 5421 built-in K2 */
1020static const struct mii_phy_ops bcm5421k2_phy_ops = {
1021	.init		= bcm5421_init,
1022	.suspend	= generic_suspend,
1023	.setup_aneg	= bcm54xx_setup_aneg,
1024	.setup_forced	= bcm54xx_setup_forced,
1025	.poll_link	= genmii_poll_link,
1026	.read_link	= bcm54xx_read_link,
1027};
1028
1029static struct mii_phy_def bcm5421k2_phy_def = {
1030	.phy_id		= 0x002062e0,
1031	.phy_id_mask	= 0xfffffff0,
1032	.name		= "BCM5421-K2",
1033	.features	= MII_GBIT_FEATURES,
1034	.magic_aneg	= 1,
1035	.ops		= &bcm5421k2_phy_ops
1036};
1037
1038static const struct mii_phy_ops bcm5461_phy_ops = {
1039	.init		= bcm5421_init,
1040	.suspend	= generic_suspend,
1041	.setup_aneg	= bcm54xx_setup_aneg,
1042	.setup_forced	= bcm54xx_setup_forced,
1043	.poll_link	= bcm5461_poll_link,
1044	.read_link	= bcm5461_read_link,
1045	.enable_fiber   = bcm5461_enable_fiber,
1046};
1047
1048static struct mii_phy_def bcm5461_phy_def = {
1049	.phy_id		= 0x002060c0,
1050	.phy_id_mask	= 0xfffffff0,
1051	.name		= "BCM5461",
1052	.features	= MII_GBIT_FEATURES,
1053	.magic_aneg	= 1,
1054	.ops		= &bcm5461_phy_ops
1055};
1056
1057/* Broadcom BCM 5462 built-in Vesta */
1058static const struct mii_phy_ops bcm5462V_phy_ops = {
1059	.init		= bcm5421_init,
1060	.suspend	= generic_suspend,
1061	.setup_aneg	= bcm54xx_setup_aneg,
1062	.setup_forced	= bcm54xx_setup_forced,
1063	.poll_link	= genmii_poll_link,
1064	.read_link	= bcm54xx_read_link,
1065};
1066
1067static struct mii_phy_def bcm5462V_phy_def = {
1068	.phy_id		= 0x002060d0,
1069	.phy_id_mask	= 0xfffffff0,
1070	.name		= "BCM5462-Vesta",
1071	.features	= MII_GBIT_FEATURES,
1072	.magic_aneg	= 1,
1073	.ops		= &bcm5462V_phy_ops
1074};
1075
1076/* Marvell 88E1101 amd 88E1111 */
1077static const struct mii_phy_ops marvell88e1101_phy_ops = {
1078	.suspend	= generic_suspend,
1079	.setup_aneg	= marvell_setup_aneg,
1080	.setup_forced	= marvell_setup_forced,
1081	.poll_link	= genmii_poll_link,
1082	.read_link	= marvell_read_link
1083};
1084
1085static const struct mii_phy_ops marvell88e1111_phy_ops = {
1086	.init		= marvell88e1111_init,
1087	.suspend	= generic_suspend,
1088	.setup_aneg	= marvell_setup_aneg,
1089	.setup_forced	= marvell_setup_forced,
1090	.poll_link	= genmii_poll_link,
1091	.read_link	= marvell_read_link
1092};
1093
1094/* two revs in darwin for the 88e1101 ... I could use a datasheet
1095 * to get the proper names...
1096 */
1097static struct mii_phy_def marvell88e1101v1_phy_def = {
1098	.phy_id		= 0x01410c20,
1099	.phy_id_mask	= 0xfffffff0,
1100	.name		= "Marvell 88E1101v1",
1101	.features	= MII_GBIT_FEATURES,
1102	.magic_aneg	= 1,
1103	.ops		= &marvell88e1101_phy_ops
1104};
1105static struct mii_phy_def marvell88e1101v2_phy_def = {
1106	.phy_id		= 0x01410c60,
1107	.phy_id_mask	= 0xfffffff0,
1108	.name		= "Marvell 88E1101v2",
1109	.features	= MII_GBIT_FEATURES,
1110	.magic_aneg	= 1,
1111	.ops		= &marvell88e1101_phy_ops
1112};
1113static struct mii_phy_def marvell88e1111_phy_def = {
1114	.phy_id		= 0x01410cc0,
1115	.phy_id_mask	= 0xfffffff0,
1116	.name		= "Marvell 88E1111",
1117	.features	= MII_GBIT_FEATURES,
1118	.magic_aneg	= 1,
1119	.ops		= &marvell88e1111_phy_ops
1120};
1121
1122/* Generic implementation for most 10/100 PHYs */
1123static const struct mii_phy_ops generic_phy_ops = {
1124	.setup_aneg	= genmii_setup_aneg,
1125	.setup_forced	= genmii_setup_forced,
1126	.poll_link	= genmii_poll_link,
1127	.read_link	= genmii_read_link
1128};
1129
1130static struct mii_phy_def genmii_phy_def = {
1131	.phy_id		= 0x00000000,
1132	.phy_id_mask	= 0x00000000,
1133	.name		= "Generic MII",
1134	.features	= MII_BASIC_FEATURES,
1135	.magic_aneg	= 0,
1136	.ops		= &generic_phy_ops
1137};
1138
1139static struct mii_phy_def* mii_phy_table[] = {
1140	&bcm5201_phy_def,
1141	&bcm5221_phy_def,
1142	&bcm5241_phy_def,
1143	&bcm5400_phy_def,
1144	&bcm5401_phy_def,
1145	&bcm5411_phy_def,
1146	&bcm5421_phy_def,
1147	&bcm5421k2_phy_def,
1148	&bcm5461_phy_def,
1149	&bcm5462V_phy_def,
1150	&marvell88e1101v1_phy_def,
1151	&marvell88e1101v2_phy_def,
1152	&marvell88e1111_phy_def,
1153	&genmii_phy_def,
1154	NULL
1155};
1156
1157int sungem_phy_probe(struct mii_phy *phy, int mii_id)
1158{
1159	int rc;
1160	u32 id;
1161	struct mii_phy_def* def;
1162	int i;
1163
1164	/* We do not reset the mii_phy structure as the driver
1165	 * may re-probe the PHY regulary
1166	 */
1167	phy->mii_id = mii_id;
1168
1169	/* Take PHY out of isloate mode and reset it. */
1170	rc = reset_one_mii_phy(phy, mii_id);
1171	if (rc)
1172		goto fail;
1173
1174	/* Read ID and find matching entry */
1175	id = (sungem_phy_read(phy, MII_PHYSID1) << 16 | sungem_phy_read(phy, MII_PHYSID2));
1176	printk(KERN_DEBUG KBUILD_MODNAME ": " "PHY ID: %x, addr: %x\n",
1177	       id, mii_id);
1178	for (i=0; (def = mii_phy_table[i]) != NULL; i++)
1179		if ((id & def->phy_id_mask) == def->phy_id)
1180			break;
1181	/* Should never be NULL (we have a generic entry), but... */
1182	if (def == NULL)
1183		goto fail;
1184
1185	phy->def = def;
1186
1187	return 0;
1188fail:
1189	phy->speed = 0;
1190	phy->duplex = 0;
1191	phy->pause = 0;
1192	phy->advertising = 0;
1193	return -ENODEV;
1194}
1195
1196EXPORT_SYMBOL(sungem_phy_probe);
1197MODULE_DESCRIPTION("PHY drivers for the sungem Ethernet MAC driver");
1198MODULE_LICENSE("GPL");
v3.1
 
   1/*
   2 * PHY drivers for the sungem ethernet driver.
   3 *
   4 * This file could be shared with other drivers.
   5 *
   6 * (c) 2002-2007, Benjamin Herrenscmidt (benh@kernel.crashing.org)
   7 *
   8 * TODO:
   9 *  - Add support for PHYs that provide an IRQ line
  10 *  - Eventually moved the entire polling state machine in
  11 *    there (out of the eth driver), so that it can easily be
  12 *    skipped on PHYs that implement it in hardware.
  13 *  - On LXT971 & BCM5201, Apple uses some chip specific regs
  14 *    to read the link status. Figure out why and if it makes
  15 *    sense to do the same (magic aneg ?)
  16 *  - Apple has some additional power management code for some
  17 *    Broadcom PHYs that they "hide" from the OpenSource version
  18 *    of darwin, still need to reverse engineer that
  19 */
  20
  21
  22#include <linux/module.h>
  23
  24#include <linux/kernel.h>
  25#include <linux/types.h>
  26#include <linux/netdevice.h>
  27#include <linux/etherdevice.h>
  28#include <linux/mii.h>
  29#include <linux/ethtool.h>
  30#include <linux/delay.h>
  31
  32#ifdef CONFIG_PPC_PMAC
  33#include <asm/prom.h>
  34#endif
  35
  36#include "sungem_phy.h"
  37
  38/* Link modes of the BCM5400 PHY */
  39static const int phy_BCM5400_link_table[8][3] = {
  40	{ 0, 0, 0 },	/* No link */
  41	{ 0, 0, 0 },	/* 10BT Half Duplex */
  42	{ 1, 0, 0 },	/* 10BT Full Duplex */
  43	{ 0, 1, 0 },	/* 100BT Half Duplex */
  44	{ 0, 1, 0 },	/* 100BT Half Duplex */
  45	{ 1, 1, 0 },	/* 100BT Full Duplex*/
  46	{ 1, 0, 1 },	/* 1000BT */
  47	{ 1, 0, 1 },	/* 1000BT */
  48};
  49
  50static inline int __phy_read(struct mii_phy* phy, int id, int reg)
  51{
  52	return phy->mdio_read(phy->dev, id, reg);
  53}
  54
  55static inline void __phy_write(struct mii_phy* phy, int id, int reg, int val)
  56{
  57	phy->mdio_write(phy->dev, id, reg, val);
  58}
  59
  60static inline int phy_read(struct mii_phy* phy, int reg)
  61{
  62	return phy->mdio_read(phy->dev, phy->mii_id, reg);
  63}
  64
  65static inline void phy_write(struct mii_phy* phy, int reg, int val)
  66{
  67	phy->mdio_write(phy->dev, phy->mii_id, reg, val);
  68}
  69
  70static int reset_one_mii_phy(struct mii_phy* phy, int phy_id)
  71{
  72	u16 val;
  73	int limit = 10000;
  74
  75	val = __phy_read(phy, phy_id, MII_BMCR);
  76	val &= ~(BMCR_ISOLATE | BMCR_PDOWN);
  77	val |= BMCR_RESET;
  78	__phy_write(phy, phy_id, MII_BMCR, val);
  79
  80	udelay(100);
  81
  82	while (--limit) {
  83		val = __phy_read(phy, phy_id, MII_BMCR);
  84		if ((val & BMCR_RESET) == 0)
  85			break;
  86		udelay(10);
  87	}
  88	if ((val & BMCR_ISOLATE) && limit > 0)
  89		__phy_write(phy, phy_id, MII_BMCR, val & ~BMCR_ISOLATE);
  90
  91	return limit <= 0;
  92}
  93
  94static int bcm5201_init(struct mii_phy* phy)
  95{
  96	u16 data;
  97
  98	data = phy_read(phy, MII_BCM5201_MULTIPHY);
  99	data &= ~MII_BCM5201_MULTIPHY_SUPERISOLATE;
 100	phy_write(phy, MII_BCM5201_MULTIPHY, data);
 101
 102	phy_write(phy, MII_BCM5201_INTERRUPT, 0);
 103
 104	return 0;
 105}
 106
 107static int bcm5201_suspend(struct mii_phy* phy)
 108{
 109	phy_write(phy, MII_BCM5201_INTERRUPT, 0);
 110	phy_write(phy, MII_BCM5201_MULTIPHY, MII_BCM5201_MULTIPHY_SUPERISOLATE);
 111
 112	return 0;
 113}
 114
 115static int bcm5221_init(struct mii_phy* phy)
 116{
 117	u16 data;
 118
 119	data = phy_read(phy, MII_BCM5221_TEST);
 120	phy_write(phy, MII_BCM5221_TEST,
 121		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
 122
 123	data = phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
 124	phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
 125		data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
 126
 127	data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
 128	phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
 129		data | MII_BCM5221_SHDOW_AUX_MODE4_CLKLOPWR);
 130
 131	data = phy_read(phy, MII_BCM5221_TEST);
 132	phy_write(phy, MII_BCM5221_TEST,
 133		data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
 134
 135	return 0;
 136}
 137
 138static int bcm5221_suspend(struct mii_phy* phy)
 139{
 140	u16 data;
 141
 142	data = phy_read(phy, MII_BCM5221_TEST);
 143	phy_write(phy, MII_BCM5221_TEST,
 144		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
 145
 146	data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
 147	phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
 148		  data | MII_BCM5221_SHDOW_AUX_MODE4_IDDQMODE);
 149
 150	return 0;
 151}
 152
 153static int bcm5241_init(struct mii_phy* phy)
 154{
 155	u16 data;
 156
 157	data = phy_read(phy, MII_BCM5221_TEST);
 158	phy_write(phy, MII_BCM5221_TEST,
 159		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
 160
 161	data = phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
 162	phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
 163		data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
 164
 165	data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
 166	phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
 167		data & ~MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
 168
 169	data = phy_read(phy, MII_BCM5221_TEST);
 170	phy_write(phy, MII_BCM5221_TEST,
 171		data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
 172
 173	return 0;
 174}
 175
 176static int bcm5241_suspend(struct mii_phy* phy)
 177{
 178	u16 data;
 179
 180	data = phy_read(phy, MII_BCM5221_TEST);
 181	phy_write(phy, MII_BCM5221_TEST,
 182		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
 183
 184	data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
 185	phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
 186		  data | MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
 187
 188	return 0;
 189}
 190
 191static int bcm5400_init(struct mii_phy* phy)
 192{
 193	u16 data;
 194
 195	/* Configure for gigabit full duplex */
 196	data = phy_read(phy, MII_BCM5400_AUXCONTROL);
 197	data |= MII_BCM5400_AUXCONTROL_PWR10BASET;
 198	phy_write(phy, MII_BCM5400_AUXCONTROL, data);
 199
 200	data = phy_read(phy, MII_BCM5400_GB_CONTROL);
 201	data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
 202	phy_write(phy, MII_BCM5400_GB_CONTROL, data);
 203
 204	udelay(100);
 205
 206	/* Reset and configure cascaded 10/100 PHY */
 207	(void)reset_one_mii_phy(phy, 0x1f);
 208
 209	data = __phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
 210	data |= MII_BCM5201_MULTIPHY_SERIALMODE;
 211	__phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
 212
 213	data = phy_read(phy, MII_BCM5400_AUXCONTROL);
 214	data &= ~MII_BCM5400_AUXCONTROL_PWR10BASET;
 215	phy_write(phy, MII_BCM5400_AUXCONTROL, data);
 216
 217	return 0;
 218}
 219
 220static int bcm5400_suspend(struct mii_phy* phy)
 221{
 222#if 0 /* Commented out in Darwin... someone has those dawn docs ? */
 223	phy_write(phy, MII_BMCR, BMCR_PDOWN);
 224#endif
 225	return 0;
 226}
 227
 228static int bcm5401_init(struct mii_phy* phy)
 229{
 230	u16 data;
 231	int rev;
 232
 233	rev = phy_read(phy, MII_PHYSID2) & 0x000f;
 234	if (rev == 0 || rev == 3) {
 235		/* Some revisions of 5401 appear to need this
 236		 * initialisation sequence to disable, according
 237		 * to OF, "tap power management"
 238		 *
 239		 * WARNING ! OF and Darwin don't agree on the
 240		 * register addresses. OF seem to interpret the
 241		 * register numbers below as decimal
 242		 *
 243		 * Note: This should (and does) match tg3_init_5401phy_dsp
 244		 *       in the tg3.c driver. -DaveM
 245		 */
 246		phy_write(phy, 0x18, 0x0c20);
 247		phy_write(phy, 0x17, 0x0012);
 248		phy_write(phy, 0x15, 0x1804);
 249		phy_write(phy, 0x17, 0x0013);
 250		phy_write(phy, 0x15, 0x1204);
 251		phy_write(phy, 0x17, 0x8006);
 252		phy_write(phy, 0x15, 0x0132);
 253		phy_write(phy, 0x17, 0x8006);
 254		phy_write(phy, 0x15, 0x0232);
 255		phy_write(phy, 0x17, 0x201f);
 256		phy_write(phy, 0x15, 0x0a20);
 257	}
 258
 259	/* Configure for gigabit full duplex */
 260	data = phy_read(phy, MII_BCM5400_GB_CONTROL);
 261	data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
 262	phy_write(phy, MII_BCM5400_GB_CONTROL, data);
 263
 264	udelay(10);
 265
 266	/* Reset and configure cascaded 10/100 PHY */
 267	(void)reset_one_mii_phy(phy, 0x1f);
 268
 269	data = __phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
 270	data |= MII_BCM5201_MULTIPHY_SERIALMODE;
 271	__phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
 272
 273	return 0;
 274}
 275
 276static int bcm5401_suspend(struct mii_phy* phy)
 277{
 278#if 0 /* Commented out in Darwin... someone has those dawn docs ? */
 279	phy_write(phy, MII_BMCR, BMCR_PDOWN);
 280#endif
 281	return 0;
 282}
 283
 284static int bcm5411_init(struct mii_phy* phy)
 285{
 286	u16 data;
 287
 288	/* Here's some more Apple black magic to setup
 289	 * some voltage stuffs.
 290	 */
 291	phy_write(phy, 0x1c, 0x8c23);
 292	phy_write(phy, 0x1c, 0x8ca3);
 293	phy_write(phy, 0x1c, 0x8c23);
 294
 295	/* Here, Apple seems to want to reset it, do
 296	 * it as well
 297	 */
 298	phy_write(phy, MII_BMCR, BMCR_RESET);
 299	phy_write(phy, MII_BMCR, 0x1340);
 300
 301	data = phy_read(phy, MII_BCM5400_GB_CONTROL);
 302	data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
 303	phy_write(phy, MII_BCM5400_GB_CONTROL, data);
 304
 305	udelay(10);
 306
 307	/* Reset and configure cascaded 10/100 PHY */
 308	(void)reset_one_mii_phy(phy, 0x1f);
 309
 310	return 0;
 311}
 312
 313static int genmii_setup_aneg(struct mii_phy *phy, u32 advertise)
 314{
 315	u16 ctl, adv;
 316
 317	phy->autoneg = 1;
 318	phy->speed = SPEED_10;
 319	phy->duplex = DUPLEX_HALF;
 320	phy->pause = 0;
 321	phy->advertising = advertise;
 322
 323	/* Setup standard advertise */
 324	adv = phy_read(phy, MII_ADVERTISE);
 325	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
 326	if (advertise & ADVERTISED_10baseT_Half)
 327		adv |= ADVERTISE_10HALF;
 328	if (advertise & ADVERTISED_10baseT_Full)
 329		adv |= ADVERTISE_10FULL;
 330	if (advertise & ADVERTISED_100baseT_Half)
 331		adv |= ADVERTISE_100HALF;
 332	if (advertise & ADVERTISED_100baseT_Full)
 333		adv |= ADVERTISE_100FULL;
 334	phy_write(phy, MII_ADVERTISE, adv);
 335
 336	/* Start/Restart aneg */
 337	ctl = phy_read(phy, MII_BMCR);
 338	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
 339	phy_write(phy, MII_BMCR, ctl);
 340
 341	return 0;
 342}
 343
 344static int genmii_setup_forced(struct mii_phy *phy, int speed, int fd)
 345{
 346	u16 ctl;
 347
 348	phy->autoneg = 0;
 349	phy->speed = speed;
 350	phy->duplex = fd;
 351	phy->pause = 0;
 352
 353	ctl = phy_read(phy, MII_BMCR);
 354	ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_ANENABLE);
 355
 356	/* First reset the PHY */
 357	phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
 358
 359	/* Select speed & duplex */
 360	switch(speed) {
 361	case SPEED_10:
 362		break;
 363	case SPEED_100:
 364		ctl |= BMCR_SPEED100;
 365		break;
 366	case SPEED_1000:
 367	default:
 368		return -EINVAL;
 369	}
 370	if (fd == DUPLEX_FULL)
 371		ctl |= BMCR_FULLDPLX;
 372	phy_write(phy, MII_BMCR, ctl);
 373
 374	return 0;
 375}
 376
 377static int genmii_poll_link(struct mii_phy *phy)
 378{
 379	u16 status;
 380
 381	(void)phy_read(phy, MII_BMSR);
 382	status = phy_read(phy, MII_BMSR);
 383	if ((status & BMSR_LSTATUS) == 0)
 384		return 0;
 385	if (phy->autoneg && !(status & BMSR_ANEGCOMPLETE))
 386		return 0;
 387	return 1;
 388}
 389
 390static int genmii_read_link(struct mii_phy *phy)
 391{
 392	u16 lpa;
 393
 394	if (phy->autoneg) {
 395		lpa = phy_read(phy, MII_LPA);
 396
 397		if (lpa & (LPA_10FULL | LPA_100FULL))
 398			phy->duplex = DUPLEX_FULL;
 399		else
 400			phy->duplex = DUPLEX_HALF;
 401		if (lpa & (LPA_100FULL | LPA_100HALF))
 402			phy->speed = SPEED_100;
 403		else
 404			phy->speed = SPEED_10;
 405		phy->pause = 0;
 406	}
 407	/* On non-aneg, we assume what we put in BMCR is the speed,
 408	 * though magic-aneg shouldn't prevent this case from occurring
 409	 */
 410
 411	 return 0;
 412}
 413
 414static int generic_suspend(struct mii_phy* phy)
 415{
 416	phy_write(phy, MII_BMCR, BMCR_PDOWN);
 417
 418	return 0;
 419}
 420
 421static int bcm5421_init(struct mii_phy* phy)
 422{
 423	u16 data;
 424	unsigned int id;
 425
 426	id = (phy_read(phy, MII_PHYSID1) << 16 | phy_read(phy, MII_PHYSID2));
 427
 428	/* Revision 0 of 5421 needs some fixups */
 429	if (id == 0x002060e0) {
 430		/* This is borrowed from MacOS
 431		 */
 432		phy_write(phy, 0x18, 0x1007);
 433		data = phy_read(phy, 0x18);
 434		phy_write(phy, 0x18, data | 0x0400);
 435		phy_write(phy, 0x18, 0x0007);
 436		data = phy_read(phy, 0x18);
 437		phy_write(phy, 0x18, data | 0x0800);
 438		phy_write(phy, 0x17, 0x000a);
 439		data = phy_read(phy, 0x15);
 440		phy_write(phy, 0x15, data | 0x0200);
 441	}
 442
 443	/* Pick up some init code from OF for K2 version */
 444	if ((id & 0xfffffff0) == 0x002062e0) {
 445		phy_write(phy, 4, 0x01e1);
 446		phy_write(phy, 9, 0x0300);
 447	}
 448
 449	/* Check if we can enable automatic low power */
 450#ifdef CONFIG_PPC_PMAC
 451	if (phy->platform_data) {
 452		struct device_node *np = of_get_parent(phy->platform_data);
 453		int can_low_power = 1;
 454		if (np == NULL || of_get_property(np, "no-autolowpower", NULL))
 455			can_low_power = 0;
 
 456		if (can_low_power) {
 457			/* Enable automatic low-power */
 458			phy_write(phy, 0x1c, 0x9002);
 459			phy_write(phy, 0x1c, 0xa821);
 460			phy_write(phy, 0x1c, 0x941d);
 461		}
 462	}
 463#endif /* CONFIG_PPC_PMAC */
 464
 465	return 0;
 466}
 467
 468static int bcm54xx_setup_aneg(struct mii_phy *phy, u32 advertise)
 469{
 470	u16 ctl, adv;
 471
 472	phy->autoneg = 1;
 473	phy->speed = SPEED_10;
 474	phy->duplex = DUPLEX_HALF;
 475	phy->pause = 0;
 476	phy->advertising = advertise;
 477
 478	/* Setup standard advertise */
 479	adv = phy_read(phy, MII_ADVERTISE);
 480	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
 481	if (advertise & ADVERTISED_10baseT_Half)
 482		adv |= ADVERTISE_10HALF;
 483	if (advertise & ADVERTISED_10baseT_Full)
 484		adv |= ADVERTISE_10FULL;
 485	if (advertise & ADVERTISED_100baseT_Half)
 486		adv |= ADVERTISE_100HALF;
 487	if (advertise & ADVERTISED_100baseT_Full)
 488		adv |= ADVERTISE_100FULL;
 489	if (advertise & ADVERTISED_Pause)
 490		adv |= ADVERTISE_PAUSE_CAP;
 491	if (advertise & ADVERTISED_Asym_Pause)
 492		adv |= ADVERTISE_PAUSE_ASYM;
 493	phy_write(phy, MII_ADVERTISE, adv);
 494
 495	/* Setup 1000BT advertise */
 496	adv = phy_read(phy, MII_1000BASETCONTROL);
 497	adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP|MII_1000BASETCONTROL_HALFDUPLEXCAP);
 498	if (advertise & SUPPORTED_1000baseT_Half)
 499		adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
 500	if (advertise & SUPPORTED_1000baseT_Full)
 501		adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
 502	phy_write(phy, MII_1000BASETCONTROL, adv);
 503
 504	/* Start/Restart aneg */
 505	ctl = phy_read(phy, MII_BMCR);
 506	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
 507	phy_write(phy, MII_BMCR, ctl);
 508
 509	return 0;
 510}
 511
 512static int bcm54xx_setup_forced(struct mii_phy *phy, int speed, int fd)
 513{
 514	u16 ctl;
 515
 516	phy->autoneg = 0;
 517	phy->speed = speed;
 518	phy->duplex = fd;
 519	phy->pause = 0;
 520
 521	ctl = phy_read(phy, MII_BMCR);
 522	ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
 523
 524	/* First reset the PHY */
 525	phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
 526
 527	/* Select speed & duplex */
 528	switch(speed) {
 529	case SPEED_10:
 530		break;
 531	case SPEED_100:
 532		ctl |= BMCR_SPEED100;
 533		break;
 534	case SPEED_1000:
 535		ctl |= BMCR_SPD2;
 536	}
 537	if (fd == DUPLEX_FULL)
 538		ctl |= BMCR_FULLDPLX;
 539
 540	// XXX Should we set the sungem to GII now on 1000BT ?
 541
 542	phy_write(phy, MII_BMCR, ctl);
 543
 544	return 0;
 545}
 546
 547static int bcm54xx_read_link(struct mii_phy *phy)
 548{
 549	int link_mode;
 550	u16 val;
 551
 552	if (phy->autoneg) {
 553	    	val = phy_read(phy, MII_BCM5400_AUXSTATUS);
 554		link_mode = ((val & MII_BCM5400_AUXSTATUS_LINKMODE_MASK) >>
 555			     MII_BCM5400_AUXSTATUS_LINKMODE_SHIFT);
 556		phy->duplex = phy_BCM5400_link_table[link_mode][0] ?
 557			DUPLEX_FULL : DUPLEX_HALF;
 558		phy->speed = phy_BCM5400_link_table[link_mode][2] ?
 559				SPEED_1000 :
 560				(phy_BCM5400_link_table[link_mode][1] ?
 561				 SPEED_100 : SPEED_10);
 562		val = phy_read(phy, MII_LPA);
 563		phy->pause = (phy->duplex == DUPLEX_FULL) &&
 564			((val & LPA_PAUSE) != 0);
 565	}
 566	/* On non-aneg, we assume what we put in BMCR is the speed,
 567	 * though magic-aneg shouldn't prevent this case from occurring
 568	 */
 569
 570	return 0;
 571}
 572
 573static int marvell88e1111_init(struct mii_phy* phy)
 574{
 575	u16 rev;
 576
 577	/* magic init sequence for rev 0 */
 578	rev = phy_read(phy, MII_PHYSID2) & 0x000f;
 579	if (rev == 0) {
 580		phy_write(phy, 0x1d, 0x000a);
 581		phy_write(phy, 0x1e, 0x0821);
 582
 583		phy_write(phy, 0x1d, 0x0006);
 584		phy_write(phy, 0x1e, 0x8600);
 585
 586		phy_write(phy, 0x1d, 0x000b);
 587		phy_write(phy, 0x1e, 0x0100);
 588
 589		phy_write(phy, 0x1d, 0x0004);
 590		phy_write(phy, 0x1e, 0x4850);
 591	}
 592	return 0;
 593}
 594
 595#define BCM5421_MODE_MASK	(1 << 5)
 596
 597static int bcm5421_poll_link(struct mii_phy* phy)
 598{
 599	u32 phy_reg;
 600	int mode;
 601
 602	/* find out in what mode we are */
 603	phy_write(phy, MII_NCONFIG, 0x1000);
 604	phy_reg = phy_read(phy, MII_NCONFIG);
 605
 606	mode = (phy_reg & BCM5421_MODE_MASK) >> 5;
 607
 608	if ( mode == BCM54XX_COPPER)
 609		return genmii_poll_link(phy);
 610
 611	/* try to find out wether we have a link */
 612	phy_write(phy, MII_NCONFIG, 0x2000);
 613	phy_reg = phy_read(phy, MII_NCONFIG);
 614
 615	if (phy_reg & 0x0020)
 616		return 0;
 617	else
 618		return 1;
 619}
 620
 621static int bcm5421_read_link(struct mii_phy* phy)
 622{
 623	u32 phy_reg;
 624	int mode;
 625
 626	/* find out in what mode we are */
 627	phy_write(phy, MII_NCONFIG, 0x1000);
 628	phy_reg = phy_read(phy, MII_NCONFIG);
 629
 630	mode = (phy_reg & BCM5421_MODE_MASK ) >> 5;
 631
 632	if ( mode == BCM54XX_COPPER)
 633		return bcm54xx_read_link(phy);
 634
 635	phy->speed = SPEED_1000;
 636
 637	/* find out wether we are running half- or full duplex */
 638	phy_write(phy, MII_NCONFIG, 0x2000);
 639	phy_reg = phy_read(phy, MII_NCONFIG);
 640
 641	if ( (phy_reg & 0x0080) >> 7)
 642		phy->duplex |=  DUPLEX_HALF;
 643	else
 644		phy->duplex |=  DUPLEX_FULL;
 645
 646	return 0;
 647}
 648
 649static int bcm5421_enable_fiber(struct mii_phy* phy, int autoneg)
 650{
 651	/* enable fiber mode */
 652	phy_write(phy, MII_NCONFIG, 0x9020);
 653	/* LEDs active in both modes, autosense prio = fiber */
 654	phy_write(phy, MII_NCONFIG, 0x945f);
 655
 656	if (!autoneg) {
 657		/* switch off fibre autoneg */
 658		phy_write(phy, MII_NCONFIG, 0xfc01);
 659		phy_write(phy, 0x0b, 0x0004);
 660	}
 661
 662	phy->autoneg = autoneg;
 663
 664	return 0;
 665}
 666
 667#define BCM5461_FIBER_LINK	(1 << 2)
 668#define BCM5461_MODE_MASK	(3 << 1)
 669
 670static int bcm5461_poll_link(struct mii_phy* phy)
 671{
 672	u32 phy_reg;
 673	int mode;
 674
 675	/* find out in what mode we are */
 676	phy_write(phy, MII_NCONFIG, 0x7c00);
 677	phy_reg = phy_read(phy, MII_NCONFIG);
 678
 679	mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
 680
 681	if ( mode == BCM54XX_COPPER)
 682		return genmii_poll_link(phy);
 683
 684	/* find out wether we have a link */
 685	phy_write(phy, MII_NCONFIG, 0x7000);
 686	phy_reg = phy_read(phy, MII_NCONFIG);
 687
 688	if (phy_reg & BCM5461_FIBER_LINK)
 689		return 1;
 690	else
 691		return 0;
 692}
 693
 694#define BCM5461_FIBER_DUPLEX	(1 << 3)
 695
 696static int bcm5461_read_link(struct mii_phy* phy)
 697{
 698	u32 phy_reg;
 699	int mode;
 700
 701	/* find out in what mode we are */
 702	phy_write(phy, MII_NCONFIG, 0x7c00);
 703	phy_reg = phy_read(phy, MII_NCONFIG);
 704
 705	mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
 706
 707	if ( mode == BCM54XX_COPPER) {
 708		return bcm54xx_read_link(phy);
 709	}
 710
 711	phy->speed = SPEED_1000;
 712
 713	/* find out wether we are running half- or full duplex */
 714	phy_write(phy, MII_NCONFIG, 0x7000);
 715	phy_reg = phy_read(phy, MII_NCONFIG);
 716
 717	if (phy_reg & BCM5461_FIBER_DUPLEX)
 718		phy->duplex |=  DUPLEX_FULL;
 719	else
 720		phy->duplex |=  DUPLEX_HALF;
 721
 722	return 0;
 723}
 724
 725static int bcm5461_enable_fiber(struct mii_phy* phy, int autoneg)
 726{
 727	/* select fiber mode, enable 1000 base-X registers */
 728	phy_write(phy, MII_NCONFIG, 0xfc0b);
 729
 730	if (autoneg) {
 731		/* enable fiber with no autonegotiation */
 732		phy_write(phy, MII_ADVERTISE, 0x01e0);
 733		phy_write(phy, MII_BMCR, 0x1140);
 734	} else {
 735		/* enable fiber with autonegotiation */
 736		phy_write(phy, MII_BMCR, 0x0140);
 737	}
 738
 739	phy->autoneg = autoneg;
 740
 741	return 0;
 742}
 743
 744static int marvell_setup_aneg(struct mii_phy *phy, u32 advertise)
 745{
 746	u16 ctl, adv;
 747
 748	phy->autoneg = 1;
 749	phy->speed = SPEED_10;
 750	phy->duplex = DUPLEX_HALF;
 751	phy->pause = 0;
 752	phy->advertising = advertise;
 753
 754	/* Setup standard advertise */
 755	adv = phy_read(phy, MII_ADVERTISE);
 756	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
 757	if (advertise & ADVERTISED_10baseT_Half)
 758		adv |= ADVERTISE_10HALF;
 759	if (advertise & ADVERTISED_10baseT_Full)
 760		adv |= ADVERTISE_10FULL;
 761	if (advertise & ADVERTISED_100baseT_Half)
 762		adv |= ADVERTISE_100HALF;
 763	if (advertise & ADVERTISED_100baseT_Full)
 764		adv |= ADVERTISE_100FULL;
 765	if (advertise & ADVERTISED_Pause)
 766		adv |= ADVERTISE_PAUSE_CAP;
 767	if (advertise & ADVERTISED_Asym_Pause)
 768		adv |= ADVERTISE_PAUSE_ASYM;
 769	phy_write(phy, MII_ADVERTISE, adv);
 770
 771	/* Setup 1000BT advertise & enable crossover detect
 772	 * XXX How do we advertise 1000BT ? Darwin source is
 773	 * confusing here, they read from specific control and
 774	 * write to control... Someone has specs for those
 775	 * beasts ?
 776	 */
 777	adv = phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
 778	adv |= MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX;
 779	adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP |
 780			MII_1000BASETCONTROL_HALFDUPLEXCAP);
 781	if (advertise & SUPPORTED_1000baseT_Half)
 782		adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
 783	if (advertise & SUPPORTED_1000baseT_Full)
 784		adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
 785	phy_write(phy, MII_1000BASETCONTROL, adv);
 786
 787	/* Start/Restart aneg */
 788	ctl = phy_read(phy, MII_BMCR);
 789	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
 790	phy_write(phy, MII_BMCR, ctl);
 791
 792	return 0;
 793}
 794
 795static int marvell_setup_forced(struct mii_phy *phy, int speed, int fd)
 796{
 797	u16 ctl, ctl2;
 798
 799	phy->autoneg = 0;
 800	phy->speed = speed;
 801	phy->duplex = fd;
 802	phy->pause = 0;
 803
 804	ctl = phy_read(phy, MII_BMCR);
 805	ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
 806	ctl |= BMCR_RESET;
 807
 808	/* Select speed & duplex */
 809	switch(speed) {
 810	case SPEED_10:
 811		break;
 812	case SPEED_100:
 813		ctl |= BMCR_SPEED100;
 814		break;
 815	/* I'm not sure about the one below, again, Darwin source is
 816	 * quite confusing and I lack chip specs
 817	 */
 818	case SPEED_1000:
 819		ctl |= BMCR_SPD2;
 820	}
 821	if (fd == DUPLEX_FULL)
 822		ctl |= BMCR_FULLDPLX;
 823
 824	/* Disable crossover. Again, the way Apple does it is strange,
 825	 * though I don't assume they are wrong ;)
 826	 */
 827	ctl2 = phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
 828	ctl2 &= ~(MII_M1011_PHY_SPEC_CONTROL_MANUAL_MDIX |
 829		MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX |
 830		MII_1000BASETCONTROL_FULLDUPLEXCAP |
 831		MII_1000BASETCONTROL_HALFDUPLEXCAP);
 832	if (speed == SPEED_1000)
 833		ctl2 |= (fd == DUPLEX_FULL) ?
 834			MII_1000BASETCONTROL_FULLDUPLEXCAP :
 835			MII_1000BASETCONTROL_HALFDUPLEXCAP;
 836	phy_write(phy, MII_1000BASETCONTROL, ctl2);
 837
 838	// XXX Should we set the sungem to GII now on 1000BT ?
 839
 840	phy_write(phy, MII_BMCR, ctl);
 841
 842	return 0;
 843}
 844
 845static int marvell_read_link(struct mii_phy *phy)
 846{
 847	u16 status, pmask;
 848
 849	if (phy->autoneg) {
 850		status = phy_read(phy, MII_M1011_PHY_SPEC_STATUS);
 851		if ((status & MII_M1011_PHY_SPEC_STATUS_RESOLVED) == 0)
 852			return -EAGAIN;
 853		if (status & MII_M1011_PHY_SPEC_STATUS_1000)
 854			phy->speed = SPEED_1000;
 855		else if (status & MII_M1011_PHY_SPEC_STATUS_100)
 856			phy->speed = SPEED_100;
 857		else
 858			phy->speed = SPEED_10;
 859		if (status & MII_M1011_PHY_SPEC_STATUS_FULLDUPLEX)
 860			phy->duplex = DUPLEX_FULL;
 861		else
 862			phy->duplex = DUPLEX_HALF;
 863		pmask = MII_M1011_PHY_SPEC_STATUS_TX_PAUSE |
 864			MII_M1011_PHY_SPEC_STATUS_RX_PAUSE;
 865		phy->pause = (status & pmask) == pmask;
 866	}
 867	/* On non-aneg, we assume what we put in BMCR is the speed,
 868	 * though magic-aneg shouldn't prevent this case from occurring
 869	 */
 870
 871	return 0;
 872}
 873
 874#define MII_BASIC_FEATURES \
 875	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |	\
 876	 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |	\
 877	 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII |	\
 878	 SUPPORTED_Pause)
 879
 880/* On gigabit capable PHYs, we advertise Pause support but not asym pause
 881 * support for now as I'm not sure it's supported and Darwin doesn't do
 882 * it neither. --BenH.
 883 */
 884#define MII_GBIT_FEATURES \
 885	(MII_BASIC_FEATURES |	\
 886	 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
 887
 888/* Broadcom BCM 5201 */
 889static struct mii_phy_ops bcm5201_phy_ops = {
 890	.init		= bcm5201_init,
 891	.suspend	= bcm5201_suspend,
 892	.setup_aneg	= genmii_setup_aneg,
 893	.setup_forced	= genmii_setup_forced,
 894	.poll_link	= genmii_poll_link,
 895	.read_link	= genmii_read_link,
 896};
 897
 898static struct mii_phy_def bcm5201_phy_def = {
 899	.phy_id		= 0x00406210,
 900	.phy_id_mask	= 0xfffffff0,
 901	.name		= "BCM5201",
 902	.features	= MII_BASIC_FEATURES,
 903	.magic_aneg	= 1,
 904	.ops		= &bcm5201_phy_ops
 905};
 906
 907/* Broadcom BCM 5221 */
 908static struct mii_phy_ops bcm5221_phy_ops = {
 909	.suspend	= bcm5221_suspend,
 910	.init		= bcm5221_init,
 911	.setup_aneg	= genmii_setup_aneg,
 912	.setup_forced	= genmii_setup_forced,
 913	.poll_link	= genmii_poll_link,
 914	.read_link	= genmii_read_link,
 915};
 916
 917static struct mii_phy_def bcm5221_phy_def = {
 918	.phy_id		= 0x004061e0,
 919	.phy_id_mask	= 0xfffffff0,
 920	.name		= "BCM5221",
 921	.features	= MII_BASIC_FEATURES,
 922	.magic_aneg	= 1,
 923	.ops		= &bcm5221_phy_ops
 924};
 925
 926/* Broadcom BCM 5241 */
 927static struct mii_phy_ops bcm5241_phy_ops = {
 928	.suspend	= bcm5241_suspend,
 929	.init		= bcm5241_init,
 930	.setup_aneg	= genmii_setup_aneg,
 931	.setup_forced	= genmii_setup_forced,
 932	.poll_link	= genmii_poll_link,
 933	.read_link	= genmii_read_link,
 934};
 935static struct mii_phy_def bcm5241_phy_def = {
 936	.phy_id		= 0x0143bc30,
 937	.phy_id_mask	= 0xfffffff0,
 938	.name		= "BCM5241",
 939	.features	= MII_BASIC_FEATURES,
 940	.magic_aneg	= 1,
 941	.ops		= &bcm5241_phy_ops
 942};
 943
 944/* Broadcom BCM 5400 */
 945static struct mii_phy_ops bcm5400_phy_ops = {
 946	.init		= bcm5400_init,
 947	.suspend	= bcm5400_suspend,
 948	.setup_aneg	= bcm54xx_setup_aneg,
 949	.setup_forced	= bcm54xx_setup_forced,
 950	.poll_link	= genmii_poll_link,
 951	.read_link	= bcm54xx_read_link,
 952};
 953
 954static struct mii_phy_def bcm5400_phy_def = {
 955	.phy_id		= 0x00206040,
 956	.phy_id_mask	= 0xfffffff0,
 957	.name		= "BCM5400",
 958	.features	= MII_GBIT_FEATURES,
 959	.magic_aneg	= 1,
 960	.ops		= &bcm5400_phy_ops
 961};
 962
 963/* Broadcom BCM 5401 */
 964static struct mii_phy_ops bcm5401_phy_ops = {
 965	.init		= bcm5401_init,
 966	.suspend	= bcm5401_suspend,
 967	.setup_aneg	= bcm54xx_setup_aneg,
 968	.setup_forced	= bcm54xx_setup_forced,
 969	.poll_link	= genmii_poll_link,
 970	.read_link	= bcm54xx_read_link,
 971};
 972
 973static struct mii_phy_def bcm5401_phy_def = {
 974	.phy_id		= 0x00206050,
 975	.phy_id_mask	= 0xfffffff0,
 976	.name		= "BCM5401",
 977	.features	= MII_GBIT_FEATURES,
 978	.magic_aneg	= 1,
 979	.ops		= &bcm5401_phy_ops
 980};
 981
 982/* Broadcom BCM 5411 */
 983static struct mii_phy_ops bcm5411_phy_ops = {
 984	.init		= bcm5411_init,
 985	.suspend	= generic_suspend,
 986	.setup_aneg	= bcm54xx_setup_aneg,
 987	.setup_forced	= bcm54xx_setup_forced,
 988	.poll_link	= genmii_poll_link,
 989	.read_link	= bcm54xx_read_link,
 990};
 991
 992static struct mii_phy_def bcm5411_phy_def = {
 993	.phy_id		= 0x00206070,
 994	.phy_id_mask	= 0xfffffff0,
 995	.name		= "BCM5411",
 996	.features	= MII_GBIT_FEATURES,
 997	.magic_aneg	= 1,
 998	.ops		= &bcm5411_phy_ops
 999};
1000
1001/* Broadcom BCM 5421 */
1002static struct mii_phy_ops bcm5421_phy_ops = {
1003	.init		= bcm5421_init,
1004	.suspend	= generic_suspend,
1005	.setup_aneg	= bcm54xx_setup_aneg,
1006	.setup_forced	= bcm54xx_setup_forced,
1007	.poll_link	= bcm5421_poll_link,
1008	.read_link	= bcm5421_read_link,
1009	.enable_fiber   = bcm5421_enable_fiber,
1010};
1011
1012static struct mii_phy_def bcm5421_phy_def = {
1013	.phy_id		= 0x002060e0,
1014	.phy_id_mask	= 0xfffffff0,
1015	.name		= "BCM5421",
1016	.features	= MII_GBIT_FEATURES,
1017	.magic_aneg	= 1,
1018	.ops		= &bcm5421_phy_ops
1019};
1020
1021/* Broadcom BCM 5421 built-in K2 */
1022static struct mii_phy_ops bcm5421k2_phy_ops = {
1023	.init		= bcm5421_init,
1024	.suspend	= generic_suspend,
1025	.setup_aneg	= bcm54xx_setup_aneg,
1026	.setup_forced	= bcm54xx_setup_forced,
1027	.poll_link	= genmii_poll_link,
1028	.read_link	= bcm54xx_read_link,
1029};
1030
1031static struct mii_phy_def bcm5421k2_phy_def = {
1032	.phy_id		= 0x002062e0,
1033	.phy_id_mask	= 0xfffffff0,
1034	.name		= "BCM5421-K2",
1035	.features	= MII_GBIT_FEATURES,
1036	.magic_aneg	= 1,
1037	.ops		= &bcm5421k2_phy_ops
1038};
1039
1040static struct mii_phy_ops bcm5461_phy_ops = {
1041	.init		= bcm5421_init,
1042	.suspend	= generic_suspend,
1043	.setup_aneg	= bcm54xx_setup_aneg,
1044	.setup_forced	= bcm54xx_setup_forced,
1045	.poll_link	= bcm5461_poll_link,
1046	.read_link	= bcm5461_read_link,
1047	.enable_fiber   = bcm5461_enable_fiber,
1048};
1049
1050static struct mii_phy_def bcm5461_phy_def = {
1051	.phy_id		= 0x002060c0,
1052	.phy_id_mask	= 0xfffffff0,
1053	.name		= "BCM5461",
1054	.features	= MII_GBIT_FEATURES,
1055	.magic_aneg	= 1,
1056	.ops		= &bcm5461_phy_ops
1057};
1058
1059/* Broadcom BCM 5462 built-in Vesta */
1060static struct mii_phy_ops bcm5462V_phy_ops = {
1061	.init		= bcm5421_init,
1062	.suspend	= generic_suspend,
1063	.setup_aneg	= bcm54xx_setup_aneg,
1064	.setup_forced	= bcm54xx_setup_forced,
1065	.poll_link	= genmii_poll_link,
1066	.read_link	= bcm54xx_read_link,
1067};
1068
1069static struct mii_phy_def bcm5462V_phy_def = {
1070	.phy_id		= 0x002060d0,
1071	.phy_id_mask	= 0xfffffff0,
1072	.name		= "BCM5462-Vesta",
1073	.features	= MII_GBIT_FEATURES,
1074	.magic_aneg	= 1,
1075	.ops		= &bcm5462V_phy_ops
1076};
1077
1078/* Marvell 88E1101 amd 88E1111 */
1079static struct mii_phy_ops marvell88e1101_phy_ops = {
1080	.suspend	= generic_suspend,
1081	.setup_aneg	= marvell_setup_aneg,
1082	.setup_forced	= marvell_setup_forced,
1083	.poll_link	= genmii_poll_link,
1084	.read_link	= marvell_read_link
1085};
1086
1087static struct mii_phy_ops marvell88e1111_phy_ops = {
1088	.init		= marvell88e1111_init,
1089	.suspend	= generic_suspend,
1090	.setup_aneg	= marvell_setup_aneg,
1091	.setup_forced	= marvell_setup_forced,
1092	.poll_link	= genmii_poll_link,
1093	.read_link	= marvell_read_link
1094};
1095
1096/* two revs in darwin for the 88e1101 ... I could use a datasheet
1097 * to get the proper names...
1098 */
1099static struct mii_phy_def marvell88e1101v1_phy_def = {
1100	.phy_id		= 0x01410c20,
1101	.phy_id_mask	= 0xfffffff0,
1102	.name		= "Marvell 88E1101v1",
1103	.features	= MII_GBIT_FEATURES,
1104	.magic_aneg	= 1,
1105	.ops		= &marvell88e1101_phy_ops
1106};
1107static struct mii_phy_def marvell88e1101v2_phy_def = {
1108	.phy_id		= 0x01410c60,
1109	.phy_id_mask	= 0xfffffff0,
1110	.name		= "Marvell 88E1101v2",
1111	.features	= MII_GBIT_FEATURES,
1112	.magic_aneg	= 1,
1113	.ops		= &marvell88e1101_phy_ops
1114};
1115static struct mii_phy_def marvell88e1111_phy_def = {
1116	.phy_id		= 0x01410cc0,
1117	.phy_id_mask	= 0xfffffff0,
1118	.name		= "Marvell 88E1111",
1119	.features	= MII_GBIT_FEATURES,
1120	.magic_aneg	= 1,
1121	.ops		= &marvell88e1111_phy_ops
1122};
1123
1124/* Generic implementation for most 10/100 PHYs */
1125static struct mii_phy_ops generic_phy_ops = {
1126	.setup_aneg	= genmii_setup_aneg,
1127	.setup_forced	= genmii_setup_forced,
1128	.poll_link	= genmii_poll_link,
1129	.read_link	= genmii_read_link
1130};
1131
1132static struct mii_phy_def genmii_phy_def = {
1133	.phy_id		= 0x00000000,
1134	.phy_id_mask	= 0x00000000,
1135	.name		= "Generic MII",
1136	.features	= MII_BASIC_FEATURES,
1137	.magic_aneg	= 0,
1138	.ops		= &generic_phy_ops
1139};
1140
1141static struct mii_phy_def* mii_phy_table[] = {
1142	&bcm5201_phy_def,
1143	&bcm5221_phy_def,
1144	&bcm5241_phy_def,
1145	&bcm5400_phy_def,
1146	&bcm5401_phy_def,
1147	&bcm5411_phy_def,
1148	&bcm5421_phy_def,
1149	&bcm5421k2_phy_def,
1150	&bcm5461_phy_def,
1151	&bcm5462V_phy_def,
1152	&marvell88e1101v1_phy_def,
1153	&marvell88e1101v2_phy_def,
1154	&marvell88e1111_phy_def,
1155	&genmii_phy_def,
1156	NULL
1157};
1158
1159int mii_phy_probe(struct mii_phy *phy, int mii_id)
1160{
1161	int rc;
1162	u32 id;
1163	struct mii_phy_def* def;
1164	int i;
1165
1166	/* We do not reset the mii_phy structure as the driver
1167	 * may re-probe the PHY regulary
1168	 */
1169	phy->mii_id = mii_id;
1170
1171	/* Take PHY out of isloate mode and reset it. */
1172	rc = reset_one_mii_phy(phy, mii_id);
1173	if (rc)
1174		goto fail;
1175
1176	/* Read ID and find matching entry */
1177	id = (phy_read(phy, MII_PHYSID1) << 16 | phy_read(phy, MII_PHYSID2));
1178	printk(KERN_DEBUG KBUILD_MODNAME ": " "PHY ID: %x, addr: %x\n",
1179	       id, mii_id);
1180	for (i=0; (def = mii_phy_table[i]) != NULL; i++)
1181		if ((id & def->phy_id_mask) == def->phy_id)
1182			break;
1183	/* Should never be NULL (we have a generic entry), but... */
1184	if (def == NULL)
1185		goto fail;
1186
1187	phy->def = def;
1188
1189	return 0;
1190fail:
1191	phy->speed = 0;
1192	phy->duplex = 0;
1193	phy->pause = 0;
1194	phy->advertising = 0;
1195	return -ENODEV;
1196}
1197
1198EXPORT_SYMBOL(mii_phy_probe);
 
1199MODULE_LICENSE("GPL");
1200