Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
   3 * Ethernet adapters. Based on earlier sk98lin, e100 and
   4 * FreeBSD if_sk drivers.
   5 *
   6 * This driver intentionally does not support all the features
   7 * of the original driver such as link fail-over and link management because
   8 * those should be done at higher levels.
   9 *
  10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2 of the License.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/in.h>
  29#include <linux/kernel.h>
  30#include <linux/module.h>
  31#include <linux/moduleparam.h>
  32#include <linux/netdevice.h>
  33#include <linux/etherdevice.h>
  34#include <linux/ethtool.h>
  35#include <linux/pci.h>
  36#include <linux/if_vlan.h>
  37#include <linux/ip.h>
  38#include <linux/delay.h>
  39#include <linux/crc32.h>
  40#include <linux/dma-mapping.h>
  41#include <linux/debugfs.h>
  42#include <linux/sched.h>
  43#include <linux/seq_file.h>
  44#include <linux/mii.h>
  45#include <linux/slab.h>
  46#include <linux/dmi.h>
  47#include <linux/prefetch.h>
  48#include <asm/irq.h>
  49
  50#include "skge.h"
  51
  52#define DRV_NAME		"skge"
  53#define DRV_VERSION		"1.14"
  54
  55#define DEFAULT_TX_RING_SIZE	128
  56#define DEFAULT_RX_RING_SIZE	512
  57#define MAX_TX_RING_SIZE	1024
  58#define TX_LOW_WATER		(MAX_SKB_FRAGS + 1)
  59#define MAX_RX_RING_SIZE	4096
  60#define RX_COPY_THRESHOLD	128
  61#define RX_BUF_SIZE		1536
  62#define PHY_RETRIES	        1000
  63#define ETH_JUMBO_MTU		9000
  64#define TX_WATCHDOG		(5 * HZ)
  65#define NAPI_WEIGHT		64
  66#define BLINK_MS		250
  67#define LINK_HZ			HZ
  68
  69#define SKGE_EEPROM_MAGIC	0x9933aabb
  70
  71
  72MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  73MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  74MODULE_LICENSE("GPL");
  75MODULE_VERSION(DRV_VERSION);
  76
  77static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  78				NETIF_MSG_LINK | NETIF_MSG_IFUP |
  79				NETIF_MSG_IFDOWN);
  80
  81static int debug = -1;	/* defaults above */
  82module_param(debug, int, 0);
  83MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  84
  85static DEFINE_PCI_DEVICE_TABLE(skge_id_table) = {
  86	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) },	  /* 3Com 3C940 */
  87	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) },	  /* 3Com 3C940B */
  88#ifdef CONFIG_SKGE_GENESIS
  89	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
  90#endif
  91	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
  92	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },	  /* D-Link DGE-530T (rev.B) */
  93	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) },	  /* D-Link DGE-530T */
  94	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) },	  /* D-Link DGE-530T Rev C1 */
  95	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },	  /* Marvell Yukon 88E8001/8003/8010 */
  96	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) },	  /* Belkin */
  97	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, 	  /* CNet PowerG-2000 */
  98	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) },	  /* Linksys EG1064 v2 */
  99	{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
 100	{ 0 }
 101};
 102MODULE_DEVICE_TABLE(pci, skge_id_table);
 103
 104static int skge_up(struct net_device *dev);
 105static int skge_down(struct net_device *dev);
 106static void skge_phy_reset(struct skge_port *skge);
 107static void skge_tx_clean(struct net_device *dev);
 108static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
 109static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
 110static void genesis_get_stats(struct skge_port *skge, u64 *data);
 111static void yukon_get_stats(struct skge_port *skge, u64 *data);
 112static void yukon_init(struct skge_hw *hw, int port);
 113static void genesis_mac_init(struct skge_hw *hw, int port);
 114static void genesis_link_up(struct skge_port *skge);
 115static void skge_set_multicast(struct net_device *dev);
 116
 117/* Avoid conditionals by using array */
 118static const int txqaddr[] = { Q_XA1, Q_XA2 };
 119static const int rxqaddr[] = { Q_R1, Q_R2 };
 120static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
 121static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
 122static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
 123static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
 124
 125static inline bool is_genesis(const struct skge_hw *hw)
 126{
 127#ifdef CONFIG_SKGE_GENESIS
 128	return hw->chip_id == CHIP_ID_GENESIS;
 129#else
 130	return false;
 131#endif
 132}
 133
 134static int skge_get_regs_len(struct net_device *dev)
 135{
 136	return 0x4000;
 137}
 138
 139/*
 140 * Returns copy of whole control register region
 141 * Note: skip RAM address register because accessing it will
 142 * 	 cause bus hangs!
 143 */
 144static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 145			  void *p)
 146{
 147	const struct skge_port *skge = netdev_priv(dev);
 148	const void __iomem *io = skge->hw->regs;
 149
 150	regs->version = 1;
 151	memset(p, 0, regs->len);
 152	memcpy_fromio(p, io, B3_RAM_ADDR);
 153
 154	memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
 155		      regs->len - B3_RI_WTO_R1);
 156}
 157
 158/* Wake on Lan only supported on Yukon chips with rev 1 or above */
 159static u32 wol_supported(const struct skge_hw *hw)
 160{
 161	if (is_genesis(hw))
 162		return 0;
 163
 164	if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
 165		return 0;
 166
 167	return WAKE_MAGIC | WAKE_PHY;
 168}
 169
 170static void skge_wol_init(struct skge_port *skge)
 171{
 172	struct skge_hw *hw = skge->hw;
 173	int port = skge->port;
 174	u16 ctrl;
 175
 176	skge_write16(hw, B0_CTST, CS_RST_CLR);
 177	skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
 178
 179	/* Turn on Vaux */
 180	skge_write8(hw, B0_POWER_CTRL,
 181		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
 182
 183	/* WA code for COMA mode -- clear PHY reset */
 184	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
 185	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
 186		u32 reg = skge_read32(hw, B2_GP_IO);
 187		reg |= GP_DIR_9;
 188		reg &= ~GP_IO_9;
 189		skge_write32(hw, B2_GP_IO, reg);
 190	}
 191
 192	skge_write32(hw, SK_REG(port, GPHY_CTRL),
 193		     GPC_DIS_SLEEP |
 194		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
 195		     GPC_ANEG_1 | GPC_RST_SET);
 196
 197	skge_write32(hw, SK_REG(port, GPHY_CTRL),
 198		     GPC_DIS_SLEEP |
 199		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
 200		     GPC_ANEG_1 | GPC_RST_CLR);
 201
 202	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
 203
 204	/* Force to 10/100 skge_reset will re-enable on resume	 */
 205	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
 206		     (PHY_AN_100FULL | PHY_AN_100HALF |
 207		      PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
 208	/* no 1000 HD/FD */
 209	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
 210	gm_phy_write(hw, port, PHY_MARV_CTRL,
 211		     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
 212		     PHY_CT_RE_CFG | PHY_CT_DUP_MD);
 213
 214
 215	/* Set GMAC to no flow control and auto update for speed/duplex */
 216	gma_write16(hw, port, GM_GP_CTRL,
 217		    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
 218		    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
 219
 220	/* Set WOL address */
 221	memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
 222		    skge->netdev->dev_addr, ETH_ALEN);
 223
 224	/* Turn on appropriate WOL control bits */
 225	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
 226	ctrl = 0;
 227	if (skge->wol & WAKE_PHY)
 228		ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
 229	else
 230		ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
 231
 232	if (skge->wol & WAKE_MAGIC)
 233		ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
 234	else
 235		ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
 236
 237	ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
 238	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
 239
 240	/* block receiver */
 241	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
 242}
 243
 244static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 245{
 246	struct skge_port *skge = netdev_priv(dev);
 247
 248	wol->supported = wol_supported(skge->hw);
 249	wol->wolopts = skge->wol;
 250}
 251
 252static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 253{
 254	struct skge_port *skge = netdev_priv(dev);
 255	struct skge_hw *hw = skge->hw;
 256
 257	if ((wol->wolopts & ~wol_supported(hw)) ||
 258	    !device_can_wakeup(&hw->pdev->dev))
 259		return -EOPNOTSUPP;
 260
 261	skge->wol = wol->wolopts;
 262
 263	device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
 264
 265	return 0;
 266}
 267
 268/* Determine supported/advertised modes based on hardware.
 269 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
 270 */
 271static u32 skge_supported_modes(const struct skge_hw *hw)
 272{
 273	u32 supported;
 274
 275	if (hw->copper) {
 276		supported = (SUPPORTED_10baseT_Half |
 277			     SUPPORTED_10baseT_Full |
 278			     SUPPORTED_100baseT_Half |
 279			     SUPPORTED_100baseT_Full |
 280			     SUPPORTED_1000baseT_Half |
 281			     SUPPORTED_1000baseT_Full |
 282			     SUPPORTED_Autoneg |
 283			     SUPPORTED_TP);
 284
 285		if (is_genesis(hw))
 286			supported &= ~(SUPPORTED_10baseT_Half |
 287				       SUPPORTED_10baseT_Full |
 288				       SUPPORTED_100baseT_Half |
 289				       SUPPORTED_100baseT_Full);
 290
 291		else if (hw->chip_id == CHIP_ID_YUKON)
 292			supported &= ~SUPPORTED_1000baseT_Half;
 293	} else
 294		supported = (SUPPORTED_1000baseT_Full |
 295			     SUPPORTED_1000baseT_Half |
 296			     SUPPORTED_FIBRE |
 297			     SUPPORTED_Autoneg);
 298
 299	return supported;
 300}
 301
 302static int skge_get_settings(struct net_device *dev,
 303			     struct ethtool_cmd *ecmd)
 304{
 305	struct skge_port *skge = netdev_priv(dev);
 306	struct skge_hw *hw = skge->hw;
 307
 308	ecmd->transceiver = XCVR_INTERNAL;
 309	ecmd->supported = skge_supported_modes(hw);
 310
 311	if (hw->copper) {
 312		ecmd->port = PORT_TP;
 313		ecmd->phy_address = hw->phy_addr;
 314	} else
 315		ecmd->port = PORT_FIBRE;
 316
 317	ecmd->advertising = skge->advertising;
 318	ecmd->autoneg = skge->autoneg;
 319	ethtool_cmd_speed_set(ecmd, skge->speed);
 320	ecmd->duplex = skge->duplex;
 321	return 0;
 322}
 323
 324static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
 325{
 326	struct skge_port *skge = netdev_priv(dev);
 327	const struct skge_hw *hw = skge->hw;
 328	u32 supported = skge_supported_modes(hw);
 329	int err = 0;
 330
 331	if (ecmd->autoneg == AUTONEG_ENABLE) {
 332		ecmd->advertising = supported;
 333		skge->duplex = -1;
 334		skge->speed = -1;
 335	} else {
 336		u32 setting;
 337		u32 speed = ethtool_cmd_speed(ecmd);
 338
 339		switch (speed) {
 340		case SPEED_1000:
 341			if (ecmd->duplex == DUPLEX_FULL)
 342				setting = SUPPORTED_1000baseT_Full;
 343			else if (ecmd->duplex == DUPLEX_HALF)
 344				setting = SUPPORTED_1000baseT_Half;
 345			else
 346				return -EINVAL;
 347			break;
 348		case SPEED_100:
 349			if (ecmd->duplex == DUPLEX_FULL)
 350				setting = SUPPORTED_100baseT_Full;
 351			else if (ecmd->duplex == DUPLEX_HALF)
 352				setting = SUPPORTED_100baseT_Half;
 353			else
 354				return -EINVAL;
 355			break;
 356
 357		case SPEED_10:
 358			if (ecmd->duplex == DUPLEX_FULL)
 359				setting = SUPPORTED_10baseT_Full;
 360			else if (ecmd->duplex == DUPLEX_HALF)
 361				setting = SUPPORTED_10baseT_Half;
 362			else
 363				return -EINVAL;
 364			break;
 365		default:
 366			return -EINVAL;
 367		}
 368
 369		if ((setting & supported) == 0)
 370			return -EINVAL;
 371
 372		skge->speed = speed;
 373		skge->duplex = ecmd->duplex;
 374	}
 375
 376	skge->autoneg = ecmd->autoneg;
 377	skge->advertising = ecmd->advertising;
 378
 379	if (netif_running(dev)) {
 380		skge_down(dev);
 381		err = skge_up(dev);
 382		if (err) {
 383			dev_close(dev);
 384			return err;
 385		}
 386	}
 387
 388	return 0;
 389}
 390
 391static void skge_get_drvinfo(struct net_device *dev,
 392			     struct ethtool_drvinfo *info)
 393{
 394	struct skge_port *skge = netdev_priv(dev);
 395
 396	strcpy(info->driver, DRV_NAME);
 397	strcpy(info->version, DRV_VERSION);
 398	strcpy(info->fw_version, "N/A");
 399	strcpy(info->bus_info, pci_name(skge->hw->pdev));
 400}
 401
 402static const struct skge_stat {
 403	char 	   name[ETH_GSTRING_LEN];
 404	u16	   xmac_offset;
 405	u16	   gma_offset;
 406} skge_stats[] = {
 407	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI },
 408	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI },
 409
 410	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK },
 411	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK },
 412	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK },
 413	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK },
 414	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK },
 415	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK },
 416	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE },
 417	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE },
 418
 419	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL },
 420	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL },
 421	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL },
 422	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL },
 423	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
 424	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
 425
 426	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
 427	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
 428	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG },
 429	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
 430	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
 431};
 432
 433static int skge_get_sset_count(struct net_device *dev, int sset)
 434{
 435	switch (sset) {
 436	case ETH_SS_STATS:
 437		return ARRAY_SIZE(skge_stats);
 438	default:
 439		return -EOPNOTSUPP;
 440	}
 441}
 442
 443static void skge_get_ethtool_stats(struct net_device *dev,
 444				   struct ethtool_stats *stats, u64 *data)
 445{
 446	struct skge_port *skge = netdev_priv(dev);
 447
 448	if (is_genesis(skge->hw))
 449		genesis_get_stats(skge, data);
 450	else
 451		yukon_get_stats(skge, data);
 452}
 453
 454/* Use hardware MIB variables for critical path statistics and
 455 * transmit feedback not reported at interrupt.
 456 * Other errors are accounted for in interrupt handler.
 457 */
 458static struct net_device_stats *skge_get_stats(struct net_device *dev)
 459{
 460	struct skge_port *skge = netdev_priv(dev);
 461	u64 data[ARRAY_SIZE(skge_stats)];
 462
 463	if (is_genesis(skge->hw))
 464		genesis_get_stats(skge, data);
 465	else
 466		yukon_get_stats(skge, data);
 467
 468	dev->stats.tx_bytes = data[0];
 469	dev->stats.rx_bytes = data[1];
 470	dev->stats.tx_packets = data[2] + data[4] + data[6];
 471	dev->stats.rx_packets = data[3] + data[5] + data[7];
 472	dev->stats.multicast = data[3] + data[5];
 473	dev->stats.collisions = data[10];
 474	dev->stats.tx_aborted_errors = data[12];
 475
 476	return &dev->stats;
 477}
 478
 479static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
 480{
 481	int i;
 482
 483	switch (stringset) {
 484	case ETH_SS_STATS:
 485		for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
 486			memcpy(data + i * ETH_GSTRING_LEN,
 487			       skge_stats[i].name, ETH_GSTRING_LEN);
 488		break;
 489	}
 490}
 491
 492static void skge_get_ring_param(struct net_device *dev,
 493				struct ethtool_ringparam *p)
 494{
 495	struct skge_port *skge = netdev_priv(dev);
 496
 497	p->rx_max_pending = MAX_RX_RING_SIZE;
 498	p->tx_max_pending = MAX_TX_RING_SIZE;
 499	p->rx_mini_max_pending = 0;
 500	p->rx_jumbo_max_pending = 0;
 501
 502	p->rx_pending = skge->rx_ring.count;
 503	p->tx_pending = skge->tx_ring.count;
 504	p->rx_mini_pending = 0;
 505	p->rx_jumbo_pending = 0;
 506}
 507
 508static int skge_set_ring_param(struct net_device *dev,
 509			       struct ethtool_ringparam *p)
 510{
 511	struct skge_port *skge = netdev_priv(dev);
 512	int err = 0;
 513
 514	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
 515	    p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
 516		return -EINVAL;
 517
 518	skge->rx_ring.count = p->rx_pending;
 519	skge->tx_ring.count = p->tx_pending;
 520
 521	if (netif_running(dev)) {
 522		skge_down(dev);
 523		err = skge_up(dev);
 524		if (err)
 525			dev_close(dev);
 526	}
 527
 528	return err;
 529}
 530
 531static u32 skge_get_msglevel(struct net_device *netdev)
 532{
 533	struct skge_port *skge = netdev_priv(netdev);
 534	return skge->msg_enable;
 535}
 536
 537static void skge_set_msglevel(struct net_device *netdev, u32 value)
 538{
 539	struct skge_port *skge = netdev_priv(netdev);
 540	skge->msg_enable = value;
 541}
 542
 543static int skge_nway_reset(struct net_device *dev)
 544{
 545	struct skge_port *skge = netdev_priv(dev);
 546
 547	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
 548		return -EINVAL;
 549
 550	skge_phy_reset(skge);
 551	return 0;
 552}
 553
 554static void skge_get_pauseparam(struct net_device *dev,
 555				struct ethtool_pauseparam *ecmd)
 556{
 557	struct skge_port *skge = netdev_priv(dev);
 558
 559	ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
 560			  (skge->flow_control == FLOW_MODE_SYM_OR_REM));
 561	ecmd->tx_pause = (ecmd->rx_pause ||
 562			  (skge->flow_control == FLOW_MODE_LOC_SEND));
 563
 564	ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
 565}
 566
 567static int skge_set_pauseparam(struct net_device *dev,
 568			       struct ethtool_pauseparam *ecmd)
 569{
 570	struct skge_port *skge = netdev_priv(dev);
 571	struct ethtool_pauseparam old;
 572	int err = 0;
 573
 574	skge_get_pauseparam(dev, &old);
 575
 576	if (ecmd->autoneg != old.autoneg)
 577		skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
 578	else {
 579		if (ecmd->rx_pause && ecmd->tx_pause)
 580			skge->flow_control = FLOW_MODE_SYMMETRIC;
 581		else if (ecmd->rx_pause && !ecmd->tx_pause)
 582			skge->flow_control = FLOW_MODE_SYM_OR_REM;
 583		else if (!ecmd->rx_pause && ecmd->tx_pause)
 584			skge->flow_control = FLOW_MODE_LOC_SEND;
 585		else
 586			skge->flow_control = FLOW_MODE_NONE;
 587	}
 588
 589	if (netif_running(dev)) {
 590		skge_down(dev);
 591		err = skge_up(dev);
 592		if (err) {
 593			dev_close(dev);
 594			return err;
 595		}
 596	}
 597
 598	return 0;
 599}
 600
 601/* Chip internal frequency for clock calculations */
 602static inline u32 hwkhz(const struct skge_hw *hw)
 603{
 604	return is_genesis(hw) ? 53125 : 78125;
 605}
 606
 607/* Chip HZ to microseconds */
 608static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
 609{
 610	return (ticks * 1000) / hwkhz(hw);
 611}
 612
 613/* Microseconds to chip HZ */
 614static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
 615{
 616	return hwkhz(hw) * usec / 1000;
 617}
 618
 619static int skge_get_coalesce(struct net_device *dev,
 620			     struct ethtool_coalesce *ecmd)
 621{
 622	struct skge_port *skge = netdev_priv(dev);
 623	struct skge_hw *hw = skge->hw;
 624	int port = skge->port;
 625
 626	ecmd->rx_coalesce_usecs = 0;
 627	ecmd->tx_coalesce_usecs = 0;
 628
 629	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
 630		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
 631		u32 msk = skge_read32(hw, B2_IRQM_MSK);
 632
 633		if (msk & rxirqmask[port])
 634			ecmd->rx_coalesce_usecs = delay;
 635		if (msk & txirqmask[port])
 636			ecmd->tx_coalesce_usecs = delay;
 637	}
 638
 639	return 0;
 640}
 641
 642/* Note: interrupt timer is per board, but can turn on/off per port */
 643static int skge_set_coalesce(struct net_device *dev,
 644			     struct ethtool_coalesce *ecmd)
 645{
 646	struct skge_port *skge = netdev_priv(dev);
 647	struct skge_hw *hw = skge->hw;
 648	int port = skge->port;
 649	u32 msk = skge_read32(hw, B2_IRQM_MSK);
 650	u32 delay = 25;
 651
 652	if (ecmd->rx_coalesce_usecs == 0)
 653		msk &= ~rxirqmask[port];
 654	else if (ecmd->rx_coalesce_usecs < 25 ||
 655		 ecmd->rx_coalesce_usecs > 33333)
 656		return -EINVAL;
 657	else {
 658		msk |= rxirqmask[port];
 659		delay = ecmd->rx_coalesce_usecs;
 660	}
 661
 662	if (ecmd->tx_coalesce_usecs == 0)
 663		msk &= ~txirqmask[port];
 664	else if (ecmd->tx_coalesce_usecs < 25 ||
 665		 ecmd->tx_coalesce_usecs > 33333)
 666		return -EINVAL;
 667	else {
 668		msk |= txirqmask[port];
 669		delay = min(delay, ecmd->rx_coalesce_usecs);
 670	}
 671
 672	skge_write32(hw, B2_IRQM_MSK, msk);
 673	if (msk == 0)
 674		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
 675	else {
 676		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
 677		skge_write32(hw, B2_IRQM_CTRL, TIM_START);
 678	}
 679	return 0;
 680}
 681
 682enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
 683static void skge_led(struct skge_port *skge, enum led_mode mode)
 684{
 685	struct skge_hw *hw = skge->hw;
 686	int port = skge->port;
 687
 688	spin_lock_bh(&hw->phy_lock);
 689	if (is_genesis(hw)) {
 690		switch (mode) {
 691		case LED_MODE_OFF:
 692			if (hw->phy_type == SK_PHY_BCOM)
 693				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
 694			else {
 695				skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
 696				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
 697			}
 698			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
 699			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
 700			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
 701			break;
 702
 703		case LED_MODE_ON:
 704			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
 705			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
 706
 707			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
 708			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
 709
 710			break;
 711
 712		case LED_MODE_TST:
 713			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
 714			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
 715			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
 716
 717			if (hw->phy_type == SK_PHY_BCOM)
 718				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
 719			else {
 720				skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
 721				skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
 722				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
 723			}
 724
 725		}
 726	} else {
 727		switch (mode) {
 728		case LED_MODE_OFF:
 729			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
 730			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 731				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
 732				     PHY_M_LED_MO_10(MO_LED_OFF)   |
 733				     PHY_M_LED_MO_100(MO_LED_OFF)  |
 734				     PHY_M_LED_MO_1000(MO_LED_OFF) |
 735				     PHY_M_LED_MO_RX(MO_LED_OFF));
 736			break;
 737		case LED_MODE_ON:
 738			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
 739				     PHY_M_LED_PULS_DUR(PULS_170MS) |
 740				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
 741				     PHY_M_LEDC_TX_CTRL |
 742				     PHY_M_LEDC_DP_CTRL);
 743
 744			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 745				     PHY_M_LED_MO_RX(MO_LED_OFF) |
 746				     (skge->speed == SPEED_100 ?
 747				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
 748			break;
 749		case LED_MODE_TST:
 750			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
 751			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 752				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
 753				     PHY_M_LED_MO_10(MO_LED_ON)   |
 754				     PHY_M_LED_MO_100(MO_LED_ON)  |
 755				     PHY_M_LED_MO_1000(MO_LED_ON) |
 756				     PHY_M_LED_MO_RX(MO_LED_ON));
 757		}
 758	}
 759	spin_unlock_bh(&hw->phy_lock);
 760}
 761
 762/* blink LED's for finding board */
 763static int skge_set_phys_id(struct net_device *dev,
 764			    enum ethtool_phys_id_state state)
 765{
 766	struct skge_port *skge = netdev_priv(dev);
 767
 768	switch (state) {
 769	case ETHTOOL_ID_ACTIVE:
 770		return 2;	/* cycle on/off twice per second */
 771
 772	case ETHTOOL_ID_ON:
 773		skge_led(skge, LED_MODE_TST);
 774		break;
 775
 776	case ETHTOOL_ID_OFF:
 777		skge_led(skge, LED_MODE_OFF);
 778		break;
 779
 780	case ETHTOOL_ID_INACTIVE:
 781		/* back to regular LED state */
 782		skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
 783	}
 784
 785	return 0;
 786}
 787
 788static int skge_get_eeprom_len(struct net_device *dev)
 789{
 790	struct skge_port *skge = netdev_priv(dev);
 791	u32 reg2;
 792
 793	pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
 794	return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
 795}
 796
 797static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
 798{
 799	u32 val;
 800
 801	pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
 802
 803	do {
 804		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
 805	} while (!(offset & PCI_VPD_ADDR_F));
 806
 807	pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
 808	return val;
 809}
 810
 811static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
 812{
 813	pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
 814	pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
 815			      offset | PCI_VPD_ADDR_F);
 816
 817	do {
 818		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
 819	} while (offset & PCI_VPD_ADDR_F);
 820}
 821
 822static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 823			   u8 *data)
 824{
 825	struct skge_port *skge = netdev_priv(dev);
 826	struct pci_dev *pdev = skge->hw->pdev;
 827	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
 828	int length = eeprom->len;
 829	u16 offset = eeprom->offset;
 830
 831	if (!cap)
 832		return -EINVAL;
 833
 834	eeprom->magic = SKGE_EEPROM_MAGIC;
 835
 836	while (length > 0) {
 837		u32 val = skge_vpd_read(pdev, cap, offset);
 838		int n = min_t(int, length, sizeof(val));
 839
 840		memcpy(data, &val, n);
 841		length -= n;
 842		data += n;
 843		offset += n;
 844	}
 845	return 0;
 846}
 847
 848static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 849			   u8 *data)
 850{
 851	struct skge_port *skge = netdev_priv(dev);
 852	struct pci_dev *pdev = skge->hw->pdev;
 853	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
 854	int length = eeprom->len;
 855	u16 offset = eeprom->offset;
 856
 857	if (!cap)
 858		return -EINVAL;
 859
 860	if (eeprom->magic != SKGE_EEPROM_MAGIC)
 861		return -EINVAL;
 862
 863	while (length > 0) {
 864		u32 val;
 865		int n = min_t(int, length, sizeof(val));
 866
 867		if (n < sizeof(val))
 868			val = skge_vpd_read(pdev, cap, offset);
 869		memcpy(&val, data, n);
 870
 871		skge_vpd_write(pdev, cap, offset, val);
 872
 873		length -= n;
 874		data += n;
 875		offset += n;
 876	}
 877	return 0;
 878}
 879
 880static const struct ethtool_ops skge_ethtool_ops = {
 881	.get_settings	= skge_get_settings,
 882	.set_settings	= skge_set_settings,
 883	.get_drvinfo	= skge_get_drvinfo,
 884	.get_regs_len	= skge_get_regs_len,
 885	.get_regs	= skge_get_regs,
 886	.get_wol	= skge_get_wol,
 887	.set_wol	= skge_set_wol,
 888	.get_msglevel	= skge_get_msglevel,
 889	.set_msglevel	= skge_set_msglevel,
 890	.nway_reset	= skge_nway_reset,
 891	.get_link	= ethtool_op_get_link,
 892	.get_eeprom_len	= skge_get_eeprom_len,
 893	.get_eeprom	= skge_get_eeprom,
 894	.set_eeprom	= skge_set_eeprom,
 895	.get_ringparam	= skge_get_ring_param,
 896	.set_ringparam	= skge_set_ring_param,
 897	.get_pauseparam = skge_get_pauseparam,
 898	.set_pauseparam = skge_set_pauseparam,
 899	.get_coalesce	= skge_get_coalesce,
 900	.set_coalesce	= skge_set_coalesce,
 901	.get_strings	= skge_get_strings,
 902	.set_phys_id	= skge_set_phys_id,
 903	.get_sset_count = skge_get_sset_count,
 904	.get_ethtool_stats = skge_get_ethtool_stats,
 905};
 906
 907/*
 908 * Allocate ring elements and chain them together
 909 * One-to-one association of board descriptors with ring elements
 910 */
 911static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
 912{
 913	struct skge_tx_desc *d;
 914	struct skge_element *e;
 915	int i;
 916
 917	ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
 918	if (!ring->start)
 919		return -ENOMEM;
 920
 921	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
 922		e->desc = d;
 923		if (i == ring->count - 1) {
 924			e->next = ring->start;
 925			d->next_offset = base;
 926		} else {
 927			e->next = e + 1;
 928			d->next_offset = base + (i+1) * sizeof(*d);
 929		}
 930	}
 931	ring->to_use = ring->to_clean = ring->start;
 932
 933	return 0;
 934}
 935
 936/* Allocate and setup a new buffer for receiving */
 937static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
 938			  struct sk_buff *skb, unsigned int bufsize)
 939{
 940	struct skge_rx_desc *rd = e->desc;
 941	u64 map;
 942
 943	map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
 944			     PCI_DMA_FROMDEVICE);
 945
 946	rd->dma_lo = map;
 947	rd->dma_hi = map >> 32;
 948	e->skb = skb;
 949	rd->csum1_start = ETH_HLEN;
 950	rd->csum2_start = ETH_HLEN;
 951	rd->csum1 = 0;
 952	rd->csum2 = 0;
 953
 954	wmb();
 955
 956	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
 957	dma_unmap_addr_set(e, mapaddr, map);
 958	dma_unmap_len_set(e, maplen, bufsize);
 959}
 960
 961/* Resume receiving using existing skb,
 962 * Note: DMA address is not changed by chip.
 963 * 	 MTU not changed while receiver active.
 964 */
 965static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
 966{
 967	struct skge_rx_desc *rd = e->desc;
 968
 969	rd->csum2 = 0;
 970	rd->csum2_start = ETH_HLEN;
 971
 972	wmb();
 973
 974	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
 975}
 976
 977
 978/* Free all  buffers in receive ring, assumes receiver stopped */
 979static void skge_rx_clean(struct skge_port *skge)
 980{
 981	struct skge_hw *hw = skge->hw;
 982	struct skge_ring *ring = &skge->rx_ring;
 983	struct skge_element *e;
 984
 985	e = ring->start;
 986	do {
 987		struct skge_rx_desc *rd = e->desc;
 988		rd->control = 0;
 989		if (e->skb) {
 990			pci_unmap_single(hw->pdev,
 991					 dma_unmap_addr(e, mapaddr),
 992					 dma_unmap_len(e, maplen),
 993					 PCI_DMA_FROMDEVICE);
 994			dev_kfree_skb(e->skb);
 995			e->skb = NULL;
 996		}
 997	} while ((e = e->next) != ring->start);
 998}
 999
1000
1001/* Allocate buffers for receive ring
1002 * For receive:  to_clean is next received frame.
1003 */
1004static int skge_rx_fill(struct net_device *dev)
1005{
1006	struct skge_port *skge = netdev_priv(dev);
1007	struct skge_ring *ring = &skge->rx_ring;
1008	struct skge_element *e;
1009
1010	e = ring->start;
1011	do {
1012		struct sk_buff *skb;
1013
1014		skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1015					 GFP_KERNEL);
1016		if (!skb)
1017			return -ENOMEM;
1018
1019		skb_reserve(skb, NET_IP_ALIGN);
1020		skge_rx_setup(skge, e, skb, skge->rx_buf_size);
1021	} while ((e = e->next) != ring->start);
1022
1023	ring->to_clean = ring->start;
1024	return 0;
1025}
1026
1027static const char *skge_pause(enum pause_status status)
1028{
1029	switch (status) {
1030	case FLOW_STAT_NONE:
1031		return "none";
1032	case FLOW_STAT_REM_SEND:
1033		return "rx only";
1034	case FLOW_STAT_LOC_SEND:
1035		return "tx_only";
1036	case FLOW_STAT_SYMMETRIC:		/* Both station may send PAUSE */
1037		return "both";
1038	default:
1039		return "indeterminated";
1040	}
1041}
1042
1043
1044static void skge_link_up(struct skge_port *skge)
1045{
1046	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1047		    LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
1048
1049	netif_carrier_on(skge->netdev);
1050	netif_wake_queue(skge->netdev);
1051
1052	netif_info(skge, link, skge->netdev,
1053		   "Link is up at %d Mbps, %s duplex, flow control %s\n",
1054		   skge->speed,
1055		   skge->duplex == DUPLEX_FULL ? "full" : "half",
1056		   skge_pause(skge->flow_status));
1057}
1058
1059static void skge_link_down(struct skge_port *skge)
1060{
1061	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
1062	netif_carrier_off(skge->netdev);
1063	netif_stop_queue(skge->netdev);
1064
1065	netif_info(skge, link, skge->netdev, "Link is down\n");
1066}
1067
1068static void xm_link_down(struct skge_hw *hw, int port)
1069{
1070	struct net_device *dev = hw->dev[port];
1071	struct skge_port *skge = netdev_priv(dev);
1072
1073	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1074
1075	if (netif_carrier_ok(dev))
1076		skge_link_down(skge);
1077}
1078
1079static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1080{
1081	int i;
1082
1083	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1084	*val = xm_read16(hw, port, XM_PHY_DATA);
1085
1086	if (hw->phy_type == SK_PHY_XMAC)
1087		goto ready;
1088
1089	for (i = 0; i < PHY_RETRIES; i++) {
1090		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1091			goto ready;
1092		udelay(1);
1093	}
1094
1095	return -ETIMEDOUT;
1096 ready:
1097	*val = xm_read16(hw, port, XM_PHY_DATA);
1098
1099	return 0;
1100}
1101
1102static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1103{
1104	u16 v = 0;
1105	if (__xm_phy_read(hw, port, reg, &v))
1106		pr_warning("%s: phy read timed out\n", hw->dev[port]->name);
1107	return v;
1108}
1109
1110static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1111{
1112	int i;
1113
1114	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1115	for (i = 0; i < PHY_RETRIES; i++) {
1116		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1117			goto ready;
1118		udelay(1);
1119	}
1120	return -EIO;
1121
1122 ready:
1123	xm_write16(hw, port, XM_PHY_DATA, val);
1124	for (i = 0; i < PHY_RETRIES; i++) {
1125		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1126			return 0;
1127		udelay(1);
1128	}
1129	return -ETIMEDOUT;
1130}
1131
1132static void genesis_init(struct skge_hw *hw)
1133{
1134	/* set blink source counter */
1135	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1136	skge_write8(hw, B2_BSC_CTRL, BSC_START);
1137
1138	/* configure mac arbiter */
1139	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1140
1141	/* configure mac arbiter timeout values */
1142	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1143	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1144	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1145	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1146
1147	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1148	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1149	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1150	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1151
1152	/* configure packet arbiter timeout */
1153	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1154	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1155	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1156	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1157	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1158}
1159
1160static void genesis_reset(struct skge_hw *hw, int port)
1161{
1162	static const u8 zero[8]  = { 0 };
1163	u32 reg;
1164
1165	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1166
1167	/* reset the statistics module */
1168	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1169	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1170	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
1171	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
1172	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
1173
1174	/* disable Broadcom PHY IRQ */
1175	if (hw->phy_type == SK_PHY_BCOM)
1176		xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1177
1178	xm_outhash(hw, port, XM_HSM, zero);
1179
1180	/* Flush TX and RX fifo */
1181	reg = xm_read32(hw, port, XM_MODE);
1182	xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1183	xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1184}
1185
1186/* Convert mode to MII values  */
1187static const u16 phy_pause_map[] = {
1188	[FLOW_MODE_NONE] =	0,
1189	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
1190	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1191	[FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1192};
1193
1194/* special defines for FIBER (88E1011S only) */
1195static const u16 fiber_pause_map[] = {
1196	[FLOW_MODE_NONE]	= PHY_X_P_NO_PAUSE,
1197	[FLOW_MODE_LOC_SEND]	= PHY_X_P_ASYM_MD,
1198	[FLOW_MODE_SYMMETRIC]	= PHY_X_P_SYM_MD,
1199	[FLOW_MODE_SYM_OR_REM]	= PHY_X_P_BOTH_MD,
1200};
1201
1202
1203/* Check status of Broadcom phy link */
1204static void bcom_check_link(struct skge_hw *hw, int port)
1205{
1206	struct net_device *dev = hw->dev[port];
1207	struct skge_port *skge = netdev_priv(dev);
1208	u16 status;
1209
1210	/* read twice because of latch */
1211	xm_phy_read(hw, port, PHY_BCOM_STAT);
1212	status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1213
1214	if ((status & PHY_ST_LSYNC) == 0) {
1215		xm_link_down(hw, port);
1216		return;
1217	}
1218
1219	if (skge->autoneg == AUTONEG_ENABLE) {
1220		u16 lpa, aux;
1221
1222		if (!(status & PHY_ST_AN_OVER))
1223			return;
1224
1225		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1226		if (lpa & PHY_B_AN_RF) {
1227			netdev_notice(dev, "remote fault\n");
1228			return;
1229		}
1230
1231		aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1232
1233		/* Check Duplex mismatch */
1234		switch (aux & PHY_B_AS_AN_RES_MSK) {
1235		case PHY_B_RES_1000FD:
1236			skge->duplex = DUPLEX_FULL;
1237			break;
1238		case PHY_B_RES_1000HD:
1239			skge->duplex = DUPLEX_HALF;
1240			break;
1241		default:
1242			netdev_notice(dev, "duplex mismatch\n");
1243			return;
1244		}
1245
1246		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1247		switch (aux & PHY_B_AS_PAUSE_MSK) {
1248		case PHY_B_AS_PAUSE_MSK:
1249			skge->flow_status = FLOW_STAT_SYMMETRIC;
1250			break;
1251		case PHY_B_AS_PRR:
1252			skge->flow_status = FLOW_STAT_REM_SEND;
1253			break;
1254		case PHY_B_AS_PRT:
1255			skge->flow_status = FLOW_STAT_LOC_SEND;
1256			break;
1257		default:
1258			skge->flow_status = FLOW_STAT_NONE;
1259		}
1260		skge->speed = SPEED_1000;
1261	}
1262
1263	if (!netif_carrier_ok(dev))
1264		genesis_link_up(skge);
1265}
1266
1267/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1268 * Phy on for 100 or 10Mbit operation
1269 */
1270static void bcom_phy_init(struct skge_port *skge)
1271{
1272	struct skge_hw *hw = skge->hw;
1273	int port = skge->port;
1274	int i;
1275	u16 id1, r, ext, ctl;
1276
1277	/* magic workaround patterns for Broadcom */
1278	static const struct {
1279		u16 reg;
1280		u16 val;
1281	} A1hack[] = {
1282		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1283		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1284		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1285		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1286	}, C0hack[] = {
1287		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1288		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1289	};
1290
1291	/* read Id from external PHY (all have the same address) */
1292	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1293
1294	/* Optimize MDIO transfer by suppressing preamble. */
1295	r = xm_read16(hw, port, XM_MMU_CMD);
1296	r |=  XM_MMU_NO_PRE;
1297	xm_write16(hw, port, XM_MMU_CMD, r);
1298
1299	switch (id1) {
1300	case PHY_BCOM_ID1_C0:
1301		/*
1302		 * Workaround BCOM Errata for the C0 type.
1303		 * Write magic patterns to reserved registers.
1304		 */
1305		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1306			xm_phy_write(hw, port,
1307				     C0hack[i].reg, C0hack[i].val);
1308
1309		break;
1310	case PHY_BCOM_ID1_A1:
1311		/*
1312		 * Workaround BCOM Errata for the A1 type.
1313		 * Write magic patterns to reserved registers.
1314		 */
1315		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1316			xm_phy_write(hw, port,
1317				     A1hack[i].reg, A1hack[i].val);
1318		break;
1319	}
1320
1321	/*
1322	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1323	 * Disable Power Management after reset.
1324	 */
1325	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1326	r |= PHY_B_AC_DIS_PM;
1327	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1328
1329	/* Dummy read */
1330	xm_read16(hw, port, XM_ISRC);
1331
1332	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1333	ctl = PHY_CT_SP1000;	/* always 1000mbit */
1334
1335	if (skge->autoneg == AUTONEG_ENABLE) {
1336		/*
1337		 * Workaround BCOM Errata #1 for the C5 type.
1338		 * 1000Base-T Link Acquisition Failure in Slave Mode
1339		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1340		 */
1341		u16 adv = PHY_B_1000C_RD;
1342		if (skge->advertising & ADVERTISED_1000baseT_Half)
1343			adv |= PHY_B_1000C_AHD;
1344		if (skge->advertising & ADVERTISED_1000baseT_Full)
1345			adv |= PHY_B_1000C_AFD;
1346		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1347
1348		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1349	} else {
1350		if (skge->duplex == DUPLEX_FULL)
1351			ctl |= PHY_CT_DUP_MD;
1352		/* Force to slave */
1353		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1354	}
1355
1356	/* Set autonegotiation pause parameters */
1357	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1358		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1359
1360	/* Handle Jumbo frames */
1361	if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1362		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1363			     PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1364
1365		ext |= PHY_B_PEC_HIGH_LA;
1366
1367	}
1368
1369	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1370	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1371
1372	/* Use link status change interrupt */
1373	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1374}
1375
1376static void xm_phy_init(struct skge_port *skge)
1377{
1378	struct skge_hw *hw = skge->hw;
1379	int port = skge->port;
1380	u16 ctrl = 0;
1381
1382	if (skge->autoneg == AUTONEG_ENABLE) {
1383		if (skge->advertising & ADVERTISED_1000baseT_Half)
1384			ctrl |= PHY_X_AN_HD;
1385		if (skge->advertising & ADVERTISED_1000baseT_Full)
1386			ctrl |= PHY_X_AN_FD;
1387
1388		ctrl |= fiber_pause_map[skge->flow_control];
1389
1390		xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1391
1392		/* Restart Auto-negotiation */
1393		ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1394	} else {
1395		/* Set DuplexMode in Config register */
1396		if (skge->duplex == DUPLEX_FULL)
1397			ctrl |= PHY_CT_DUP_MD;
1398		/*
1399		 * Do NOT enable Auto-negotiation here. This would hold
1400		 * the link down because no IDLEs are transmitted
1401		 */
1402	}
1403
1404	xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1405
1406	/* Poll PHY for status changes */
1407	mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1408}
1409
1410static int xm_check_link(struct net_device *dev)
1411{
1412	struct skge_port *skge = netdev_priv(dev);
1413	struct skge_hw *hw = skge->hw;
1414	int port = skge->port;
1415	u16 status;
1416
1417	/* read twice because of latch */
1418	xm_phy_read(hw, port, PHY_XMAC_STAT);
1419	status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1420
1421	if ((status & PHY_ST_LSYNC) == 0) {
1422		xm_link_down(hw, port);
1423		return 0;
1424	}
1425
1426	if (skge->autoneg == AUTONEG_ENABLE) {
1427		u16 lpa, res;
1428
1429		if (!(status & PHY_ST_AN_OVER))
1430			return 0;
1431
1432		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1433		if (lpa & PHY_B_AN_RF) {
1434			netdev_notice(dev, "remote fault\n");
1435			return 0;
1436		}
1437
1438		res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1439
1440		/* Check Duplex mismatch */
1441		switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1442		case PHY_X_RS_FD:
1443			skge->duplex = DUPLEX_FULL;
1444			break;
1445		case PHY_X_RS_HD:
1446			skge->duplex = DUPLEX_HALF;
1447			break;
1448		default:
1449			netdev_notice(dev, "duplex mismatch\n");
1450			return 0;
1451		}
1452
1453		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1454		if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1455		     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1456		    (lpa & PHY_X_P_SYM_MD))
1457			skge->flow_status = FLOW_STAT_SYMMETRIC;
1458		else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1459			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1460			/* Enable PAUSE receive, disable PAUSE transmit */
1461			skge->flow_status  = FLOW_STAT_REM_SEND;
1462		else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1463			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1464			/* Disable PAUSE receive, enable PAUSE transmit */
1465			skge->flow_status = FLOW_STAT_LOC_SEND;
1466		else
1467			skge->flow_status = FLOW_STAT_NONE;
1468
1469		skge->speed = SPEED_1000;
1470	}
1471
1472	if (!netif_carrier_ok(dev))
1473		genesis_link_up(skge);
1474	return 1;
1475}
1476
1477/* Poll to check for link coming up.
1478 *
1479 * Since internal PHY is wired to a level triggered pin, can't
1480 * get an interrupt when carrier is detected, need to poll for
1481 * link coming up.
1482 */
1483static void xm_link_timer(unsigned long arg)
1484{
1485	struct skge_port *skge = (struct skge_port *) arg;
1486	struct net_device *dev = skge->netdev;
1487	struct skge_hw *hw = skge->hw;
1488	int port = skge->port;
1489	int i;
1490	unsigned long flags;
1491
1492	if (!netif_running(dev))
1493		return;
1494
1495	spin_lock_irqsave(&hw->phy_lock, flags);
1496
1497	/*
1498	 * Verify that the link by checking GPIO register three times.
1499	 * This pin has the signal from the link_sync pin connected to it.
1500	 */
1501	for (i = 0; i < 3; i++) {
1502		if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1503			goto link_down;
1504	}
1505
1506	/* Re-enable interrupt to detect link down */
1507	if (xm_check_link(dev)) {
1508		u16 msk = xm_read16(hw, port, XM_IMSK);
1509		msk &= ~XM_IS_INP_ASS;
1510		xm_write16(hw, port, XM_IMSK, msk);
1511		xm_read16(hw, port, XM_ISRC);
1512	} else {
1513link_down:
1514		mod_timer(&skge->link_timer,
1515			  round_jiffies(jiffies + LINK_HZ));
1516	}
1517	spin_unlock_irqrestore(&hw->phy_lock, flags);
1518}
1519
1520static void genesis_mac_init(struct skge_hw *hw, int port)
1521{
1522	struct net_device *dev = hw->dev[port];
1523	struct skge_port *skge = netdev_priv(dev);
1524	int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1525	int i;
1526	u32 r;
1527	static const u8 zero[6]  = { 0 };
1528
1529	for (i = 0; i < 10; i++) {
1530		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1531			     MFF_SET_MAC_RST);
1532		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1533			goto reset_ok;
1534		udelay(1);
1535	}
1536
1537	netdev_warn(dev, "genesis reset failed\n");
1538
1539 reset_ok:
1540	/* Unreset the XMAC. */
1541	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1542
1543	/*
1544	 * Perform additional initialization for external PHYs,
1545	 * namely for the 1000baseTX cards that use the XMAC's
1546	 * GMII mode.
1547	 */
1548	if (hw->phy_type != SK_PHY_XMAC) {
1549		/* Take external Phy out of reset */
1550		r = skge_read32(hw, B2_GP_IO);
1551		if (port == 0)
1552			r |= GP_DIR_0|GP_IO_0;
1553		else
1554			r |= GP_DIR_2|GP_IO_2;
1555
1556		skge_write32(hw, B2_GP_IO, r);
1557
1558		/* Enable GMII interface */
1559		xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1560	}
1561
1562
1563	switch (hw->phy_type) {
1564	case SK_PHY_XMAC:
1565		xm_phy_init(skge);
1566		break;
1567	case SK_PHY_BCOM:
1568		bcom_phy_init(skge);
1569		bcom_check_link(hw, port);
1570	}
1571
1572	/* Set Station Address */
1573	xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1574
1575	/* We don't use match addresses so clear */
1576	for (i = 1; i < 16; i++)
1577		xm_outaddr(hw, port, XM_EXM(i), zero);
1578
1579	/* Clear MIB counters */
1580	xm_write16(hw, port, XM_STAT_CMD,
1581			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1582	/* Clear two times according to Errata #3 */
1583	xm_write16(hw, port, XM_STAT_CMD,
1584			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1585
1586	/* configure Rx High Water Mark (XM_RX_HI_WM) */
1587	xm_write16(hw, port, XM_RX_HI_WM, 1450);
1588
1589	/* We don't need the FCS appended to the packet. */
1590	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1591	if (jumbo)
1592		r |= XM_RX_BIG_PK_OK;
1593
1594	if (skge->duplex == DUPLEX_HALF) {
1595		/*
1596		 * If in manual half duplex mode the other side might be in
1597		 * full duplex mode, so ignore if a carrier extension is not seen
1598		 * on frames received
1599		 */
1600		r |= XM_RX_DIS_CEXT;
1601	}
1602	xm_write16(hw, port, XM_RX_CMD, r);
1603
1604	/* We want short frames padded to 60 bytes. */
1605	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1606
1607	/* Increase threshold for jumbo frames on dual port */
1608	if (hw->ports > 1 && jumbo)
1609		xm_write16(hw, port, XM_TX_THR, 1020);
1610	else
1611		xm_write16(hw, port, XM_TX_THR, 512);
1612
1613	/*
1614	 * Enable the reception of all error frames. This is is
1615	 * a necessary evil due to the design of the XMAC. The
1616	 * XMAC's receive FIFO is only 8K in size, however jumbo
1617	 * frames can be up to 9000 bytes in length. When bad
1618	 * frame filtering is enabled, the XMAC's RX FIFO operates
1619	 * in 'store and forward' mode. For this to work, the
1620	 * entire frame has to fit into the FIFO, but that means
1621	 * that jumbo frames larger than 8192 bytes will be
1622	 * truncated. Disabling all bad frame filtering causes
1623	 * the RX FIFO to operate in streaming mode, in which
1624	 * case the XMAC will start transferring frames out of the
1625	 * RX FIFO as soon as the FIFO threshold is reached.
1626	 */
1627	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1628
1629
1630	/*
1631	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1632	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
1633	 *	  and 'Octets Rx OK Hi Cnt Ov'.
1634	 */
1635	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1636
1637	/*
1638	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1639	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
1640	 *	  and 'Octets Tx OK Hi Cnt Ov'.
1641	 */
1642	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1643
1644	/* Configure MAC arbiter */
1645	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1646
1647	/* configure timeout values */
1648	skge_write8(hw, B3_MA_TOINI_RX1, 72);
1649	skge_write8(hw, B3_MA_TOINI_RX2, 72);
1650	skge_write8(hw, B3_MA_TOINI_TX1, 72);
1651	skge_write8(hw, B3_MA_TOINI_TX2, 72);
1652
1653	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1654	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1655	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1656	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1657
1658	/* Configure Rx MAC FIFO */
1659	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1660	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1661	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1662
1663	/* Configure Tx MAC FIFO */
1664	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1665	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1666	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1667
1668	if (jumbo) {
1669		/* Enable frame flushing if jumbo frames used */
1670		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1671	} else {
1672		/* enable timeout timers if normal frames */
1673		skge_write16(hw, B3_PA_CTRL,
1674			     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1675	}
1676}
1677
1678static void genesis_stop(struct skge_port *skge)
1679{
1680	struct skge_hw *hw = skge->hw;
1681	int port = skge->port;
1682	unsigned retries = 1000;
1683	u16 cmd;
1684
1685	/* Disable Tx and Rx */
1686	cmd = xm_read16(hw, port, XM_MMU_CMD);
1687	cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1688	xm_write16(hw, port, XM_MMU_CMD, cmd);
1689
1690	genesis_reset(hw, port);
1691
1692	/* Clear Tx packet arbiter timeout IRQ */
1693	skge_write16(hw, B3_PA_CTRL,
1694		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1695
1696	/* Reset the MAC */
1697	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1698	do {
1699		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1700		if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1701			break;
1702	} while (--retries > 0);
1703
1704	/* For external PHYs there must be special handling */
1705	if (hw->phy_type != SK_PHY_XMAC) {
1706		u32 reg = skge_read32(hw, B2_GP_IO);
1707		if (port == 0) {
1708			reg |= GP_DIR_0;
1709			reg &= ~GP_IO_0;
1710		} else {
1711			reg |= GP_DIR_2;
1712			reg &= ~GP_IO_2;
1713		}
1714		skge_write32(hw, B2_GP_IO, reg);
1715		skge_read32(hw, B2_GP_IO);
1716	}
1717
1718	xm_write16(hw, port, XM_MMU_CMD,
1719			xm_read16(hw, port, XM_MMU_CMD)
1720			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1721
1722	xm_read16(hw, port, XM_MMU_CMD);
1723}
1724
1725
1726static void genesis_get_stats(struct skge_port *skge, u64 *data)
1727{
1728	struct skge_hw *hw = skge->hw;
1729	int port = skge->port;
1730	int i;
1731	unsigned long timeout = jiffies + HZ;
1732
1733	xm_write16(hw, port,
1734			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1735
1736	/* wait for update to complete */
1737	while (xm_read16(hw, port, XM_STAT_CMD)
1738	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1739		if (time_after(jiffies, timeout))
1740			break;
1741		udelay(10);
1742	}
1743
1744	/* special case for 64 bit octet counter */
1745	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1746		| xm_read32(hw, port, XM_TXO_OK_LO);
1747	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1748		| xm_read32(hw, port, XM_RXO_OK_LO);
1749
1750	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1751		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1752}
1753
1754static void genesis_mac_intr(struct skge_hw *hw, int port)
1755{
1756	struct net_device *dev = hw->dev[port];
1757	struct skge_port *skge = netdev_priv(dev);
1758	u16 status = xm_read16(hw, port, XM_ISRC);
1759
1760	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1761		     "mac interrupt status 0x%x\n", status);
1762
1763	if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1764		xm_link_down(hw, port);
1765		mod_timer(&skge->link_timer, jiffies + 1);
1766	}
1767
1768	if (status & XM_IS_TXF_UR) {
1769		xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1770		++dev->stats.tx_fifo_errors;
1771	}
1772}
1773
1774static void genesis_link_up(struct skge_port *skge)
1775{
1776	struct skge_hw *hw = skge->hw;
1777	int port = skge->port;
1778	u16 cmd, msk;
1779	u32 mode;
1780
1781	cmd = xm_read16(hw, port, XM_MMU_CMD);
1782
1783	/*
1784	 * enabling pause frame reception is required for 1000BT
1785	 * because the XMAC is not reset if the link is going down
1786	 */
1787	if (skge->flow_status == FLOW_STAT_NONE ||
1788	    skge->flow_status == FLOW_STAT_LOC_SEND)
1789		/* Disable Pause Frame Reception */
1790		cmd |= XM_MMU_IGN_PF;
1791	else
1792		/* Enable Pause Frame Reception */
1793		cmd &= ~XM_MMU_IGN_PF;
1794
1795	xm_write16(hw, port, XM_MMU_CMD, cmd);
1796
1797	mode = xm_read32(hw, port, XM_MODE);
1798	if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1799	    skge->flow_status == FLOW_STAT_LOC_SEND) {
1800		/*
1801		 * Configure Pause Frame Generation
1802		 * Use internal and external Pause Frame Generation.
1803		 * Sending pause frames is edge triggered.
1804		 * Send a Pause frame with the maximum pause time if
1805		 * internal oder external FIFO full condition occurs.
1806		 * Send a zero pause time frame to re-start transmission.
1807		 */
1808		/* XM_PAUSE_DA = '010000C28001' (default) */
1809		/* XM_MAC_PTIME = 0xffff (maximum) */
1810		/* remember this value is defined in big endian (!) */
1811		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1812
1813		mode |= XM_PAUSE_MODE;
1814		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1815	} else {
1816		/*
1817		 * disable pause frame generation is required for 1000BT
1818		 * because the XMAC is not reset if the link is going down
1819		 */
1820		/* Disable Pause Mode in Mode Register */
1821		mode &= ~XM_PAUSE_MODE;
1822
1823		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1824	}
1825
1826	xm_write32(hw, port, XM_MODE, mode);
1827
1828	/* Turn on detection of Tx underrun */
1829	msk = xm_read16(hw, port, XM_IMSK);
1830	msk &= ~XM_IS_TXF_UR;
1831	xm_write16(hw, port, XM_IMSK, msk);
1832
1833	xm_read16(hw, port, XM_ISRC);
1834
1835	/* get MMU Command Reg. */
1836	cmd = xm_read16(hw, port, XM_MMU_CMD);
1837	if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1838		cmd |= XM_MMU_GMII_FD;
1839
1840	/*
1841	 * Workaround BCOM Errata (#10523) for all BCom Phys
1842	 * Enable Power Management after link up
1843	 */
1844	if (hw->phy_type == SK_PHY_BCOM) {
1845		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1846			     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1847			     & ~PHY_B_AC_DIS_PM);
1848		xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1849	}
1850
1851	/* enable Rx/Tx */
1852	xm_write16(hw, port, XM_MMU_CMD,
1853			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1854	skge_link_up(skge);
1855}
1856
1857
1858static inline void bcom_phy_intr(struct skge_port *skge)
1859{
1860	struct skge_hw *hw = skge->hw;
1861	int port = skge->port;
1862	u16 isrc;
1863
1864	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1865	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1866		     "phy interrupt status 0x%x\n", isrc);
1867
1868	if (isrc & PHY_B_IS_PSE)
1869		pr_err("%s: uncorrectable pair swap error\n",
1870		       hw->dev[port]->name);
1871
1872	/* Workaround BCom Errata:
1873	 *	enable and disable loopback mode if "NO HCD" occurs.
1874	 */
1875	if (isrc & PHY_B_IS_NO_HDCL) {
1876		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1877		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1878				  ctrl | PHY_CT_LOOP);
1879		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1880				  ctrl & ~PHY_CT_LOOP);
1881	}
1882
1883	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1884		bcom_check_link(hw, port);
1885
1886}
1887
1888static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1889{
1890	int i;
1891
1892	gma_write16(hw, port, GM_SMI_DATA, val);
1893	gma_write16(hw, port, GM_SMI_CTRL,
1894			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1895	for (i = 0; i < PHY_RETRIES; i++) {
1896		udelay(1);
1897
1898		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1899			return 0;
1900	}
1901
1902	pr_warning("%s: phy write timeout\n", hw->dev[port]->name);
1903	return -EIO;
1904}
1905
1906static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1907{
1908	int i;
1909
1910	gma_write16(hw, port, GM_SMI_CTRL,
1911			 GM_SMI_CT_PHY_AD(hw->phy_addr)
1912			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1913
1914	for (i = 0; i < PHY_RETRIES; i++) {
1915		udelay(1);
1916		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1917			goto ready;
1918	}
1919
1920	return -ETIMEDOUT;
1921 ready:
1922	*val = gma_read16(hw, port, GM_SMI_DATA);
1923	return 0;
1924}
1925
1926static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1927{
1928	u16 v = 0;
1929	if (__gm_phy_read(hw, port, reg, &v))
1930		pr_warning("%s: phy read timeout\n", hw->dev[port]->name);
1931	return v;
1932}
1933
1934/* Marvell Phy Initialization */
1935static void yukon_init(struct skge_hw *hw, int port)
1936{
1937	struct skge_port *skge = netdev_priv(hw->dev[port]);
1938	u16 ctrl, ct1000, adv;
1939
1940	if (skge->autoneg == AUTONEG_ENABLE) {
1941		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1942
1943		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1944			  PHY_M_EC_MAC_S_MSK);
1945		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1946
1947		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1948
1949		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1950	}
1951
1952	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1953	if (skge->autoneg == AUTONEG_DISABLE)
1954		ctrl &= ~PHY_CT_ANE;
1955
1956	ctrl |= PHY_CT_RESET;
1957	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1958
1959	ctrl = 0;
1960	ct1000 = 0;
1961	adv = PHY_AN_CSMA;
1962
1963	if (skge->autoneg == AUTONEG_ENABLE) {
1964		if (hw->copper) {
1965			if (skge->advertising & ADVERTISED_1000baseT_Full)
1966				ct1000 |= PHY_M_1000C_AFD;
1967			if (skge->advertising & ADVERTISED_1000baseT_Half)
1968				ct1000 |= PHY_M_1000C_AHD;
1969			if (skge->advertising & ADVERTISED_100baseT_Full)
1970				adv |= PHY_M_AN_100_FD;
1971			if (skge->advertising & ADVERTISED_100baseT_Half)
1972				adv |= PHY_M_AN_100_HD;
1973			if (skge->advertising & ADVERTISED_10baseT_Full)
1974				adv |= PHY_M_AN_10_FD;
1975			if (skge->advertising & ADVERTISED_10baseT_Half)
1976				adv |= PHY_M_AN_10_HD;
1977
1978			/* Set Flow-control capabilities */
1979			adv |= phy_pause_map[skge->flow_control];
1980		} else {
1981			if (skge->advertising & ADVERTISED_1000baseT_Full)
1982				adv |= PHY_M_AN_1000X_AFD;
1983			if (skge->advertising & ADVERTISED_1000baseT_Half)
1984				adv |= PHY_M_AN_1000X_AHD;
1985
1986			adv |= fiber_pause_map[skge->flow_control];
1987		}
1988
1989		/* Restart Auto-negotiation */
1990		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1991	} else {
1992		/* forced speed/duplex settings */
1993		ct1000 = PHY_M_1000C_MSE;
1994
1995		if (skge->duplex == DUPLEX_FULL)
1996			ctrl |= PHY_CT_DUP_MD;
1997
1998		switch (skge->speed) {
1999		case SPEED_1000:
2000			ctrl |= PHY_CT_SP1000;
2001			break;
2002		case SPEED_100:
2003			ctrl |= PHY_CT_SP100;
2004			break;
2005		}
2006
2007		ctrl |= PHY_CT_RESET;
2008	}
2009
2010	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2011
2012	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2013	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2014
2015	/* Enable phy interrupt on autonegotiation complete (or link up) */
2016	if (skge->autoneg == AUTONEG_ENABLE)
2017		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2018	else
2019		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2020}
2021
2022static void yukon_reset(struct skge_hw *hw, int port)
2023{
2024	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2025	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
2026	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2027	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2028	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2029
2030	gma_write16(hw, port, GM_RX_CTRL,
2031			 gma_read16(hw, port, GM_RX_CTRL)
2032			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2033}
2034
2035/* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2036static int is_yukon_lite_a0(struct skge_hw *hw)
2037{
2038	u32 reg;
2039	int ret;
2040
2041	if (hw->chip_id != CHIP_ID_YUKON)
2042		return 0;
2043
2044	reg = skge_read32(hw, B2_FAR);
2045	skge_write8(hw, B2_FAR + 3, 0xff);
2046	ret = (skge_read8(hw, B2_FAR + 3) != 0);
2047	skge_write32(hw, B2_FAR, reg);
2048	return ret;
2049}
2050
2051static void yukon_mac_init(struct skge_hw *hw, int port)
2052{
2053	struct skge_port *skge = netdev_priv(hw->dev[port]);
2054	int i;
2055	u32 reg;
2056	const u8 *addr = hw->dev[port]->dev_addr;
2057
2058	/* WA code for COMA mode -- set PHY reset */
2059	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2060	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2061		reg = skge_read32(hw, B2_GP_IO);
2062		reg |= GP_DIR_9 | GP_IO_9;
2063		skge_write32(hw, B2_GP_IO, reg);
2064	}
2065
2066	/* hard reset */
2067	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2068	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2069
2070	/* WA code for COMA mode -- clear PHY reset */
2071	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2072	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2073		reg = skge_read32(hw, B2_GP_IO);
2074		reg |= GP_DIR_9;
2075		reg &= ~GP_IO_9;
2076		skge_write32(hw, B2_GP_IO, reg);
2077	}
2078
2079	/* Set hardware config mode */
2080	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2081		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2082	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2083
2084	/* Clear GMC reset */
2085	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2086	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2087	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2088
2089	if (skge->autoneg == AUTONEG_DISABLE) {
2090		reg = GM_GPCR_AU_ALL_DIS;
2091		gma_write16(hw, port, GM_GP_CTRL,
2092				 gma_read16(hw, port, GM_GP_CTRL) | reg);
2093
2094		switch (skge->speed) {
2095		case SPEED_1000:
2096			reg &= ~GM_GPCR_SPEED_100;
2097			reg |= GM_GPCR_SPEED_1000;
2098			break;
2099		case SPEED_100:
2100			reg &= ~GM_GPCR_SPEED_1000;
2101			reg |= GM_GPCR_SPEED_100;
2102			break;
2103		case SPEED_10:
2104			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2105			break;
2106		}
2107
2108		if (skge->duplex == DUPLEX_FULL)
2109			reg |= GM_GPCR_DUP_FULL;
2110	} else
2111		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2112
2113	switch (skge->flow_control) {
2114	case FLOW_MODE_NONE:
2115		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2116		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2117		break;
2118	case FLOW_MODE_LOC_SEND:
2119		/* disable Rx flow-control */
2120		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2121		break;
2122	case FLOW_MODE_SYMMETRIC:
2123	case FLOW_MODE_SYM_OR_REM:
2124		/* enable Tx & Rx flow-control */
2125		break;
2126	}
2127
2128	gma_write16(hw, port, GM_GP_CTRL, reg);
2129	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2130
2131	yukon_init(hw, port);
2132
2133	/* MIB clear */
2134	reg = gma_read16(hw, port, GM_PHY_ADDR);
2135	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2136
2137	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2138		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2139	gma_write16(hw, port, GM_PHY_ADDR, reg);
2140
2141	/* transmit control */
2142	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2143
2144	/* receive control reg: unicast + multicast + no FCS  */
2145	gma_write16(hw, port, GM_RX_CTRL,
2146			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2147
2148	/* transmit flow control */
2149	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2150
2151	/* transmit parameter */
2152	gma_write16(hw, port, GM_TX_PARAM,
2153			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2154			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2155			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2156
2157	/* configure the Serial Mode Register */
2158	reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2159		| GM_SMOD_VLAN_ENA
2160		| IPG_DATA_VAL(IPG_DATA_DEF);
2161
2162	if (hw->dev[port]->mtu > ETH_DATA_LEN)
2163		reg |= GM_SMOD_JUMBO_ENA;
2164
2165	gma_write16(hw, port, GM_SERIAL_MODE, reg);
2166
2167	/* physical address: used for pause frames */
2168	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2169	/* virtual address for data */
2170	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2171
2172	/* enable interrupt mask for counter overflows */
2173	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2174	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2175	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2176
2177	/* Initialize Mac Fifo */
2178
2179	/* Configure Rx MAC FIFO */
2180	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2181	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2182
2183	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2184	if (is_yukon_lite_a0(hw))
2185		reg &= ~GMF_RX_F_FL_ON;
2186
2187	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2188	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2189	/*
2190	 * because Pause Packet Truncation in GMAC is not working
2191	 * we have to increase the Flush Threshold to 64 bytes
2192	 * in order to flush pause packets in Rx FIFO on Yukon-1
2193	 */
2194	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2195
2196	/* Configure Tx MAC FIFO */
2197	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2198	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2199}
2200
2201/* Go into power down mode */
2202static void yukon_suspend(struct skge_hw *hw, int port)
2203{
2204	u16 ctrl;
2205
2206	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2207	ctrl |= PHY_M_PC_POL_R_DIS;
2208	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2209
2210	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2211	ctrl |= PHY_CT_RESET;
2212	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2213
2214	/* switch IEEE compatible power down mode on */
2215	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2216	ctrl |= PHY_CT_PDOWN;
2217	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2218}
2219
2220static void yukon_stop(struct skge_port *skge)
2221{
2222	struct skge_hw *hw = skge->hw;
2223	int port = skge->port;
2224
2225	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2226	yukon_reset(hw, port);
2227
2228	gma_write16(hw, port, GM_GP_CTRL,
2229			 gma_read16(hw, port, GM_GP_CTRL)
2230			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2231	gma_read16(hw, port, GM_GP_CTRL);
2232
2233	yukon_suspend(hw, port);
2234
2235	/* set GPHY Control reset */
2236	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2237	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2238}
2239
2240static void yukon_get_stats(struct skge_port *skge, u64 *data)
2241{
2242	struct skge_hw *hw = skge->hw;
2243	int port = skge->port;
2244	int i;
2245
2246	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2247		| gma_read32(hw, port, GM_TXO_OK_LO);
2248	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2249		| gma_read32(hw, port, GM_RXO_OK_LO);
2250
2251	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2252		data[i] = gma_read32(hw, port,
2253					  skge_stats[i].gma_offset);
2254}
2255
2256static void yukon_mac_intr(struct skge_hw *hw, int port)
2257{
2258	struct net_device *dev = hw->dev[port];
2259	struct skge_port *skge = netdev_priv(dev);
2260	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2261
2262	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2263		     "mac interrupt status 0x%x\n", status);
2264
2265	if (status & GM_IS_RX_FF_OR) {
2266		++dev->stats.rx_fifo_errors;
2267		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2268	}
2269
2270	if (status & GM_IS_TX_FF_UR) {
2271		++dev->stats.tx_fifo_errors;
2272		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2273	}
2274
2275}
2276
2277static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2278{
2279	switch (aux & PHY_M_PS_SPEED_MSK) {
2280	case PHY_M_PS_SPEED_1000:
2281		return SPEED_1000;
2282	case PHY_M_PS_SPEED_100:
2283		return SPEED_100;
2284	default:
2285		return SPEED_10;
2286	}
2287}
2288
2289static void yukon_link_up(struct skge_port *skge)
2290{
2291	struct skge_hw *hw = skge->hw;
2292	int port = skge->port;
2293	u16 reg;
2294
2295	/* Enable Transmit FIFO Underrun */
2296	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2297
2298	reg = gma_read16(hw, port, GM_GP_CTRL);
2299	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2300		reg |= GM_GPCR_DUP_FULL;
2301
2302	/* enable Rx/Tx */
2303	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2304	gma_write16(hw, port, GM_GP_CTRL, reg);
2305
2306	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2307	skge_link_up(skge);
2308}
2309
2310static void yukon_link_down(struct skge_port *skge)
2311{
2312	struct skge_hw *hw = skge->hw;
2313	int port = skge->port;
2314	u16 ctrl;
2315
2316	ctrl = gma_read16(hw, port, GM_GP_CTRL);
2317	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2318	gma_write16(hw, port, GM_GP_CTRL, ctrl);
2319
2320	if (skge->flow_status == FLOW_STAT_REM_SEND) {
2321		ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2322		ctrl |= PHY_M_AN_ASP;
2323		/* restore Asymmetric Pause bit */
2324		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2325	}
2326
2327	skge_link_down(skge);
2328
2329	yukon_init(hw, port);
2330}
2331
2332static void yukon_phy_intr(struct skge_port *skge)
2333{
2334	struct skge_hw *hw = skge->hw;
2335	int port = skge->port;
2336	const char *reason = NULL;
2337	u16 istatus, phystat;
2338
2339	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2340	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2341
2342	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2343		     "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2344
2345	if (istatus & PHY_M_IS_AN_COMPL) {
2346		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2347		    & PHY_M_AN_RF) {
2348			reason = "remote fault";
2349			goto failed;
2350		}
2351
2352		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2353			reason = "master/slave fault";
2354			goto failed;
2355		}
2356
2357		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2358			reason = "speed/duplex";
2359			goto failed;
2360		}
2361
2362		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2363			? DUPLEX_FULL : DUPLEX_HALF;
2364		skge->speed = yukon_speed(hw, phystat);
2365
2366		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
2367		switch (phystat & PHY_M_PS_PAUSE_MSK) {
2368		case PHY_M_PS_PAUSE_MSK:
2369			skge->flow_status = FLOW_STAT_SYMMETRIC;
2370			break;
2371		case PHY_M_PS_RX_P_EN:
2372			skge->flow_status = FLOW_STAT_REM_SEND;
2373			break;
2374		case PHY_M_PS_TX_P_EN:
2375			skge->flow_status = FLOW_STAT_LOC_SEND;
2376			break;
2377		default:
2378			skge->flow_status = FLOW_STAT_NONE;
2379		}
2380
2381		if (skge->flow_status == FLOW_STAT_NONE ||
2382		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2383			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2384		else
2385			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2386		yukon_link_up(skge);
2387		return;
2388	}
2389
2390	if (istatus & PHY_M_IS_LSP_CHANGE)
2391		skge->speed = yukon_speed(hw, phystat);
2392
2393	if (istatus & PHY_M_IS_DUP_CHANGE)
2394		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2395	if (istatus & PHY_M_IS_LST_CHANGE) {
2396		if (phystat & PHY_M_PS_LINK_UP)
2397			yukon_link_up(skge);
2398		else
2399			yukon_link_down(skge);
2400	}
2401	return;
2402 failed:
2403	pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2404
2405	/* XXX restart autonegotiation? */
2406}
2407
2408static void skge_phy_reset(struct skge_port *skge)
2409{
2410	struct skge_hw *hw = skge->hw;
2411	int port = skge->port;
2412	struct net_device *dev = hw->dev[port];
2413
2414	netif_stop_queue(skge->netdev);
2415	netif_carrier_off(skge->netdev);
2416
2417	spin_lock_bh(&hw->phy_lock);
2418	if (is_genesis(hw)) {
2419		genesis_reset(hw, port);
2420		genesis_mac_init(hw, port);
2421	} else {
2422		yukon_reset(hw, port);
2423		yukon_init(hw, port);
2424	}
2425	spin_unlock_bh(&hw->phy_lock);
2426
2427	skge_set_multicast(dev);
2428}
2429
2430/* Basic MII support */
2431static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2432{
2433	struct mii_ioctl_data *data = if_mii(ifr);
2434	struct skge_port *skge = netdev_priv(dev);
2435	struct skge_hw *hw = skge->hw;
2436	int err = -EOPNOTSUPP;
2437
2438	if (!netif_running(dev))
2439		return -ENODEV;	/* Phy still in reset */
2440
2441	switch (cmd) {
2442	case SIOCGMIIPHY:
2443		data->phy_id = hw->phy_addr;
2444
2445		/* fallthru */
2446	case SIOCGMIIREG: {
2447		u16 val = 0;
2448		spin_lock_bh(&hw->phy_lock);
2449
2450		if (is_genesis(hw))
2451			err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2452		else
2453			err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2454		spin_unlock_bh(&hw->phy_lock);
2455		data->val_out = val;
2456		break;
2457	}
2458
2459	case SIOCSMIIREG:
2460		spin_lock_bh(&hw->phy_lock);
2461		if (is_genesis(hw))
2462			err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2463				   data->val_in);
2464		else
2465			err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2466				   data->val_in);
2467		spin_unlock_bh(&hw->phy_lock);
2468		break;
2469	}
2470	return err;
2471}
2472
2473static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2474{
2475	u32 end;
2476
2477	start /= 8;
2478	len /= 8;
2479	end = start + len - 1;
2480
2481	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2482	skge_write32(hw, RB_ADDR(q, RB_START), start);
2483	skge_write32(hw, RB_ADDR(q, RB_WP), start);
2484	skge_write32(hw, RB_ADDR(q, RB_RP), start);
2485	skge_write32(hw, RB_ADDR(q, RB_END), end);
2486
2487	if (q == Q_R1 || q == Q_R2) {
2488		/* Set thresholds on receive queue's */
2489		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2490			     start + (2*len)/3);
2491		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2492			     start + (len/3));
2493	} else {
2494		/* Enable store & forward on Tx queue's because
2495		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2496		 */
2497		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2498	}
2499
2500	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2501}
2502
2503/* Setup Bus Memory Interface */
2504static void skge_qset(struct skge_port *skge, u16 q,
2505		      const struct skge_element *e)
2506{
2507	struct skge_hw *hw = skge->hw;
2508	u32 watermark = 0x600;
2509	u64 base = skge->dma + (e->desc - skge->mem);
2510
2511	/* optimization to reduce window on 32bit/33mhz */
2512	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2513		watermark /= 2;
2514
2515	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2516	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2517	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2518	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2519}
2520
2521static int skge_up(struct net_device *dev)
2522{
2523	struct skge_port *skge = netdev_priv(dev);
2524	struct skge_hw *hw = skge->hw;
2525	int port = skge->port;
2526	u32 chunk, ram_addr;
2527	size_t rx_size, tx_size;
2528	int err;
2529
2530	if (!is_valid_ether_addr(dev->dev_addr))
2531		return -EINVAL;
2532
2533	netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2534
2535	if (dev->mtu > RX_BUF_SIZE)
2536		skge->rx_buf_size = dev->mtu + ETH_HLEN;
2537	else
2538		skge->rx_buf_size = RX_BUF_SIZE;
2539
2540
2541	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2542	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2543	skge->mem_size = tx_size + rx_size;
2544	skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2545	if (!skge->mem)
2546		return -ENOMEM;
2547
2548	BUG_ON(skge->dma & 7);
2549
2550	if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2551		dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2552		err = -EINVAL;
2553		goto free_pci_mem;
2554	}
2555
2556	memset(skge->mem, 0, skge->mem_size);
2557
2558	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2559	if (err)
2560		goto free_pci_mem;
2561
2562	err = skge_rx_fill(dev);
2563	if (err)
2564		goto free_rx_ring;
2565
2566	err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2567			      skge->dma + rx_size);
2568	if (err)
2569		goto free_rx_ring;
2570
2571	/* Initialize MAC */
2572	spin_lock_bh(&hw->phy_lock);
2573	if (is_genesis(hw))
2574		genesis_mac_init(hw, port);
2575	else
2576		yukon_mac_init(hw, port);
2577	spin_unlock_bh(&hw->phy_lock);
2578
2579	/* Configure RAMbuffers - equally between ports and tx/rx */
2580	chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2581	ram_addr = hw->ram_offset + 2 * chunk * port;
2582
2583	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2584	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2585
2586	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2587	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2588	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2589
2590	/* Start receiver BMU */
2591	wmb();
2592	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2593	skge_led(skge, LED_MODE_ON);
2594
2595	spin_lock_irq(&hw->hw_lock);
2596	hw->intr_mask |= portmask[port];
2597	skge_write32(hw, B0_IMSK, hw->intr_mask);
2598	spin_unlock_irq(&hw->hw_lock);
2599
2600	napi_enable(&skge->napi);
2601	return 0;
2602
2603 free_rx_ring:
2604	skge_rx_clean(skge);
2605	kfree(skge->rx_ring.start);
2606 free_pci_mem:
2607	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2608	skge->mem = NULL;
2609
2610	return err;
2611}
2612
2613/* stop receiver */
2614static void skge_rx_stop(struct skge_hw *hw, int port)
2615{
2616	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2617	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2618		     RB_RST_SET|RB_DIS_OP_MD);
2619	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2620}
2621
2622static int skge_down(struct net_device *dev)
2623{
2624	struct skge_port *skge = netdev_priv(dev);
2625	struct skge_hw *hw = skge->hw;
2626	int port = skge->port;
2627
2628	if (skge->mem == NULL)
2629		return 0;
2630
2631	netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2632
2633	netif_tx_disable(dev);
2634
2635	if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2636		del_timer_sync(&skge->link_timer);
2637
2638	napi_disable(&skge->napi);
2639	netif_carrier_off(dev);
2640
2641	spin_lock_irq(&hw->hw_lock);
2642	hw->intr_mask &= ~portmask[port];
2643	skge_write32(hw, B0_IMSK, hw->intr_mask);
2644	spin_unlock_irq(&hw->hw_lock);
2645
2646	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2647	if (is_genesis(hw))
2648		genesis_stop(skge);
2649	else
2650		yukon_stop(skge);
2651
2652	/* Stop transmitter */
2653	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2654	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2655		     RB_RST_SET|RB_DIS_OP_MD);
2656
2657
2658	/* Disable Force Sync bit and Enable Alloc bit */
2659	skge_write8(hw, SK_REG(port, TXA_CTRL),
2660		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2661
2662	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
2663	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2664	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2665
2666	/* Reset PCI FIFO */
2667	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2668	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2669
2670	/* Reset the RAM Buffer async Tx queue */
2671	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2672
2673	skge_rx_stop(hw, port);
2674
2675	if (is_genesis(hw)) {
2676		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2677		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2678	} else {
2679		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2680		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2681	}
2682
2683	skge_led(skge, LED_MODE_OFF);
2684
2685	netif_tx_lock_bh(dev);
2686	skge_tx_clean(dev);
2687	netif_tx_unlock_bh(dev);
2688
2689	skge_rx_clean(skge);
2690
2691	kfree(skge->rx_ring.start);
2692	kfree(skge->tx_ring.start);
2693	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2694	skge->mem = NULL;
2695	return 0;
2696}
2697
2698static inline int skge_avail(const struct skge_ring *ring)
2699{
2700	smp_mb();
2701	return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2702		+ (ring->to_clean - ring->to_use) - 1;
2703}
2704
2705static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2706				   struct net_device *dev)
2707{
2708	struct skge_port *skge = netdev_priv(dev);
2709	struct skge_hw *hw = skge->hw;
2710	struct skge_element *e;
2711	struct skge_tx_desc *td;
2712	int i;
2713	u32 control, len;
2714	u64 map;
2715
2716	if (skb_padto(skb, ETH_ZLEN))
2717		return NETDEV_TX_OK;
2718
2719	if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2720		return NETDEV_TX_BUSY;
2721
2722	e = skge->tx_ring.to_use;
2723	td = e->desc;
2724	BUG_ON(td->control & BMU_OWN);
2725	e->skb = skb;
2726	len = skb_headlen(skb);
2727	map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2728	dma_unmap_addr_set(e, mapaddr, map);
2729	dma_unmap_len_set(e, maplen, len);
2730
2731	td->dma_lo = map;
2732	td->dma_hi = map >> 32;
2733
2734	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2735		const int offset = skb_checksum_start_offset(skb);
2736
2737		/* This seems backwards, but it is what the sk98lin
2738		 * does.  Looks like hardware is wrong?
2739		 */
2740		if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2741		    hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2742			control = BMU_TCP_CHECK;
2743		else
2744			control = BMU_UDP_CHECK;
2745
2746		td->csum_offs = 0;
2747		td->csum_start = offset;
2748		td->csum_write = offset + skb->csum_offset;
2749	} else
2750		control = BMU_CHECK;
2751
2752	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2753		control |= BMU_EOF | BMU_IRQ_EOF;
2754	else {
2755		struct skge_tx_desc *tf = td;
2756
2757		control |= BMU_STFWD;
2758		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2759			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2760
2761			map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2762					   frag->size, PCI_DMA_TODEVICE);
2763
2764			e = e->next;
2765			e->skb = skb;
2766			tf = e->desc;
2767			BUG_ON(tf->control & BMU_OWN);
2768
2769			tf->dma_lo = map;
2770			tf->dma_hi = (u64) map >> 32;
2771			dma_unmap_addr_set(e, mapaddr, map);
2772			dma_unmap_len_set(e, maplen, frag->size);
2773
2774			tf->control = BMU_OWN | BMU_SW | control | frag->size;
2775		}
2776		tf->control |= BMU_EOF | BMU_IRQ_EOF;
2777	}
2778	/* Make sure all the descriptors written */
2779	wmb();
2780	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2781	wmb();
2782
2783	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2784
2785	netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2786		     "tx queued, slot %td, len %d\n",
2787		     e - skge->tx_ring.start, skb->len);
2788
2789	skge->tx_ring.to_use = e->next;
2790	smp_wmb();
2791
2792	if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2793		netdev_dbg(dev, "transmit queue full\n");
2794		netif_stop_queue(dev);
2795	}
2796
2797	return NETDEV_TX_OK;
2798}
2799
2800
2801/* Free resources associated with this reing element */
2802static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
2803			 u32 control)
2804{
2805	struct pci_dev *pdev = skge->hw->pdev;
2806
2807	/* skb header vs. fragment */
2808	if (control & BMU_STF)
2809		pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
2810				 dma_unmap_len(e, maplen),
2811				 PCI_DMA_TODEVICE);
2812	else
2813		pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
2814			       dma_unmap_len(e, maplen),
2815			       PCI_DMA_TODEVICE);
2816
2817	if (control & BMU_EOF) {
2818		netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
2819			     "tx done slot %td\n", e - skge->tx_ring.start);
2820
2821		dev_kfree_skb(e->skb);
2822	}
2823}
2824
2825/* Free all buffers in transmit ring */
2826static void skge_tx_clean(struct net_device *dev)
2827{
2828	struct skge_port *skge = netdev_priv(dev);
2829	struct skge_element *e;
2830
2831	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2832		struct skge_tx_desc *td = e->desc;
2833		skge_tx_free(skge, e, td->control);
2834		td->control = 0;
2835	}
2836
2837	skge->tx_ring.to_clean = e;
2838}
2839
2840static void skge_tx_timeout(struct net_device *dev)
2841{
2842	struct skge_port *skge = netdev_priv(dev);
2843
2844	netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2845
2846	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2847	skge_tx_clean(dev);
2848	netif_wake_queue(dev);
2849}
2850
2851static int skge_change_mtu(struct net_device *dev, int new_mtu)
2852{
2853	int err;
2854
2855	if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2856		return -EINVAL;
2857
2858	if (!netif_running(dev)) {
2859		dev->mtu = new_mtu;
2860		return 0;
2861	}
2862
2863	skge_down(dev);
2864
2865	dev->mtu = new_mtu;
2866
2867	err = skge_up(dev);
2868	if (err)
2869		dev_close(dev);
2870
2871	return err;
2872}
2873
2874static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2875
2876static void genesis_add_filter(u8 filter[8], const u8 *addr)
2877{
2878	u32 crc, bit;
2879
2880	crc = ether_crc_le(ETH_ALEN, addr);
2881	bit = ~crc & 0x3f;
2882	filter[bit/8] |= 1 << (bit%8);
2883}
2884
2885static void genesis_set_multicast(struct net_device *dev)
2886{
2887	struct skge_port *skge = netdev_priv(dev);
2888	struct skge_hw *hw = skge->hw;
2889	int port = skge->port;
2890	struct netdev_hw_addr *ha;
2891	u32 mode;
2892	u8 filter[8];
2893
2894	mode = xm_read32(hw, port, XM_MODE);
2895	mode |= XM_MD_ENA_HASH;
2896	if (dev->flags & IFF_PROMISC)
2897		mode |= XM_MD_ENA_PROM;
2898	else
2899		mode &= ~XM_MD_ENA_PROM;
2900
2901	if (dev->flags & IFF_ALLMULTI)
2902		memset(filter, 0xff, sizeof(filter));
2903	else {
2904		memset(filter, 0, sizeof(filter));
2905
2906		if (skge->flow_status == FLOW_STAT_REM_SEND ||
2907		    skge->flow_status == FLOW_STAT_SYMMETRIC)
2908			genesis_add_filter(filter, pause_mc_addr);
2909
2910		netdev_for_each_mc_addr(ha, dev)
2911			genesis_add_filter(filter, ha->addr);
2912	}
2913
2914	xm_write32(hw, port, XM_MODE, mode);
2915	xm_outhash(hw, port, XM_HSM, filter);
2916}
2917
2918static void yukon_add_filter(u8 filter[8], const u8 *addr)
2919{
2920	 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2921	 filter[bit/8] |= 1 << (bit%8);
2922}
2923
2924static void yukon_set_multicast(struct net_device *dev)
2925{
2926	struct skge_port *skge = netdev_priv(dev);
2927	struct skge_hw *hw = skge->hw;
2928	int port = skge->port;
2929	struct netdev_hw_addr *ha;
2930	int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2931			skge->flow_status == FLOW_STAT_SYMMETRIC);
2932	u16 reg;
2933	u8 filter[8];
2934
2935	memset(filter, 0, sizeof(filter));
2936
2937	reg = gma_read16(hw, port, GM_RX_CTRL);
2938	reg |= GM_RXCR_UCF_ENA;
2939
2940	if (dev->flags & IFF_PROMISC) 		/* promiscuous */
2941		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2942	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */
2943		memset(filter, 0xff, sizeof(filter));
2944	else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2945		reg &= ~GM_RXCR_MCF_ENA;
2946	else {
2947		reg |= GM_RXCR_MCF_ENA;
2948
2949		if (rx_pause)
2950			yukon_add_filter(filter, pause_mc_addr);
2951
2952		netdev_for_each_mc_addr(ha, dev)
2953			yukon_add_filter(filter, ha->addr);
2954	}
2955
2956
2957	gma_write16(hw, port, GM_MC_ADDR_H1,
2958			 (u16)filter[0] | ((u16)filter[1] << 8));
2959	gma_write16(hw, port, GM_MC_ADDR_H2,
2960			 (u16)filter[2] | ((u16)filter[3] << 8));
2961	gma_write16(hw, port, GM_MC_ADDR_H3,
2962			 (u16)filter[4] | ((u16)filter[5] << 8));
2963	gma_write16(hw, port, GM_MC_ADDR_H4,
2964			 (u16)filter[6] | ((u16)filter[7] << 8));
2965
2966	gma_write16(hw, port, GM_RX_CTRL, reg);
2967}
2968
2969static inline u16 phy_length(const struct skge_hw *hw, u32 status)
2970{
2971	if (is_genesis(hw))
2972		return status >> XMR_FS_LEN_SHIFT;
2973	else
2974		return status >> GMR_FS_LEN_SHIFT;
2975}
2976
2977static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2978{
2979	if (is_genesis(hw))
2980		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2981	else
2982		return (status & GMR_FS_ANY_ERR) ||
2983			(status & GMR_FS_RX_OK) == 0;
2984}
2985
2986static void skge_set_multicast(struct net_device *dev)
2987{
2988	struct skge_port *skge = netdev_priv(dev);
2989
2990	if (is_genesis(skge->hw))
2991		genesis_set_multicast(dev);
2992	else
2993		yukon_set_multicast(dev);
2994
2995}
2996
2997
2998/* Get receive buffer from descriptor.
2999 * Handles copy of small buffers and reallocation failures
3000 */
3001static struct sk_buff *skge_rx_get(struct net_device *dev,
3002				   struct skge_element *e,
3003				   u32 control, u32 status, u16 csum)
3004{
3005	struct skge_port *skge = netdev_priv(dev);
3006	struct sk_buff *skb;
3007	u16 len = control & BMU_BBC;
3008
3009	netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3010		     "rx slot %td status 0x%x len %d\n",
3011		     e - skge->rx_ring.start, status, len);
3012
3013	if (len > skge->rx_buf_size)
3014		goto error;
3015
3016	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3017		goto error;
3018
3019	if (bad_phy_status(skge->hw, status))
3020		goto error;
3021
3022	if (phy_length(skge->hw, status) != len)
3023		goto error;
3024
3025	if (len < RX_COPY_THRESHOLD) {
3026		skb = netdev_alloc_skb_ip_align(dev, len);
3027		if (!skb)
3028			goto resubmit;
3029
3030		pci_dma_sync_single_for_cpu(skge->hw->pdev,
3031					    dma_unmap_addr(e, mapaddr),
3032					    len, PCI_DMA_FROMDEVICE);
3033		skb_copy_from_linear_data(e->skb, skb->data, len);
3034		pci_dma_sync_single_for_device(skge->hw->pdev,
3035					       dma_unmap_addr(e, mapaddr),
3036					       len, PCI_DMA_FROMDEVICE);
3037		skge_rx_reuse(e, skge->rx_buf_size);
3038	} else {
3039		struct sk_buff *nskb;
3040
3041		nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3042		if (!nskb)
3043			goto resubmit;
3044
3045		pci_unmap_single(skge->hw->pdev,
3046				 dma_unmap_addr(e, mapaddr),
3047				 dma_unmap_len(e, maplen),
3048				 PCI_DMA_FROMDEVICE);
3049		skb = e->skb;
3050		prefetch(skb->data);
3051		skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
3052	}
3053
3054	skb_put(skb, len);
3055
3056	if (dev->features & NETIF_F_RXCSUM) {
3057		skb->csum = csum;
3058		skb->ip_summed = CHECKSUM_COMPLETE;
3059	}
3060
3061	skb->protocol = eth_type_trans(skb, dev);
3062
3063	return skb;
3064error:
3065
3066	netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3067		     "rx err, slot %td control 0x%x status 0x%x\n",
3068		     e - skge->rx_ring.start, control, status);
3069
3070	if (is_genesis(skge->hw)) {
3071		if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3072			dev->stats.rx_length_errors++;
3073		if (status & XMR_FS_FRA_ERR)
3074			dev->stats.rx_frame_errors++;
3075		if (status & XMR_FS_FCS_ERR)
3076			dev->stats.rx_crc_errors++;
3077	} else {
3078		if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3079			dev->stats.rx_length_errors++;
3080		if (status & GMR_FS_FRAGMENT)
3081			dev->stats.rx_frame_errors++;
3082		if (status & GMR_FS_CRC_ERR)
3083			dev->stats.rx_crc_errors++;
3084	}
3085
3086resubmit:
3087	skge_rx_reuse(e, skge->rx_buf_size);
3088	return NULL;
3089}
3090
3091/* Free all buffers in Tx ring which are no longer owned by device */
3092static void skge_tx_done(struct net_device *dev)
3093{
3094	struct skge_port *skge = netdev_priv(dev);
3095	struct skge_ring *ring = &skge->tx_ring;
3096	struct skge_element *e;
3097
3098	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3099
3100	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3101		u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3102
3103		if (control & BMU_OWN)
3104			break;
3105
3106		skge_tx_free(skge, e, control);
3107	}
3108	skge->tx_ring.to_clean = e;
3109
3110	/* Can run lockless until we need to synchronize to restart queue. */
3111	smp_mb();
3112
3113	if (unlikely(netif_queue_stopped(dev) &&
3114		     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3115		netif_tx_lock(dev);
3116		if (unlikely(netif_queue_stopped(dev) &&
3117			     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3118			netif_wake_queue(dev);
3119
3120		}
3121		netif_tx_unlock(dev);
3122	}
3123}
3124
3125static int skge_poll(struct napi_struct *napi, int to_do)
3126{
3127	struct skge_port *skge = container_of(napi, struct skge_port, napi);
3128	struct net_device *dev = skge->netdev;
3129	struct skge_hw *hw = skge->hw;
3130	struct skge_ring *ring = &skge->rx_ring;
3131	struct skge_element *e;
3132	int work_done = 0;
3133
3134	skge_tx_done(dev);
3135
3136	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3137
3138	for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
3139		struct skge_rx_desc *rd = e->desc;
3140		struct sk_buff *skb;
3141		u32 control;
3142
3143		rmb();
3144		control = rd->control;
3145		if (control & BMU_OWN)
3146			break;
3147
3148		skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3149		if (likely(skb)) {
3150			napi_gro_receive(napi, skb);
3151			++work_done;
3152		}
3153	}
3154	ring->to_clean = e;
3155
3156	/* restart receiver */
3157	wmb();
3158	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3159
3160	if (work_done < to_do) {
3161		unsigned long flags;
3162
3163		napi_gro_flush(napi);
3164		spin_lock_irqsave(&hw->hw_lock, flags);
3165		__napi_complete(napi);
3166		hw->intr_mask |= napimask[skge->port];
3167		skge_write32(hw, B0_IMSK, hw->intr_mask);
3168		skge_read32(hw, B0_IMSK);
3169		spin_unlock_irqrestore(&hw->hw_lock, flags);
3170	}
3171
3172	return work_done;
3173}
3174
3175/* Parity errors seem to happen when Genesis is connected to a switch
3176 * with no other ports present. Heartbeat error??
3177 */
3178static void skge_mac_parity(struct skge_hw *hw, int port)
3179{
3180	struct net_device *dev = hw->dev[port];
3181
3182	++dev->stats.tx_heartbeat_errors;
3183
3184	if (is_genesis(hw))
3185		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3186			     MFF_CLR_PERR);
3187	else
3188		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3189		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3190			    (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3191			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3192}
3193
3194static void skge_mac_intr(struct skge_hw *hw, int port)
3195{
3196	if (is_genesis(hw))
3197		genesis_mac_intr(hw, port);
3198	else
3199		yukon_mac_intr(hw, port);
3200}
3201
3202/* Handle device specific framing and timeout interrupts */
3203static void skge_error_irq(struct skge_hw *hw)
3204{
3205	struct pci_dev *pdev = hw->pdev;
3206	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3207
3208	if (is_genesis(hw)) {
3209		/* clear xmac errors */
3210		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3211			skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3212		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3213			skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3214	} else {
3215		/* Timestamp (unused) overflow */
3216		if (hwstatus & IS_IRQ_TIST_OV)
3217			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3218	}
3219
3220	if (hwstatus & IS_RAM_RD_PAR) {
3221		dev_err(&pdev->dev, "Ram read data parity error\n");
3222		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3223	}
3224
3225	if (hwstatus & IS_RAM_WR_PAR) {
3226		dev_err(&pdev->dev, "Ram write data parity error\n");
3227		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3228	}
3229
3230	if (hwstatus & IS_M1_PAR_ERR)
3231		skge_mac_parity(hw, 0);
3232
3233	if (hwstatus & IS_M2_PAR_ERR)
3234		skge_mac_parity(hw, 1);
3235
3236	if (hwstatus & IS_R1_PAR_ERR) {
3237		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3238			hw->dev[0]->name);
3239		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3240	}
3241
3242	if (hwstatus & IS_R2_PAR_ERR) {
3243		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3244			hw->dev[1]->name);
3245		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3246	}
3247
3248	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3249		u16 pci_status, pci_cmd;
3250
3251		pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3252		pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3253
3254		dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3255			pci_cmd, pci_status);
3256
3257		/* Write the error bits back to clear them. */
3258		pci_status &= PCI_STATUS_ERROR_BITS;
3259		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3260		pci_write_config_word(pdev, PCI_COMMAND,
3261				      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3262		pci_write_config_word(pdev, PCI_STATUS, pci_status);
3263		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3264
3265		/* if error still set then just ignore it */
3266		hwstatus = skge_read32(hw, B0_HWE_ISRC);
3267		if (hwstatus & IS_IRQ_STAT) {
3268			dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3269			hw->intr_mask &= ~IS_HW_ERR;
3270		}
3271	}
3272}
3273
3274/*
3275 * Interrupt from PHY are handled in tasklet (softirq)
3276 * because accessing phy registers requires spin wait which might
3277 * cause excess interrupt latency.
3278 */
3279static void skge_extirq(unsigned long arg)
3280{
3281	struct skge_hw *hw = (struct skge_hw *) arg;
3282	int port;
3283
3284	for (port = 0; port < hw->ports; port++) {
3285		struct net_device *dev = hw->dev[port];
3286
3287		if (netif_running(dev)) {
3288			struct skge_port *skge = netdev_priv(dev);
3289
3290			spin_lock(&hw->phy_lock);
3291			if (!is_genesis(hw))
3292				yukon_phy_intr(skge);
3293			else if (hw->phy_type == SK_PHY_BCOM)
3294				bcom_phy_intr(skge);
3295			spin_unlock(&hw->phy_lock);
3296		}
3297	}
3298
3299	spin_lock_irq(&hw->hw_lock);
3300	hw->intr_mask |= IS_EXT_REG;
3301	skge_write32(hw, B0_IMSK, hw->intr_mask);
3302	skge_read32(hw, B0_IMSK);
3303	spin_unlock_irq(&hw->hw_lock);
3304}
3305
3306static irqreturn_t skge_intr(int irq, void *dev_id)
3307{
3308	struct skge_hw *hw = dev_id;
3309	u32 status;
3310	int handled = 0;
3311
3312	spin_lock(&hw->hw_lock);
3313	/* Reading this register masks IRQ */
3314	status = skge_read32(hw, B0_SP_ISRC);
3315	if (status == 0 || status == ~0)
3316		goto out;
3317
3318	handled = 1;
3319	status &= hw->intr_mask;
3320	if (status & IS_EXT_REG) {
3321		hw->intr_mask &= ~IS_EXT_REG;
3322		tasklet_schedule(&hw->phy_task);
3323	}
3324
3325	if (status & (IS_XA1_F|IS_R1_F)) {
3326		struct skge_port *skge = netdev_priv(hw->dev[0]);
3327		hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3328		napi_schedule(&skge->napi);
3329	}
3330
3331	if (status & IS_PA_TO_TX1)
3332		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3333
3334	if (status & IS_PA_TO_RX1) {
3335		++hw->dev[0]->stats.rx_over_errors;
3336		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3337	}
3338
3339
3340	if (status & IS_MAC1)
3341		skge_mac_intr(hw, 0);
3342
3343	if (hw->dev[1]) {
3344		struct skge_port *skge = netdev_priv(hw->dev[1]);
3345
3346		if (status & (IS_XA2_F|IS_R2_F)) {
3347			hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3348			napi_schedule(&skge->napi);
3349		}
3350
3351		if (status & IS_PA_TO_RX2) {
3352			++hw->dev[1]->stats.rx_over_errors;
3353			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3354		}
3355
3356		if (status & IS_PA_TO_TX2)
3357			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3358
3359		if (status & IS_MAC2)
3360			skge_mac_intr(hw, 1);
3361	}
3362
3363	if (status & IS_HW_ERR)
3364		skge_error_irq(hw);
3365
3366	skge_write32(hw, B0_IMSK, hw->intr_mask);
3367	skge_read32(hw, B0_IMSK);
3368out:
3369	spin_unlock(&hw->hw_lock);
3370
3371	return IRQ_RETVAL(handled);
3372}
3373
3374#ifdef CONFIG_NET_POLL_CONTROLLER
3375static void skge_netpoll(struct net_device *dev)
3376{
3377	struct skge_port *skge = netdev_priv(dev);
3378
3379	disable_irq(dev->irq);
3380	skge_intr(dev->irq, skge->hw);
3381	enable_irq(dev->irq);
3382}
3383#endif
3384
3385static int skge_set_mac_address(struct net_device *dev, void *p)
3386{
3387	struct skge_port *skge = netdev_priv(dev);
3388	struct skge_hw *hw = skge->hw;
3389	unsigned port = skge->port;
3390	const struct sockaddr *addr = p;
3391	u16 ctrl;
3392
3393	if (!is_valid_ether_addr(addr->sa_data))
3394		return -EADDRNOTAVAIL;
3395
3396	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3397
3398	if (!netif_running(dev)) {
3399		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3400		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3401	} else {
3402		/* disable Rx */
3403		spin_lock_bh(&hw->phy_lock);
3404		ctrl = gma_read16(hw, port, GM_GP_CTRL);
3405		gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3406
3407		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3408		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3409
3410		if (is_genesis(hw))
3411			xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3412		else {
3413			gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3414			gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3415		}
3416
3417		gma_write16(hw, port, GM_GP_CTRL, ctrl);
3418		spin_unlock_bh(&hw->phy_lock);
3419	}
3420
3421	return 0;
3422}
3423
3424static const struct {
3425	u8 id;
3426	const char *name;
3427} skge_chips[] = {
3428	{ CHIP_ID_GENESIS,	"Genesis" },
3429	{ CHIP_ID_YUKON,	 "Yukon" },
3430	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
3431	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
3432};
3433
3434static const char *skge_board_name(const struct skge_hw *hw)
3435{
3436	int i;
3437	static char buf[16];
3438
3439	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3440		if (skge_chips[i].id == hw->chip_id)
3441			return skge_chips[i].name;
3442
3443	snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3444	return buf;
3445}
3446
3447
3448/*
3449 * Setup the board data structure, but don't bring up
3450 * the port(s)
3451 */
3452static int skge_reset(struct skge_hw *hw)
3453{
3454	u32 reg;
3455	u16 ctst, pci_status;
3456	u8 t8, mac_cfg, pmd_type;
3457	int i;
3458
3459	ctst = skge_read16(hw, B0_CTST);
3460
3461	/* do a SW reset */
3462	skge_write8(hw, B0_CTST, CS_RST_SET);
3463	skge_write8(hw, B0_CTST, CS_RST_CLR);
3464
3465	/* clear PCI errors, if any */
3466	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3467	skge_write8(hw, B2_TST_CTRL2, 0);
3468
3469	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3470	pci_write_config_word(hw->pdev, PCI_STATUS,
3471			      pci_status | PCI_STATUS_ERROR_BITS);
3472	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3473	skge_write8(hw, B0_CTST, CS_MRST_CLR);
3474
3475	/* restore CLK_RUN bits (for Yukon-Lite) */
3476	skge_write16(hw, B0_CTST,
3477		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3478
3479	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3480	hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3481	pmd_type = skge_read8(hw, B2_PMD_TYP);
3482	hw->copper = (pmd_type == 'T' || pmd_type == '1');
3483
3484	switch (hw->chip_id) {
3485	case CHIP_ID_GENESIS:
3486#ifdef CONFIG_SKGE_GENESIS
3487		switch (hw->phy_type) {
3488		case SK_PHY_XMAC:
3489			hw->phy_addr = PHY_ADDR_XMAC;
3490			break;
3491		case SK_PHY_BCOM:
3492			hw->phy_addr = PHY_ADDR_BCOM;
3493			break;
3494		default:
3495			dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3496			       hw->phy_type);
3497			return -EOPNOTSUPP;
3498		}
3499		break;
3500#else
3501		dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3502		return -EOPNOTSUPP;
3503#endif
3504
3505	case CHIP_ID_YUKON:
3506	case CHIP_ID_YUKON_LITE:
3507	case CHIP_ID_YUKON_LP:
3508		if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3509			hw->copper = 1;
3510
3511		hw->phy_addr = PHY_ADDR_MARV;
3512		break;
3513
3514	default:
3515		dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3516		       hw->chip_id);
3517		return -EOPNOTSUPP;
3518	}
3519
3520	mac_cfg = skge_read8(hw, B2_MAC_CFG);
3521	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3522	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3523
3524	/* read the adapters RAM size */
3525	t8 = skge_read8(hw, B2_E_0);
3526	if (is_genesis(hw)) {
3527		if (t8 == 3) {
3528			/* special case: 4 x 64k x 36, offset = 0x80000 */
3529			hw->ram_size = 0x100000;
3530			hw->ram_offset = 0x80000;
3531		} else
3532			hw->ram_size = t8 * 512;
3533	} else if (t8 == 0)
3534		hw->ram_size = 0x20000;
3535	else
3536		hw->ram_size = t8 * 4096;
3537
3538	hw->intr_mask = IS_HW_ERR;
3539
3540	/* Use PHY IRQ for all but fiber based Genesis board */
3541	if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3542		hw->intr_mask |= IS_EXT_REG;
3543
3544	if (is_genesis(hw))
3545		genesis_init(hw);
3546	else {
3547		/* switch power to VCC (WA for VAUX problem) */
3548		skge_write8(hw, B0_POWER_CTRL,
3549			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3550
3551		/* avoid boards with stuck Hardware error bits */
3552		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3553		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3554			dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3555			hw->intr_mask &= ~IS_HW_ERR;
3556		}
3557
3558		/* Clear PHY COMA */
3559		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3560		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3561		reg &= ~PCI_PHY_COMA;
3562		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3563		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3564
3565
3566		for (i = 0; i < hw->ports; i++) {
3567			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3568			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3569		}
3570	}
3571
3572	/* turn off hardware timer (unused) */
3573	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3574	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3575	skge_write8(hw, B0_LED, LED_STAT_ON);
3576
3577	/* enable the Tx Arbiters */
3578	for (i = 0; i < hw->ports; i++)
3579		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3580
3581	/* Initialize ram interface */
3582	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3583
3584	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3585	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3586	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3587	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3588	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3589	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3590	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3591	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3592	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3593	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3594	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3595	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3596
3597	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3598
3599	/* Set interrupt moderation for Transmit only
3600	 * Receive interrupts avoided by NAPI
3601	 */
3602	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3603	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3604	skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3605
3606	skge_write32(hw, B0_IMSK, hw->intr_mask);
3607
3608	for (i = 0; i < hw->ports; i++) {
3609		if (is_genesis(hw))
3610			genesis_reset(hw, i);
3611		else
3612			yukon_reset(hw, i);
3613	}
3614
3615	return 0;
3616}
3617
3618
3619#ifdef CONFIG_SKGE_DEBUG
3620
3621static struct dentry *skge_debug;
3622
3623static int skge_debug_show(struct seq_file *seq, void *v)
3624{
3625	struct net_device *dev = seq->private;
3626	const struct skge_port *skge = netdev_priv(dev);
3627	const struct skge_hw *hw = skge->hw;
3628	const struct skge_element *e;
3629
3630	if (!netif_running(dev))
3631		return -ENETDOWN;
3632
3633	seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3634		   skge_read32(hw, B0_IMSK));
3635
3636	seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3637	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3638		const struct skge_tx_desc *t = e->desc;
3639		seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3640			   t->control, t->dma_hi, t->dma_lo, t->status,
3641			   t->csum_offs, t->csum_write, t->csum_start);
3642	}
3643
3644	seq_printf(seq, "\nRx Ring:\n");
3645	for (e = skge->rx_ring.to_clean; ; e = e->next) {
3646		const struct skge_rx_desc *r = e->desc;
3647
3648		if (r->control & BMU_OWN)
3649			break;
3650
3651		seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3652			   r->control, r->dma_hi, r->dma_lo, r->status,
3653			   r->timestamp, r->csum1, r->csum1_start);
3654	}
3655
3656	return 0;
3657}
3658
3659static int skge_debug_open(struct inode *inode, struct file *file)
3660{
3661	return single_open(file, skge_debug_show, inode->i_private);
3662}
3663
3664static const struct file_operations skge_debug_fops = {
3665	.owner		= THIS_MODULE,
3666	.open		= skge_debug_open,
3667	.read		= seq_read,
3668	.llseek		= seq_lseek,
3669	.release	= single_release,
3670};
3671
3672/*
3673 * Use network device events to create/remove/rename
3674 * debugfs file entries
3675 */
3676static int skge_device_event(struct notifier_block *unused,
3677			     unsigned long event, void *ptr)
3678{
3679	struct net_device *dev = ptr;
3680	struct skge_port *skge;
3681	struct dentry *d;
3682
3683	if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3684		goto done;
3685
3686	skge = netdev_priv(dev);
3687	switch (event) {
3688	case NETDEV_CHANGENAME:
3689		if (skge->debugfs) {
3690			d = debugfs_rename(skge_debug, skge->debugfs,
3691					   skge_debug, dev->name);
3692			if (d)
3693				skge->debugfs = d;
3694			else {
3695				netdev_info(dev, "rename failed\n");
3696				debugfs_remove(skge->debugfs);
3697			}
3698		}
3699		break;
3700
3701	case NETDEV_GOING_DOWN:
3702		if (skge->debugfs) {
3703			debugfs_remove(skge->debugfs);
3704			skge->debugfs = NULL;
3705		}
3706		break;
3707
3708	case NETDEV_UP:
3709		d = debugfs_create_file(dev->name, S_IRUGO,
3710					skge_debug, dev,
3711					&skge_debug_fops);
3712		if (!d || IS_ERR(d))
3713			netdev_info(dev, "debugfs create failed\n");
3714		else
3715			skge->debugfs = d;
3716		break;
3717	}
3718
3719done:
3720	return NOTIFY_DONE;
3721}
3722
3723static struct notifier_block skge_notifier = {
3724	.notifier_call = skge_device_event,
3725};
3726
3727
3728static __init void skge_debug_init(void)
3729{
3730	struct dentry *ent;
3731
3732	ent = debugfs_create_dir("skge", NULL);
3733	if (!ent || IS_ERR(ent)) {
3734		pr_info("debugfs create directory failed\n");
3735		return;
3736	}
3737
3738	skge_debug = ent;
3739	register_netdevice_notifier(&skge_notifier);
3740}
3741
3742static __exit void skge_debug_cleanup(void)
3743{
3744	if (skge_debug) {
3745		unregister_netdevice_notifier(&skge_notifier);
3746		debugfs_remove(skge_debug);
3747		skge_debug = NULL;
3748	}
3749}
3750
3751#else
3752#define skge_debug_init()
3753#define skge_debug_cleanup()
3754#endif
3755
3756static const struct net_device_ops skge_netdev_ops = {
3757	.ndo_open		= skge_up,
3758	.ndo_stop		= skge_down,
3759	.ndo_start_xmit		= skge_xmit_frame,
3760	.ndo_do_ioctl		= skge_ioctl,
3761	.ndo_get_stats		= skge_get_stats,
3762	.ndo_tx_timeout		= skge_tx_timeout,
3763	.ndo_change_mtu		= skge_change_mtu,
3764	.ndo_validate_addr	= eth_validate_addr,
3765	.ndo_set_multicast_list	= skge_set_multicast,
3766	.ndo_set_mac_address	= skge_set_mac_address,
3767#ifdef CONFIG_NET_POLL_CONTROLLER
3768	.ndo_poll_controller	= skge_netpoll,
3769#endif
3770};
3771
3772
3773/* Initialize network device */
3774static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3775				       int highmem)
3776{
3777	struct skge_port *skge;
3778	struct net_device *dev = alloc_etherdev(sizeof(*skge));
3779
3780	if (!dev) {
3781		dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
3782		return NULL;
3783	}
3784
3785	SET_NETDEV_DEV(dev, &hw->pdev->dev);
3786	dev->netdev_ops = &skge_netdev_ops;
3787	dev->ethtool_ops = &skge_ethtool_ops;
3788	dev->watchdog_timeo = TX_WATCHDOG;
3789	dev->irq = hw->pdev->irq;
3790
3791	if (highmem)
3792		dev->features |= NETIF_F_HIGHDMA;
3793
3794	skge = netdev_priv(dev);
3795	netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3796	skge->netdev = dev;
3797	skge->hw = hw;
3798	skge->msg_enable = netif_msg_init(debug, default_msg);
3799
3800	skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3801	skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3802
3803	/* Auto speed and flow control */
3804	skge->autoneg = AUTONEG_ENABLE;
3805	skge->flow_control = FLOW_MODE_SYM_OR_REM;
3806	skge->duplex = -1;
3807	skge->speed = -1;
3808	skge->advertising = skge_supported_modes(hw);
3809
3810	if (device_can_wakeup(&hw->pdev->dev)) {
3811		skge->wol = wol_supported(hw) & WAKE_MAGIC;
3812		device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3813	}
3814
3815	hw->dev[port] = dev;
3816
3817	skge->port = port;
3818
3819	/* Only used for Genesis XMAC */
3820	if (is_genesis(hw))
3821	    setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
3822	else {
3823		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3824		                   NETIF_F_RXCSUM;
3825		dev->features |= dev->hw_features;
3826	}
3827
3828	/* read the mac address */
3829	memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3830	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3831
3832	return dev;
3833}
3834
3835static void __devinit skge_show_addr(struct net_device *dev)
3836{
3837	const struct skge_port *skge = netdev_priv(dev);
3838
3839	netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3840}
3841
3842static int only_32bit_dma;
3843
3844static int __devinit skge_probe(struct pci_dev *pdev,
3845				const struct pci_device_id *ent)
3846{
3847	struct net_device *dev, *dev1;
3848	struct skge_hw *hw;
3849	int err, using_dac = 0;
3850
3851	err = pci_enable_device(pdev);
3852	if (err) {
3853		dev_err(&pdev->dev, "cannot enable PCI device\n");
3854		goto err_out;
3855	}
3856
3857	err = pci_request_regions(pdev, DRV_NAME);
3858	if (err) {
3859		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3860		goto err_out_disable_pdev;
3861	}
3862
3863	pci_set_master(pdev);
3864
3865	if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3866		using_dac = 1;
3867		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3868	} else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3869		using_dac = 0;
3870		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3871	}
3872
3873	if (err) {
3874		dev_err(&pdev->dev, "no usable DMA configuration\n");
3875		goto err_out_free_regions;
3876	}
3877
3878#ifdef __BIG_ENDIAN
3879	/* byte swap descriptors in hardware */
3880	{
3881		u32 reg;
3882
3883		pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3884		reg |= PCI_REV_DESC;
3885		pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3886	}
3887#endif
3888
3889	err = -ENOMEM;
3890	/* space for skge@pci:0000:04:00.0 */
3891	hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3892		     + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3893	if (!hw) {
3894		dev_err(&pdev->dev, "cannot allocate hardware struct\n");
3895		goto err_out_free_regions;
3896	}
3897	sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3898
3899	hw->pdev = pdev;
3900	spin_lock_init(&hw->hw_lock);
3901	spin_lock_init(&hw->phy_lock);
3902	tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
3903
3904	hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3905	if (!hw->regs) {
3906		dev_err(&pdev->dev, "cannot map device registers\n");
3907		goto err_out_free_hw;
3908	}
3909
3910	err = skge_reset(hw);
3911	if (err)
3912		goto err_out_iounmap;
3913
3914	pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3915		DRV_VERSION,
3916		(unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3917		skge_board_name(hw), hw->chip_rev);
3918
3919	dev = skge_devinit(hw, 0, using_dac);
3920	if (!dev)
3921		goto err_out_led_off;
3922
3923	/* Some motherboards are broken and has zero in ROM. */
3924	if (!is_valid_ether_addr(dev->dev_addr))
3925		dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3926
3927	err = register_netdev(dev);
3928	if (err) {
3929		dev_err(&pdev->dev, "cannot register net device\n");
3930		goto err_out_free_netdev;
3931	}
3932
3933	err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, hw->irq_name, hw);
3934	if (err) {
3935		dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
3936		       dev->name, pdev->irq);
3937		goto err_out_unregister;
3938	}
3939	skge_show_addr(dev);
3940
3941	if (hw->ports > 1) {
3942		dev1 = skge_devinit(hw, 1, using_dac);
3943		if (dev1 && register_netdev(dev1) == 0)
3944			skge_show_addr(dev1);
3945		else {
3946			/* Failure to register second port need not be fatal */
3947			dev_warn(&pdev->dev, "register of second port failed\n");
3948			hw->dev[1] = NULL;
3949			hw->ports = 1;
3950			if (dev1)
3951				free_netdev(dev1);
3952		}
3953	}
3954	pci_set_drvdata(pdev, hw);
3955
3956	return 0;
3957
3958err_out_unregister:
3959	unregister_netdev(dev);
3960err_out_free_netdev:
3961	free_netdev(dev);
3962err_out_led_off:
3963	skge_write16(hw, B0_LED, LED_STAT_OFF);
3964err_out_iounmap:
3965	iounmap(hw->regs);
3966err_out_free_hw:
3967	kfree(hw);
3968err_out_free_regions:
3969	pci_release_regions(pdev);
3970err_out_disable_pdev:
3971	pci_disable_device(pdev);
3972	pci_set_drvdata(pdev, NULL);
3973err_out:
3974	return err;
3975}
3976
3977static void __devexit skge_remove(struct pci_dev *pdev)
3978{
3979	struct skge_hw *hw  = pci_get_drvdata(pdev);
3980	struct net_device *dev0, *dev1;
3981
3982	if (!hw)
3983		return;
3984
3985	dev1 = hw->dev[1];
3986	if (dev1)
3987		unregister_netdev(dev1);
3988	dev0 = hw->dev[0];
3989	unregister_netdev(dev0);
3990
3991	tasklet_disable(&hw->phy_task);
3992
3993	spin_lock_irq(&hw->hw_lock);
3994	hw->intr_mask = 0;
3995	skge_write32(hw, B0_IMSK, 0);
3996	skge_read32(hw, B0_IMSK);
3997	spin_unlock_irq(&hw->hw_lock);
3998
3999	skge_write16(hw, B0_LED, LED_STAT_OFF);
4000	skge_write8(hw, B0_CTST, CS_RST_SET);
4001
4002	free_irq(pdev->irq, hw);
4003	pci_release_regions(pdev);
4004	pci_disable_device(pdev);
4005	if (dev1)
4006		free_netdev(dev1);
4007	free_netdev(dev0);
4008
4009	iounmap(hw->regs);
4010	kfree(hw);
4011	pci_set_drvdata(pdev, NULL);
4012}
4013
4014#ifdef CONFIG_PM
4015static int skge_suspend(struct device *dev)
4016{
4017	struct pci_dev *pdev = to_pci_dev(dev);
4018	struct skge_hw *hw  = pci_get_drvdata(pdev);
4019	int i;
4020
4021	if (!hw)
4022		return 0;
4023
4024	for (i = 0; i < hw->ports; i++) {
4025		struct net_device *dev = hw->dev[i];
4026		struct skge_port *skge = netdev_priv(dev);
4027
4028		if (netif_running(dev))
4029			skge_down(dev);
4030
4031		if (skge->wol)
4032			skge_wol_init(skge);
4033	}
4034
4035	skge_write32(hw, B0_IMSK, 0);
4036
4037	return 0;
4038}
4039
4040static int skge_resume(struct device *dev)
4041{
4042	struct pci_dev *pdev = to_pci_dev(dev);
4043	struct skge_hw *hw  = pci_get_drvdata(pdev);
4044	int i, err;
4045
4046	if (!hw)
4047		return 0;
4048
4049	err = skge_reset(hw);
4050	if (err)
4051		goto out;
4052
4053	for (i = 0; i < hw->ports; i++) {
4054		struct net_device *dev = hw->dev[i];
4055
4056		if (netif_running(dev)) {
4057			err = skge_up(dev);
4058
4059			if (err) {
4060				netdev_err(dev, "could not up: %d\n", err);
4061				dev_close(dev);
4062				goto out;
4063			}
4064		}
4065	}
4066out:
4067	return err;
4068}
4069
4070static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4071#define SKGE_PM_OPS (&skge_pm_ops)
4072
4073#else
4074
4075#define SKGE_PM_OPS NULL
4076#endif
4077
4078static void skge_shutdown(struct pci_dev *pdev)
4079{
4080	struct skge_hw *hw  = pci_get_drvdata(pdev);
4081	int i;
4082
4083	if (!hw)
4084		return;
4085
4086	for (i = 0; i < hw->ports; i++) {
4087		struct net_device *dev = hw->dev[i];
4088		struct skge_port *skge = netdev_priv(dev);
4089
4090		if (skge->wol)
4091			skge_wol_init(skge);
4092	}
4093
4094	pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4095	pci_set_power_state(pdev, PCI_D3hot);
4096}
4097
4098static struct pci_driver skge_driver = {
4099	.name =         DRV_NAME,
4100	.id_table =     skge_id_table,
4101	.probe =        skge_probe,
4102	.remove =       __devexit_p(skge_remove),
4103	.shutdown =	skge_shutdown,
4104	.driver.pm =	SKGE_PM_OPS,
4105};
4106
4107static struct dmi_system_id skge_32bit_dma_boards[] = {
4108	{
4109		.ident = "Gigabyte nForce boards",
4110		.matches = {
4111			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4112			DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4113		},
4114	},
4115	{}
4116};
4117
4118static int __init skge_init_module(void)
4119{
4120	if (dmi_check_system(skge_32bit_dma_boards))
4121		only_32bit_dma = 1;
4122	skge_debug_init();
4123	return pci_register_driver(&skge_driver);
4124}
4125
4126static void __exit skge_cleanup_module(void)
4127{
4128	pci_unregister_driver(&skge_driver);
4129	skge_debug_cleanup();
4130}
4131
4132module_init(skge_init_module);
4133module_exit(skge_cleanup_module);