Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * smc91x.c
   3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
   4 *
   5 * Copyright (C) 1996 by Erik Stahlman
   6 * Copyright (C) 2001 Standard Microsystems Corporation
   7 *	Developed by Simple Network Magic Corporation
   8 * Copyright (C) 2003 Monta Vista Software, Inc.
   9 *	Unified SMC91x driver by Nicolas Pitre
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2 of the License, or
  14 * (at your option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  24 *
  25 * Arguments:
  26 * 	io	= for the base address
  27 *	irq	= for the IRQ
  28 *	nowait	= 0 for normal wait states, 1 eliminates additional wait states
  29 *
  30 * original author:
  31 * 	Erik Stahlman <erik@vt.edu>
  32 *
  33 * hardware multicast code:
  34 *    Peter Cammaert <pc@denkart.be>
  35 *
  36 * contributors:
  37 * 	Daris A Nevil <dnevil@snmc.com>
  38 *      Nicolas Pitre <nico@fluxnic.net>
  39 *	Russell King <rmk@arm.linux.org.uk>
  40 *
  41 * History:
  42 *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
  43 *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
  44 *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
  45 *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
  46 *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
  47 *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
  48 *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
  49 *                                more bus abstraction, big cleanup, etc.
  50 *   29/09/03  Russell King       - add driver model support
  51 *                                - ethtool support
  52 *                                - convert to use generic MII interface
  53 *                                - add link up/down notification
  54 *                                - don't try to handle full negotiation in
  55 *                                  smc_phy_configure
  56 *                                - clean up (and fix stack overrun) in PHY
  57 *                                  MII read/write functions
  58 *   22/09/04  Nicolas Pitre      big update (see commit log for details)
  59 */
  60static const char version[] =
  61	"smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>\n";
  62
  63/* Debugging level */
  64#ifndef SMC_DEBUG
  65#define SMC_DEBUG		0
  66#endif
  67
  68
  69#include <linux/init.h>
  70#include <linux/module.h>
  71#include <linux/kernel.h>
  72#include <linux/sched.h>
  73#include <linux/delay.h>
  74#include <linux/interrupt.h>
  75#include <linux/irq.h>
  76#include <linux/errno.h>
  77#include <linux/ioport.h>
  78#include <linux/crc32.h>
  79#include <linux/platform_device.h>
  80#include <linux/spinlock.h>
  81#include <linux/ethtool.h>
  82#include <linux/mii.h>
  83#include <linux/workqueue.h>
  84#include <linux/of.h>
  85
  86#include <linux/netdevice.h>
  87#include <linux/etherdevice.h>
  88#include <linux/skbuff.h>
  89
  90#include <asm/io.h>
  91
  92#include "smc91x.h"
  93
  94#ifndef SMC_NOWAIT
  95# define SMC_NOWAIT		0
  96#endif
  97static int nowait = SMC_NOWAIT;
  98module_param(nowait, int, 0400);
  99MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
 100
 101/*
 102 * Transmit timeout, default 5 seconds.
 103 */
 104static int watchdog = 1000;
 105module_param(watchdog, int, 0400);
 106MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
 107
 108MODULE_LICENSE("GPL");
 109MODULE_ALIAS("platform:smc91x");
 110
 111/*
 112 * The internal workings of the driver.  If you are changing anything
 113 * here with the SMC stuff, you should have the datasheet and know
 114 * what you are doing.
 115 */
 116#define CARDNAME "smc91x"
 117
 118/*
 119 * Use power-down feature of the chip
 120 */
 121#define POWER_DOWN		1
 122
 123/*
 124 * Wait time for memory to be free.  This probably shouldn't be
 125 * tuned that much, as waiting for this means nothing else happens
 126 * in the system
 127 */
 128#define MEMORY_WAIT_TIME	16
 129
 130/*
 131 * The maximum number of processing loops allowed for each call to the
 132 * IRQ handler.
 133 */
 134#define MAX_IRQ_LOOPS		8
 135
 136/*
 137 * This selects whether TX packets are sent one by one to the SMC91x internal
 138 * memory and throttled until transmission completes.  This may prevent
 139 * RX overruns a litle by keeping much of the memory free for RX packets
 140 * but to the expense of reduced TX throughput and increased IRQ overhead.
 141 * Note this is not a cure for a too slow data bus or too high IRQ latency.
 142 */
 143#define THROTTLE_TX_PKTS	0
 144
 145/*
 146 * The MII clock high/low times.  2x this number gives the MII clock period
 147 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
 148 */
 149#define MII_DELAY		1
 150
 151#if SMC_DEBUG > 0
 152#define DBG(n, args...)					\
 153	do {						\
 154		if (SMC_DEBUG >= (n))			\
 155			printk(args);	\
 156	} while (0)
 157
 158#define PRINTK(args...)   printk(args)
 159#else
 160#define DBG(n, args...)   do { } while(0)
 161#define PRINTK(args...)   printk(KERN_DEBUG args)
 162#endif
 163
 164#if SMC_DEBUG > 3
 165static void PRINT_PKT(u_char *buf, int length)
 166{
 167	int i;
 168	int remainder;
 169	int lines;
 170
 171	lines = length / 16;
 172	remainder = length % 16;
 173
 174	for (i = 0; i < lines ; i ++) {
 175		int cur;
 176		for (cur = 0; cur < 8; cur++) {
 177			u_char a, b;
 178			a = *buf++;
 179			b = *buf++;
 180			printk("%02x%02x ", a, b);
 181		}
 182		printk("\n");
 183	}
 184	for (i = 0; i < remainder/2 ; i++) {
 185		u_char a, b;
 186		a = *buf++;
 187		b = *buf++;
 188		printk("%02x%02x ", a, b);
 189	}
 190	printk("\n");
 191}
 192#else
 193#define PRINT_PKT(x...)  do { } while(0)
 194#endif
 195
 196
 197/* this enables an interrupt in the interrupt mask register */
 198#define SMC_ENABLE_INT(lp, x) do {					\
 199	unsigned char mask;						\
 200	unsigned long smc_enable_flags;					\
 201	spin_lock_irqsave(&lp->lock, smc_enable_flags);			\
 202	mask = SMC_GET_INT_MASK(lp);					\
 203	mask |= (x);							\
 204	SMC_SET_INT_MASK(lp, mask);					\
 205	spin_unlock_irqrestore(&lp->lock, smc_enable_flags);		\
 206} while (0)
 207
 208/* this disables an interrupt from the interrupt mask register */
 209#define SMC_DISABLE_INT(lp, x) do {					\
 210	unsigned char mask;						\
 211	unsigned long smc_disable_flags;				\
 212	spin_lock_irqsave(&lp->lock, smc_disable_flags);		\
 213	mask = SMC_GET_INT_MASK(lp);					\
 214	mask &= ~(x);							\
 215	SMC_SET_INT_MASK(lp, mask);					\
 216	spin_unlock_irqrestore(&lp->lock, smc_disable_flags);		\
 217} while (0)
 218
 219/*
 220 * Wait while MMU is busy.  This is usually in the order of a few nanosecs
 221 * if at all, but let's avoid deadlocking the system if the hardware
 222 * decides to go south.
 223 */
 224#define SMC_WAIT_MMU_BUSY(lp) do {					\
 225	if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {		\
 226		unsigned long timeout = jiffies + 2;			\
 227		while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {		\
 228			if (time_after(jiffies, timeout)) {		\
 229				printk("%s: timeout %s line %d\n",	\
 230					dev->name, __FILE__, __LINE__);	\
 231				break;					\
 232			}						\
 233			cpu_relax();					\
 234		}							\
 235	}								\
 236} while (0)
 237
 238
 239/*
 240 * this does a soft reset on the device
 241 */
 242static void smc_reset(struct net_device *dev)
 243{
 244	struct smc_local *lp = netdev_priv(dev);
 245	void __iomem *ioaddr = lp->base;
 246	unsigned int ctl, cfg;
 247	struct sk_buff *pending_skb;
 248
 249	DBG(2, "%s: %s\n", dev->name, __func__);
 250
 251	/* Disable all interrupts, block TX tasklet */
 252	spin_lock_irq(&lp->lock);
 253	SMC_SELECT_BANK(lp, 2);
 254	SMC_SET_INT_MASK(lp, 0);
 255	pending_skb = lp->pending_tx_skb;
 256	lp->pending_tx_skb = NULL;
 257	spin_unlock_irq(&lp->lock);
 258
 259	/* free any pending tx skb */
 260	if (pending_skb) {
 261		dev_kfree_skb(pending_skb);
 262		dev->stats.tx_errors++;
 263		dev->stats.tx_aborted_errors++;
 264	}
 265
 266	/*
 267	 * This resets the registers mostly to defaults, but doesn't
 268	 * affect EEPROM.  That seems unnecessary
 269	 */
 270	SMC_SELECT_BANK(lp, 0);
 271	SMC_SET_RCR(lp, RCR_SOFTRST);
 272
 273	/*
 274	 * Setup the Configuration Register
 275	 * This is necessary because the CONFIG_REG is not affected
 276	 * by a soft reset
 277	 */
 278	SMC_SELECT_BANK(lp, 1);
 279
 280	cfg = CONFIG_DEFAULT;
 281
 282	/*
 283	 * Setup for fast accesses if requested.  If the card/system
 284	 * can't handle it then there will be no recovery except for
 285	 * a hard reset or power cycle
 286	 */
 287	if (lp->cfg.flags & SMC91X_NOWAIT)
 288		cfg |= CONFIG_NO_WAIT;
 289
 290	/*
 291	 * Release from possible power-down state
 292	 * Configuration register is not affected by Soft Reset
 293	 */
 294	cfg |= CONFIG_EPH_POWER_EN;
 295
 296	SMC_SET_CONFIG(lp, cfg);
 297
 298	/* this should pause enough for the chip to be happy */
 299	/*
 300	 * elaborate?  What does the chip _need_? --jgarzik
 301	 *
 302	 * This seems to be undocumented, but something the original
 303	 * driver(s) have always done.  Suspect undocumented timing
 304	 * info/determined empirically. --rmk
 305	 */
 306	udelay(1);
 307
 308	/* Disable transmit and receive functionality */
 309	SMC_SELECT_BANK(lp, 0);
 310	SMC_SET_RCR(lp, RCR_CLEAR);
 311	SMC_SET_TCR(lp, TCR_CLEAR);
 312
 313	SMC_SELECT_BANK(lp, 1);
 314	ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
 315
 316	/*
 317	 * Set the control register to automatically release successfully
 318	 * transmitted packets, to make the best use out of our limited
 319	 * memory
 320	 */
 321	if(!THROTTLE_TX_PKTS)
 322		ctl |= CTL_AUTO_RELEASE;
 323	else
 324		ctl &= ~CTL_AUTO_RELEASE;
 325	SMC_SET_CTL(lp, ctl);
 326
 327	/* Reset the MMU */
 328	SMC_SELECT_BANK(lp, 2);
 329	SMC_SET_MMU_CMD(lp, MC_RESET);
 330	SMC_WAIT_MMU_BUSY(lp);
 331}
 332
 333/*
 334 * Enable Interrupts, Receive, and Transmit
 335 */
 336static void smc_enable(struct net_device *dev)
 337{
 338	struct smc_local *lp = netdev_priv(dev);
 339	void __iomem *ioaddr = lp->base;
 340	int mask;
 341
 342	DBG(2, "%s: %s\n", dev->name, __func__);
 343
 344	/* see the header file for options in TCR/RCR DEFAULT */
 345	SMC_SELECT_BANK(lp, 0);
 346	SMC_SET_TCR(lp, lp->tcr_cur_mode);
 347	SMC_SET_RCR(lp, lp->rcr_cur_mode);
 348
 349	SMC_SELECT_BANK(lp, 1);
 350	SMC_SET_MAC_ADDR(lp, dev->dev_addr);
 351
 352	/* now, enable interrupts */
 353	mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
 354	if (lp->version >= (CHIP_91100 << 4))
 355		mask |= IM_MDINT;
 356	SMC_SELECT_BANK(lp, 2);
 357	SMC_SET_INT_MASK(lp, mask);
 358
 359	/*
 360	 * From this point the register bank must _NOT_ be switched away
 361	 * to something else than bank 2 without proper locking against
 362	 * races with any tasklet or interrupt handlers until smc_shutdown()
 363	 * or smc_reset() is called.
 364	 */
 365}
 366
 367/*
 368 * this puts the device in an inactive state
 369 */
 370static void smc_shutdown(struct net_device *dev)
 371{
 372	struct smc_local *lp = netdev_priv(dev);
 373	void __iomem *ioaddr = lp->base;
 374	struct sk_buff *pending_skb;
 375
 376	DBG(2, "%s: %s\n", CARDNAME, __func__);
 377
 378	/* no more interrupts for me */
 379	spin_lock_irq(&lp->lock);
 380	SMC_SELECT_BANK(lp, 2);
 381	SMC_SET_INT_MASK(lp, 0);
 382	pending_skb = lp->pending_tx_skb;
 383	lp->pending_tx_skb = NULL;
 384	spin_unlock_irq(&lp->lock);
 385	if (pending_skb)
 386		dev_kfree_skb(pending_skb);
 387
 388	/* and tell the card to stay away from that nasty outside world */
 389	SMC_SELECT_BANK(lp, 0);
 390	SMC_SET_RCR(lp, RCR_CLEAR);
 391	SMC_SET_TCR(lp, TCR_CLEAR);
 392
 393#ifdef POWER_DOWN
 394	/* finally, shut the chip down */
 395	SMC_SELECT_BANK(lp, 1);
 396	SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
 397#endif
 398}
 399
 400/*
 401 * This is the procedure to handle the receipt of a packet.
 402 */
 403static inline void  smc_rcv(struct net_device *dev)
 404{
 405	struct smc_local *lp = netdev_priv(dev);
 406	void __iomem *ioaddr = lp->base;
 407	unsigned int packet_number, status, packet_len;
 408
 409	DBG(3, "%s: %s\n", dev->name, __func__);
 410
 411	packet_number = SMC_GET_RXFIFO(lp);
 412	if (unlikely(packet_number & RXFIFO_REMPTY)) {
 413		PRINTK("%s: smc_rcv with nothing on FIFO.\n", dev->name);
 414		return;
 415	}
 416
 417	/* read from start of packet */
 418	SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
 419
 420	/* First two words are status and packet length */
 421	SMC_GET_PKT_HDR(lp, status, packet_len);
 422	packet_len &= 0x07ff;  /* mask off top bits */
 423	DBG(2, "%s: RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
 424		dev->name, packet_number, status,
 425		packet_len, packet_len);
 426
 427	back:
 428	if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
 429		if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
 430			/* accept VLAN packets */
 431			status &= ~RS_TOOLONG;
 432			goto back;
 433		}
 434		if (packet_len < 6) {
 435			/* bloody hardware */
 436			printk(KERN_ERR "%s: fubar (rxlen %u status %x\n",
 437					dev->name, packet_len, status);
 438			status |= RS_TOOSHORT;
 439		}
 440		SMC_WAIT_MMU_BUSY(lp);
 441		SMC_SET_MMU_CMD(lp, MC_RELEASE);
 442		dev->stats.rx_errors++;
 443		if (status & RS_ALGNERR)
 444			dev->stats.rx_frame_errors++;
 445		if (status & (RS_TOOSHORT | RS_TOOLONG))
 446			dev->stats.rx_length_errors++;
 447		if (status & RS_BADCRC)
 448			dev->stats.rx_crc_errors++;
 449	} else {
 450		struct sk_buff *skb;
 451		unsigned char *data;
 452		unsigned int data_len;
 453
 454		/* set multicast stats */
 455		if (status & RS_MULTICAST)
 456			dev->stats.multicast++;
 457
 458		/*
 459		 * Actual payload is packet_len - 6 (or 5 if odd byte).
 460		 * We want skb_reserve(2) and the final ctrl word
 461		 * (2 bytes, possibly containing the payload odd byte).
 462		 * Furthermore, we add 2 bytes to allow rounding up to
 463		 * multiple of 4 bytes on 32 bit buses.
 464		 * Hence packet_len - 6 + 2 + 2 + 2.
 465		 */
 466		skb = dev_alloc_skb(packet_len);
 467		if (unlikely(skb == NULL)) {
 468			printk(KERN_NOTICE "%s: Low memory, packet dropped.\n",
 469				dev->name);
 470			SMC_WAIT_MMU_BUSY(lp);
 471			SMC_SET_MMU_CMD(lp, MC_RELEASE);
 472			dev->stats.rx_dropped++;
 473			return;
 474		}
 475
 476		/* Align IP header to 32 bits */
 477		skb_reserve(skb, 2);
 478
 479		/* BUG: the LAN91C111 rev A never sets this bit. Force it. */
 480		if (lp->version == 0x90)
 481			status |= RS_ODDFRAME;
 482
 483		/*
 484		 * If odd length: packet_len - 5,
 485		 * otherwise packet_len - 6.
 486		 * With the trailing ctrl byte it's packet_len - 4.
 487		 */
 488		data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
 489		data = skb_put(skb, data_len);
 490		SMC_PULL_DATA(lp, data, packet_len - 4);
 491
 492		SMC_WAIT_MMU_BUSY(lp);
 493		SMC_SET_MMU_CMD(lp, MC_RELEASE);
 494
 495		PRINT_PKT(data, packet_len - 4);
 496
 497		skb->protocol = eth_type_trans(skb, dev);
 498		netif_rx(skb);
 499		dev->stats.rx_packets++;
 500		dev->stats.rx_bytes += data_len;
 501	}
 502}
 503
 504#ifdef CONFIG_SMP
 505/*
 506 * On SMP we have the following problem:
 507 *
 508 * 	A = smc_hardware_send_pkt()
 509 * 	B = smc_hard_start_xmit()
 510 * 	C = smc_interrupt()
 511 *
 512 * A and B can never be executed simultaneously.  However, at least on UP,
 513 * it is possible (and even desirable) for C to interrupt execution of
 514 * A or B in order to have better RX reliability and avoid overruns.
 515 * C, just like A and B, must have exclusive access to the chip and
 516 * each of them must lock against any other concurrent access.
 517 * Unfortunately this is not possible to have C suspend execution of A or
 518 * B taking place on another CPU. On UP this is no an issue since A and B
 519 * are run from softirq context and C from hard IRQ context, and there is
 520 * no other CPU where concurrent access can happen.
 521 * If ever there is a way to force at least B and C to always be executed
 522 * on the same CPU then we could use read/write locks to protect against
 523 * any other concurrent access and C would always interrupt B. But life
 524 * isn't that easy in a SMP world...
 525 */
 526#define smc_special_trylock(lock, flags)				\
 527({									\
 528	int __ret;							\
 529	local_irq_save(flags);						\
 530	__ret = spin_trylock(lock);					\
 531	if (!__ret)							\
 532		local_irq_restore(flags);				\
 533	__ret;								\
 534})
 535#define smc_special_lock(lock, flags)		spin_lock_irqsave(lock, flags)
 536#define smc_special_unlock(lock, flags) 	spin_unlock_irqrestore(lock, flags)
 537#else
 538#define smc_special_trylock(lock, flags)	(flags == flags)
 539#define smc_special_lock(lock, flags)   	do { flags = 0; } while (0)
 540#define smc_special_unlock(lock, flags)	do { flags = 0; } while (0)
 541#endif
 542
 543/*
 544 * This is called to actually send a packet to the chip.
 545 */
 546static void smc_hardware_send_pkt(unsigned long data)
 547{
 548	struct net_device *dev = (struct net_device *)data;
 549	struct smc_local *lp = netdev_priv(dev);
 550	void __iomem *ioaddr = lp->base;
 551	struct sk_buff *skb;
 552	unsigned int packet_no, len;
 553	unsigned char *buf;
 554	unsigned long flags;
 555
 556	DBG(3, "%s: %s\n", dev->name, __func__);
 557
 558	if (!smc_special_trylock(&lp->lock, flags)) {
 559		netif_stop_queue(dev);
 560		tasklet_schedule(&lp->tx_task);
 561		return;
 562	}
 563
 564	skb = lp->pending_tx_skb;
 565	if (unlikely(!skb)) {
 566		smc_special_unlock(&lp->lock, flags);
 567		return;
 568	}
 569	lp->pending_tx_skb = NULL;
 570
 571	packet_no = SMC_GET_AR(lp);
 572	if (unlikely(packet_no & AR_FAILED)) {
 573		printk("%s: Memory allocation failed.\n", dev->name);
 574		dev->stats.tx_errors++;
 575		dev->stats.tx_fifo_errors++;
 576		smc_special_unlock(&lp->lock, flags);
 577		goto done;
 578	}
 579
 580	/* point to the beginning of the packet */
 581	SMC_SET_PN(lp, packet_no);
 582	SMC_SET_PTR(lp, PTR_AUTOINC);
 583
 584	buf = skb->data;
 585	len = skb->len;
 586	DBG(2, "%s: TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
 587		dev->name, packet_no, len, len, buf);
 588	PRINT_PKT(buf, len);
 589
 590	/*
 591	 * Send the packet length (+6 for status words, length, and ctl.
 592	 * The card will pad to 64 bytes with zeroes if packet is too small.
 593	 */
 594	SMC_PUT_PKT_HDR(lp, 0, len + 6);
 595
 596	/* send the actual data */
 597	SMC_PUSH_DATA(lp, buf, len & ~1);
 598
 599	/* Send final ctl word with the last byte if there is one */
 600	SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG(lp));
 601
 602	/*
 603	 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
 604	 * have the effect of having at most one packet queued for TX
 605	 * in the chip's memory at all time.
 606	 *
 607	 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
 608	 * when memory allocation (MC_ALLOC) does not succeed right away.
 609	 */
 610	if (THROTTLE_TX_PKTS)
 611		netif_stop_queue(dev);
 612
 613	/* queue the packet for TX */
 614	SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
 615	smc_special_unlock(&lp->lock, flags);
 616
 617	dev->trans_start = jiffies;
 618	dev->stats.tx_packets++;
 619	dev->stats.tx_bytes += len;
 620
 621	SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
 622
 623done:	if (!THROTTLE_TX_PKTS)
 624		netif_wake_queue(dev);
 625
 626	dev_kfree_skb(skb);
 627}
 628
 629/*
 630 * Since I am not sure if I will have enough room in the chip's ram
 631 * to store the packet, I call this routine which either sends it
 632 * now, or set the card to generates an interrupt when ready
 633 * for the packet.
 634 */
 635static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
 636{
 637	struct smc_local *lp = netdev_priv(dev);
 638	void __iomem *ioaddr = lp->base;
 639	unsigned int numPages, poll_count, status;
 640	unsigned long flags;
 641
 642	DBG(3, "%s: %s\n", dev->name, __func__);
 643
 644	BUG_ON(lp->pending_tx_skb != NULL);
 645
 646	/*
 647	 * The MMU wants the number of pages to be the number of 256 bytes
 648	 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
 649	 *
 650	 * The 91C111 ignores the size bits, but earlier models don't.
 651	 *
 652	 * Pkt size for allocating is data length +6 (for additional status
 653	 * words, length and ctl)
 654	 *
 655	 * If odd size then last byte is included in ctl word.
 656	 */
 657	numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
 658	if (unlikely(numPages > 7)) {
 659		printk("%s: Far too big packet error.\n", dev->name);
 660		dev->stats.tx_errors++;
 661		dev->stats.tx_dropped++;
 662		dev_kfree_skb(skb);
 663		return NETDEV_TX_OK;
 664	}
 665
 666	smc_special_lock(&lp->lock, flags);
 667
 668	/* now, try to allocate the memory */
 669	SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
 670
 671	/*
 672	 * Poll the chip for a short amount of time in case the
 673	 * allocation succeeds quickly.
 674	 */
 675	poll_count = MEMORY_WAIT_TIME;
 676	do {
 677		status = SMC_GET_INT(lp);
 678		if (status & IM_ALLOC_INT) {
 679			SMC_ACK_INT(lp, IM_ALLOC_INT);
 680  			break;
 681		}
 682   	} while (--poll_count);
 683
 684	smc_special_unlock(&lp->lock, flags);
 685
 686	lp->pending_tx_skb = skb;
 687   	if (!poll_count) {
 688		/* oh well, wait until the chip finds memory later */
 689		netif_stop_queue(dev);
 690		DBG(2, "%s: TX memory allocation deferred.\n", dev->name);
 691		SMC_ENABLE_INT(lp, IM_ALLOC_INT);
 692   	} else {
 693		/*
 694		 * Allocation succeeded: push packet to the chip's own memory
 695		 * immediately.
 696		 */
 697		smc_hardware_send_pkt((unsigned long)dev);
 698	}
 699
 700	return NETDEV_TX_OK;
 701}
 702
 703/*
 704 * This handles a TX interrupt, which is only called when:
 705 * - a TX error occurred, or
 706 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
 707 */
 708static void smc_tx(struct net_device *dev)
 709{
 710	struct smc_local *lp = netdev_priv(dev);
 711	void __iomem *ioaddr = lp->base;
 712	unsigned int saved_packet, packet_no, tx_status, pkt_len;
 713
 714	DBG(3, "%s: %s\n", dev->name, __func__);
 715
 716	/* If the TX FIFO is empty then nothing to do */
 717	packet_no = SMC_GET_TXFIFO(lp);
 718	if (unlikely(packet_no & TXFIFO_TEMPTY)) {
 719		PRINTK("%s: smc_tx with nothing on FIFO.\n", dev->name);
 720		return;
 721	}
 722
 723	/* select packet to read from */
 724	saved_packet = SMC_GET_PN(lp);
 725	SMC_SET_PN(lp, packet_no);
 726
 727	/* read the first word (status word) from this packet */
 728	SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
 729	SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
 730	DBG(2, "%s: TX STATUS 0x%04x PNR 0x%02x\n",
 731		dev->name, tx_status, packet_no);
 732
 733	if (!(tx_status & ES_TX_SUC))
 734		dev->stats.tx_errors++;
 735
 736	if (tx_status & ES_LOSTCARR)
 737		dev->stats.tx_carrier_errors++;
 738
 739	if (tx_status & (ES_LATCOL | ES_16COL)) {
 740		PRINTK("%s: %s occurred on last xmit\n", dev->name,
 741		       (tx_status & ES_LATCOL) ?
 742			"late collision" : "too many collisions");
 743		dev->stats.tx_window_errors++;
 744		if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
 745			printk(KERN_INFO "%s: unexpectedly large number of "
 746			       "bad collisions. Please check duplex "
 747			       "setting.\n", dev->name);
 748		}
 749	}
 750
 751	/* kill the packet */
 752	SMC_WAIT_MMU_BUSY(lp);
 753	SMC_SET_MMU_CMD(lp, MC_FREEPKT);
 754
 755	/* Don't restore Packet Number Reg until busy bit is cleared */
 756	SMC_WAIT_MMU_BUSY(lp);
 757	SMC_SET_PN(lp, saved_packet);
 758
 759	/* re-enable transmit */
 760	SMC_SELECT_BANK(lp, 0);
 761	SMC_SET_TCR(lp, lp->tcr_cur_mode);
 762	SMC_SELECT_BANK(lp, 2);
 763}
 764
 765
 766/*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
 767
 768static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
 769{
 770	struct smc_local *lp = netdev_priv(dev);
 771	void __iomem *ioaddr = lp->base;
 772	unsigned int mii_reg, mask;
 773
 774	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
 775	mii_reg |= MII_MDOE;
 776
 777	for (mask = 1 << (bits - 1); mask; mask >>= 1) {
 778		if (val & mask)
 779			mii_reg |= MII_MDO;
 780		else
 781			mii_reg &= ~MII_MDO;
 782
 783		SMC_SET_MII(lp, mii_reg);
 784		udelay(MII_DELAY);
 785		SMC_SET_MII(lp, mii_reg | MII_MCLK);
 786		udelay(MII_DELAY);
 787	}
 788}
 789
 790static unsigned int smc_mii_in(struct net_device *dev, int bits)
 791{
 792	struct smc_local *lp = netdev_priv(dev);
 793	void __iomem *ioaddr = lp->base;
 794	unsigned int mii_reg, mask, val;
 795
 796	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
 797	SMC_SET_MII(lp, mii_reg);
 798
 799	for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
 800		if (SMC_GET_MII(lp) & MII_MDI)
 801			val |= mask;
 802
 803		SMC_SET_MII(lp, mii_reg);
 804		udelay(MII_DELAY);
 805		SMC_SET_MII(lp, mii_reg | MII_MCLK);
 806		udelay(MII_DELAY);
 807	}
 808
 809	return val;
 810}
 811
 812/*
 813 * Reads a register from the MII Management serial interface
 814 */
 815static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
 816{
 817	struct smc_local *lp = netdev_priv(dev);
 818	void __iomem *ioaddr = lp->base;
 819	unsigned int phydata;
 820
 821	SMC_SELECT_BANK(lp, 3);
 822
 823	/* Idle - 32 ones */
 824	smc_mii_out(dev, 0xffffffff, 32);
 825
 826	/* Start code (01) + read (10) + phyaddr + phyreg */
 827	smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
 828
 829	/* Turnaround (2bits) + phydata */
 830	phydata = smc_mii_in(dev, 18);
 831
 832	/* Return to idle state */
 833	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
 834
 835	DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
 836		__func__, phyaddr, phyreg, phydata);
 837
 838	SMC_SELECT_BANK(lp, 2);
 839	return phydata;
 840}
 841
 842/*
 843 * Writes a register to the MII Management serial interface
 844 */
 845static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
 846			  int phydata)
 847{
 848	struct smc_local *lp = netdev_priv(dev);
 849	void __iomem *ioaddr = lp->base;
 850
 851	SMC_SELECT_BANK(lp, 3);
 852
 853	/* Idle - 32 ones */
 854	smc_mii_out(dev, 0xffffffff, 32);
 855
 856	/* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
 857	smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
 858
 859	/* Return to idle state */
 860	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
 861
 862	DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
 863		__func__, phyaddr, phyreg, phydata);
 864
 865	SMC_SELECT_BANK(lp, 2);
 866}
 867
 868/*
 869 * Finds and reports the PHY address
 870 */
 871static void smc_phy_detect(struct net_device *dev)
 872{
 873	struct smc_local *lp = netdev_priv(dev);
 874	int phyaddr;
 875
 876	DBG(2, "%s: %s\n", dev->name, __func__);
 877
 878	lp->phy_type = 0;
 879
 880	/*
 881	 * Scan all 32 PHY addresses if necessary, starting at
 882	 * PHY#1 to PHY#31, and then PHY#0 last.
 883	 */
 884	for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
 885		unsigned int id1, id2;
 886
 887		/* Read the PHY identifiers */
 888		id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
 889		id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
 890
 891		DBG(3, "%s: phy_id1=0x%x, phy_id2=0x%x\n",
 892			dev->name, id1, id2);
 893
 894		/* Make sure it is a valid identifier */
 895		if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
 896		    id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
 897			/* Save the PHY's address */
 898			lp->mii.phy_id = phyaddr & 31;
 899			lp->phy_type = id1 << 16 | id2;
 900			break;
 901		}
 902	}
 903}
 904
 905/*
 906 * Sets the PHY to a configuration as determined by the user
 907 */
 908static int smc_phy_fixed(struct net_device *dev)
 909{
 910	struct smc_local *lp = netdev_priv(dev);
 911	void __iomem *ioaddr = lp->base;
 912	int phyaddr = lp->mii.phy_id;
 913	int bmcr, cfg1;
 914
 915	DBG(3, "%s: %s\n", dev->name, __func__);
 916
 917	/* Enter Link Disable state */
 918	cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
 919	cfg1 |= PHY_CFG1_LNKDIS;
 920	smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
 921
 922	/*
 923	 * Set our fixed capabilities
 924	 * Disable auto-negotiation
 925	 */
 926	bmcr = 0;
 927
 928	if (lp->ctl_rfduplx)
 929		bmcr |= BMCR_FULLDPLX;
 930
 931	if (lp->ctl_rspeed == 100)
 932		bmcr |= BMCR_SPEED100;
 933
 934	/* Write our capabilities to the phy control register */
 935	smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
 936
 937	/* Re-Configure the Receive/Phy Control register */
 938	SMC_SELECT_BANK(lp, 0);
 939	SMC_SET_RPC(lp, lp->rpc_cur_mode);
 940	SMC_SELECT_BANK(lp, 2);
 941
 942	return 1;
 943}
 944
 945/*
 946 * smc_phy_reset - reset the phy
 947 * @dev: net device
 948 * @phy: phy address
 949 *
 950 * Issue a software reset for the specified PHY and
 951 * wait up to 100ms for the reset to complete.  We should
 952 * not access the PHY for 50ms after issuing the reset.
 953 *
 954 * The time to wait appears to be dependent on the PHY.
 955 *
 956 * Must be called with lp->lock locked.
 957 */
 958static int smc_phy_reset(struct net_device *dev, int phy)
 959{
 960	struct smc_local *lp = netdev_priv(dev);
 961	unsigned int bmcr;
 962	int timeout;
 963
 964	smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
 965
 966	for (timeout = 2; timeout; timeout--) {
 967		spin_unlock_irq(&lp->lock);
 968		msleep(50);
 969		spin_lock_irq(&lp->lock);
 970
 971		bmcr = smc_phy_read(dev, phy, MII_BMCR);
 972		if (!(bmcr & BMCR_RESET))
 973			break;
 974	}
 975
 976	return bmcr & BMCR_RESET;
 977}
 978
 979/*
 980 * smc_phy_powerdown - powerdown phy
 981 * @dev: net device
 982 *
 983 * Power down the specified PHY
 984 */
 985static void smc_phy_powerdown(struct net_device *dev)
 986{
 987	struct smc_local *lp = netdev_priv(dev);
 988	unsigned int bmcr;
 989	int phy = lp->mii.phy_id;
 990
 991	if (lp->phy_type == 0)
 992		return;
 993
 994	/* We need to ensure that no calls to smc_phy_configure are
 995	   pending.
 996	*/
 997	cancel_work_sync(&lp->phy_configure);
 998
 999	bmcr = smc_phy_read(dev, phy, MII_BMCR);
1000	smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
1001}
1002
1003/*
1004 * smc_phy_check_media - check the media status and adjust TCR
1005 * @dev: net device
1006 * @init: set true for initialisation
1007 *
1008 * Select duplex mode depending on negotiation state.  This
1009 * also updates our carrier state.
1010 */
1011static void smc_phy_check_media(struct net_device *dev, int init)
1012{
1013	struct smc_local *lp = netdev_priv(dev);
1014	void __iomem *ioaddr = lp->base;
1015
1016	if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1017		/* duplex state has changed */
1018		if (lp->mii.full_duplex) {
1019			lp->tcr_cur_mode |= TCR_SWFDUP;
1020		} else {
1021			lp->tcr_cur_mode &= ~TCR_SWFDUP;
1022		}
1023
1024		SMC_SELECT_BANK(lp, 0);
1025		SMC_SET_TCR(lp, lp->tcr_cur_mode);
1026	}
1027}
1028
1029/*
1030 * Configures the specified PHY through the MII management interface
1031 * using Autonegotiation.
1032 * Calls smc_phy_fixed() if the user has requested a certain config.
1033 * If RPC ANEG bit is set, the media selection is dependent purely on
1034 * the selection by the MII (either in the MII BMCR reg or the result
1035 * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
1036 * is controlled by the RPC SPEED and RPC DPLX bits.
1037 */
1038static void smc_phy_configure(struct work_struct *work)
1039{
1040	struct smc_local *lp =
1041		container_of(work, struct smc_local, phy_configure);
1042	struct net_device *dev = lp->dev;
1043	void __iomem *ioaddr = lp->base;
1044	int phyaddr = lp->mii.phy_id;
1045	int my_phy_caps; /* My PHY capabilities */
1046	int my_ad_caps; /* My Advertised capabilities */
1047	int status;
1048
1049	DBG(3, "%s:smc_program_phy()\n", dev->name);
1050
1051	spin_lock_irq(&lp->lock);
1052
1053	/*
1054	 * We should not be called if phy_type is zero.
1055	 */
1056	if (lp->phy_type == 0)
1057		goto smc_phy_configure_exit;
1058
1059	if (smc_phy_reset(dev, phyaddr)) {
1060		printk("%s: PHY reset timed out\n", dev->name);
1061		goto smc_phy_configure_exit;
1062	}
1063
1064	/*
1065	 * Enable PHY Interrupts (for register 18)
1066	 * Interrupts listed here are disabled
1067	 */
1068	smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1069		PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1070		PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1071		PHY_INT_SPDDET | PHY_INT_DPLXDET);
1072
1073	/* Configure the Receive/Phy Control register */
1074	SMC_SELECT_BANK(lp, 0);
1075	SMC_SET_RPC(lp, lp->rpc_cur_mode);
1076
1077	/* If the user requested no auto neg, then go set his request */
1078	if (lp->mii.force_media) {
1079		smc_phy_fixed(dev);
1080		goto smc_phy_configure_exit;
1081	}
1082
1083	/* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1084	my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1085
1086	if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1087		printk(KERN_INFO "Auto negotiation NOT supported\n");
1088		smc_phy_fixed(dev);
1089		goto smc_phy_configure_exit;
1090	}
1091
1092	my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1093
1094	if (my_phy_caps & BMSR_100BASE4)
1095		my_ad_caps |= ADVERTISE_100BASE4;
1096	if (my_phy_caps & BMSR_100FULL)
1097		my_ad_caps |= ADVERTISE_100FULL;
1098	if (my_phy_caps & BMSR_100HALF)
1099		my_ad_caps |= ADVERTISE_100HALF;
1100	if (my_phy_caps & BMSR_10FULL)
1101		my_ad_caps |= ADVERTISE_10FULL;
1102	if (my_phy_caps & BMSR_10HALF)
1103		my_ad_caps |= ADVERTISE_10HALF;
1104
1105	/* Disable capabilities not selected by our user */
1106	if (lp->ctl_rspeed != 100)
1107		my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1108
1109	if (!lp->ctl_rfduplx)
1110		my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1111
1112	/* Update our Auto-Neg Advertisement Register */
1113	smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1114	lp->mii.advertising = my_ad_caps;
1115
1116	/*
1117	 * Read the register back.  Without this, it appears that when
1118	 * auto-negotiation is restarted, sometimes it isn't ready and
1119	 * the link does not come up.
1120	 */
1121	status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1122
1123	DBG(2, "%s: phy caps=%x\n", dev->name, my_phy_caps);
1124	DBG(2, "%s: phy advertised caps=%x\n", dev->name, my_ad_caps);
1125
1126	/* Restart auto-negotiation process in order to advertise my caps */
1127	smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1128
1129	smc_phy_check_media(dev, 1);
1130
1131smc_phy_configure_exit:
1132	SMC_SELECT_BANK(lp, 2);
1133	spin_unlock_irq(&lp->lock);
1134}
1135
1136/*
1137 * smc_phy_interrupt
1138 *
1139 * Purpose:  Handle interrupts relating to PHY register 18. This is
1140 *  called from the "hard" interrupt handler under our private spinlock.
1141 */
1142static void smc_phy_interrupt(struct net_device *dev)
1143{
1144	struct smc_local *lp = netdev_priv(dev);
1145	int phyaddr = lp->mii.phy_id;
1146	int phy18;
1147
1148	DBG(2, "%s: %s\n", dev->name, __func__);
1149
1150	if (lp->phy_type == 0)
1151		return;
1152
1153	for(;;) {
1154		smc_phy_check_media(dev, 0);
1155
1156		/* Read PHY Register 18, Status Output */
1157		phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1158		if ((phy18 & PHY_INT_INT) == 0)
1159			break;
1160	}
1161}
1162
1163/*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1164
1165static void smc_10bt_check_media(struct net_device *dev, int init)
1166{
1167	struct smc_local *lp = netdev_priv(dev);
1168	void __iomem *ioaddr = lp->base;
1169	unsigned int old_carrier, new_carrier;
1170
1171	old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1172
1173	SMC_SELECT_BANK(lp, 0);
1174	new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1175	SMC_SELECT_BANK(lp, 2);
1176
1177	if (init || (old_carrier != new_carrier)) {
1178		if (!new_carrier) {
1179			netif_carrier_off(dev);
1180		} else {
1181			netif_carrier_on(dev);
1182		}
1183		if (netif_msg_link(lp))
1184			printk(KERN_INFO "%s: link %s\n", dev->name,
1185			       new_carrier ? "up" : "down");
1186	}
1187}
1188
1189static void smc_eph_interrupt(struct net_device *dev)
1190{
1191	struct smc_local *lp = netdev_priv(dev);
1192	void __iomem *ioaddr = lp->base;
1193	unsigned int ctl;
1194
1195	smc_10bt_check_media(dev, 0);
1196
1197	SMC_SELECT_BANK(lp, 1);
1198	ctl = SMC_GET_CTL(lp);
1199	SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1200	SMC_SET_CTL(lp, ctl);
1201	SMC_SELECT_BANK(lp, 2);
1202}
1203
1204/*
1205 * This is the main routine of the driver, to handle the device when
1206 * it needs some attention.
1207 */
1208static irqreturn_t smc_interrupt(int irq, void *dev_id)
1209{
1210	struct net_device *dev = dev_id;
1211	struct smc_local *lp = netdev_priv(dev);
1212	void __iomem *ioaddr = lp->base;
1213	int status, mask, timeout, card_stats;
1214	int saved_pointer;
1215
1216	DBG(3, "%s: %s\n", dev->name, __func__);
1217
1218	spin_lock(&lp->lock);
1219
1220	/* A preamble may be used when there is a potential race
1221	 * between the interruptible transmit functions and this
1222	 * ISR. */
1223	SMC_INTERRUPT_PREAMBLE;
1224
1225	saved_pointer = SMC_GET_PTR(lp);
1226	mask = SMC_GET_INT_MASK(lp);
1227	SMC_SET_INT_MASK(lp, 0);
1228
1229	/* set a timeout value, so I don't stay here forever */
1230	timeout = MAX_IRQ_LOOPS;
1231
1232	do {
1233		status = SMC_GET_INT(lp);
1234
1235		DBG(2, "%s: INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1236			dev->name, status, mask,
1237			({ int meminfo; SMC_SELECT_BANK(lp, 0);
1238			   meminfo = SMC_GET_MIR(lp);
1239			   SMC_SELECT_BANK(lp, 2); meminfo; }),
1240			SMC_GET_FIFO(lp));
1241
1242		status &= mask;
1243		if (!status)
1244			break;
1245
1246		if (status & IM_TX_INT) {
1247			/* do this before RX as it will free memory quickly */
1248			DBG(3, "%s: TX int\n", dev->name);
1249			smc_tx(dev);
1250			SMC_ACK_INT(lp, IM_TX_INT);
1251			if (THROTTLE_TX_PKTS)
1252				netif_wake_queue(dev);
1253		} else if (status & IM_RCV_INT) {
1254			DBG(3, "%s: RX irq\n", dev->name);
1255			smc_rcv(dev);
1256		} else if (status & IM_ALLOC_INT) {
1257			DBG(3, "%s: Allocation irq\n", dev->name);
1258			tasklet_hi_schedule(&lp->tx_task);
1259			mask &= ~IM_ALLOC_INT;
1260		} else if (status & IM_TX_EMPTY_INT) {
1261			DBG(3, "%s: TX empty\n", dev->name);
1262			mask &= ~IM_TX_EMPTY_INT;
1263
1264			/* update stats */
1265			SMC_SELECT_BANK(lp, 0);
1266			card_stats = SMC_GET_COUNTER(lp);
1267			SMC_SELECT_BANK(lp, 2);
1268
1269			/* single collisions */
1270			dev->stats.collisions += card_stats & 0xF;
1271			card_stats >>= 4;
1272
1273			/* multiple collisions */
1274			dev->stats.collisions += card_stats & 0xF;
1275		} else if (status & IM_RX_OVRN_INT) {
1276			DBG(1, "%s: RX overrun (EPH_ST 0x%04x)\n", dev->name,
1277			       ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1278				  eph_st = SMC_GET_EPH_STATUS(lp);
1279				  SMC_SELECT_BANK(lp, 2); eph_st; }));
1280			SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1281			dev->stats.rx_errors++;
1282			dev->stats.rx_fifo_errors++;
1283		} else if (status & IM_EPH_INT) {
1284			smc_eph_interrupt(dev);
1285		} else if (status & IM_MDINT) {
1286			SMC_ACK_INT(lp, IM_MDINT);
1287			smc_phy_interrupt(dev);
1288		} else if (status & IM_ERCV_INT) {
1289			SMC_ACK_INT(lp, IM_ERCV_INT);
1290			PRINTK("%s: UNSUPPORTED: ERCV INTERRUPT\n", dev->name);
1291		}
1292	} while (--timeout);
1293
1294	/* restore register states */
1295	SMC_SET_PTR(lp, saved_pointer);
1296	SMC_SET_INT_MASK(lp, mask);
1297	spin_unlock(&lp->lock);
1298
1299#ifndef CONFIG_NET_POLL_CONTROLLER
1300	if (timeout == MAX_IRQ_LOOPS)
1301		PRINTK("%s: spurious interrupt (mask = 0x%02x)\n",
1302		       dev->name, mask);
1303#endif
1304	DBG(3, "%s: Interrupt done (%d loops)\n",
1305	       dev->name, MAX_IRQ_LOOPS - timeout);
1306
1307	/*
1308	 * We return IRQ_HANDLED unconditionally here even if there was
1309	 * nothing to do.  There is a possibility that a packet might
1310	 * get enqueued into the chip right after TX_EMPTY_INT is raised
1311	 * but just before the CPU acknowledges the IRQ.
1312	 * Better take an unneeded IRQ in some occasions than complexifying
1313	 * the code for all cases.
1314	 */
1315	return IRQ_HANDLED;
1316}
1317
1318#ifdef CONFIG_NET_POLL_CONTROLLER
1319/*
1320 * Polling receive - used by netconsole and other diagnostic tools
1321 * to allow network i/o with interrupts disabled.
1322 */
1323static void smc_poll_controller(struct net_device *dev)
1324{
1325	disable_irq(dev->irq);
1326	smc_interrupt(dev->irq, dev);
1327	enable_irq(dev->irq);
1328}
1329#endif
1330
1331/* Our watchdog timed out. Called by the networking layer */
1332static void smc_timeout(struct net_device *dev)
1333{
1334	struct smc_local *lp = netdev_priv(dev);
1335	void __iomem *ioaddr = lp->base;
1336	int status, mask, eph_st, meminfo, fifo;
1337
1338	DBG(2, "%s: %s\n", dev->name, __func__);
1339
1340	spin_lock_irq(&lp->lock);
1341	status = SMC_GET_INT(lp);
1342	mask = SMC_GET_INT_MASK(lp);
1343	fifo = SMC_GET_FIFO(lp);
1344	SMC_SELECT_BANK(lp, 0);
1345	eph_st = SMC_GET_EPH_STATUS(lp);
1346	meminfo = SMC_GET_MIR(lp);
1347	SMC_SELECT_BANK(lp, 2);
1348	spin_unlock_irq(&lp->lock);
1349	PRINTK( "%s: TX timeout (INT 0x%02x INTMASK 0x%02x "
1350		"MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1351		dev->name, status, mask, meminfo, fifo, eph_st );
1352
1353	smc_reset(dev);
1354	smc_enable(dev);
1355
1356	/*
1357	 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1358	 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1359	 * which calls schedule().  Hence we use a work queue.
1360	 */
1361	if (lp->phy_type != 0)
1362		schedule_work(&lp->phy_configure);
1363
1364	/* We can accept TX packets again */
1365	dev->trans_start = jiffies; /* prevent tx timeout */
1366	netif_wake_queue(dev);
1367}
1368
1369/*
1370 * This routine will, depending on the values passed to it,
1371 * either make it accept multicast packets, go into
1372 * promiscuous mode (for TCPDUMP and cousins) or accept
1373 * a select set of multicast packets
1374 */
1375static void smc_set_multicast_list(struct net_device *dev)
1376{
1377	struct smc_local *lp = netdev_priv(dev);
1378	void __iomem *ioaddr = lp->base;
1379	unsigned char multicast_table[8];
1380	int update_multicast = 0;
1381
1382	DBG(2, "%s: %s\n", dev->name, __func__);
1383
1384	if (dev->flags & IFF_PROMISC) {
1385		DBG(2, "%s: RCR_PRMS\n", dev->name);
1386		lp->rcr_cur_mode |= RCR_PRMS;
1387	}
1388
1389/* BUG?  I never disable promiscuous mode if multicasting was turned on.
1390   Now, I turn off promiscuous mode, but I don't do anything to multicasting
1391   when promiscuous mode is turned on.
1392*/
1393
1394	/*
1395	 * Here, I am setting this to accept all multicast packets.
1396	 * I don't need to zero the multicast table, because the flag is
1397	 * checked before the table is
1398	 */
1399	else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1400		DBG(2, "%s: RCR_ALMUL\n", dev->name);
1401		lp->rcr_cur_mode |= RCR_ALMUL;
1402	}
1403
1404	/*
1405	 * This sets the internal hardware table to filter out unwanted
1406	 * multicast packets before they take up memory.
1407	 *
1408	 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1409	 * address are the offset into the table.  If that bit is 1, then the
1410	 * multicast packet is accepted.  Otherwise, it's dropped silently.
1411	 *
1412	 * To use the 6 bits as an offset into the table, the high 3 bits are
1413	 * the number of the 8 bit register, while the low 3 bits are the bit
1414	 * within that register.
1415	 */
1416	else if (!netdev_mc_empty(dev)) {
1417		struct netdev_hw_addr *ha;
1418
1419		/* table for flipping the order of 3 bits */
1420		static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1421
1422		/* start with a table of all zeros: reject all */
1423		memset(multicast_table, 0, sizeof(multicast_table));
1424
1425		netdev_for_each_mc_addr(ha, dev) {
1426			int position;
1427
1428			/* only use the low order bits */
1429			position = crc32_le(~0, ha->addr, 6) & 0x3f;
1430
1431			/* do some messy swapping to put the bit in the right spot */
1432			multicast_table[invert3[position&7]] |=
1433				(1<<invert3[(position>>3)&7]);
1434		}
1435
1436		/* be sure I get rid of flags I might have set */
1437		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1438
1439		/* now, the table can be loaded into the chipset */
1440		update_multicast = 1;
1441	} else  {
1442		DBG(2, "%s: ~(RCR_PRMS|RCR_ALMUL)\n", dev->name);
1443		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1444
1445		/*
1446		 * since I'm disabling all multicast entirely, I need to
1447		 * clear the multicast list
1448		 */
1449		memset(multicast_table, 0, sizeof(multicast_table));
1450		update_multicast = 1;
1451	}
1452
1453	spin_lock_irq(&lp->lock);
1454	SMC_SELECT_BANK(lp, 0);
1455	SMC_SET_RCR(lp, lp->rcr_cur_mode);
1456	if (update_multicast) {
1457		SMC_SELECT_BANK(lp, 3);
1458		SMC_SET_MCAST(lp, multicast_table);
1459	}
1460	SMC_SELECT_BANK(lp, 2);
1461	spin_unlock_irq(&lp->lock);
1462}
1463
1464
1465/*
1466 * Open and Initialize the board
1467 *
1468 * Set up everything, reset the card, etc..
1469 */
1470static int
1471smc_open(struct net_device *dev)
1472{
1473	struct smc_local *lp = netdev_priv(dev);
1474
1475	DBG(2, "%s: %s\n", dev->name, __func__);
1476
1477	/*
1478	 * Check that the address is valid.  If its not, refuse
1479	 * to bring the device up.  The user must specify an
1480	 * address using ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx
1481	 */
1482	if (!is_valid_ether_addr(dev->dev_addr)) {
1483		PRINTK("%s: no valid ethernet hw addr\n", __func__);
1484		return -EINVAL;
1485	}
1486
1487	/* Setup the default Register Modes */
1488	lp->tcr_cur_mode = TCR_DEFAULT;
1489	lp->rcr_cur_mode = RCR_DEFAULT;
1490	lp->rpc_cur_mode = RPC_DEFAULT |
1491				lp->cfg.leda << RPC_LSXA_SHFT |
1492				lp->cfg.ledb << RPC_LSXB_SHFT;
1493
1494	/*
1495	 * If we are not using a MII interface, we need to
1496	 * monitor our own carrier signal to detect faults.
1497	 */
1498	if (lp->phy_type == 0)
1499		lp->tcr_cur_mode |= TCR_MON_CSN;
1500
1501	/* reset the hardware */
1502	smc_reset(dev);
1503	smc_enable(dev);
1504
1505	/* Configure the PHY, initialize the link state */
1506	if (lp->phy_type != 0)
1507		smc_phy_configure(&lp->phy_configure);
1508	else {
1509		spin_lock_irq(&lp->lock);
1510		smc_10bt_check_media(dev, 1);
1511		spin_unlock_irq(&lp->lock);
1512	}
1513
1514	netif_start_queue(dev);
1515	return 0;
1516}
1517
1518/*
1519 * smc_close
1520 *
1521 * this makes the board clean up everything that it can
1522 * and not talk to the outside world.   Caused by
1523 * an 'ifconfig ethX down'
1524 */
1525static int smc_close(struct net_device *dev)
1526{
1527	struct smc_local *lp = netdev_priv(dev);
1528
1529	DBG(2, "%s: %s\n", dev->name, __func__);
1530
1531	netif_stop_queue(dev);
1532	netif_carrier_off(dev);
1533
1534	/* clear everything */
1535	smc_shutdown(dev);
1536	tasklet_kill(&lp->tx_task);
1537	smc_phy_powerdown(dev);
1538	return 0;
1539}
1540
1541/*
1542 * Ethtool support
1543 */
1544static int
1545smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1546{
1547	struct smc_local *lp = netdev_priv(dev);
1548	int ret;
1549
1550	cmd->maxtxpkt = 1;
1551	cmd->maxrxpkt = 1;
1552
1553	if (lp->phy_type != 0) {
1554		spin_lock_irq(&lp->lock);
1555		ret = mii_ethtool_gset(&lp->mii, cmd);
1556		spin_unlock_irq(&lp->lock);
1557	} else {
1558		cmd->supported = SUPPORTED_10baseT_Half |
1559				 SUPPORTED_10baseT_Full |
1560				 SUPPORTED_TP | SUPPORTED_AUI;
1561
1562		if (lp->ctl_rspeed == 10)
1563			ethtool_cmd_speed_set(cmd, SPEED_10);
1564		else if (lp->ctl_rspeed == 100)
1565			ethtool_cmd_speed_set(cmd, SPEED_100);
1566
1567		cmd->autoneg = AUTONEG_DISABLE;
1568		cmd->transceiver = XCVR_INTERNAL;
1569		cmd->port = 0;
1570		cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1571
1572		ret = 0;
1573	}
1574
1575	return ret;
1576}
1577
1578static int
1579smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1580{
1581	struct smc_local *lp = netdev_priv(dev);
1582	int ret;
1583
1584	if (lp->phy_type != 0) {
1585		spin_lock_irq(&lp->lock);
1586		ret = mii_ethtool_sset(&lp->mii, cmd);
1587		spin_unlock_irq(&lp->lock);
1588	} else {
1589		if (cmd->autoneg != AUTONEG_DISABLE ||
1590		    cmd->speed != SPEED_10 ||
1591		    (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1592		    (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1593			return -EINVAL;
1594
1595//		lp->port = cmd->port;
1596		lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1597
1598//		if (netif_running(dev))
1599//			smc_set_port(dev);
1600
1601		ret = 0;
1602	}
1603
1604	return ret;
1605}
1606
1607static void
1608smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1609{
1610	strncpy(info->driver, CARDNAME, sizeof(info->driver));
1611	strncpy(info->version, version, sizeof(info->version));
1612	strncpy(info->bus_info, dev_name(dev->dev.parent), sizeof(info->bus_info));
1613}
1614
1615static int smc_ethtool_nwayreset(struct net_device *dev)
1616{
1617	struct smc_local *lp = netdev_priv(dev);
1618	int ret = -EINVAL;
1619
1620	if (lp->phy_type != 0) {
1621		spin_lock_irq(&lp->lock);
1622		ret = mii_nway_restart(&lp->mii);
1623		spin_unlock_irq(&lp->lock);
1624	}
1625
1626	return ret;
1627}
1628
1629static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1630{
1631	struct smc_local *lp = netdev_priv(dev);
1632	return lp->msg_enable;
1633}
1634
1635static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1636{
1637	struct smc_local *lp = netdev_priv(dev);
1638	lp->msg_enable = level;
1639}
1640
1641static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1642{
1643	u16 ctl;
1644	struct smc_local *lp = netdev_priv(dev);
1645	void __iomem *ioaddr = lp->base;
1646
1647	spin_lock_irq(&lp->lock);
1648	/* load word into GP register */
1649	SMC_SELECT_BANK(lp, 1);
1650	SMC_SET_GP(lp, word);
1651	/* set the address to put the data in EEPROM */
1652	SMC_SELECT_BANK(lp, 2);
1653	SMC_SET_PTR(lp, addr);
1654	/* tell it to write */
1655	SMC_SELECT_BANK(lp, 1);
1656	ctl = SMC_GET_CTL(lp);
1657	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1658	/* wait for it to finish */
1659	do {
1660		udelay(1);
1661	} while (SMC_GET_CTL(lp) & CTL_STORE);
1662	/* clean up */
1663	SMC_SET_CTL(lp, ctl);
1664	SMC_SELECT_BANK(lp, 2);
1665	spin_unlock_irq(&lp->lock);
1666	return 0;
1667}
1668
1669static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1670{
1671	u16 ctl;
1672	struct smc_local *lp = netdev_priv(dev);
1673	void __iomem *ioaddr = lp->base;
1674
1675	spin_lock_irq(&lp->lock);
1676	/* set the EEPROM address to get the data from */
1677	SMC_SELECT_BANK(lp, 2);
1678	SMC_SET_PTR(lp, addr | PTR_READ);
1679	/* tell it to load */
1680	SMC_SELECT_BANK(lp, 1);
1681	SMC_SET_GP(lp, 0xffff);	/* init to known */
1682	ctl = SMC_GET_CTL(lp);
1683	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1684	/* wait for it to finish */
1685	do {
1686		udelay(1);
1687	} while (SMC_GET_CTL(lp) & CTL_RELOAD);
1688	/* read word from GP register */
1689	*word = SMC_GET_GP(lp);
1690	/* clean up */
1691	SMC_SET_CTL(lp, ctl);
1692	SMC_SELECT_BANK(lp, 2);
1693	spin_unlock_irq(&lp->lock);
1694	return 0;
1695}
1696
1697static int smc_ethtool_geteeprom_len(struct net_device *dev)
1698{
1699	return 0x23 * 2;
1700}
1701
1702static int smc_ethtool_geteeprom(struct net_device *dev,
1703		struct ethtool_eeprom *eeprom, u8 *data)
1704{
1705	int i;
1706	int imax;
1707
1708	DBG(1, "Reading %d bytes at %d(0x%x)\n",
1709		eeprom->len, eeprom->offset, eeprom->offset);
1710	imax = smc_ethtool_geteeprom_len(dev);
1711	for (i = 0; i < eeprom->len; i += 2) {
1712		int ret;
1713		u16 wbuf;
1714		int offset = i + eeprom->offset;
1715		if (offset > imax)
1716			break;
1717		ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1718		if (ret != 0)
1719			return ret;
1720		DBG(2, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1721		data[i] = (wbuf >> 8) & 0xff;
1722		data[i+1] = wbuf & 0xff;
1723	}
1724	return 0;
1725}
1726
1727static int smc_ethtool_seteeprom(struct net_device *dev,
1728		struct ethtool_eeprom *eeprom, u8 *data)
1729{
1730	int i;
1731	int imax;
1732
1733	DBG(1, "Writing %d bytes to %d(0x%x)\n",
1734			eeprom->len, eeprom->offset, eeprom->offset);
1735	imax = smc_ethtool_geteeprom_len(dev);
1736	for (i = 0; i < eeprom->len; i += 2) {
1737		int ret;
1738		u16 wbuf;
1739		int offset = i + eeprom->offset;
1740		if (offset > imax)
1741			break;
1742		wbuf = (data[i] << 8) | data[i + 1];
1743		DBG(2, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1744		ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1745		if (ret != 0)
1746			return ret;
1747	}
1748	return 0;
1749}
1750
1751
1752static const struct ethtool_ops smc_ethtool_ops = {
1753	.get_settings	= smc_ethtool_getsettings,
1754	.set_settings	= smc_ethtool_setsettings,
1755	.get_drvinfo	= smc_ethtool_getdrvinfo,
1756
1757	.get_msglevel	= smc_ethtool_getmsglevel,
1758	.set_msglevel	= smc_ethtool_setmsglevel,
1759	.nway_reset	= smc_ethtool_nwayreset,
1760	.get_link	= ethtool_op_get_link,
1761	.get_eeprom_len = smc_ethtool_geteeprom_len,
1762	.get_eeprom	= smc_ethtool_geteeprom,
1763	.set_eeprom	= smc_ethtool_seteeprom,
1764};
1765
1766static const struct net_device_ops smc_netdev_ops = {
1767	.ndo_open		= smc_open,
1768	.ndo_stop		= smc_close,
1769	.ndo_start_xmit		= smc_hard_start_xmit,
1770	.ndo_tx_timeout		= smc_timeout,
1771	.ndo_set_multicast_list	= smc_set_multicast_list,
1772	.ndo_change_mtu		= eth_change_mtu,
1773	.ndo_validate_addr	= eth_validate_addr,
1774	.ndo_set_mac_address 	= eth_mac_addr,
1775#ifdef CONFIG_NET_POLL_CONTROLLER
1776	.ndo_poll_controller	= smc_poll_controller,
1777#endif
1778};
1779
1780/*
1781 * smc_findirq
1782 *
1783 * This routine has a simple purpose -- make the SMC chip generate an
1784 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1785 */
1786/*
1787 * does this still work?
1788 *
1789 * I just deleted auto_irq.c, since it was never built...
1790 *   --jgarzik
1791 */
1792static int __devinit smc_findirq(struct smc_local *lp)
1793{
1794	void __iomem *ioaddr = lp->base;
1795	int timeout = 20;
1796	unsigned long cookie;
1797
1798	DBG(2, "%s: %s\n", CARDNAME, __func__);
1799
1800	cookie = probe_irq_on();
1801
1802	/*
1803	 * What I try to do here is trigger an ALLOC_INT. This is done
1804	 * by allocating a small chunk of memory, which will give an interrupt
1805	 * when done.
1806	 */
1807	/* enable ALLOCation interrupts ONLY */
1808	SMC_SELECT_BANK(lp, 2);
1809	SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1810
1811	/*
1812 	 * Allocate 512 bytes of memory.  Note that the chip was just
1813	 * reset so all the memory is available
1814	 */
1815	SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1816
1817	/*
1818	 * Wait until positive that the interrupt has been generated
1819	 */
1820	do {
1821		int int_status;
1822		udelay(10);
1823		int_status = SMC_GET_INT(lp);
1824		if (int_status & IM_ALLOC_INT)
1825			break;		/* got the interrupt */
1826	} while (--timeout);
1827
1828	/*
1829	 * there is really nothing that I can do here if timeout fails,
1830	 * as autoirq_report will return a 0 anyway, which is what I
1831	 * want in this case.   Plus, the clean up is needed in both
1832	 * cases.
1833	 */
1834
1835	/* and disable all interrupts again */
1836	SMC_SET_INT_MASK(lp, 0);
1837
1838	/* and return what I found */
1839	return probe_irq_off(cookie);
1840}
1841
1842/*
1843 * Function: smc_probe(unsigned long ioaddr)
1844 *
1845 * Purpose:
1846 *	Tests to see if a given ioaddr points to an SMC91x chip.
1847 *	Returns a 0 on success
1848 *
1849 * Algorithm:
1850 *	(1) see if the high byte of BANK_SELECT is 0x33
1851 * 	(2) compare the ioaddr with the base register's address
1852 *	(3) see if I recognize the chip ID in the appropriate register
1853 *
1854 * Here I do typical initialization tasks.
1855 *
1856 * o  Initialize the structure if needed
1857 * o  print out my vanity message if not done so already
1858 * o  print out what type of hardware is detected
1859 * o  print out the ethernet address
1860 * o  find the IRQ
1861 * o  set up my private data
1862 * o  configure the dev structure with my subroutines
1863 * o  actually GRAB the irq.
1864 * o  GRAB the region
1865 */
1866static int __devinit smc_probe(struct net_device *dev, void __iomem *ioaddr,
1867			    unsigned long irq_flags)
1868{
1869	struct smc_local *lp = netdev_priv(dev);
1870	static int version_printed = 0;
1871	int retval;
1872	unsigned int val, revision_register;
1873	const char *version_string;
1874
1875	DBG(2, "%s: %s\n", CARDNAME, __func__);
1876
1877	/* First, see if the high byte is 0x33 */
1878	val = SMC_CURRENT_BANK(lp);
1879	DBG(2, "%s: bank signature probe returned 0x%04x\n", CARDNAME, val);
1880	if ((val & 0xFF00) != 0x3300) {
1881		if ((val & 0xFF) == 0x33) {
1882			printk(KERN_WARNING
1883				"%s: Detected possible byte-swapped interface"
1884				" at IOADDR %p\n", CARDNAME, ioaddr);
1885		}
1886		retval = -ENODEV;
1887		goto err_out;
1888	}
1889
1890	/*
1891	 * The above MIGHT indicate a device, but I need to write to
1892	 * further test this.
1893	 */
1894	SMC_SELECT_BANK(lp, 0);
1895	val = SMC_CURRENT_BANK(lp);
1896	if ((val & 0xFF00) != 0x3300) {
1897		retval = -ENODEV;
1898		goto err_out;
1899	}
1900
1901	/*
1902	 * well, we've already written once, so hopefully another
1903	 * time won't hurt.  This time, I need to switch the bank
1904	 * register to bank 1, so I can access the base address
1905	 * register
1906	 */
1907	SMC_SELECT_BANK(lp, 1);
1908	val = SMC_GET_BASE(lp);
1909	val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1910	if (((unsigned int)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1911		printk("%s: IOADDR %p doesn't match configuration (%x).\n",
1912			CARDNAME, ioaddr, val);
1913	}
1914
1915	/*
1916	 * check if the revision register is something that I
1917	 * recognize.  These might need to be added to later,
1918	 * as future revisions could be added.
1919	 */
1920	SMC_SELECT_BANK(lp, 3);
1921	revision_register = SMC_GET_REV(lp);
1922	DBG(2, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1923	version_string = chip_ids[ (revision_register >> 4) & 0xF];
1924	if (!version_string || (revision_register & 0xff00) != 0x3300) {
1925		/* I don't recognize this chip, so... */
1926		printk("%s: IO %p: Unrecognized revision register 0x%04x"
1927			", Contact author.\n", CARDNAME,
1928			ioaddr, revision_register);
1929
1930		retval = -ENODEV;
1931		goto err_out;
1932	}
1933
1934	/* At this point I'll assume that the chip is an SMC91x. */
1935	if (version_printed++ == 0)
1936		printk("%s", version);
1937
1938	/* fill in some of the fields */
1939	dev->base_addr = (unsigned long)ioaddr;
1940	lp->base = ioaddr;
1941	lp->version = revision_register & 0xff;
1942	spin_lock_init(&lp->lock);
1943
1944	/* Get the MAC address */
1945	SMC_SELECT_BANK(lp, 1);
1946	SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1947
1948	/* now, reset the chip, and put it into a known state */
1949	smc_reset(dev);
1950
1951	/*
1952	 * If dev->irq is 0, then the device has to be banged on to see
1953	 * what the IRQ is.
1954 	 *
1955	 * This banging doesn't always detect the IRQ, for unknown reasons.
1956	 * a workaround is to reset the chip and try again.
1957	 *
1958	 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1959	 * be what is requested on the command line.   I don't do that, mostly
1960	 * because the card that I have uses a non-standard method of accessing
1961	 * the IRQs, and because this _should_ work in most configurations.
1962	 *
1963	 * Specifying an IRQ is done with the assumption that the user knows
1964	 * what (s)he is doing.  No checking is done!!!!
1965	 */
1966	if (dev->irq < 1) {
1967		int trials;
1968
1969		trials = 3;
1970		while (trials--) {
1971			dev->irq = smc_findirq(lp);
1972			if (dev->irq)
1973				break;
1974			/* kick the card and try again */
1975			smc_reset(dev);
1976		}
1977	}
1978	if (dev->irq == 0) {
1979		printk("%s: Couldn't autodetect your IRQ. Use irq=xx.\n",
1980			dev->name);
1981		retval = -ENODEV;
1982		goto err_out;
1983	}
1984	dev->irq = irq_canonicalize(dev->irq);
1985
1986	/* Fill in the fields of the device structure with ethernet values. */
1987	ether_setup(dev);
1988
1989	dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1990	dev->netdev_ops = &smc_netdev_ops;
1991	dev->ethtool_ops = &smc_ethtool_ops;
1992
1993	tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1994	INIT_WORK(&lp->phy_configure, smc_phy_configure);
1995	lp->dev = dev;
1996	lp->mii.phy_id_mask = 0x1f;
1997	lp->mii.reg_num_mask = 0x1f;
1998	lp->mii.force_media = 0;
1999	lp->mii.full_duplex = 0;
2000	lp->mii.dev = dev;
2001	lp->mii.mdio_read = smc_phy_read;
2002	lp->mii.mdio_write = smc_phy_write;
2003
2004	/*
2005	 * Locate the phy, if any.
2006	 */
2007	if (lp->version >= (CHIP_91100 << 4))
2008		smc_phy_detect(dev);
2009
2010	/* then shut everything down to save power */
2011	smc_shutdown(dev);
2012	smc_phy_powerdown(dev);
2013
2014	/* Set default parameters */
2015	lp->msg_enable = NETIF_MSG_LINK;
2016	lp->ctl_rfduplx = 0;
2017	lp->ctl_rspeed = 10;
2018
2019	if (lp->version >= (CHIP_91100 << 4)) {
2020		lp->ctl_rfduplx = 1;
2021		lp->ctl_rspeed = 100;
2022	}
2023
2024	/* Grab the IRQ */
2025	retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2026      	if (retval)
2027      		goto err_out;
2028
2029#ifdef CONFIG_ARCH_PXA
2030#  ifdef SMC_USE_PXA_DMA
2031	lp->cfg.flags |= SMC91X_USE_DMA;
2032#  endif
2033	if (lp->cfg.flags & SMC91X_USE_DMA) {
2034		int dma = pxa_request_dma(dev->name, DMA_PRIO_LOW,
2035					  smc_pxa_dma_irq, NULL);
2036		if (dma >= 0)
2037			dev->dma = dma;
2038	}
2039#endif
2040
2041	retval = register_netdev(dev);
2042	if (retval == 0) {
2043		/* now, print out the card info, in a short format.. */
2044		printk("%s: %s (rev %d) at %p IRQ %d",
2045			dev->name, version_string, revision_register & 0x0f,
2046			lp->base, dev->irq);
2047
2048		if (dev->dma != (unsigned char)-1)
2049			printk(" DMA %d", dev->dma);
2050
2051		printk("%s%s\n",
2052			lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2053			THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2054
2055		if (!is_valid_ether_addr(dev->dev_addr)) {
2056			printk("%s: Invalid ethernet MAC address.  Please "
2057			       "set using ifconfig\n", dev->name);
2058		} else {
2059			/* Print the Ethernet address */
2060			printk("%s: Ethernet addr: %pM\n",
2061			       dev->name, dev->dev_addr);
2062		}
2063
2064		if (lp->phy_type == 0) {
2065			PRINTK("%s: No PHY found\n", dev->name);
2066		} else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2067			PRINTK("%s: PHY LAN83C183 (LAN91C111 Internal)\n", dev->name);
2068		} else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2069			PRINTK("%s: PHY LAN83C180\n", dev->name);
2070		}
2071	}
2072
2073err_out:
2074#ifdef CONFIG_ARCH_PXA
2075	if (retval && dev->dma != (unsigned char)-1)
2076		pxa_free_dma(dev->dma);
2077#endif
2078	return retval;
2079}
2080
2081static int smc_enable_device(struct platform_device *pdev)
2082{
2083	struct net_device *ndev = platform_get_drvdata(pdev);
2084	struct smc_local *lp = netdev_priv(ndev);
2085	unsigned long flags;
2086	unsigned char ecor, ecsr;
2087	void __iomem *addr;
2088	struct resource * res;
2089
2090	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2091	if (!res)
2092		return 0;
2093
2094	/*
2095	 * Map the attribute space.  This is overkill, but clean.
2096	 */
2097	addr = ioremap(res->start, ATTRIB_SIZE);
2098	if (!addr)
2099		return -ENOMEM;
2100
2101	/*
2102	 * Reset the device.  We must disable IRQs around this
2103	 * since a reset causes the IRQ line become active.
2104	 */
2105	local_irq_save(flags);
2106	ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2107	writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2108	readb(addr + (ECOR << SMC_IO_SHIFT));
2109
2110	/*
2111	 * Wait 100us for the chip to reset.
2112	 */
2113	udelay(100);
2114
2115	/*
2116	 * The device will ignore all writes to the enable bit while
2117	 * reset is asserted, even if the reset bit is cleared in the
2118	 * same write.  Must clear reset first, then enable the device.
2119	 */
2120	writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2121	writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2122
2123	/*
2124	 * Set the appropriate byte/word mode.
2125	 */
2126	ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2127	if (!SMC_16BIT(lp))
2128		ecsr |= ECSR_IOIS8;
2129	writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2130	local_irq_restore(flags);
2131
2132	iounmap(addr);
2133
2134	/*
2135	 * Wait for the chip to wake up.  We could poll the control
2136	 * register in the main register space, but that isn't mapped
2137	 * yet.  We know this is going to take 750us.
2138	 */
2139	msleep(1);
2140
2141	return 0;
2142}
2143
2144static int smc_request_attrib(struct platform_device *pdev,
2145			      struct net_device *ndev)
2146{
2147	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2148	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2149
2150	if (!res)
2151		return 0;
2152
2153	if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2154		return -EBUSY;
2155
2156	return 0;
2157}
2158
2159static void smc_release_attrib(struct platform_device *pdev,
2160			       struct net_device *ndev)
2161{
2162	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2163	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2164
2165	if (res)
2166		release_mem_region(res->start, ATTRIB_SIZE);
2167}
2168
2169static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2170{
2171	if (SMC_CAN_USE_DATACS) {
2172		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2173		struct smc_local *lp = netdev_priv(ndev);
2174
2175		if (!res)
2176			return;
2177
2178		if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2179			printk(KERN_INFO "%s: failed to request datacs memory region.\n", CARDNAME);
2180			return;
2181		}
2182
2183		lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2184	}
2185}
2186
2187static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2188{
2189	if (SMC_CAN_USE_DATACS) {
2190		struct smc_local *lp = netdev_priv(ndev);
2191		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2192
2193		if (lp->datacs)
2194			iounmap(lp->datacs);
2195
2196		lp->datacs = NULL;
2197
2198		if (res)
2199			release_mem_region(res->start, SMC_DATA_EXTENT);
2200	}
2201}
2202
2203/*
2204 * smc_init(void)
2205 *   Input parameters:
2206 *	dev->base_addr == 0, try to find all possible locations
2207 *	dev->base_addr > 0x1ff, this is the address to check
2208 *	dev->base_addr == <anything else>, return failure code
2209 *
2210 *   Output:
2211 *	0 --> there is a device
2212 *	anything else, error
2213 */
2214static int __devinit smc_drv_probe(struct platform_device *pdev)
2215{
2216	struct smc91x_platdata *pd = pdev->dev.platform_data;
2217	struct smc_local *lp;
2218	struct net_device *ndev;
2219	struct resource *res, *ires;
2220	unsigned int __iomem *addr;
2221	unsigned long irq_flags = SMC_IRQ_FLAGS;
2222	int ret;
2223
2224	ndev = alloc_etherdev(sizeof(struct smc_local));
2225	if (!ndev) {
2226		printk("%s: could not allocate device.\n", CARDNAME);
2227		ret = -ENOMEM;
2228		goto out;
2229	}
2230	SET_NETDEV_DEV(ndev, &pdev->dev);
2231
2232	/* get configuration from platform data, only allow use of
2233	 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2234	 */
2235
2236	lp = netdev_priv(ndev);
2237
2238	if (pd) {
2239		memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2240		lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2241	} else {
2242		lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
2243		lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2244		lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2245		lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2246	}
2247
2248	if (!lp->cfg.leda && !lp->cfg.ledb) {
2249		lp->cfg.leda = RPC_LSA_DEFAULT;
2250		lp->cfg.ledb = RPC_LSB_DEFAULT;
2251	}
2252
2253	ndev->dma = (unsigned char)-1;
2254
2255	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2256	if (!res)
2257		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2258	if (!res) {
2259		ret = -ENODEV;
2260		goto out_free_netdev;
2261	}
2262
2263
2264	if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2265		ret = -EBUSY;
2266		goto out_free_netdev;
2267	}
2268
2269	ires = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
2270	if (!ires) {
2271		ret = -ENODEV;
2272		goto out_release_io;
2273	}
2274
2275	ndev->irq = ires->start;
2276
2277	if (irq_flags == -1 || ires->flags & IRQF_TRIGGER_MASK)
2278		irq_flags = ires->flags & IRQF_TRIGGER_MASK;
2279
2280	ret = smc_request_attrib(pdev, ndev);
2281	if (ret)
2282		goto out_release_io;
2283#if defined(CONFIG_SA1100_ASSABET)
2284	NCR_0 |= NCR_ENET_OSC_EN;
2285#endif
2286	platform_set_drvdata(pdev, ndev);
2287	ret = smc_enable_device(pdev);
2288	if (ret)
2289		goto out_release_attrib;
2290
2291	addr = ioremap(res->start, SMC_IO_EXTENT);
2292	if (!addr) {
2293		ret = -ENOMEM;
2294		goto out_release_attrib;
2295	}
2296
2297#ifdef CONFIG_ARCH_PXA
2298	{
2299		struct smc_local *lp = netdev_priv(ndev);
2300		lp->device = &pdev->dev;
2301		lp->physaddr = res->start;
2302	}
2303#endif
2304
2305	ret = smc_probe(ndev, addr, irq_flags);
2306	if (ret != 0)
2307		goto out_iounmap;
2308
2309	smc_request_datacs(pdev, ndev);
2310
2311	return 0;
2312
2313 out_iounmap:
2314	platform_set_drvdata(pdev, NULL);
2315	iounmap(addr);
2316 out_release_attrib:
2317	smc_release_attrib(pdev, ndev);
2318 out_release_io:
2319	release_mem_region(res->start, SMC_IO_EXTENT);
2320 out_free_netdev:
2321	free_netdev(ndev);
2322 out:
2323	printk("%s: not found (%d).\n", CARDNAME, ret);
2324
2325	return ret;
2326}
2327
2328static int __devexit smc_drv_remove(struct platform_device *pdev)
2329{
2330	struct net_device *ndev = platform_get_drvdata(pdev);
2331	struct smc_local *lp = netdev_priv(ndev);
2332	struct resource *res;
2333
2334	platform_set_drvdata(pdev, NULL);
2335
2336	unregister_netdev(ndev);
2337
2338	free_irq(ndev->irq, ndev);
2339
2340#ifdef CONFIG_ARCH_PXA
2341	if (ndev->dma != (unsigned char)-1)
2342		pxa_free_dma(ndev->dma);
2343#endif
2344	iounmap(lp->base);
2345
2346	smc_release_datacs(pdev,ndev);
2347	smc_release_attrib(pdev,ndev);
2348
2349	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2350	if (!res)
2351		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2352	release_mem_region(res->start, SMC_IO_EXTENT);
2353
2354	free_netdev(ndev);
2355
2356	return 0;
2357}
2358
2359static int smc_drv_suspend(struct device *dev)
2360{
2361	struct platform_device *pdev = to_platform_device(dev);
2362	struct net_device *ndev = platform_get_drvdata(pdev);
2363
2364	if (ndev) {
2365		if (netif_running(ndev)) {
2366			netif_device_detach(ndev);
2367			smc_shutdown(ndev);
2368			smc_phy_powerdown(ndev);
2369		}
2370	}
2371	return 0;
2372}
2373
2374static int smc_drv_resume(struct device *dev)
2375{
2376	struct platform_device *pdev = to_platform_device(dev);
2377	struct net_device *ndev = platform_get_drvdata(pdev);
2378
2379	if (ndev) {
2380		struct smc_local *lp = netdev_priv(ndev);
2381		smc_enable_device(pdev);
2382		if (netif_running(ndev)) {
2383			smc_reset(ndev);
2384			smc_enable(ndev);
2385			if (lp->phy_type != 0)
2386				smc_phy_configure(&lp->phy_configure);
2387			netif_device_attach(ndev);
2388		}
2389	}
2390	return 0;
2391}
2392
2393#ifdef CONFIG_OF
2394static const struct of_device_id smc91x_match[] = {
2395	{ .compatible = "smsc,lan91c94", },
2396	{ .compatible = "smsc,lan91c111", },
2397	{},
2398};
2399MODULE_DEVICE_TABLE(of, smc91x_match);
2400#else
2401#define smc91x_match NULL
2402#endif
2403
2404static struct dev_pm_ops smc_drv_pm_ops = {
2405	.suspend	= smc_drv_suspend,
2406	.resume		= smc_drv_resume,
2407};
2408
2409static struct platform_driver smc_driver = {
2410	.probe		= smc_drv_probe,
2411	.remove		= __devexit_p(smc_drv_remove),
2412	.driver		= {
2413		.name	= CARDNAME,
2414		.owner	= THIS_MODULE,
2415		.pm	= &smc_drv_pm_ops,
2416		.of_match_table = smc91x_match,
2417	},
2418};
2419
2420static int __init smc_init(void)
2421{
2422	return platform_driver_register(&smc_driver);
2423}
2424
2425static void __exit smc_cleanup(void)
2426{
2427	platform_driver_unregister(&smc_driver);
2428}
2429
2430module_init(smc_init);
2431module_exit(smc_cleanup);