Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1#define VERSION "0.23"
   2/* ns83820.c by Benjamin LaHaise with contributions.
   3 *
   4 * Questions/comments/discussion to linux-ns83820@kvack.org.
   5 *
   6 * $Revision: 1.34.2.23 $
   7 *
   8 * Copyright 2001 Benjamin LaHaise.
   9 * Copyright 2001, 2002 Red Hat.
  10 *
  11 * Mmmm, chocolate vanilla mocha...
  12 *
  13 *
  14 * This program is free software; you can redistribute it and/or modify
  15 * it under the terms of the GNU General Public License as published by
  16 * the Free Software Foundation; either version 2 of the License, or
  17 * (at your option) any later version.
  18 *
  19 * This program is distributed in the hope that it will be useful,
  20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  22 * GNU General Public License for more details.
  23 *
  24 * You should have received a copy of the GNU General Public License
  25 * along with this program; if not, write to the Free Software
  26 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  27 *
  28 *
  29 * ChangeLog
  30 * =========
  31 *	20010414	0.1 - created
  32 *	20010622	0.2 - basic rx and tx.
  33 *	20010711	0.3 - added duplex and link state detection support.
  34 *	20010713	0.4 - zero copy, no hangs.
  35 *			0.5 - 64 bit dma support (davem will hate me for this)
  36 *			    - disable jumbo frames to avoid tx hangs
  37 *			    - work around tx deadlocks on my 1.02 card via
  38 *			      fiddling with TXCFG
  39 *	20010810	0.6 - use pci dma api for ringbuffers, work on ia64
  40 *	20010816	0.7 - misc cleanups
  41 *	20010826	0.8 - fix critical zero copy bugs
  42 *			0.9 - internal experiment
  43 *	20010827	0.10 - fix ia64 unaligned access.
  44 *	20010906	0.11 - accept all packets with checksum errors as
  45 *			       otherwise fragments get lost
  46 *			     - fix >> 32 bugs
  47 *			0.12 - add statistics counters
  48 *			     - add allmulti/promisc support
  49 *	20011009	0.13 - hotplug support, other smaller pci api cleanups
  50 *	20011204	0.13a - optical transceiver support added
  51 *				by Michael Clark <michael@metaparadigm.com>
  52 *	20011205	0.13b - call register_netdev earlier in initialization
  53 *				suppress duplicate link status messages
  54 *	20011117 	0.14 - ethtool GDRVINFO, GLINK support from jgarzik
  55 *	20011204 	0.15	get ppc (big endian) working
  56 *	20011218	0.16	various cleanups
  57 *	20020310	0.17	speedups
  58 *	20020610	0.18 -	actually use the pci dma api for highmem
  59 *			     -	remove pci latency register fiddling
  60 *			0.19 -	better bist support
  61 *			     -	add ihr and reset_phy parameters
  62 *			     -	gmii bus probing
  63 *			     -	fix missed txok introduced during performance
  64 *				tuning
  65 *			0.20 -	fix stupid RFEN thinko.  i am such a smurf.
  66 *	20040828	0.21 -	add hardware vlan accleration
  67 *				by Neil Horman <nhorman@redhat.com>
  68 *	20050406	0.22 -	improved DAC ifdefs from Andi Kleen
  69 *			     -	removal of dead code from Adrian Bunk
  70 *			     -	fix half duplex collision behaviour
  71 * Driver Overview
  72 * ===============
  73 *
  74 * This driver was originally written for the National Semiconductor
  75 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC.  Hopefully
  76 * this code will turn out to be a) clean, b) correct, and c) fast.
  77 * With that in mind, I'm aiming to split the code up as much as
  78 * reasonably possible.  At present there are X major sections that
  79 * break down into a) packet receive, b) packet transmit, c) link
  80 * management, d) initialization and configuration.  Where possible,
  81 * these code paths are designed to run in parallel.
  82 *
  83 * This driver has been tested and found to work with the following
  84 * cards (in no particular order):
  85 *
  86 *	Cameo		SOHO-GA2000T	SOHO-GA2500T
  87 *	D-Link		DGE-500T
  88 *	PureData	PDP8023Z-TG
  89 *	SMC		SMC9452TX	SMC9462TX
  90 *	Netgear		GA621
  91 *
  92 * Special thanks to SMC for providing hardware to test this driver on.
  93 *
  94 * Reports of success or failure would be greatly appreciated.
  95 */
  96//#define dprintk		printk
  97#define dprintk(x...)		do { } while (0)
  98
  99#include <linux/module.h>
 100#include <linux/moduleparam.h>
 101#include <linux/types.h>
 102#include <linux/pci.h>
 103#include <linux/dma-mapping.h>
 104#include <linux/netdevice.h>
 105#include <linux/etherdevice.h>
 106#include <linux/delay.h>
 107#include <linux/workqueue.h>
 108#include <linux/init.h>
 109#include <linux/interrupt.h>
 110#include <linux/ip.h>	/* for iph */
 111#include <linux/in.h>	/* for IPPROTO_... */
 112#include <linux/compiler.h>
 113#include <linux/prefetch.h>
 114#include <linux/ethtool.h>
 115#include <linux/sched.h>
 116#include <linux/timer.h>
 117#include <linux/if_vlan.h>
 118#include <linux/rtnetlink.h>
 119#include <linux/jiffies.h>
 120#include <linux/slab.h>
 121
 122#include <asm/io.h>
 123#include <asm/uaccess.h>
 124#include <asm/system.h>
 125
 126#define DRV_NAME "ns83820"
 127
 128/* Global parameters.  See module_param near the bottom. */
 129static int ihr = 2;
 130static int reset_phy = 0;
 131static int lnksts = 0;		/* CFG_LNKSTS bit polarity */
 132
 133/* Dprintk is used for more interesting debug events */
 134#undef Dprintk
 135#define	Dprintk			dprintk
 136
 137/* tunables */
 138#define RX_BUF_SIZE	1500	/* 8192 */
 139#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
 140#define NS83820_VLAN_ACCEL_SUPPORT
 141#endif
 142
 143/* Must not exceed ~65000. */
 144#define NR_RX_DESC	64
 145#define NR_TX_DESC	128
 146
 147/* not tunable */
 148#define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14)	/* rx/tx mac addr + type */
 149
 150#define MIN_TX_DESC_FREE	8
 151
 152/* register defines */
 153#define CFGCS		0x04
 154
 155#define CR_TXE		0x00000001
 156#define CR_TXD		0x00000002
 157/* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
 158 * The Receive engine skips one descriptor and moves
 159 * onto the next one!! */
 160#define CR_RXE		0x00000004
 161#define CR_RXD		0x00000008
 162#define CR_TXR		0x00000010
 163#define CR_RXR		0x00000020
 164#define CR_SWI		0x00000080
 165#define CR_RST		0x00000100
 166
 167#define PTSCR_EEBIST_FAIL       0x00000001
 168#define PTSCR_EEBIST_EN         0x00000002
 169#define PTSCR_EELOAD_EN         0x00000004
 170#define PTSCR_RBIST_FAIL        0x000001b8
 171#define PTSCR_RBIST_DONE        0x00000200
 172#define PTSCR_RBIST_EN          0x00000400
 173#define PTSCR_RBIST_RST         0x00002000
 174
 175#define MEAR_EEDI		0x00000001
 176#define MEAR_EEDO		0x00000002
 177#define MEAR_EECLK		0x00000004
 178#define MEAR_EESEL		0x00000008
 179#define MEAR_MDIO		0x00000010
 180#define MEAR_MDDIR		0x00000020
 181#define MEAR_MDC		0x00000040
 182
 183#define ISR_TXDESC3	0x40000000
 184#define ISR_TXDESC2	0x20000000
 185#define ISR_TXDESC1	0x10000000
 186#define ISR_TXDESC0	0x08000000
 187#define ISR_RXDESC3	0x04000000
 188#define ISR_RXDESC2	0x02000000
 189#define ISR_RXDESC1	0x01000000
 190#define ISR_RXDESC0	0x00800000
 191#define ISR_TXRCMP	0x00400000
 192#define ISR_RXRCMP	0x00200000
 193#define ISR_DPERR	0x00100000
 194#define ISR_SSERR	0x00080000
 195#define ISR_RMABT	0x00040000
 196#define ISR_RTABT	0x00020000
 197#define ISR_RXSOVR	0x00010000
 198#define ISR_HIBINT	0x00008000
 199#define ISR_PHY		0x00004000
 200#define ISR_PME		0x00002000
 201#define ISR_SWI		0x00001000
 202#define ISR_MIB		0x00000800
 203#define ISR_TXURN	0x00000400
 204#define ISR_TXIDLE	0x00000200
 205#define ISR_TXERR	0x00000100
 206#define ISR_TXDESC	0x00000080
 207#define ISR_TXOK	0x00000040
 208#define ISR_RXORN	0x00000020
 209#define ISR_RXIDLE	0x00000010
 210#define ISR_RXEARLY	0x00000008
 211#define ISR_RXERR	0x00000004
 212#define ISR_RXDESC	0x00000002
 213#define ISR_RXOK	0x00000001
 214
 215#define TXCFG_CSI	0x80000000
 216#define TXCFG_HBI	0x40000000
 217#define TXCFG_MLB	0x20000000
 218#define TXCFG_ATP	0x10000000
 219#define TXCFG_ECRETRY	0x00800000
 220#define TXCFG_BRST_DIS	0x00080000
 221#define TXCFG_MXDMA1024	0x00000000
 222#define TXCFG_MXDMA512	0x00700000
 223#define TXCFG_MXDMA256	0x00600000
 224#define TXCFG_MXDMA128	0x00500000
 225#define TXCFG_MXDMA64	0x00400000
 226#define TXCFG_MXDMA32	0x00300000
 227#define TXCFG_MXDMA16	0x00200000
 228#define TXCFG_MXDMA8	0x00100000
 229
 230#define CFG_LNKSTS	0x80000000
 231#define CFG_SPDSTS	0x60000000
 232#define CFG_SPDSTS1	0x40000000
 233#define CFG_SPDSTS0	0x20000000
 234#define CFG_DUPSTS	0x10000000
 235#define CFG_TBI_EN	0x01000000
 236#define CFG_MODE_1000	0x00400000
 237/* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
 238 * Read the Phy response and then configure the MAC accordingly */
 239#define CFG_AUTO_1000	0x00200000
 240#define CFG_PINT_CTL	0x001c0000
 241#define CFG_PINT_DUPSTS	0x00100000
 242#define CFG_PINT_LNKSTS	0x00080000
 243#define CFG_PINT_SPDSTS	0x00040000
 244#define CFG_TMRTEST	0x00020000
 245#define CFG_MRM_DIS	0x00010000
 246#define CFG_MWI_DIS	0x00008000
 247#define CFG_T64ADDR	0x00004000
 248#define CFG_PCI64_DET	0x00002000
 249#define CFG_DATA64_EN	0x00001000
 250#define CFG_M64ADDR	0x00000800
 251#define CFG_PHY_RST	0x00000400
 252#define CFG_PHY_DIS	0x00000200
 253#define CFG_EXTSTS_EN	0x00000100
 254#define CFG_REQALG	0x00000080
 255#define CFG_SB		0x00000040
 256#define CFG_POW		0x00000020
 257#define CFG_EXD		0x00000010
 258#define CFG_PESEL	0x00000008
 259#define CFG_BROM_DIS	0x00000004
 260#define CFG_EXT_125	0x00000002
 261#define CFG_BEM		0x00000001
 262
 263#define EXTSTS_UDPPKT	0x00200000
 264#define EXTSTS_TCPPKT	0x00080000
 265#define EXTSTS_IPPKT	0x00020000
 266#define EXTSTS_VPKT	0x00010000
 267#define EXTSTS_VTG_MASK	0x0000ffff
 268
 269#define SPDSTS_POLARITY	(CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
 270
 271#define MIBC_MIBS	0x00000008
 272#define MIBC_ACLR	0x00000004
 273#define MIBC_FRZ	0x00000002
 274#define MIBC_WRN	0x00000001
 275
 276#define PCR_PSEN	(1 << 31)
 277#define PCR_PS_MCAST	(1 << 30)
 278#define PCR_PS_DA	(1 << 29)
 279#define PCR_STHI_8	(3 << 23)
 280#define PCR_STLO_4	(1 << 23)
 281#define PCR_FFHI_8K	(3 << 21)
 282#define PCR_FFLO_4K	(1 << 21)
 283#define PCR_PAUSE_CNT	0xFFFE
 284
 285#define RXCFG_AEP	0x80000000
 286#define RXCFG_ARP	0x40000000
 287#define RXCFG_STRIPCRC	0x20000000
 288#define RXCFG_RX_FD	0x10000000
 289#define RXCFG_ALP	0x08000000
 290#define RXCFG_AIRL	0x04000000
 291#define RXCFG_MXDMA512	0x00700000
 292#define RXCFG_DRTH	0x0000003e
 293#define RXCFG_DRTH0	0x00000002
 294
 295#define RFCR_RFEN	0x80000000
 296#define RFCR_AAB	0x40000000
 297#define RFCR_AAM	0x20000000
 298#define RFCR_AAU	0x10000000
 299#define RFCR_APM	0x08000000
 300#define RFCR_APAT	0x07800000
 301#define RFCR_APAT3	0x04000000
 302#define RFCR_APAT2	0x02000000
 303#define RFCR_APAT1	0x01000000
 304#define RFCR_APAT0	0x00800000
 305#define RFCR_AARP	0x00400000
 306#define RFCR_MHEN	0x00200000
 307#define RFCR_UHEN	0x00100000
 308#define RFCR_ULM	0x00080000
 309
 310#define VRCR_RUDPE	0x00000080
 311#define VRCR_RTCPE	0x00000040
 312#define VRCR_RIPE	0x00000020
 313#define VRCR_IPEN	0x00000010
 314#define VRCR_DUTF	0x00000008
 315#define VRCR_DVTF	0x00000004
 316#define VRCR_VTREN	0x00000002
 317#define VRCR_VTDEN	0x00000001
 318
 319#define VTCR_PPCHK	0x00000008
 320#define VTCR_GCHK	0x00000004
 321#define VTCR_VPPTI	0x00000002
 322#define VTCR_VGTI	0x00000001
 323
 324#define CR		0x00
 325#define CFG		0x04
 326#define MEAR		0x08
 327#define PTSCR		0x0c
 328#define	ISR		0x10
 329#define	IMR		0x14
 330#define	IER		0x18
 331#define	IHR		0x1c
 332#define TXDP		0x20
 333#define TXDP_HI		0x24
 334#define TXCFG		0x28
 335#define GPIOR		0x2c
 336#define RXDP		0x30
 337#define RXDP_HI		0x34
 338#define RXCFG		0x38
 339#define PQCR		0x3c
 340#define WCSR		0x40
 341#define PCR		0x44
 342#define RFCR		0x48
 343#define RFDR		0x4c
 344
 345#define SRR		0x58
 346
 347#define VRCR		0xbc
 348#define VTCR		0xc0
 349#define VDR		0xc4
 350#define CCSR		0xcc
 351
 352#define TBICR		0xe0
 353#define TBISR		0xe4
 354#define TANAR		0xe8
 355#define TANLPAR		0xec
 356#define TANER		0xf0
 357#define TESR		0xf4
 358
 359#define TBICR_MR_AN_ENABLE	0x00001000
 360#define TBICR_MR_RESTART_AN	0x00000200
 361
 362#define TBISR_MR_LINK_STATUS	0x00000020
 363#define TBISR_MR_AN_COMPLETE	0x00000004
 364
 365#define TANAR_PS2 		0x00000100
 366#define TANAR_PS1 		0x00000080
 367#define TANAR_HALF_DUP 		0x00000040
 368#define TANAR_FULL_DUP 		0x00000020
 369
 370#define GPIOR_GP5_OE		0x00000200
 371#define GPIOR_GP4_OE		0x00000100
 372#define GPIOR_GP3_OE		0x00000080
 373#define GPIOR_GP2_OE		0x00000040
 374#define GPIOR_GP1_OE		0x00000020
 375#define GPIOR_GP3_OUT		0x00000004
 376#define GPIOR_GP1_OUT		0x00000001
 377
 378#define LINK_AUTONEGOTIATE	0x01
 379#define LINK_DOWN		0x02
 380#define LINK_UP			0x04
 381
 382#define HW_ADDR_LEN	sizeof(dma_addr_t)
 383#define desc_addr_set(desc, addr)				\
 384	do {							\
 385		((desc)[0] = cpu_to_le32(addr));		\
 386		if (HW_ADDR_LEN == 8)		 		\
 387			(desc)[1] = cpu_to_le32(((u64)addr) >> 32);	\
 388	} while(0)
 389#define desc_addr_get(desc)					\
 390	(le32_to_cpu((desc)[0]) | \
 391	(HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
 392
 393#define DESC_LINK		0
 394#define DESC_BUFPTR		(DESC_LINK + HW_ADDR_LEN/4)
 395#define DESC_CMDSTS		(DESC_BUFPTR + HW_ADDR_LEN/4)
 396#define DESC_EXTSTS		(DESC_CMDSTS + 4/4)
 397
 398#define CMDSTS_OWN	0x80000000
 399#define CMDSTS_MORE	0x40000000
 400#define CMDSTS_INTR	0x20000000
 401#define CMDSTS_ERR	0x10000000
 402#define CMDSTS_OK	0x08000000
 403#define CMDSTS_RUNT	0x00200000
 404#define CMDSTS_LEN_MASK	0x0000ffff
 405
 406#define CMDSTS_DEST_MASK	0x01800000
 407#define CMDSTS_DEST_SELF	0x00800000
 408#define CMDSTS_DEST_MULTI	0x01000000
 409
 410#define DESC_SIZE	8		/* Should be cache line sized */
 411
 412struct rx_info {
 413	spinlock_t	lock;
 414	int		up;
 415	unsigned long	idle;
 416
 417	struct sk_buff	*skbs[NR_RX_DESC];
 418
 419	__le32		*next_rx_desc;
 420	u16		next_rx, next_empty;
 421
 422	__le32		*descs;
 423	dma_addr_t	phy_descs;
 424};
 425
 426
 427struct ns83820 {
 428	u8			__iomem *base;
 429
 430	struct pci_dev		*pci_dev;
 431	struct net_device	*ndev;
 432
 433	struct rx_info		rx_info;
 434	struct tasklet_struct	rx_tasklet;
 435
 436	unsigned		ihr;
 437	struct work_struct	tq_refill;
 438
 439	/* protects everything below.  irqsave when using. */
 440	spinlock_t		misc_lock;
 441
 442	u32			CFG_cache;
 443
 444	u32			MEAR_cache;
 445	u32			IMR_cache;
 446
 447	unsigned		linkstate;
 448
 449	spinlock_t	tx_lock;
 450
 451	u16		tx_done_idx;
 452	u16		tx_idx;
 453	volatile u16	tx_free_idx;	/* idx of free desc chain */
 454	u16		tx_intr_idx;
 455
 456	atomic_t	nr_tx_skbs;
 457	struct sk_buff	*tx_skbs[NR_TX_DESC];
 458
 459	char		pad[16] __attribute__((aligned(16)));
 460	__le32		*tx_descs;
 461	dma_addr_t	tx_phy_descs;
 462
 463	struct timer_list	tx_watchdog;
 464};
 465
 466static inline struct ns83820 *PRIV(struct net_device *dev)
 467{
 468	return netdev_priv(dev);
 469}
 470
 471#define __kick_rx(dev)	writel(CR_RXE, dev->base + CR)
 472
 473static inline void kick_rx(struct net_device *ndev)
 474{
 475	struct ns83820 *dev = PRIV(ndev);
 476	dprintk("kick_rx: maybe kicking\n");
 477	if (test_and_clear_bit(0, &dev->rx_info.idle)) {
 478		dprintk("actually kicking\n");
 479		writel(dev->rx_info.phy_descs +
 480			(4 * DESC_SIZE * dev->rx_info.next_rx),
 481		       dev->base + RXDP);
 482		if (dev->rx_info.next_rx == dev->rx_info.next_empty)
 483			printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
 484				ndev->name);
 485		__kick_rx(dev);
 486	}
 487}
 488
 489//free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
 490#define start_tx_okay(dev)	\
 491	(((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
 492
 493/* Packet Receiver
 494 *
 495 * The hardware supports linked lists of receive descriptors for
 496 * which ownership is transferred back and forth by means of an
 497 * ownership bit.  While the hardware does support the use of a
 498 * ring for receive descriptors, we only make use of a chain in
 499 * an attempt to reduce bus traffic under heavy load scenarios.
 500 * This will also make bugs a bit more obvious.  The current code
 501 * only makes use of a single rx chain; I hope to implement
 502 * priority based rx for version 1.0.  Goal: even under overload
 503 * conditions, still route realtime traffic with as low jitter as
 504 * possible.
 505 */
 506static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
 507{
 508	desc_addr_set(desc + DESC_LINK, link);
 509	desc_addr_set(desc + DESC_BUFPTR, buf);
 510	desc[DESC_EXTSTS] = cpu_to_le32(extsts);
 511	mb();
 512	desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
 513}
 514
 515#define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
 516static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
 517{
 518	unsigned next_empty;
 519	u32 cmdsts;
 520	__le32 *sg;
 521	dma_addr_t buf;
 522
 523	next_empty = dev->rx_info.next_empty;
 524
 525	/* don't overrun last rx marker */
 526	if (unlikely(nr_rx_empty(dev) <= 2)) {
 527		kfree_skb(skb);
 528		return 1;
 529	}
 530
 531#if 0
 532	dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
 533		dev->rx_info.next_empty,
 534		dev->rx_info.nr_used,
 535		dev->rx_info.next_rx
 536		);
 537#endif
 538
 539	sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
 540	BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
 541	dev->rx_info.skbs[next_empty] = skb;
 542
 543	dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
 544	cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
 545	buf = pci_map_single(dev->pci_dev, skb->data,
 546			     REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
 547	build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
 548	/* update link of previous rx */
 549	if (likely(next_empty != dev->rx_info.next_rx))
 550		dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
 551
 552	return 0;
 553}
 554
 555static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
 556{
 557	struct ns83820 *dev = PRIV(ndev);
 558	unsigned i;
 559	unsigned long flags = 0;
 560
 561	if (unlikely(nr_rx_empty(dev) <= 2))
 562		return 0;
 563
 564	dprintk("rx_refill(%p)\n", ndev);
 565	if (gfp == GFP_ATOMIC)
 566		spin_lock_irqsave(&dev->rx_info.lock, flags);
 567	for (i=0; i<NR_RX_DESC; i++) {
 568		struct sk_buff *skb;
 569		long res;
 570
 571		/* extra 16 bytes for alignment */
 572		skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
 573		if (unlikely(!skb))
 574			break;
 575
 576		skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
 577		if (gfp != GFP_ATOMIC)
 578			spin_lock_irqsave(&dev->rx_info.lock, flags);
 579		res = ns83820_add_rx_skb(dev, skb);
 580		if (gfp != GFP_ATOMIC)
 581			spin_unlock_irqrestore(&dev->rx_info.lock, flags);
 582		if (res) {
 583			i = 1;
 584			break;
 585		}
 586	}
 587	if (gfp == GFP_ATOMIC)
 588		spin_unlock_irqrestore(&dev->rx_info.lock, flags);
 589
 590	return i ? 0 : -ENOMEM;
 591}
 592
 593static void rx_refill_atomic(struct net_device *ndev)
 594{
 595	rx_refill(ndev, GFP_ATOMIC);
 596}
 597
 598/* REFILL */
 599static inline void queue_refill(struct work_struct *work)
 600{
 601	struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
 602	struct net_device *ndev = dev->ndev;
 603
 604	rx_refill(ndev, GFP_KERNEL);
 605	if (dev->rx_info.up)
 606		kick_rx(ndev);
 607}
 608
 609static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
 610{
 611	build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
 612}
 613
 614static void phy_intr(struct net_device *ndev)
 615{
 616	struct ns83820 *dev = PRIV(ndev);
 617	static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
 618	u32 cfg, new_cfg;
 619	u32 tbisr, tanar, tanlpar;
 620	int speed, fullduplex, newlinkstate;
 621
 622	cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
 623
 624	if (dev->CFG_cache & CFG_TBI_EN) {
 625		/* we have an optical transceiver */
 626		tbisr = readl(dev->base + TBISR);
 627		tanar = readl(dev->base + TANAR);
 628		tanlpar = readl(dev->base + TANLPAR);
 629		dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
 630			tbisr, tanar, tanlpar);
 631
 632		if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) &&
 633		      (tanar & TANAR_FULL_DUP)) ) {
 634
 635			/* both of us are full duplex */
 636			writel(readl(dev->base + TXCFG)
 637			       | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
 638			       dev->base + TXCFG);
 639			writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
 640			       dev->base + RXCFG);
 641			/* Light up full duplex LED */
 642			writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
 643			       dev->base + GPIOR);
 644
 645		} else if (((tanlpar & TANAR_HALF_DUP) &&
 646			    (tanar & TANAR_HALF_DUP)) ||
 647			   ((tanlpar & TANAR_FULL_DUP) &&
 648			    (tanar & TANAR_HALF_DUP)) ||
 649			   ((tanlpar & TANAR_HALF_DUP) &&
 650			    (tanar & TANAR_FULL_DUP))) {
 651
 652			/* one or both of us are half duplex */
 653			writel((readl(dev->base + TXCFG)
 654				& ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
 655			       dev->base + TXCFG);
 656			writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
 657			       dev->base + RXCFG);
 658			/* Turn off full duplex LED */
 659			writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
 660			       dev->base + GPIOR);
 661		}
 662
 663		speed = 4; /* 1000F */
 664
 665	} else {
 666		/* we have a copper transceiver */
 667		new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
 668
 669		if (cfg & CFG_SPDSTS1)
 670			new_cfg |= CFG_MODE_1000;
 671		else
 672			new_cfg &= ~CFG_MODE_1000;
 673
 674		speed = ((cfg / CFG_SPDSTS0) & 3);
 675		fullduplex = (cfg & CFG_DUPSTS);
 676
 677		if (fullduplex) {
 678			new_cfg |= CFG_SB;
 679			writel(readl(dev->base + TXCFG)
 680					| TXCFG_CSI | TXCFG_HBI,
 681			       dev->base + TXCFG);
 682			writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
 683			       dev->base + RXCFG);
 684		} else {
 685			writel(readl(dev->base + TXCFG)
 686					& ~(TXCFG_CSI | TXCFG_HBI),
 687			       dev->base + TXCFG);
 688			writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
 689			       dev->base + RXCFG);
 690		}
 691
 692		if ((cfg & CFG_LNKSTS) &&
 693		    ((new_cfg ^ dev->CFG_cache) != 0)) {
 694			writel(new_cfg, dev->base + CFG);
 695			dev->CFG_cache = new_cfg;
 696		}
 697
 698		dev->CFG_cache &= ~CFG_SPDSTS;
 699		dev->CFG_cache |= cfg & CFG_SPDSTS;
 700	}
 701
 702	newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
 703
 704	if (newlinkstate & LINK_UP &&
 705	    dev->linkstate != newlinkstate) {
 706		netif_start_queue(ndev);
 707		netif_wake_queue(ndev);
 708		printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
 709			ndev->name,
 710			speeds[speed],
 711			fullduplex ? "full" : "half");
 712	} else if (newlinkstate & LINK_DOWN &&
 713		   dev->linkstate != newlinkstate) {
 714		netif_stop_queue(ndev);
 715		printk(KERN_INFO "%s: link now down.\n", ndev->name);
 716	}
 717
 718	dev->linkstate = newlinkstate;
 719}
 720
 721static int ns83820_setup_rx(struct net_device *ndev)
 722{
 723	struct ns83820 *dev = PRIV(ndev);
 724	unsigned i;
 725	int ret;
 726
 727	dprintk("ns83820_setup_rx(%p)\n", ndev);
 728
 729	dev->rx_info.idle = 1;
 730	dev->rx_info.next_rx = 0;
 731	dev->rx_info.next_rx_desc = dev->rx_info.descs;
 732	dev->rx_info.next_empty = 0;
 733
 734	for (i=0; i<NR_RX_DESC; i++)
 735		clear_rx_desc(dev, i);
 736
 737	writel(0, dev->base + RXDP_HI);
 738	writel(dev->rx_info.phy_descs, dev->base + RXDP);
 739
 740	ret = rx_refill(ndev, GFP_KERNEL);
 741	if (!ret) {
 742		dprintk("starting receiver\n");
 743		/* prevent the interrupt handler from stomping on us */
 744		spin_lock_irq(&dev->rx_info.lock);
 745
 746		writel(0x0001, dev->base + CCSR);
 747		writel(0, dev->base + RFCR);
 748		writel(0x7fc00000, dev->base + RFCR);
 749		writel(0xffc00000, dev->base + RFCR);
 750
 751		dev->rx_info.up = 1;
 752
 753		phy_intr(ndev);
 754
 755		/* Okay, let it rip */
 756		spin_lock(&dev->misc_lock);
 757		dev->IMR_cache |= ISR_PHY;
 758		dev->IMR_cache |= ISR_RXRCMP;
 759		//dev->IMR_cache |= ISR_RXERR;
 760		//dev->IMR_cache |= ISR_RXOK;
 761		dev->IMR_cache |= ISR_RXORN;
 762		dev->IMR_cache |= ISR_RXSOVR;
 763		dev->IMR_cache |= ISR_RXDESC;
 764		dev->IMR_cache |= ISR_RXIDLE;
 765		dev->IMR_cache |= ISR_TXDESC;
 766		dev->IMR_cache |= ISR_TXIDLE;
 767
 768		writel(dev->IMR_cache, dev->base + IMR);
 769		writel(1, dev->base + IER);
 770		spin_unlock(&dev->misc_lock);
 771
 772		kick_rx(ndev);
 773
 774		spin_unlock_irq(&dev->rx_info.lock);
 775	}
 776	return ret;
 777}
 778
 779static void ns83820_cleanup_rx(struct ns83820 *dev)
 780{
 781	unsigned i;
 782	unsigned long flags;
 783
 784	dprintk("ns83820_cleanup_rx(%p)\n", dev);
 785
 786	/* disable receive interrupts */
 787	spin_lock_irqsave(&dev->misc_lock, flags);
 788	dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
 789	writel(dev->IMR_cache, dev->base + IMR);
 790	spin_unlock_irqrestore(&dev->misc_lock, flags);
 791
 792	/* synchronize with the interrupt handler and kill it */
 793	dev->rx_info.up = 0;
 794	synchronize_irq(dev->pci_dev->irq);
 795
 796	/* touch the pci bus... */
 797	readl(dev->base + IMR);
 798
 799	/* assumes the transmitter is already disabled and reset */
 800	writel(0, dev->base + RXDP_HI);
 801	writel(0, dev->base + RXDP);
 802
 803	for (i=0; i<NR_RX_DESC; i++) {
 804		struct sk_buff *skb = dev->rx_info.skbs[i];
 805		dev->rx_info.skbs[i] = NULL;
 806		clear_rx_desc(dev, i);
 807		kfree_skb(skb);
 808	}
 809}
 810
 811static void ns83820_rx_kick(struct net_device *ndev)
 812{
 813	struct ns83820 *dev = PRIV(ndev);
 814	/*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
 815		if (dev->rx_info.up) {
 816			rx_refill_atomic(ndev);
 817			kick_rx(ndev);
 818		}
 819	}
 820
 821	if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
 822		schedule_work(&dev->tq_refill);
 823	else
 824		kick_rx(ndev);
 825	if (dev->rx_info.idle)
 826		printk(KERN_DEBUG "%s: BAD\n", ndev->name);
 827}
 828
 829/* rx_irq
 830 *
 831 */
 832static void rx_irq(struct net_device *ndev)
 833{
 834	struct ns83820 *dev = PRIV(ndev);
 835	struct rx_info *info = &dev->rx_info;
 836	unsigned next_rx;
 837	int rx_rc, len;
 838	u32 cmdsts;
 839	__le32 *desc;
 840	unsigned long flags;
 841	int nr = 0;
 842
 843	dprintk("rx_irq(%p)\n", ndev);
 844	dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
 845		readl(dev->base + RXDP),
 846		(long)(dev->rx_info.phy_descs),
 847		(int)dev->rx_info.next_rx,
 848		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
 849		(int)dev->rx_info.next_empty,
 850		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
 851		);
 852
 853	spin_lock_irqsave(&info->lock, flags);
 854	if (!info->up)
 855		goto out;
 856
 857	dprintk("walking descs\n");
 858	next_rx = info->next_rx;
 859	desc = info->next_rx_desc;
 860	while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
 861	       (cmdsts != CMDSTS_OWN)) {
 862		struct sk_buff *skb;
 863		u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
 864		dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
 865
 866		dprintk("cmdsts: %08x\n", cmdsts);
 867		dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
 868		dprintk("extsts: %08x\n", extsts);
 869
 870		skb = info->skbs[next_rx];
 871		info->skbs[next_rx] = NULL;
 872		info->next_rx = (next_rx + 1) % NR_RX_DESC;
 873
 874		mb();
 875		clear_rx_desc(dev, next_rx);
 876
 877		pci_unmap_single(dev->pci_dev, bufptr,
 878				 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
 879		len = cmdsts & CMDSTS_LEN_MASK;
 880#ifdef NS83820_VLAN_ACCEL_SUPPORT
 881		/* NH: As was mentioned below, this chip is kinda
 882		 * brain dead about vlan tag stripping.  Frames
 883		 * that are 64 bytes with a vlan header appended
 884		 * like arp frames, or pings, are flagged as Runts
 885		 * when the tag is stripped and hardware.  This
 886		 * also means that the OK bit in the descriptor
 887		 * is cleared when the frame comes in so we have
 888		 * to do a specific length check here to make sure
 889		 * the frame would have been ok, had we not stripped
 890		 * the tag.
 891		 */
 892		if (likely((CMDSTS_OK & cmdsts) ||
 893			((cmdsts & CMDSTS_RUNT) && len >= 56))) {
 894#else
 895		if (likely(CMDSTS_OK & cmdsts)) {
 896#endif
 897			skb_put(skb, len);
 898			if (unlikely(!skb))
 899				goto netdev_mangle_me_harder_failed;
 900			if (cmdsts & CMDSTS_DEST_MULTI)
 901				ndev->stats.multicast++;
 902			ndev->stats.rx_packets++;
 903			ndev->stats.rx_bytes += len;
 904			if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
 905				skb->ip_summed = CHECKSUM_UNNECESSARY;
 906			} else {
 907				skb_checksum_none_assert(skb);
 908			}
 909			skb->protocol = eth_type_trans(skb, ndev);
 910#ifdef NS83820_VLAN_ACCEL_SUPPORT
 911			if(extsts & EXTSTS_VPKT) {
 912				unsigned short tag;
 913
 914				tag = ntohs(extsts & EXTSTS_VTG_MASK);
 915				__vlan_hwaccel_put_tag(skb, tag);
 916			}
 917#endif
 918			rx_rc = netif_rx(skb);
 919			if (NET_RX_DROP == rx_rc) {
 920netdev_mangle_me_harder_failed:
 921				ndev->stats.rx_dropped++;
 922			}
 923		} else {
 924			kfree_skb(skb);
 925		}
 926
 927		nr++;
 928		next_rx = info->next_rx;
 929		desc = info->descs + (DESC_SIZE * next_rx);
 930	}
 931	info->next_rx = next_rx;
 932	info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
 933
 934out:
 935	if (0 && !nr) {
 936		Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
 937	}
 938
 939	spin_unlock_irqrestore(&info->lock, flags);
 940}
 941
 942static void rx_action(unsigned long _dev)
 943{
 944	struct net_device *ndev = (void *)_dev;
 945	struct ns83820 *dev = PRIV(ndev);
 946	rx_irq(ndev);
 947	writel(ihr, dev->base + IHR);
 948
 949	spin_lock_irq(&dev->misc_lock);
 950	dev->IMR_cache |= ISR_RXDESC;
 951	writel(dev->IMR_cache, dev->base + IMR);
 952	spin_unlock_irq(&dev->misc_lock);
 953
 954	rx_irq(ndev);
 955	ns83820_rx_kick(ndev);
 956}
 957
 958/* Packet Transmit code
 959 */
 960static inline void kick_tx(struct ns83820 *dev)
 961{
 962	dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
 963		dev, dev->tx_idx, dev->tx_free_idx);
 964	writel(CR_TXE, dev->base + CR);
 965}
 966
 967/* No spinlock needed on the transmit irq path as the interrupt handler is
 968 * serialized.
 969 */
 970static void do_tx_done(struct net_device *ndev)
 971{
 972	struct ns83820 *dev = PRIV(ndev);
 973	u32 cmdsts, tx_done_idx;
 974	__le32 *desc;
 975
 976	dprintk("do_tx_done(%p)\n", ndev);
 977	tx_done_idx = dev->tx_done_idx;
 978	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
 979
 980	dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
 981		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
 982	while ((tx_done_idx != dev->tx_free_idx) &&
 983	       !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
 984		struct sk_buff *skb;
 985		unsigned len;
 986		dma_addr_t addr;
 987
 988		if (cmdsts & CMDSTS_ERR)
 989			ndev->stats.tx_errors++;
 990		if (cmdsts & CMDSTS_OK)
 991			ndev->stats.tx_packets++;
 992		if (cmdsts & CMDSTS_OK)
 993			ndev->stats.tx_bytes += cmdsts & 0xffff;
 994
 995		dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
 996			tx_done_idx, dev->tx_free_idx, cmdsts);
 997		skb = dev->tx_skbs[tx_done_idx];
 998		dev->tx_skbs[tx_done_idx] = NULL;
 999		dprintk("done(%p)\n", skb);
1000
1001		len = cmdsts & CMDSTS_LEN_MASK;
1002		addr = desc_addr_get(desc + DESC_BUFPTR);
1003		if (skb) {
1004			pci_unmap_single(dev->pci_dev,
1005					addr,
1006					len,
1007					PCI_DMA_TODEVICE);
1008			dev_kfree_skb_irq(skb);
1009			atomic_dec(&dev->nr_tx_skbs);
1010		} else
1011			pci_unmap_page(dev->pci_dev,
1012					addr,
1013					len,
1014					PCI_DMA_TODEVICE);
1015
1016		tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1017		dev->tx_done_idx = tx_done_idx;
1018		desc[DESC_CMDSTS] = cpu_to_le32(0);
1019		mb();
1020		desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1021	}
1022
1023	/* Allow network stack to resume queueing packets after we've
1024	 * finished transmitting at least 1/4 of the packets in the queue.
1025	 */
1026	if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1027		dprintk("start_queue(%p)\n", ndev);
1028		netif_start_queue(ndev);
1029		netif_wake_queue(ndev);
1030	}
1031}
1032
1033static void ns83820_cleanup_tx(struct ns83820 *dev)
1034{
1035	unsigned i;
1036
1037	for (i=0; i<NR_TX_DESC; i++) {
1038		struct sk_buff *skb = dev->tx_skbs[i];
1039		dev->tx_skbs[i] = NULL;
1040		if (skb) {
1041			__le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1042			pci_unmap_single(dev->pci_dev,
1043					desc_addr_get(desc + DESC_BUFPTR),
1044					le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1045					PCI_DMA_TODEVICE);
1046			dev_kfree_skb_irq(skb);
1047			atomic_dec(&dev->nr_tx_skbs);
1048		}
1049	}
1050
1051	memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1052}
1053
1054/* transmit routine.  This code relies on the network layer serializing
1055 * its calls in, but will run happily in parallel with the interrupt
1056 * handler.  This code currently has provisions for fragmenting tx buffers
1057 * while trying to track down a bug in either the zero copy code or
1058 * the tx fifo (hence the MAX_FRAG_LEN).
1059 */
1060static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb,
1061					   struct net_device *ndev)
1062{
1063	struct ns83820 *dev = PRIV(ndev);
1064	u32 free_idx, cmdsts, extsts;
1065	int nr_free, nr_frags;
1066	unsigned tx_done_idx, last_idx;
1067	dma_addr_t buf;
1068	unsigned len;
1069	skb_frag_t *frag;
1070	int stopped = 0;
1071	int do_intr = 0;
1072	volatile __le32 *first_desc;
1073
1074	dprintk("ns83820_hard_start_xmit\n");
1075
1076	nr_frags =  skb_shinfo(skb)->nr_frags;
1077again:
1078	if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1079		netif_stop_queue(ndev);
1080		if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1081			return NETDEV_TX_BUSY;
1082		netif_start_queue(ndev);
1083	}
1084
1085	last_idx = free_idx = dev->tx_free_idx;
1086	tx_done_idx = dev->tx_done_idx;
1087	nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1088	nr_free -= 1;
1089	if (nr_free <= nr_frags) {
1090		dprintk("stop_queue - not enough(%p)\n", ndev);
1091		netif_stop_queue(ndev);
1092
1093		/* Check again: we may have raced with a tx done irq */
1094		if (dev->tx_done_idx != tx_done_idx) {
1095			dprintk("restart queue(%p)\n", ndev);
1096			netif_start_queue(ndev);
1097			goto again;
1098		}
1099		return NETDEV_TX_BUSY;
1100	}
1101
1102	if (free_idx == dev->tx_intr_idx) {
1103		do_intr = 1;
1104		dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1105	}
1106
1107	nr_free -= nr_frags;
1108	if (nr_free < MIN_TX_DESC_FREE) {
1109		dprintk("stop_queue - last entry(%p)\n", ndev);
1110		netif_stop_queue(ndev);
1111		stopped = 1;
1112	}
1113
1114	frag = skb_shinfo(skb)->frags;
1115	if (!nr_frags)
1116		frag = NULL;
1117	extsts = 0;
1118	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1119		extsts |= EXTSTS_IPPKT;
1120		if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1121			extsts |= EXTSTS_TCPPKT;
1122		else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1123			extsts |= EXTSTS_UDPPKT;
1124	}
1125
1126#ifdef NS83820_VLAN_ACCEL_SUPPORT
1127	if(vlan_tx_tag_present(skb)) {
1128		/* fetch the vlan tag info out of the
1129		 * ancillary data if the vlan code
1130		 * is using hw vlan acceleration
1131		 */
1132		short tag = vlan_tx_tag_get(skb);
1133		extsts |= (EXTSTS_VPKT | htons(tag));
1134	}
1135#endif
1136
1137	len = skb->len;
1138	if (nr_frags)
1139		len -= skb->data_len;
1140	buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1141
1142	first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1143
1144	for (;;) {
1145		volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1146
1147		dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1148			(unsigned long long)buf);
1149		last_idx = free_idx;
1150		free_idx = (free_idx + 1) % NR_TX_DESC;
1151		desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1152		desc_addr_set(desc + DESC_BUFPTR, buf);
1153		desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1154
1155		cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1156		cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1157		cmdsts |= len;
1158		desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1159
1160		if (!nr_frags)
1161			break;
1162
1163		buf = pci_map_page(dev->pci_dev, frag->page,
1164				   frag->page_offset,
1165				   frag->size, PCI_DMA_TODEVICE);
1166		dprintk("frag: buf=%08Lx  page=%08lx offset=%08lx\n",
1167			(long long)buf, (long) page_to_pfn(frag->page),
1168			frag->page_offset);
1169		len = frag->size;
1170		frag++;
1171		nr_frags--;
1172	}
1173	dprintk("done pkt\n");
1174
1175	spin_lock_irq(&dev->tx_lock);
1176	dev->tx_skbs[last_idx] = skb;
1177	first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1178	dev->tx_free_idx = free_idx;
1179	atomic_inc(&dev->nr_tx_skbs);
1180	spin_unlock_irq(&dev->tx_lock);
1181
1182	kick_tx(dev);
1183
1184	/* Check again: we may have raced with a tx done irq */
1185	if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1186		netif_start_queue(ndev);
1187
1188	return NETDEV_TX_OK;
1189}
1190
1191static void ns83820_update_stats(struct ns83820 *dev)
1192{
1193	struct net_device *ndev = dev->ndev;
1194	u8 __iomem *base = dev->base;
1195
1196	/* the DP83820 will freeze counters, so we need to read all of them */
1197	ndev->stats.rx_errors		+= readl(base + 0x60) & 0xffff;
1198	ndev->stats.rx_crc_errors	+= readl(base + 0x64) & 0xffff;
1199	ndev->stats.rx_missed_errors	+= readl(base + 0x68) & 0xffff;
1200	ndev->stats.rx_frame_errors	+= readl(base + 0x6c) & 0xffff;
1201	/*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1202	ndev->stats.rx_length_errors	+= readl(base + 0x74) & 0xffff;
1203	ndev->stats.rx_length_errors	+= readl(base + 0x78) & 0xffff;
1204	/*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1205	/*ndev->stats.rx_pause_count += */  readl(base + 0x80);
1206	/*ndev->stats.tx_pause_count += */  readl(base + 0x84);
1207	ndev->stats.tx_carrier_errors	+= readl(base + 0x88) & 0xff;
1208}
1209
1210static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1211{
1212	struct ns83820 *dev = PRIV(ndev);
1213
1214	/* somewhat overkill */
1215	spin_lock_irq(&dev->misc_lock);
1216	ns83820_update_stats(dev);
1217	spin_unlock_irq(&dev->misc_lock);
1218
1219	return &ndev->stats;
1220}
1221
1222/* Let ethtool retrieve info */
1223static int ns83820_get_settings(struct net_device *ndev,
1224				struct ethtool_cmd *cmd)
1225{
1226	struct ns83820 *dev = PRIV(ndev);
1227	u32 cfg, tanar, tbicr;
1228	int fullduplex   = 0;
1229
1230	/*
1231	 * Here's the list of available ethtool commands from other drivers:
1232	 *	cmd->advertising =
1233	 *	ethtool_cmd_speed_set(cmd, ...)
1234	 *	cmd->duplex =
1235	 *	cmd->port = 0;
1236	 *	cmd->phy_address =
1237	 *	cmd->transceiver = 0;
1238	 *	cmd->autoneg =
1239	 *	cmd->maxtxpkt = 0;
1240	 *	cmd->maxrxpkt = 0;
1241	 */
1242
1243	/* read current configuration */
1244	cfg   = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1245	tanar = readl(dev->base + TANAR);
1246	tbicr = readl(dev->base + TBICR);
1247
1248	fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1249
1250	cmd->supported = SUPPORTED_Autoneg;
1251
1252	if (dev->CFG_cache & CFG_TBI_EN) {
1253		/* we have optical interface */
1254		cmd->supported |= SUPPORTED_1000baseT_Half |
1255					SUPPORTED_1000baseT_Full |
1256					SUPPORTED_FIBRE;
1257		cmd->port       = PORT_FIBRE;
1258	} else {
1259		/* we have copper */
1260		cmd->supported |= SUPPORTED_10baseT_Half |
1261			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half |
1262			SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half |
1263			SUPPORTED_1000baseT_Full |
1264			SUPPORTED_MII;
1265		cmd->port = PORT_MII;
1266	}
1267
1268	cmd->duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1269	switch (cfg / CFG_SPDSTS0 & 3) {
1270	case 2:
1271		ethtool_cmd_speed_set(cmd, SPEED_1000);
1272		break;
1273	case 1:
1274		ethtool_cmd_speed_set(cmd, SPEED_100);
1275		break;
1276	default:
1277		ethtool_cmd_speed_set(cmd, SPEED_10);
1278		break;
1279	}
1280	cmd->autoneg = (tbicr & TBICR_MR_AN_ENABLE)
1281		? AUTONEG_ENABLE : AUTONEG_DISABLE;
1282	return 0;
1283}
1284
1285/* Let ethool change settings*/
1286static int ns83820_set_settings(struct net_device *ndev,
1287				struct ethtool_cmd *cmd)
1288{
1289	struct ns83820 *dev = PRIV(ndev);
1290	u32 cfg, tanar;
1291	int have_optical = 0;
1292	int fullduplex   = 0;
1293
1294	/* read current configuration */
1295	cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1296	tanar = readl(dev->base + TANAR);
1297
1298	if (dev->CFG_cache & CFG_TBI_EN) {
1299		/* we have optical */
1300		have_optical = 1;
1301		fullduplex   = (tanar & TANAR_FULL_DUP);
1302
1303	} else {
1304		/* we have copper */
1305		fullduplex = cfg & CFG_DUPSTS;
1306	}
1307
1308	spin_lock_irq(&dev->misc_lock);
1309	spin_lock(&dev->tx_lock);
1310
1311	/* Set duplex */
1312	if (cmd->duplex != fullduplex) {
1313		if (have_optical) {
1314			/*set full duplex*/
1315			if (cmd->duplex == DUPLEX_FULL) {
1316				/* force full duplex */
1317				writel(readl(dev->base + TXCFG)
1318					| TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1319					dev->base + TXCFG);
1320				writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1321					dev->base + RXCFG);
1322				/* Light up full duplex LED */
1323				writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1324					dev->base + GPIOR);
1325			} else {
1326				/*TODO: set half duplex */
1327			}
1328
1329		} else {
1330			/*we have copper*/
1331			/* TODO: Set duplex for copper cards */
1332		}
1333		printk(KERN_INFO "%s: Duplex set via ethtool\n",
1334		ndev->name);
1335	}
1336
1337	/* Set autonegotiation */
1338	if (1) {
1339		if (cmd->autoneg == AUTONEG_ENABLE) {
1340			/* restart auto negotiation */
1341			writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1342				dev->base + TBICR);
1343			writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1344				dev->linkstate = LINK_AUTONEGOTIATE;
1345
1346			printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1347				ndev->name);
1348		} else {
1349			/* disable auto negotiation */
1350			writel(0x00000000, dev->base + TBICR);
1351		}
1352
1353		printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1354				cmd->autoneg ? "ENABLED" : "DISABLED");
1355	}
1356
1357	phy_intr(ndev);
1358	spin_unlock(&dev->tx_lock);
1359	spin_unlock_irq(&dev->misc_lock);
1360
1361	return 0;
1362}
1363/* end ethtool get/set support -df */
1364
1365static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1366{
1367	struct ns83820 *dev = PRIV(ndev);
1368	strcpy(info->driver, "ns83820");
1369	strcpy(info->version, VERSION);
1370	strcpy(info->bus_info, pci_name(dev->pci_dev));
1371}
1372
1373static u32 ns83820_get_link(struct net_device *ndev)
1374{
1375	struct ns83820 *dev = PRIV(ndev);
1376	u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1377	return cfg & CFG_LNKSTS ? 1 : 0;
1378}
1379
1380static const struct ethtool_ops ops = {
1381	.get_settings    = ns83820_get_settings,
1382	.set_settings    = ns83820_set_settings,
1383	.get_drvinfo     = ns83820_get_drvinfo,
1384	.get_link        = ns83820_get_link
1385};
1386
1387static inline void ns83820_disable_interrupts(struct ns83820 *dev)
1388{
1389	writel(0, dev->base + IMR);
1390	writel(0, dev->base + IER);
1391	readl(dev->base + IER);
1392}
1393
1394/* this function is called in irq context from the ISR */
1395static void ns83820_mib_isr(struct ns83820 *dev)
1396{
1397	unsigned long flags;
1398	spin_lock_irqsave(&dev->misc_lock, flags);
1399	ns83820_update_stats(dev);
1400	spin_unlock_irqrestore(&dev->misc_lock, flags);
1401}
1402
1403static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1404static irqreturn_t ns83820_irq(int foo, void *data)
1405{
1406	struct net_device *ndev = data;
1407	struct ns83820 *dev = PRIV(ndev);
1408	u32 isr;
1409	dprintk("ns83820_irq(%p)\n", ndev);
1410
1411	dev->ihr = 0;
1412
1413	isr = readl(dev->base + ISR);
1414	dprintk("irq: %08x\n", isr);
1415	ns83820_do_isr(ndev, isr);
1416	return IRQ_HANDLED;
1417}
1418
1419static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1420{
1421	struct ns83820 *dev = PRIV(ndev);
1422	unsigned long flags;
1423
1424#ifdef DEBUG
1425	if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1426		Dprintk("odd isr? 0x%08x\n", isr);
1427#endif
1428
1429	if (ISR_RXIDLE & isr) {
1430		dev->rx_info.idle = 1;
1431		Dprintk("oh dear, we are idle\n");
1432		ns83820_rx_kick(ndev);
1433	}
1434
1435	if ((ISR_RXDESC | ISR_RXOK) & isr) {
1436		prefetch(dev->rx_info.next_rx_desc);
1437
1438		spin_lock_irqsave(&dev->misc_lock, flags);
1439		dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1440		writel(dev->IMR_cache, dev->base + IMR);
1441		spin_unlock_irqrestore(&dev->misc_lock, flags);
1442
1443		tasklet_schedule(&dev->rx_tasklet);
1444		//rx_irq(ndev);
1445		//writel(4, dev->base + IHR);
1446	}
1447
1448	if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1449		ns83820_rx_kick(ndev);
1450
1451	if (unlikely(ISR_RXSOVR & isr)) {
1452		//printk("overrun: rxsovr\n");
1453		ndev->stats.rx_fifo_errors++;
1454	}
1455
1456	if (unlikely(ISR_RXORN & isr)) {
1457		//printk("overrun: rxorn\n");
1458		ndev->stats.rx_fifo_errors++;
1459	}
1460
1461	if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1462		writel(CR_RXE, dev->base + CR);
1463
1464	if (ISR_TXIDLE & isr) {
1465		u32 txdp;
1466		txdp = readl(dev->base + TXDP);
1467		dprintk("txdp: %08x\n", txdp);
1468		txdp -= dev->tx_phy_descs;
1469		dev->tx_idx = txdp / (DESC_SIZE * 4);
1470		if (dev->tx_idx >= NR_TX_DESC) {
1471			printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1472			dev->tx_idx = 0;
1473		}
1474		/* The may have been a race between a pci originated read
1475		 * and the descriptor update from the cpu.  Just in case,
1476		 * kick the transmitter if the hardware thinks it is on a
1477		 * different descriptor than we are.
1478		 */
1479		if (dev->tx_idx != dev->tx_free_idx)
1480			kick_tx(dev);
1481	}
1482
1483	/* Defer tx ring processing until more than a minimum amount of
1484	 * work has accumulated
1485	 */
1486	if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1487		spin_lock_irqsave(&dev->tx_lock, flags);
1488		do_tx_done(ndev);
1489		spin_unlock_irqrestore(&dev->tx_lock, flags);
1490
1491		/* Disable TxOk if there are no outstanding tx packets.
1492		 */
1493		if ((dev->tx_done_idx == dev->tx_free_idx) &&
1494		    (dev->IMR_cache & ISR_TXOK)) {
1495			spin_lock_irqsave(&dev->misc_lock, flags);
1496			dev->IMR_cache &= ~ISR_TXOK;
1497			writel(dev->IMR_cache, dev->base + IMR);
1498			spin_unlock_irqrestore(&dev->misc_lock, flags);
1499		}
1500	}
1501
1502	/* The TxIdle interrupt can come in before the transmit has
1503	 * completed.  Normally we reap packets off of the combination
1504	 * of TxDesc and TxIdle and leave TxOk disabled (since it
1505	 * occurs on every packet), but when no further irqs of this
1506	 * nature are expected, we must enable TxOk.
1507	 */
1508	if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1509		spin_lock_irqsave(&dev->misc_lock, flags);
1510		dev->IMR_cache |= ISR_TXOK;
1511		writel(dev->IMR_cache, dev->base + IMR);
1512		spin_unlock_irqrestore(&dev->misc_lock, flags);
1513	}
1514
1515	/* MIB interrupt: one of the statistics counters is about to overflow */
1516	if (unlikely(ISR_MIB & isr))
1517		ns83820_mib_isr(dev);
1518
1519	/* PHY: Link up/down/negotiation state change */
1520	if (unlikely(ISR_PHY & isr))
1521		phy_intr(ndev);
1522
1523#if 0	/* Still working on the interrupt mitigation strategy */
1524	if (dev->ihr)
1525		writel(dev->ihr, dev->base + IHR);
1526#endif
1527}
1528
1529static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1530{
1531	Dprintk("resetting chip...\n");
1532	writel(which, dev->base + CR);
1533	do {
1534		schedule();
1535	} while (readl(dev->base + CR) & which);
1536	Dprintk("okay!\n");
1537}
1538
1539static int ns83820_stop(struct net_device *ndev)
1540{
1541	struct ns83820 *dev = PRIV(ndev);
1542
1543	/* FIXME: protect against interrupt handler? */
1544	del_timer_sync(&dev->tx_watchdog);
1545
1546	ns83820_disable_interrupts(dev);
1547
1548	dev->rx_info.up = 0;
1549	synchronize_irq(dev->pci_dev->irq);
1550
1551	ns83820_do_reset(dev, CR_RST);
1552
1553	synchronize_irq(dev->pci_dev->irq);
1554
1555	spin_lock_irq(&dev->misc_lock);
1556	dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1557	spin_unlock_irq(&dev->misc_lock);
1558
1559	ns83820_cleanup_rx(dev);
1560	ns83820_cleanup_tx(dev);
1561
1562	return 0;
1563}
1564
1565static void ns83820_tx_timeout(struct net_device *ndev)
1566{
1567	struct ns83820 *dev = PRIV(ndev);
1568        u32 tx_done_idx;
1569	__le32 *desc;
1570	unsigned long flags;
1571
1572	spin_lock_irqsave(&dev->tx_lock, flags);
1573
1574	tx_done_idx = dev->tx_done_idx;
1575	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1576
1577	printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1578		ndev->name,
1579		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1580
1581#if defined(DEBUG)
1582	{
1583		u32 isr;
1584		isr = readl(dev->base + ISR);
1585		printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1586		ns83820_do_isr(ndev, isr);
1587	}
1588#endif
1589
1590	do_tx_done(ndev);
1591
1592	tx_done_idx = dev->tx_done_idx;
1593	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1594
1595	printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1596		ndev->name,
1597		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1598
1599	spin_unlock_irqrestore(&dev->tx_lock, flags);
1600}
1601
1602static void ns83820_tx_watch(unsigned long data)
1603{
1604	struct net_device *ndev = (void *)data;
1605	struct ns83820 *dev = PRIV(ndev);
1606
1607#if defined(DEBUG)
1608	printk("ns83820_tx_watch: %u %u %d\n",
1609		dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1610		);
1611#endif
1612
1613	if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) &&
1614	    dev->tx_done_idx != dev->tx_free_idx) {
1615		printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1616			ndev->name,
1617			dev->tx_done_idx, dev->tx_free_idx,
1618			atomic_read(&dev->nr_tx_skbs));
1619		ns83820_tx_timeout(ndev);
1620	}
1621
1622	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1623}
1624
1625static int ns83820_open(struct net_device *ndev)
1626{
1627	struct ns83820 *dev = PRIV(ndev);
1628	unsigned i;
1629	u32 desc;
1630	int ret;
1631
1632	dprintk("ns83820_open\n");
1633
1634	writel(0, dev->base + PQCR);
1635
1636	ret = ns83820_setup_rx(ndev);
1637	if (ret)
1638		goto failed;
1639
1640	memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1641	for (i=0; i<NR_TX_DESC; i++) {
1642		dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1643				= cpu_to_le32(
1644				  dev->tx_phy_descs
1645				  + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1646	}
1647
1648	dev->tx_idx = 0;
1649	dev->tx_done_idx = 0;
1650	desc = dev->tx_phy_descs;
1651	writel(0, dev->base + TXDP_HI);
1652	writel(desc, dev->base + TXDP);
1653
1654	init_timer(&dev->tx_watchdog);
1655	dev->tx_watchdog.data = (unsigned long)ndev;
1656	dev->tx_watchdog.function = ns83820_tx_watch;
1657	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1658
1659	netif_start_queue(ndev);	/* FIXME: wait for phy to come up */
1660
1661	return 0;
1662
1663failed:
1664	ns83820_stop(ndev);
1665	return ret;
1666}
1667
1668static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1669{
1670	unsigned i;
1671	for (i=0; i<3; i++) {
1672		u32 data;
1673
1674		/* Read from the perfect match memory: this is loaded by
1675		 * the chip from the EEPROM via the EELOAD self test.
1676		 */
1677		writel(i*2, dev->base + RFCR);
1678		data = readl(dev->base + RFDR);
1679
1680		*mac++ = data;
1681		*mac++ = data >> 8;
1682	}
1683}
1684
1685static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
1686{
1687	if (new_mtu > RX_BUF_SIZE)
1688		return -EINVAL;
1689	ndev->mtu = new_mtu;
1690	return 0;
1691}
1692
1693static void ns83820_set_multicast(struct net_device *ndev)
1694{
1695	struct ns83820 *dev = PRIV(ndev);
1696	u8 __iomem *rfcr = dev->base + RFCR;
1697	u32 and_mask = 0xffffffff;
1698	u32 or_mask = 0;
1699	u32 val;
1700
1701	if (ndev->flags & IFF_PROMISC)
1702		or_mask |= RFCR_AAU | RFCR_AAM;
1703	else
1704		and_mask &= ~(RFCR_AAU | RFCR_AAM);
1705
1706	if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev))
1707		or_mask |= RFCR_AAM;
1708	else
1709		and_mask &= ~RFCR_AAM;
1710
1711	spin_lock_irq(&dev->misc_lock);
1712	val = (readl(rfcr) & and_mask) | or_mask;
1713	/* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1714	writel(val & ~RFCR_RFEN, rfcr);
1715	writel(val, rfcr);
1716	spin_unlock_irq(&dev->misc_lock);
1717}
1718
1719static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1720{
1721	struct ns83820 *dev = PRIV(ndev);
1722	int timed_out = 0;
1723	unsigned long start;
1724	u32 status;
1725	int loops = 0;
1726
1727	dprintk("%s: start %s\n", ndev->name, name);
1728
1729	start = jiffies;
1730
1731	writel(enable, dev->base + PTSCR);
1732	for (;;) {
1733		loops++;
1734		status = readl(dev->base + PTSCR);
1735		if (!(status & enable))
1736			break;
1737		if (status & done)
1738			break;
1739		if (status & fail)
1740			break;
1741		if (time_after_eq(jiffies, start + HZ)) {
1742			timed_out = 1;
1743			break;
1744		}
1745		schedule_timeout_uninterruptible(1);
1746	}
1747
1748	if (status & fail)
1749		printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1750			ndev->name, name, status, fail);
1751	else if (timed_out)
1752		printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1753			ndev->name, name, status);
1754
1755	dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1756}
1757
1758#ifdef PHY_CODE_IS_FINISHED
1759static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1760{
1761	/* drive MDC low */
1762	dev->MEAR_cache &= ~MEAR_MDC;
1763	writel(dev->MEAR_cache, dev->base + MEAR);
1764	readl(dev->base + MEAR);
1765
1766	/* enable output, set bit */
1767	dev->MEAR_cache |= MEAR_MDDIR;
1768	if (bit)
1769		dev->MEAR_cache |= MEAR_MDIO;
1770	else
1771		dev->MEAR_cache &= ~MEAR_MDIO;
1772
1773	/* set the output bit */
1774	writel(dev->MEAR_cache, dev->base + MEAR);
1775	readl(dev->base + MEAR);
1776
1777	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1778	udelay(1);
1779
1780	/* drive MDC high causing the data bit to be latched */
1781	dev->MEAR_cache |= MEAR_MDC;
1782	writel(dev->MEAR_cache, dev->base + MEAR);
1783	readl(dev->base + MEAR);
1784
1785	/* Wait again... */
1786	udelay(1);
1787}
1788
1789static int ns83820_mii_read_bit(struct ns83820 *dev)
1790{
1791	int bit;
1792
1793	/* drive MDC low, disable output */
1794	dev->MEAR_cache &= ~MEAR_MDC;
1795	dev->MEAR_cache &= ~MEAR_MDDIR;
1796	writel(dev->MEAR_cache, dev->base + MEAR);
1797	readl(dev->base + MEAR);
1798
1799	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1800	udelay(1);
1801
1802	/* drive MDC high causing the data bit to be latched */
1803	bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1804	dev->MEAR_cache |= MEAR_MDC;
1805	writel(dev->MEAR_cache, dev->base + MEAR);
1806
1807	/* Wait again... */
1808	udelay(1);
1809
1810	return bit;
1811}
1812
1813static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1814{
1815	unsigned data = 0;
1816	int i;
1817
1818	/* read some garbage so that we eventually sync up */
1819	for (i=0; i<64; i++)
1820		ns83820_mii_read_bit(dev);
1821
1822	ns83820_mii_write_bit(dev, 0);	/* start */
1823	ns83820_mii_write_bit(dev, 1);
1824	ns83820_mii_write_bit(dev, 1);	/* opcode read */
1825	ns83820_mii_write_bit(dev, 0);
1826
1827	/* write out the phy address: 5 bits, msb first */
1828	for (i=0; i<5; i++)
1829		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1830
1831	/* write out the register address, 5 bits, msb first */
1832	for (i=0; i<5; i++)
1833		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1834
1835	ns83820_mii_read_bit(dev);	/* turn around cycles */
1836	ns83820_mii_read_bit(dev);
1837
1838	/* read in the register data, 16 bits msb first */
1839	for (i=0; i<16; i++) {
1840		data <<= 1;
1841		data |= ns83820_mii_read_bit(dev);
1842	}
1843
1844	return data;
1845}
1846
1847static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1848{
1849	int i;
1850
1851	/* read some garbage so that we eventually sync up */
1852	for (i=0; i<64; i++)
1853		ns83820_mii_read_bit(dev);
1854
1855	ns83820_mii_write_bit(dev, 0);	/* start */
1856	ns83820_mii_write_bit(dev, 1);
1857	ns83820_mii_write_bit(dev, 0);	/* opcode read */
1858	ns83820_mii_write_bit(dev, 1);
1859
1860	/* write out the phy address: 5 bits, msb first */
1861	for (i=0; i<5; i++)
1862		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1863
1864	/* write out the register address, 5 bits, msb first */
1865	for (i=0; i<5; i++)
1866		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1867
1868	ns83820_mii_read_bit(dev);	/* turn around cycles */
1869	ns83820_mii_read_bit(dev);
1870
1871	/* read in the register data, 16 bits msb first */
1872	for (i=0; i<16; i++)
1873		ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1874
1875	return data;
1876}
1877
1878static void ns83820_probe_phy(struct net_device *ndev)
1879{
1880	struct ns83820 *dev = PRIV(ndev);
1881	static int first;
1882	int i;
1883#define MII_PHYIDR1	0x02
1884#define MII_PHYIDR2	0x03
1885
1886#if 0
1887	if (!first) {
1888		unsigned tmp;
1889		ns83820_mii_read_reg(dev, 1, 0x09);
1890		ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
1891
1892		tmp = ns83820_mii_read_reg(dev, 1, 0x00);
1893		ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
1894		udelay(1300);
1895		ns83820_mii_read_reg(dev, 1, 0x09);
1896	}
1897#endif
1898	first = 1;
1899
1900	for (i=1; i<2; i++) {
1901		int j;
1902		unsigned a, b;
1903		a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
1904		b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
1905
1906		//printk("%s: phy %d: 0x%04x 0x%04x\n",
1907		//	ndev->name, i, a, b);
1908
1909		for (j=0; j<0x16; j+=4) {
1910			dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1911				ndev->name, j,
1912				ns83820_mii_read_reg(dev, i, 0 + j),
1913				ns83820_mii_read_reg(dev, i, 1 + j),
1914				ns83820_mii_read_reg(dev, i, 2 + j),
1915				ns83820_mii_read_reg(dev, i, 3 + j)
1916				);
1917		}
1918	}
1919	{
1920		unsigned a, b;
1921		/* read firmware version: memory addr is 0x8402 and 0x8403 */
1922		ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1923		ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1924		a = ns83820_mii_read_reg(dev, 1, 0x1d);
1925
1926		ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1927		ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1928		b = ns83820_mii_read_reg(dev, 1, 0x1d);
1929		dprintk("version: 0x%04x 0x%04x\n", a, b);
1930	}
1931}
1932#endif
1933
1934static const struct net_device_ops netdev_ops = {
1935	.ndo_open		= ns83820_open,
1936	.ndo_stop		= ns83820_stop,
1937	.ndo_start_xmit		= ns83820_hard_start_xmit,
1938	.ndo_get_stats		= ns83820_get_stats,
1939	.ndo_change_mtu		= ns83820_change_mtu,
1940	.ndo_set_multicast_list = ns83820_set_multicast,
1941	.ndo_validate_addr	= eth_validate_addr,
1942	.ndo_set_mac_address	= eth_mac_addr,
1943	.ndo_tx_timeout		= ns83820_tx_timeout,
1944};
1945
1946static int __devinit ns83820_init_one(struct pci_dev *pci_dev,
1947				      const struct pci_device_id *id)
1948{
1949	struct net_device *ndev;
1950	struct ns83820 *dev;
1951	long addr;
1952	int err;
1953	int using_dac = 0;
1954
1955	/* See if we can set the dma mask early on; failure is fatal. */
1956	if (sizeof(dma_addr_t) == 8 &&
1957		!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1958		using_dac = 1;
1959	} else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1960		using_dac = 0;
1961	} else {
1962		dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1963		return -ENODEV;
1964	}
1965
1966	ndev = alloc_etherdev(sizeof(struct ns83820));
1967	err = -ENOMEM;
1968	if (!ndev)
1969		goto out;
1970
1971	dev = PRIV(ndev);
1972	dev->ndev = ndev;
1973
1974	spin_lock_init(&dev->rx_info.lock);
1975	spin_lock_init(&dev->tx_lock);
1976	spin_lock_init(&dev->misc_lock);
1977	dev->pci_dev = pci_dev;
1978
1979	SET_NETDEV_DEV(ndev, &pci_dev->dev);
1980
1981	INIT_WORK(&dev->tq_refill, queue_refill);
1982	tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
1983
1984	err = pci_enable_device(pci_dev);
1985	if (err) {
1986		dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
1987		goto out_free;
1988	}
1989
1990	pci_set_master(pci_dev);
1991	addr = pci_resource_start(pci_dev, 1);
1992	dev->base = ioremap_nocache(addr, PAGE_SIZE);
1993	dev->tx_descs = pci_alloc_consistent(pci_dev,
1994			4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
1995	dev->rx_info.descs = pci_alloc_consistent(pci_dev,
1996			4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
1997	err = -ENOMEM;
1998	if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
1999		goto out_disable;
2000
2001	dprintk("%p: %08lx  %p: %08lx\n",
2002		dev->tx_descs, (long)dev->tx_phy_descs,
2003		dev->rx_info.descs, (long)dev->rx_info.phy_descs);
2004
2005	ns83820_disable_interrupts(dev);
2006
2007	dev->IMR_cache = 0;
2008
2009	err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
2010			  DRV_NAME, ndev);
2011	if (err) {
2012		dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
2013			pci_dev->irq, err);
2014		goto out_disable;
2015	}
2016
2017	/*
2018	 * FIXME: we are holding rtnl_lock() over obscenely long area only
2019	 * because some of the setup code uses dev->name.  It's Wrong(tm) -
2020	 * we should be using driver-specific names for all that stuff.
2021	 * For now that will do, but we really need to come back and kill
2022	 * most of the dev_alloc_name() users later.
2023	 */
2024	rtnl_lock();
2025	err = dev_alloc_name(ndev, ndev->name);
2026	if (err < 0) {
2027		dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
2028		goto out_free_irq;
2029	}
2030
2031	printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
2032		ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
2033		pci_dev->subsystem_vendor, pci_dev->subsystem_device);
2034
2035	ndev->netdev_ops = &netdev_ops;
2036	SET_ETHTOOL_OPS(ndev, &ops);
2037	ndev->watchdog_timeo = 5 * HZ;
2038	pci_set_drvdata(pci_dev, ndev);
2039
2040	ns83820_do_reset(dev, CR_RST);
2041
2042	/* Must reset the ram bist before running it */
2043	writel(PTSCR_RBIST_RST, dev->base + PTSCR);
2044	ns83820_run_bist(ndev, "sram bist",   PTSCR_RBIST_EN,
2045			 PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
2046	ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
2047			 PTSCR_EEBIST_FAIL);
2048	ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
2049
2050	/* I love config registers */
2051	dev->CFG_cache = readl(dev->base + CFG);
2052
2053	if ((dev->CFG_cache & CFG_PCI64_DET)) {
2054		printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2055			ndev->name);
2056		/*dev->CFG_cache |= CFG_DATA64_EN;*/
2057		if (!(dev->CFG_cache & CFG_DATA64_EN))
2058			printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus.  Disabled.\n",
2059				ndev->name);
2060	} else
2061		dev->CFG_cache &= ~(CFG_DATA64_EN);
2062
2063	dev->CFG_cache &= (CFG_TBI_EN  | CFG_MRM_DIS   | CFG_MWI_DIS |
2064			   CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
2065			   CFG_M64ADDR);
2066	dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
2067			  CFG_EXTSTS_EN   | CFG_EXD         | CFG_PESEL;
2068	dev->CFG_cache |= CFG_REQALG;
2069	dev->CFG_cache |= CFG_POW;
2070	dev->CFG_cache |= CFG_TMRTEST;
2071
2072	/* When compiled with 64 bit addressing, we must always enable
2073	 * the 64 bit descriptor format.
2074	 */
2075	if (sizeof(dma_addr_t) == 8)
2076		dev->CFG_cache |= CFG_M64ADDR;
2077	if (using_dac)
2078		dev->CFG_cache |= CFG_T64ADDR;
2079
2080	/* Big endian mode does not seem to do what the docs suggest */
2081	dev->CFG_cache &= ~CFG_BEM;
2082
2083	/* setup optical transceiver if we have one */
2084	if (dev->CFG_cache & CFG_TBI_EN) {
2085		printk(KERN_INFO "%s: enabling optical transceiver\n",
2086			ndev->name);
2087		writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2088
2089		/* setup auto negotiation feature advertisement */
2090		writel(readl(dev->base + TANAR)
2091		       | TANAR_HALF_DUP | TANAR_FULL_DUP,
2092		       dev->base + TANAR);
2093
2094		/* start auto negotiation */
2095		writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
2096		       dev->base + TBICR);
2097		writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
2098		dev->linkstate = LINK_AUTONEGOTIATE;
2099
2100		dev->CFG_cache |= CFG_MODE_1000;
2101	}
2102
2103	writel(dev->CFG_cache, dev->base + CFG);
2104	dprintk("CFG: %08x\n", dev->CFG_cache);
2105
2106	if (reset_phy) {
2107		printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2108		writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2109		msleep(10);
2110		writel(dev->CFG_cache, dev->base + CFG);
2111	}
2112
2113#if 0	/* Huh?  This sets the PCI latency register.  Should be done via
2114	 * the PCI layer.  FIXME.
2115	 */
2116	if (readl(dev->base + SRR))
2117		writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2118#endif
2119
2120	/* Note!  The DMA burst size interacts with packet
2121	 * transmission, such that the largest packet that
2122	 * can be transmitted is 8192 - FLTH - burst size.
2123	 * If only the transmit fifo was larger...
2124	 */
2125	/* Ramit : 1024 DMA is not a good idea, it ends up banging
2126	 * some DELL and COMPAQ SMP systems */
2127	writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2128		| ((1600 / 32) * 0x100),
2129		dev->base + TXCFG);
2130
2131	/* Flush the interrupt holdoff timer */
2132	writel(0x000, dev->base + IHR);
2133	writel(0x100, dev->base + IHR);
2134	writel(0x000, dev->base + IHR);
2135
2136	/* Set Rx to full duplex, don't accept runt, errored, long or length
2137	 * range errored packets.  Use 512 byte DMA.
2138	 */
2139	/* Ramit : 1024 DMA is not a good idea, it ends up banging
2140	 * some DELL and COMPAQ SMP systems
2141	 * Turn on ALP, only we are accpeting Jumbo Packets */
2142	writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2143		| RXCFG_STRIPCRC
2144		//| RXCFG_ALP
2145		| (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2146
2147	/* Disable priority queueing */
2148	writel(0, dev->base + PQCR);
2149
2150	/* Enable IP checksum validation and detetion of VLAN headers.
2151	 * Note: do not set the reject options as at least the 0x102
2152	 * revision of the chip does not properly accept IP fragments
2153	 * at least for UDP.
2154	 */
2155	/* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2156	 * the MAC it calculates the packetsize AFTER stripping the VLAN
2157	 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2158	 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2159	 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2160	 * it discrards it!.  These guys......
2161	 * also turn on tag stripping if hardware acceleration is enabled
2162	 */
2163#ifdef NS83820_VLAN_ACCEL_SUPPORT
2164#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2165#else
2166#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2167#endif
2168	writel(VRCR_INIT_VALUE, dev->base + VRCR);
2169
2170	/* Enable per-packet TCP/UDP/IP checksumming
2171	 * and per packet vlan tag insertion if
2172	 * vlan hardware acceleration is enabled
2173	 */
2174#ifdef NS83820_VLAN_ACCEL_SUPPORT
2175#define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2176#else
2177#define VTCR_INIT_VALUE VTCR_PPCHK
2178#endif
2179	writel(VTCR_INIT_VALUE, dev->base + VTCR);
2180
2181	/* Ramit : Enable async and sync pause frames */
2182	/* writel(0, dev->base + PCR); */
2183	writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2184		PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2185		dev->base + PCR);
2186
2187	/* Disable Wake On Lan */
2188	writel(0, dev->base + WCSR);
2189
2190	ns83820_getmac(dev, ndev->dev_addr);
2191
2192	/* Yes, we support dumb IP checksum on transmit */
2193	ndev->features |= NETIF_F_SG;
2194	ndev->features |= NETIF_F_IP_CSUM;
2195
2196#ifdef NS83820_VLAN_ACCEL_SUPPORT
2197	/* We also support hardware vlan acceleration */
2198	ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
2199#endif
2200
2201	if (using_dac) {
2202		printk(KERN_INFO "%s: using 64 bit addressing.\n",
2203			ndev->name);
2204		ndev->features |= NETIF_F_HIGHDMA;
2205	}
2206
2207	printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2208		ndev->name,
2209		(unsigned)readl(dev->base + SRR) >> 8,
2210		(unsigned)readl(dev->base + SRR) & 0xff,
2211		ndev->dev_addr, addr, pci_dev->irq,
2212		(ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2213		);
2214
2215#ifdef PHY_CODE_IS_FINISHED
2216	ns83820_probe_phy(ndev);
2217#endif
2218
2219	err = register_netdevice(ndev);
2220	if (err) {
2221		printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2222		goto out_cleanup;
2223	}
2224	rtnl_unlock();
2225
2226	return 0;
2227
2228out_cleanup:
2229	ns83820_disable_interrupts(dev); /* paranoia */
2230out_free_irq:
2231	rtnl_unlock();
2232	free_irq(pci_dev->irq, ndev);
2233out_disable:
2234	if (dev->base)
2235		iounmap(dev->base);
2236	pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2237	pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2238	pci_disable_device(pci_dev);
2239out_free:
2240	free_netdev(ndev);
2241	pci_set_drvdata(pci_dev, NULL);
2242out:
2243	return err;
2244}
2245
2246static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
2247{
2248	struct net_device *ndev = pci_get_drvdata(pci_dev);
2249	struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2250
2251	if (!ndev)			/* paranoia */
2252		return;
2253
2254	ns83820_disable_interrupts(dev); /* paranoia */
2255
2256	unregister_netdev(ndev);
2257	free_irq(dev->pci_dev->irq, ndev);
2258	iounmap(dev->base);
2259	pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2260			dev->tx_descs, dev->tx_phy_descs);
2261	pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2262			dev->rx_info.descs, dev->rx_info.phy_descs);
2263	pci_disable_device(dev->pci_dev);
2264	free_netdev(ndev);
2265	pci_set_drvdata(pci_dev, NULL);
2266}
2267
2268static DEFINE_PCI_DEVICE_TABLE(ns83820_pci_tbl) = {
2269	{ 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2270	{ 0, },
2271};
2272
2273static struct pci_driver driver = {
2274	.name		= "ns83820",
2275	.id_table	= ns83820_pci_tbl,
2276	.probe		= ns83820_init_one,
2277	.remove		= __devexit_p(ns83820_remove_one),
2278#if 0	/* FIXME: implement */
2279	.suspend	= ,
2280	.resume		= ,
2281#endif
2282};
2283
2284
2285static int __init ns83820_init(void)
2286{
2287	printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2288	return pci_register_driver(&driver);
2289}
2290
2291static void __exit ns83820_exit(void)
2292{
2293	pci_unregister_driver(&driver);
2294}
2295
2296MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2297MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2298MODULE_LICENSE("GPL");
2299
2300MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2301
2302module_param(lnksts, int, 0);
2303MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2304
2305module_param(ihr, int, 0);
2306MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2307
2308module_param(reset_phy, int, 0);
2309MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2310
2311module_init(ns83820_init);
2312module_exit(ns83820_exit);