Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
   2/*
   3	Written/copyright 1999-2001 by Donald Becker.
   4	Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
   5	Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
   6	Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
   7
   8	This software may be used and distributed according to the terms of
   9	the GNU General Public License (GPL), incorporated herein by reference.
  10	Drivers based on or derived from this code fall under the GPL and must
  11	retain the authorship, copyright and license notice.  This file is not
  12	a complete program and may only be used when the entire operating
  13	system is licensed under the GPL.  License for under other terms may be
  14	available.  Contact the original author for details.
  15
  16	The original author may be reached as becker@scyld.com, or at
  17	Scyld Computing Corporation
  18	410 Severn Ave., Suite 210
  19	Annapolis MD 21403
  20
  21	Support information and updates available at
  22	http://www.scyld.com/network/netsemi.html
  23	[link no longer provides useful info -jgarzik]
  24
  25
  26	TODO:
  27	* big endian support with CFG:BEM instead of cpu_to_le32
  28*/
  29
  30#include <linux/module.h>
  31#include <linux/kernel.h>
  32#include <linux/string.h>
  33#include <linux/timer.h>
  34#include <linux/errno.h>
  35#include <linux/ioport.h>
  36#include <linux/slab.h>
  37#include <linux/interrupt.h>
  38#include <linux/pci.h>
  39#include <linux/netdevice.h>
  40#include <linux/etherdevice.h>
  41#include <linux/skbuff.h>
  42#include <linux/init.h>
  43#include <linux/spinlock.h>
  44#include <linux/ethtool.h>
  45#include <linux/delay.h>
  46#include <linux/rtnetlink.h>
  47#include <linux/mii.h>
  48#include <linux/crc32.h>
  49#include <linux/bitops.h>
  50#include <linux/prefetch.h>
  51#include <asm/processor.h>	/* Processor type for cache alignment. */
  52#include <asm/io.h>
  53#include <asm/irq.h>
  54#include <asm/uaccess.h>
  55
  56#define DRV_NAME	"natsemi"
  57#define DRV_VERSION	"2.1"
  58#define DRV_RELDATE	"Sept 11, 2006"
  59
  60#define RX_OFFSET	2
  61
  62/* Updated to recommendations in pci-skeleton v2.03. */
  63
  64/* The user-configurable values.
  65   These may be modified when a driver module is loaded.*/
  66
  67#define NATSEMI_DEF_MSG		(NETIF_MSG_DRV		| \
  68				 NETIF_MSG_LINK		| \
  69				 NETIF_MSG_WOL		| \
  70				 NETIF_MSG_RX_ERR	| \
  71				 NETIF_MSG_TX_ERR)
  72static int debug = -1;
  73
  74static int mtu;
  75
  76/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
  77   This chip uses a 512 element hash table based on the Ethernet CRC.  */
  78static const int multicast_filter_limit = 100;
  79
  80/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  81   Setting to > 1518 effectively disables this feature. */
  82static int rx_copybreak;
  83
  84static int dspcfg_workaround = 1;
  85
  86/* Used to pass the media type, etc.
  87   Both 'options[]' and 'full_duplex[]' should exist for driver
  88   interoperability.
  89   The media type is usually passed in 'options[]'.
  90*/
  91#define MAX_UNITS 8		/* More are supported, limit only on options */
  92static int options[MAX_UNITS];
  93static int full_duplex[MAX_UNITS];
  94
  95/* Operational parameters that are set at compile time. */
  96
  97/* Keep the ring sizes a power of two for compile efficiency.
  98   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
  99   Making the Tx ring too large decreases the effectiveness of channel
 100   bonding and packet priority.
 101   There are no ill effects from too-large receive rings. */
 102#define TX_RING_SIZE	16
 103#define TX_QUEUE_LEN	10 /* Limit ring entries actually used, min 4. */
 104#define RX_RING_SIZE	32
 105
 106/* Operational parameters that usually are not changed. */
 107/* Time in jiffies before concluding the transmitter is hung. */
 108#define TX_TIMEOUT  (2*HZ)
 109
 110#define NATSEMI_HW_TIMEOUT	400
 111#define NATSEMI_TIMER_FREQ	5*HZ
 112#define NATSEMI_PG0_NREGS	64
 113#define NATSEMI_RFDR_NREGS	8
 114#define NATSEMI_PG1_NREGS	4
 115#define NATSEMI_NREGS		(NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
 116				 NATSEMI_PG1_NREGS)
 117#define NATSEMI_REGS_VER	1 /* v1 added RFDR registers */
 118#define NATSEMI_REGS_SIZE	(NATSEMI_NREGS * sizeof(u32))
 119
 120/* Buffer sizes:
 121 * The nic writes 32-bit values, even if the upper bytes of
 122 * a 32-bit value are beyond the end of the buffer.
 123 */
 124#define NATSEMI_HEADERS		22	/* 2*mac,type,vlan,crc */
 125#define NATSEMI_PADDING		16	/* 2 bytes should be sufficient */
 126#define NATSEMI_LONGPKT		1518	/* limit for normal packets */
 127#define NATSEMI_RX_LIMIT	2046	/* maximum supported by hardware */
 128
 129/* These identify the driver base version and may not be removed. */
 130static const char version[] __devinitconst =
 131  KERN_INFO DRV_NAME " dp8381x driver, version "
 132      DRV_VERSION ", " DRV_RELDATE "\n"
 133  "  originally by Donald Becker <becker@scyld.com>\n"
 134  "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
 135
 136MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 137MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
 138MODULE_LICENSE("GPL");
 139
 140module_param(mtu, int, 0);
 141module_param(debug, int, 0);
 142module_param(rx_copybreak, int, 0);
 143module_param(dspcfg_workaround, int, 0);
 144module_param_array(options, int, NULL, 0);
 145module_param_array(full_duplex, int, NULL, 0);
 146MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
 147MODULE_PARM_DESC(debug, "DP8381x default debug level");
 148MODULE_PARM_DESC(rx_copybreak,
 149	"DP8381x copy breakpoint for copy-only-tiny-frames");
 150MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
 151MODULE_PARM_DESC(options,
 152	"DP8381x: Bits 0-3: media type, bit 17: full duplex");
 153MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
 154
 155/*
 156				Theory of Operation
 157
 158I. Board Compatibility
 159
 160This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
 161It also works with other chips in in the DP83810 series.
 162
 163II. Board-specific settings
 164
 165This driver requires the PCI interrupt line to be valid.
 166It honors the EEPROM-set values.
 167
 168III. Driver operation
 169
 170IIIa. Ring buffers
 171
 172This driver uses two statically allocated fixed-size descriptor lists
 173formed into rings by a branch from the final descriptor to the beginning of
 174the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
 175The NatSemi design uses a 'next descriptor' pointer that the driver forms
 176into a list.
 177
 178IIIb/c. Transmit/Receive Structure
 179
 180This driver uses a zero-copy receive and transmit scheme.
 181The driver allocates full frame size skbuffs for the Rx ring buffers at
 182open() time and passes the skb->data field to the chip as receive data
 183buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
 184a fresh skbuff is allocated and the frame is copied to the new skbuff.
 185When the incoming frame is larger, the skbuff is passed directly up the
 186protocol stack.  Buffers consumed this way are replaced by newly allocated
 187skbuffs in a later phase of receives.
 188
 189The RX_COPYBREAK value is chosen to trade-off the memory wasted by
 190using a full-sized skbuff for small frames vs. the copying costs of larger
 191frames.  New boards are typically used in generously configured machines
 192and the underfilled buffers have negligible impact compared to the benefit of
 193a single allocation size, so the default value of zero results in never
 194copying packets.  When copying is done, the cost is usually mitigated by using
 195a combined copy/checksum routine.  Copying also preloads the cache, which is
 196most useful with small frames.
 197
 198A subtle aspect of the operation is that unaligned buffers are not permitted
 199by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
 200longword aligned for further processing.  On copies frames are put into the
 201skbuff at an offset of "+2", 16-byte aligning the IP header.
 202
 203IIId. Synchronization
 204
 205Most operations are synchronized on the np->lock irq spinlock, except the
 206receive and transmit paths which are synchronised using a combination of
 207hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
 208
 209IVb. References
 210
 211http://www.scyld.com/expert/100mbps.html
 212http://www.scyld.com/expert/NWay.html
 213Datasheet is available from:
 214http://www.national.com/pf/DP/DP83815.html
 215
 216IVc. Errata
 217
 218None characterised.
 219*/
 220
 221
 222
 223/*
 224 * Support for fibre connections on Am79C874:
 225 * This phy needs a special setup when connected to a fibre cable.
 226 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
 227 */
 228#define PHYID_AM79C874	0x0022561b
 229
 230enum {
 231	MII_MCTRL	= 0x15,		/* mode control register */
 232	MII_FX_SEL	= 0x0001,	/* 100BASE-FX (fiber) */
 233	MII_EN_SCRM	= 0x0004,	/* enable scrambler (tp) */
 234};
 235
 236enum {
 237	NATSEMI_FLAG_IGNORE_PHY		= 0x1,
 238};
 239
 240/* array of board data directly indexed by pci_tbl[x].driver_data */
 241static struct {
 242	const char *name;
 243	unsigned long flags;
 244	unsigned int eeprom_size;
 245} natsemi_pci_info[] __devinitdata = {
 246	{ "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
 247	{ "NatSemi DP8381[56]", 0, 24 },
 248};
 249
 250static DEFINE_PCI_DEVICE_TABLE(natsemi_pci_tbl) = {
 251	{ PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
 252	{ PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
 253	{ }	/* terminate list */
 254};
 255MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
 256
 257/* Offsets to the device registers.
 258   Unlike software-only systems, device drivers interact with complex hardware.
 259   It's not useful to define symbolic names for every register bit in the
 260   device.
 261*/
 262enum register_offsets {
 263	ChipCmd			= 0x00,
 264	ChipConfig		= 0x04,
 265	EECtrl			= 0x08,
 266	PCIBusCfg		= 0x0C,
 267	IntrStatus		= 0x10,
 268	IntrMask		= 0x14,
 269	IntrEnable		= 0x18,
 270	IntrHoldoff		= 0x1C, /* DP83816 only */
 271	TxRingPtr		= 0x20,
 272	TxConfig		= 0x24,
 273	RxRingPtr		= 0x30,
 274	RxConfig		= 0x34,
 275	ClkRun			= 0x3C,
 276	WOLCmd			= 0x40,
 277	PauseCmd		= 0x44,
 278	RxFilterAddr		= 0x48,
 279	RxFilterData		= 0x4C,
 280	BootRomAddr		= 0x50,
 281	BootRomData		= 0x54,
 282	SiliconRev		= 0x58,
 283	StatsCtrl		= 0x5C,
 284	StatsData		= 0x60,
 285	RxPktErrs		= 0x60,
 286	RxMissed		= 0x68,
 287	RxCRCErrs		= 0x64,
 288	BasicControl		= 0x80,
 289	BasicStatus		= 0x84,
 290	AnegAdv			= 0x90,
 291	AnegPeer		= 0x94,
 292	PhyStatus		= 0xC0,
 293	MIntrCtrl		= 0xC4,
 294	MIntrStatus		= 0xC8,
 295	PhyCtrl			= 0xE4,
 296
 297	/* These are from the spec, around page 78... on a separate table.
 298	 * The meaning of these registers depend on the value of PGSEL. */
 299	PGSEL			= 0xCC,
 300	PMDCSR			= 0xE4,
 301	TSTDAT			= 0xFC,
 302	DSPCFG			= 0xF4,
 303	SDCFG			= 0xF8
 304};
 305/* the values for the 'magic' registers above (PGSEL=1) */
 306#define PMDCSR_VAL	0x189c	/* enable preferred adaptation circuitry */
 307#define TSTDAT_VAL	0x0
 308#define DSPCFG_VAL	0x5040
 309#define SDCFG_VAL	0x008c	/* set voltage thresholds for Signal Detect */
 310#define DSPCFG_LOCK	0x20	/* coefficient lock bit in DSPCFG */
 311#define DSPCFG_COEF	0x1000	/* see coefficient (in TSTDAT) bit in DSPCFG */
 312#define TSTDAT_FIXED	0xe8	/* magic number for bad coefficients */
 313
 314/* misc PCI space registers */
 315enum pci_register_offsets {
 316	PCIPM			= 0x44,
 317};
 318
 319enum ChipCmd_bits {
 320	ChipReset		= 0x100,
 321	RxReset			= 0x20,
 322	TxReset			= 0x10,
 323	RxOff			= 0x08,
 324	RxOn			= 0x04,
 325	TxOff			= 0x02,
 326	TxOn			= 0x01,
 327};
 328
 329enum ChipConfig_bits {
 330	CfgPhyDis		= 0x200,
 331	CfgPhyRst		= 0x400,
 332	CfgExtPhy		= 0x1000,
 333	CfgAnegEnable		= 0x2000,
 334	CfgAneg100		= 0x4000,
 335	CfgAnegFull		= 0x8000,
 336	CfgAnegDone		= 0x8000000,
 337	CfgFullDuplex		= 0x20000000,
 338	CfgSpeed100		= 0x40000000,
 339	CfgLink			= 0x80000000,
 340};
 341
 342enum EECtrl_bits {
 343	EE_ShiftClk		= 0x04,
 344	EE_DataIn		= 0x01,
 345	EE_ChipSelect		= 0x08,
 346	EE_DataOut		= 0x02,
 347	MII_Data 		= 0x10,
 348	MII_Write		= 0x20,
 349	MII_ShiftClk		= 0x40,
 350};
 351
 352enum PCIBusCfg_bits {
 353	EepromReload		= 0x4,
 354};
 355
 356/* Bits in the interrupt status/mask registers. */
 357enum IntrStatus_bits {
 358	IntrRxDone		= 0x0001,
 359	IntrRxIntr		= 0x0002,
 360	IntrRxErr		= 0x0004,
 361	IntrRxEarly		= 0x0008,
 362	IntrRxIdle		= 0x0010,
 363	IntrRxOverrun		= 0x0020,
 364	IntrTxDone		= 0x0040,
 365	IntrTxIntr		= 0x0080,
 366	IntrTxErr		= 0x0100,
 367	IntrTxIdle		= 0x0200,
 368	IntrTxUnderrun		= 0x0400,
 369	StatsMax		= 0x0800,
 370	SWInt			= 0x1000,
 371	WOLPkt			= 0x2000,
 372	LinkChange		= 0x4000,
 373	IntrHighBits		= 0x8000,
 374	RxStatusFIFOOver	= 0x10000,
 375	IntrPCIErr		= 0xf00000,
 376	RxResetDone		= 0x1000000,
 377	TxResetDone		= 0x2000000,
 378	IntrAbnormalSummary	= 0xCD20,
 379};
 380
 381/*
 382 * Default Interrupts:
 383 * Rx OK, Rx Packet Error, Rx Overrun,
 384 * Tx OK, Tx Packet Error, Tx Underrun,
 385 * MIB Service, Phy Interrupt, High Bits,
 386 * Rx Status FIFO overrun,
 387 * Received Target Abort, Received Master Abort,
 388 * Signalled System Error, Received Parity Error
 389 */
 390#define DEFAULT_INTR 0x00f1cd65
 391
 392enum TxConfig_bits {
 393	TxDrthMask		= 0x3f,
 394	TxFlthMask		= 0x3f00,
 395	TxMxdmaMask		= 0x700000,
 396	TxMxdma_512		= 0x0,
 397	TxMxdma_4		= 0x100000,
 398	TxMxdma_8		= 0x200000,
 399	TxMxdma_16		= 0x300000,
 400	TxMxdma_32		= 0x400000,
 401	TxMxdma_64		= 0x500000,
 402	TxMxdma_128		= 0x600000,
 403	TxMxdma_256		= 0x700000,
 404	TxCollRetry		= 0x800000,
 405	TxAutoPad		= 0x10000000,
 406	TxMacLoop		= 0x20000000,
 407	TxHeartIgn		= 0x40000000,
 408	TxCarrierIgn		= 0x80000000
 409};
 410
 411/*
 412 * Tx Configuration:
 413 * - 256 byte DMA burst length
 414 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
 415 * - 64 bytes initial drain threshold (i.e. begin actual transmission
 416 *   when 64 byte are in the fifo)
 417 * - on tx underruns, increase drain threshold by 64.
 418 * - at most use a drain threshold of 1472 bytes: The sum of the fill
 419 *   threshold and the drain threshold must be less than 2016 bytes.
 420 *
 421 */
 422#define TX_FLTH_VAL		((512/32) << 8)
 423#define TX_DRTH_VAL_START	(64/32)
 424#define TX_DRTH_VAL_INC		2
 425#define TX_DRTH_VAL_LIMIT	(1472/32)
 426
 427enum RxConfig_bits {
 428	RxDrthMask		= 0x3e,
 429	RxMxdmaMask		= 0x700000,
 430	RxMxdma_512		= 0x0,
 431	RxMxdma_4		= 0x100000,
 432	RxMxdma_8		= 0x200000,
 433	RxMxdma_16		= 0x300000,
 434	RxMxdma_32		= 0x400000,
 435	RxMxdma_64		= 0x500000,
 436	RxMxdma_128		= 0x600000,
 437	RxMxdma_256		= 0x700000,
 438	RxAcceptLong		= 0x8000000,
 439	RxAcceptTx		= 0x10000000,
 440	RxAcceptRunt		= 0x40000000,
 441	RxAcceptErr		= 0x80000000
 442};
 443#define RX_DRTH_VAL		(128/8)
 444
 445enum ClkRun_bits {
 446	PMEEnable		= 0x100,
 447	PMEStatus		= 0x8000,
 448};
 449
 450enum WolCmd_bits {
 451	WakePhy			= 0x1,
 452	WakeUnicast		= 0x2,
 453	WakeMulticast		= 0x4,
 454	WakeBroadcast		= 0x8,
 455	WakeArp			= 0x10,
 456	WakePMatch0		= 0x20,
 457	WakePMatch1		= 0x40,
 458	WakePMatch2		= 0x80,
 459	WakePMatch3		= 0x100,
 460	WakeMagic		= 0x200,
 461	WakeMagicSecure		= 0x400,
 462	SecureHack		= 0x100000,
 463	WokePhy			= 0x400000,
 464	WokeUnicast		= 0x800000,
 465	WokeMulticast		= 0x1000000,
 466	WokeBroadcast		= 0x2000000,
 467	WokeArp			= 0x4000000,
 468	WokePMatch0		= 0x8000000,
 469	WokePMatch1		= 0x10000000,
 470	WokePMatch2		= 0x20000000,
 471	WokePMatch3		= 0x40000000,
 472	WokeMagic		= 0x80000000,
 473	WakeOptsSummary		= 0x7ff
 474};
 475
 476enum RxFilterAddr_bits {
 477	RFCRAddressMask		= 0x3ff,
 478	AcceptMulticast		= 0x00200000,
 479	AcceptMyPhys		= 0x08000000,
 480	AcceptAllPhys		= 0x10000000,
 481	AcceptAllMulticast	= 0x20000000,
 482	AcceptBroadcast		= 0x40000000,
 483	RxFilterEnable		= 0x80000000
 484};
 485
 486enum StatsCtrl_bits {
 487	StatsWarn		= 0x1,
 488	StatsFreeze		= 0x2,
 489	StatsClear		= 0x4,
 490	StatsStrobe		= 0x8,
 491};
 492
 493enum MIntrCtrl_bits {
 494	MICRIntEn		= 0x2,
 495};
 496
 497enum PhyCtrl_bits {
 498	PhyAddrMask		= 0x1f,
 499};
 500
 501#define PHY_ADDR_NONE		32
 502#define PHY_ADDR_INTERNAL	1
 503
 504/* values we might find in the silicon revision register */
 505#define SRR_DP83815_C	0x0302
 506#define SRR_DP83815_D	0x0403
 507#define SRR_DP83816_A4	0x0504
 508#define SRR_DP83816_A5	0x0505
 509
 510/* The Rx and Tx buffer descriptors. */
 511/* Note that using only 32 bit fields simplifies conversion to big-endian
 512   architectures. */
 513struct netdev_desc {
 514	__le32 next_desc;
 515	__le32 cmd_status;
 516	__le32 addr;
 517	__le32 software_use;
 518};
 519
 520/* Bits in network_desc.status */
 521enum desc_status_bits {
 522	DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
 523	DescNoCRC=0x10000000, DescPktOK=0x08000000,
 524	DescSizeMask=0xfff,
 525
 526	DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
 527	DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
 528	DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
 529	DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
 530
 531	DescRxAbort=0x04000000, DescRxOver=0x02000000,
 532	DescRxDest=0x01800000, DescRxLong=0x00400000,
 533	DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
 534	DescRxCRC=0x00080000, DescRxAlign=0x00040000,
 535	DescRxLoop=0x00020000, DesRxColl=0x00010000,
 536};
 537
 538struct netdev_private {
 539	/* Descriptor rings first for alignment */
 540	dma_addr_t ring_dma;
 541	struct netdev_desc *rx_ring;
 542	struct netdev_desc *tx_ring;
 543	/* The addresses of receive-in-place skbuffs */
 544	struct sk_buff *rx_skbuff[RX_RING_SIZE];
 545	dma_addr_t rx_dma[RX_RING_SIZE];
 546	/* address of a sent-in-place packet/buffer, for later free() */
 547	struct sk_buff *tx_skbuff[TX_RING_SIZE];
 548	dma_addr_t tx_dma[TX_RING_SIZE];
 549	struct net_device *dev;
 550	struct napi_struct napi;
 551	/* Media monitoring timer */
 552	struct timer_list timer;
 553	/* Frequently used values: keep some adjacent for cache effect */
 554	struct pci_dev *pci_dev;
 555	struct netdev_desc *rx_head_desc;
 556	/* Producer/consumer ring indices */
 557	unsigned int cur_rx, dirty_rx;
 558	unsigned int cur_tx, dirty_tx;
 559	/* Based on MTU+slack. */
 560	unsigned int rx_buf_sz;
 561	int oom;
 562	/* Interrupt status */
 563	u32 intr_status;
 564	/* Do not touch the nic registers */
 565	int hands_off;
 566	/* Don't pay attention to the reported link state. */
 567	int ignore_phy;
 568	/* external phy that is used: only valid if dev->if_port != PORT_TP */
 569	int mii;
 570	int phy_addr_external;
 571	unsigned int full_duplex;
 572	/* Rx filter */
 573	u32 cur_rx_mode;
 574	u32 rx_filter[16];
 575	/* FIFO and PCI burst thresholds */
 576	u32 tx_config, rx_config;
 577	/* original contents of ClkRun register */
 578	u32 SavedClkRun;
 579	/* silicon revision */
 580	u32 srr;
 581	/* expected DSPCFG value */
 582	u16 dspcfg;
 583	int dspcfg_workaround;
 584	/* parms saved in ethtool format */
 585	u16	speed;		/* The forced speed, 10Mb, 100Mb, gigabit */
 586	u8	duplex;		/* Duplex, half or full */
 587	u8	autoneg;	/* Autonegotiation enabled */
 588	/* MII transceiver section */
 589	u16 advertising;
 590	unsigned int iosize;
 591	spinlock_t lock;
 592	u32 msg_enable;
 593	/* EEPROM data */
 594	int eeprom_size;
 595};
 596
 597static void move_int_phy(struct net_device *dev, int addr);
 598static int eeprom_read(void __iomem *ioaddr, int location);
 599static int mdio_read(struct net_device *dev, int reg);
 600static void mdio_write(struct net_device *dev, int reg, u16 data);
 601static void init_phy_fixup(struct net_device *dev);
 602static int miiport_read(struct net_device *dev, int phy_id, int reg);
 603static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
 604static int find_mii(struct net_device *dev);
 605static void natsemi_reset(struct net_device *dev);
 606static void natsemi_reload_eeprom(struct net_device *dev);
 607static void natsemi_stop_rxtx(struct net_device *dev);
 608static int netdev_open(struct net_device *dev);
 609static void do_cable_magic(struct net_device *dev);
 610static void undo_cable_magic(struct net_device *dev);
 611static void check_link(struct net_device *dev);
 612static void netdev_timer(unsigned long data);
 613static void dump_ring(struct net_device *dev);
 614static void ns_tx_timeout(struct net_device *dev);
 615static int alloc_ring(struct net_device *dev);
 616static void refill_rx(struct net_device *dev);
 617static void init_ring(struct net_device *dev);
 618static void drain_tx(struct net_device *dev);
 619static void drain_ring(struct net_device *dev);
 620static void free_ring(struct net_device *dev);
 621static void reinit_ring(struct net_device *dev);
 622static void init_registers(struct net_device *dev);
 623static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
 624static irqreturn_t intr_handler(int irq, void *dev_instance);
 625static void netdev_error(struct net_device *dev, int intr_status);
 626static int natsemi_poll(struct napi_struct *napi, int budget);
 627static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
 628static void netdev_tx_done(struct net_device *dev);
 629static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
 630#ifdef CONFIG_NET_POLL_CONTROLLER
 631static void natsemi_poll_controller(struct net_device *dev);
 632#endif
 633static void __set_rx_mode(struct net_device *dev);
 634static void set_rx_mode(struct net_device *dev);
 635static void __get_stats(struct net_device *dev);
 636static struct net_device_stats *get_stats(struct net_device *dev);
 637static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 638static int netdev_set_wol(struct net_device *dev, u32 newval);
 639static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
 640static int netdev_set_sopass(struct net_device *dev, u8 *newval);
 641static int netdev_get_sopass(struct net_device *dev, u8 *data);
 642static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
 643static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
 644static void enable_wol_mode(struct net_device *dev, int enable_intr);
 645static int netdev_close(struct net_device *dev);
 646static int netdev_get_regs(struct net_device *dev, u8 *buf);
 647static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
 648static const struct ethtool_ops ethtool_ops;
 649
 650#define NATSEMI_ATTR(_name) \
 651static ssize_t natsemi_show_##_name(struct device *dev, \
 652         struct device_attribute *attr, char *buf); \
 653	 static ssize_t natsemi_set_##_name(struct device *dev, \
 654		struct device_attribute *attr, \
 655	        const char *buf, size_t count); \
 656	 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
 657
 658#define NATSEMI_CREATE_FILE(_dev, _name) \
 659         device_create_file(&_dev->dev, &dev_attr_##_name)
 660#define NATSEMI_REMOVE_FILE(_dev, _name) \
 661         device_remove_file(&_dev->dev, &dev_attr_##_name)
 662
 663NATSEMI_ATTR(dspcfg_workaround);
 664
 665static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
 666				  	      struct device_attribute *attr,
 667					      char *buf)
 668{
 669	struct netdev_private *np = netdev_priv(to_net_dev(dev));
 670
 671	return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
 672}
 673
 674static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
 675					     struct device_attribute *attr,
 676					     const char *buf, size_t count)
 677{
 678	struct netdev_private *np = netdev_priv(to_net_dev(dev));
 679	int new_setting;
 680	unsigned long flags;
 681
 682        /* Find out the new setting */
 683        if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
 684                new_setting = 1;
 685        else if (!strncmp("off", buf, count - 1) ||
 686                 !strncmp("0", buf, count - 1))
 687		new_setting = 0;
 688	else
 689                 return count;
 690
 691	spin_lock_irqsave(&np->lock, flags);
 692
 693	np->dspcfg_workaround = new_setting;
 694
 695	spin_unlock_irqrestore(&np->lock, flags);
 696
 697	return count;
 698}
 699
 700static inline void __iomem *ns_ioaddr(struct net_device *dev)
 701{
 702	return (void __iomem *) dev->base_addr;
 703}
 704
 705static inline void natsemi_irq_enable(struct net_device *dev)
 706{
 707	writel(1, ns_ioaddr(dev) + IntrEnable);
 708	readl(ns_ioaddr(dev) + IntrEnable);
 709}
 710
 711static inline void natsemi_irq_disable(struct net_device *dev)
 712{
 713	writel(0, ns_ioaddr(dev) + IntrEnable);
 714	readl(ns_ioaddr(dev) + IntrEnable);
 715}
 716
 717static void move_int_phy(struct net_device *dev, int addr)
 718{
 719	struct netdev_private *np = netdev_priv(dev);
 720	void __iomem *ioaddr = ns_ioaddr(dev);
 721	int target = 31;
 722
 723	/*
 724	 * The internal phy is visible on the external mii bus. Therefore we must
 725	 * move it away before we can send commands to an external phy.
 726	 * There are two addresses we must avoid:
 727	 * - the address on the external phy that is used for transmission.
 728	 * - the address that we want to access. User space can access phys
 729	 *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
 730	 *   phy that is used for transmission.
 731	 */
 732
 733	if (target == addr)
 734		target--;
 735	if (target == np->phy_addr_external)
 736		target--;
 737	writew(target, ioaddr + PhyCtrl);
 738	readw(ioaddr + PhyCtrl);
 739	udelay(1);
 740}
 741
 742static void __devinit natsemi_init_media (struct net_device *dev)
 743{
 744	struct netdev_private *np = netdev_priv(dev);
 745	u32 tmp;
 746
 747	if (np->ignore_phy)
 748		netif_carrier_on(dev);
 749	else
 750		netif_carrier_off(dev);
 751
 752	/* get the initial settings from hardware */
 753	tmp            = mdio_read(dev, MII_BMCR);
 754	np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
 755	np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
 756	np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
 757	np->advertising= mdio_read(dev, MII_ADVERTISE);
 758
 759	if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
 760	    netif_msg_probe(np)) {
 761		printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
 762			"10%s %s duplex.\n",
 763			pci_name(np->pci_dev),
 764			(mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
 765			  "enabled, advertise" : "disabled, force",
 766			(np->advertising &
 767			  (ADVERTISE_100FULL|ADVERTISE_100HALF))?
 768			    "0" : "",
 769			(np->advertising &
 770			  (ADVERTISE_100FULL|ADVERTISE_10FULL))?
 771			    "full" : "half");
 772	}
 773	if (netif_msg_probe(np))
 774		printk(KERN_INFO
 775			"natsemi %s: Transceiver status %#04x advertising %#04x.\n",
 776			pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
 777			np->advertising);
 778
 779}
 780
 781static const struct net_device_ops natsemi_netdev_ops = {
 782	.ndo_open		= netdev_open,
 783	.ndo_stop		= netdev_close,
 784	.ndo_start_xmit		= start_tx,
 785	.ndo_get_stats		= get_stats,
 786	.ndo_set_multicast_list = set_rx_mode,
 787	.ndo_change_mtu		= natsemi_change_mtu,
 788	.ndo_do_ioctl		= netdev_ioctl,
 789	.ndo_tx_timeout 	= ns_tx_timeout,
 790	.ndo_set_mac_address 	= eth_mac_addr,
 791	.ndo_validate_addr	= eth_validate_addr,
 792#ifdef CONFIG_NET_POLL_CONTROLLER
 793	.ndo_poll_controller	= natsemi_poll_controller,
 794#endif
 795};
 796
 797static int __devinit natsemi_probe1 (struct pci_dev *pdev,
 798	const struct pci_device_id *ent)
 799{
 800	struct net_device *dev;
 801	struct netdev_private *np;
 802	int i, option, irq, chip_idx = ent->driver_data;
 803	static int find_cnt = -1;
 804	resource_size_t iostart;
 805	unsigned long iosize;
 806	void __iomem *ioaddr;
 807	const int pcibar = 1; /* PCI base address register */
 808	int prev_eedata;
 809	u32 tmp;
 810
 811/* when built into the kernel, we only print version if device is found */
 812#ifndef MODULE
 813	static int printed_version;
 814	if (!printed_version++)
 815		printk(version);
 816#endif
 817
 818	i = pci_enable_device(pdev);
 819	if (i) return i;
 820
 821	/* natsemi has a non-standard PM control register
 822	 * in PCI config space.  Some boards apparently need
 823	 * to be brought to D0 in this manner.
 824	 */
 825	pci_read_config_dword(pdev, PCIPM, &tmp);
 826	if (tmp & PCI_PM_CTRL_STATE_MASK) {
 827		/* D0 state, disable PME assertion */
 828		u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
 829		pci_write_config_dword(pdev, PCIPM, newtmp);
 830	}
 831
 832	find_cnt++;
 833	iostart = pci_resource_start(pdev, pcibar);
 834	iosize = pci_resource_len(pdev, pcibar);
 835	irq = pdev->irq;
 836
 837	pci_set_master(pdev);
 838
 839	dev = alloc_etherdev(sizeof (struct netdev_private));
 840	if (!dev)
 841		return -ENOMEM;
 842	SET_NETDEV_DEV(dev, &pdev->dev);
 843
 844	i = pci_request_regions(pdev, DRV_NAME);
 845	if (i)
 846		goto err_pci_request_regions;
 847
 848	ioaddr = ioremap(iostart, iosize);
 849	if (!ioaddr) {
 850		i = -ENOMEM;
 851		goto err_ioremap;
 852	}
 853
 854	/* Work around the dropped serial bit. */
 855	prev_eedata = eeprom_read(ioaddr, 6);
 856	for (i = 0; i < 3; i++) {
 857		int eedata = eeprom_read(ioaddr, i + 7);
 858		dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
 859		dev->dev_addr[i*2+1] = eedata >> 7;
 860		prev_eedata = eedata;
 861	}
 862
 863	/* Store MAC Address in perm_addr */
 864	memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
 865
 866	dev->base_addr = (unsigned long __force) ioaddr;
 867	dev->irq = irq;
 868
 869	np = netdev_priv(dev);
 870	netif_napi_add(dev, &np->napi, natsemi_poll, 64);
 871	np->dev = dev;
 872
 873	np->pci_dev = pdev;
 874	pci_set_drvdata(pdev, dev);
 875	np->iosize = iosize;
 876	spin_lock_init(&np->lock);
 877	np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
 878	np->hands_off = 0;
 879	np->intr_status = 0;
 880	np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
 881	if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
 882		np->ignore_phy = 1;
 883	else
 884		np->ignore_phy = 0;
 885	np->dspcfg_workaround = dspcfg_workaround;
 886
 887	/* Initial port:
 888	 * - If configured to ignore the PHY set up for external.
 889	 * - If the nic was configured to use an external phy and if find_mii
 890	 *   finds a phy: use external port, first phy that replies.
 891	 * - Otherwise: internal port.
 892	 * Note that the phy address for the internal phy doesn't matter:
 893	 * The address would be used to access a phy over the mii bus, but
 894	 * the internal phy is accessed through mapped registers.
 895	 */
 896	if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
 897		dev->if_port = PORT_MII;
 898	else
 899		dev->if_port = PORT_TP;
 900	/* Reset the chip to erase previous misconfiguration. */
 901	natsemi_reload_eeprom(dev);
 902	natsemi_reset(dev);
 903
 904	if (dev->if_port != PORT_TP) {
 905		np->phy_addr_external = find_mii(dev);
 906		/* If we're ignoring the PHY it doesn't matter if we can't
 907		 * find one. */
 908		if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
 909			dev->if_port = PORT_TP;
 910			np->phy_addr_external = PHY_ADDR_INTERNAL;
 911		}
 912	} else {
 913		np->phy_addr_external = PHY_ADDR_INTERNAL;
 914	}
 915
 916	option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
 917	if (dev->mem_start)
 918		option = dev->mem_start;
 919
 920	/* The lower four bits are the media type. */
 921	if (option) {
 922		if (option & 0x200)
 923			np->full_duplex = 1;
 924		if (option & 15)
 925			printk(KERN_INFO
 926				"natsemi %s: ignoring user supplied media type %d",
 927				pci_name(np->pci_dev), option & 15);
 928	}
 929	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
 930		np->full_duplex = 1;
 931
 932	dev->netdev_ops = &natsemi_netdev_ops;
 933	dev->watchdog_timeo = TX_TIMEOUT;
 934
 935	SET_ETHTOOL_OPS(dev, &ethtool_ops);
 936
 937	if (mtu)
 938		dev->mtu = mtu;
 939
 940	natsemi_init_media(dev);
 941
 942	/* save the silicon revision for later querying */
 943	np->srr = readl(ioaddr + SiliconRev);
 944	if (netif_msg_hw(np))
 945		printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
 946				pci_name(np->pci_dev), np->srr);
 947
 948	i = register_netdev(dev);
 949	if (i)
 950		goto err_register_netdev;
 951
 952	if (NATSEMI_CREATE_FILE(pdev, dspcfg_workaround))
 953		goto err_create_file;
 954
 955	if (netif_msg_drv(np)) {
 956		printk(KERN_INFO "natsemi %s: %s at %#08llx "
 957		       "(%s), %pM, IRQ %d",
 958		       dev->name, natsemi_pci_info[chip_idx].name,
 959		       (unsigned long long)iostart, pci_name(np->pci_dev),
 960		       dev->dev_addr, irq);
 961		if (dev->if_port == PORT_TP)
 962			printk(", port TP.\n");
 963		else if (np->ignore_phy)
 964			printk(", port MII, ignoring PHY\n");
 965		else
 966			printk(", port MII, phy ad %d.\n", np->phy_addr_external);
 967	}
 968	return 0;
 969
 970 err_create_file:
 971 	unregister_netdev(dev);
 972
 973 err_register_netdev:
 974	iounmap(ioaddr);
 975
 976 err_ioremap:
 977	pci_release_regions(pdev);
 978	pci_set_drvdata(pdev, NULL);
 979
 980 err_pci_request_regions:
 981	free_netdev(dev);
 982	return i;
 983}
 984
 985
 986/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
 987   The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
 988
 989/* Delay between EEPROM clock transitions.
 990   No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
 991   a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
 992   made udelay() unreliable.
 993   The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
 994   deprecated.
 995*/
 996#define eeprom_delay(ee_addr)	readl(ee_addr)
 997
 998#define EE_Write0 (EE_ChipSelect)
 999#define EE_Write1 (EE_ChipSelect | EE_DataIn)
1000
1001/* The EEPROM commands include the alway-set leading bit. */
1002enum EEPROM_Cmds {
1003	EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1004};
1005
1006static int eeprom_read(void __iomem *addr, int location)
1007{
1008	int i;
1009	int retval = 0;
1010	void __iomem *ee_addr = addr + EECtrl;
1011	int read_cmd = location | EE_ReadCmd;
1012
1013	writel(EE_Write0, ee_addr);
1014
1015	/* Shift the read command bits out. */
1016	for (i = 10; i >= 0; i--) {
1017		short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1018		writel(dataval, ee_addr);
1019		eeprom_delay(ee_addr);
1020		writel(dataval | EE_ShiftClk, ee_addr);
1021		eeprom_delay(ee_addr);
1022	}
1023	writel(EE_ChipSelect, ee_addr);
1024	eeprom_delay(ee_addr);
1025
1026	for (i = 0; i < 16; i++) {
1027		writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1028		eeprom_delay(ee_addr);
1029		retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1030		writel(EE_ChipSelect, ee_addr);
1031		eeprom_delay(ee_addr);
1032	}
1033
1034	/* Terminate the EEPROM access. */
1035	writel(EE_Write0, ee_addr);
1036	writel(0, ee_addr);
1037	return retval;
1038}
1039
1040/* MII transceiver control section.
1041 * The 83815 series has an internal transceiver, and we present the
1042 * internal management registers as if they were MII connected.
1043 * External Phy registers are referenced through the MII interface.
1044 */
1045
1046/* clock transitions >= 20ns (25MHz)
1047 * One readl should be good to PCI @ 100MHz
1048 */
1049#define mii_delay(ioaddr)  readl(ioaddr + EECtrl)
1050
1051static int mii_getbit (struct net_device *dev)
1052{
1053	int data;
1054	void __iomem *ioaddr = ns_ioaddr(dev);
1055
1056	writel(MII_ShiftClk, ioaddr + EECtrl);
1057	data = readl(ioaddr + EECtrl);
1058	writel(0, ioaddr + EECtrl);
1059	mii_delay(ioaddr);
1060	return (data & MII_Data)? 1 : 0;
1061}
1062
1063static void mii_send_bits (struct net_device *dev, u32 data, int len)
1064{
1065	u32 i;
1066	void __iomem *ioaddr = ns_ioaddr(dev);
1067
1068	for (i = (1 << (len-1)); i; i >>= 1)
1069	{
1070		u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1071		writel(mdio_val, ioaddr + EECtrl);
1072		mii_delay(ioaddr);
1073		writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1074		mii_delay(ioaddr);
1075	}
1076	writel(0, ioaddr + EECtrl);
1077	mii_delay(ioaddr);
1078}
1079
1080static int miiport_read(struct net_device *dev, int phy_id, int reg)
1081{
1082	u32 cmd;
1083	int i;
1084	u32 retval = 0;
1085
1086	/* Ensure sync */
1087	mii_send_bits (dev, 0xffffffff, 32);
1088	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1089	/* ST,OP = 0110'b for read operation */
1090	cmd = (0x06 << 10) | (phy_id << 5) | reg;
1091	mii_send_bits (dev, cmd, 14);
1092	/* Turnaround */
1093	if (mii_getbit (dev))
1094		return 0;
1095	/* Read data */
1096	for (i = 0; i < 16; i++) {
1097		retval <<= 1;
1098		retval |= mii_getbit (dev);
1099	}
1100	/* End cycle */
1101	mii_getbit (dev);
1102	return retval;
1103}
1104
1105static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1106{
1107	u32 cmd;
1108
1109	/* Ensure sync */
1110	mii_send_bits (dev, 0xffffffff, 32);
1111	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1112	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1113	cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1114	mii_send_bits (dev, cmd, 32);
1115	/* End cycle */
1116	mii_getbit (dev);
1117}
1118
1119static int mdio_read(struct net_device *dev, int reg)
1120{
1121	struct netdev_private *np = netdev_priv(dev);
1122	void __iomem *ioaddr = ns_ioaddr(dev);
1123
1124	/* The 83815 series has two ports:
1125	 * - an internal transceiver
1126	 * - an external mii bus
1127	 */
1128	if (dev->if_port == PORT_TP)
1129		return readw(ioaddr+BasicControl+(reg<<2));
1130	else
1131		return miiport_read(dev, np->phy_addr_external, reg);
1132}
1133
1134static void mdio_write(struct net_device *dev, int reg, u16 data)
1135{
1136	struct netdev_private *np = netdev_priv(dev);
1137	void __iomem *ioaddr = ns_ioaddr(dev);
1138
1139	/* The 83815 series has an internal transceiver; handle separately */
1140	if (dev->if_port == PORT_TP)
1141		writew(data, ioaddr+BasicControl+(reg<<2));
1142	else
1143		miiport_write(dev, np->phy_addr_external, reg, data);
1144}
1145
1146static void init_phy_fixup(struct net_device *dev)
1147{
1148	struct netdev_private *np = netdev_priv(dev);
1149	void __iomem *ioaddr = ns_ioaddr(dev);
1150	int i;
1151	u32 cfg;
1152	u16 tmp;
1153
1154	/* restore stuff lost when power was out */
1155	tmp = mdio_read(dev, MII_BMCR);
1156	if (np->autoneg == AUTONEG_ENABLE) {
1157		/* renegotiate if something changed */
1158		if ((tmp & BMCR_ANENABLE) == 0 ||
1159		    np->advertising != mdio_read(dev, MII_ADVERTISE))
1160		{
1161			/* turn on autonegotiation and force negotiation */
1162			tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1163			mdio_write(dev, MII_ADVERTISE, np->advertising);
1164		}
1165	} else {
1166		/* turn off auto negotiation, set speed and duplexity */
1167		tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1168		if (np->speed == SPEED_100)
1169			tmp |= BMCR_SPEED100;
1170		if (np->duplex == DUPLEX_FULL)
1171			tmp |= BMCR_FULLDPLX;
1172		/*
1173		 * Note: there is no good way to inform the link partner
1174		 * that our capabilities changed. The user has to unplug
1175		 * and replug the network cable after some changes, e.g.
1176		 * after switching from 10HD, autoneg off to 100 HD,
1177		 * autoneg off.
1178		 */
1179	}
1180	mdio_write(dev, MII_BMCR, tmp);
1181	readl(ioaddr + ChipConfig);
1182	udelay(1);
1183
1184	/* find out what phy this is */
1185	np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1186				+ mdio_read(dev, MII_PHYSID2);
1187
1188	/* handle external phys here */
1189	switch (np->mii) {
1190	case PHYID_AM79C874:
1191		/* phy specific configuration for fibre/tp operation */
1192		tmp = mdio_read(dev, MII_MCTRL);
1193		tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1194		if (dev->if_port == PORT_FIBRE)
1195			tmp |= MII_FX_SEL;
1196		else
1197			tmp |= MII_EN_SCRM;
1198		mdio_write(dev, MII_MCTRL, tmp);
1199		break;
1200	default:
1201		break;
1202	}
1203	cfg = readl(ioaddr + ChipConfig);
1204	if (cfg & CfgExtPhy)
1205		return;
1206
1207	/* On page 78 of the spec, they recommend some settings for "optimum
1208	   performance" to be done in sequence.  These settings optimize some
1209	   of the 100Mbit autodetection circuitry.  They say we only want to
1210	   do this for rev C of the chip, but engineers at NSC (Bradley
1211	   Kennedy) recommends always setting them.  If you don't, you get
1212	   errors on some autonegotiations that make the device unusable.
1213
1214	   It seems that the DSP needs a few usec to reinitialize after
1215	   the start of the phy. Just retry writing these values until they
1216	   stick.
1217	*/
1218	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1219
1220		int dspcfg;
1221		writew(1, ioaddr + PGSEL);
1222		writew(PMDCSR_VAL, ioaddr + PMDCSR);
1223		writew(TSTDAT_VAL, ioaddr + TSTDAT);
1224		np->dspcfg = (np->srr <= SRR_DP83815_C)?
1225			DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1226		writew(np->dspcfg, ioaddr + DSPCFG);
1227		writew(SDCFG_VAL, ioaddr + SDCFG);
1228		writew(0, ioaddr + PGSEL);
1229		readl(ioaddr + ChipConfig);
1230		udelay(10);
1231
1232		writew(1, ioaddr + PGSEL);
1233		dspcfg = readw(ioaddr + DSPCFG);
1234		writew(0, ioaddr + PGSEL);
1235		if (np->dspcfg == dspcfg)
1236			break;
1237	}
1238
1239	if (netif_msg_link(np)) {
1240		if (i==NATSEMI_HW_TIMEOUT) {
1241			printk(KERN_INFO
1242				"%s: DSPCFG mismatch after retrying for %d usec.\n",
1243				dev->name, i*10);
1244		} else {
1245			printk(KERN_INFO
1246				"%s: DSPCFG accepted after %d usec.\n",
1247				dev->name, i*10);
1248		}
1249	}
1250	/*
1251	 * Enable PHY Specific event based interrupts.  Link state change
1252	 * and Auto-Negotiation Completion are among the affected.
1253	 * Read the intr status to clear it (needed for wake events).
1254	 */
1255	readw(ioaddr + MIntrStatus);
1256	writew(MICRIntEn, ioaddr + MIntrCtrl);
1257}
1258
1259static int switch_port_external(struct net_device *dev)
1260{
1261	struct netdev_private *np = netdev_priv(dev);
1262	void __iomem *ioaddr = ns_ioaddr(dev);
1263	u32 cfg;
1264
1265	cfg = readl(ioaddr + ChipConfig);
1266	if (cfg & CfgExtPhy)
1267		return 0;
1268
1269	if (netif_msg_link(np)) {
1270		printk(KERN_INFO "%s: switching to external transceiver.\n",
1271				dev->name);
1272	}
1273
1274	/* 1) switch back to external phy */
1275	writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1276	readl(ioaddr + ChipConfig);
1277	udelay(1);
1278
1279	/* 2) reset the external phy: */
1280	/* resetting the external PHY has been known to cause a hub supplying
1281	 * power over Ethernet to kill the power.  We don't want to kill
1282	 * power to this computer, so we avoid resetting the phy.
1283	 */
1284
1285	/* 3) reinit the phy fixup, it got lost during power down. */
1286	move_int_phy(dev, np->phy_addr_external);
1287	init_phy_fixup(dev);
1288
1289	return 1;
1290}
1291
1292static int switch_port_internal(struct net_device *dev)
1293{
1294	struct netdev_private *np = netdev_priv(dev);
1295	void __iomem *ioaddr = ns_ioaddr(dev);
1296	int i;
1297	u32 cfg;
1298	u16 bmcr;
1299
1300	cfg = readl(ioaddr + ChipConfig);
1301	if (!(cfg &CfgExtPhy))
1302		return 0;
1303
1304	if (netif_msg_link(np)) {
1305		printk(KERN_INFO "%s: switching to internal transceiver.\n",
1306				dev->name);
1307	}
1308	/* 1) switch back to internal phy: */
1309	cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1310	writel(cfg, ioaddr + ChipConfig);
1311	readl(ioaddr + ChipConfig);
1312	udelay(1);
1313
1314	/* 2) reset the internal phy: */
1315	bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1316	writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1317	readl(ioaddr + ChipConfig);
1318	udelay(10);
1319	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1320		bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1321		if (!(bmcr & BMCR_RESET))
1322			break;
1323		udelay(10);
1324	}
1325	if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1326		printk(KERN_INFO
1327			"%s: phy reset did not complete in %d usec.\n",
1328			dev->name, i*10);
1329	}
1330	/* 3) reinit the phy fixup, it got lost during power down. */
1331	init_phy_fixup(dev);
1332
1333	return 1;
1334}
1335
1336/* Scan for a PHY on the external mii bus.
1337 * There are two tricky points:
1338 * - Do not scan while the internal phy is enabled. The internal phy will
1339 *   crash: e.g. reads from the DSPCFG register will return odd values and
1340 *   the nasty random phy reset code will reset the nic every few seconds.
1341 * - The internal phy must be moved around, an external phy could
1342 *   have the same address as the internal phy.
1343 */
1344static int find_mii(struct net_device *dev)
1345{
1346	struct netdev_private *np = netdev_priv(dev);
1347	int tmp;
1348	int i;
1349	int did_switch;
1350
1351	/* Switch to external phy */
1352	did_switch = switch_port_external(dev);
1353
1354	/* Scan the possible phy addresses:
1355	 *
1356	 * PHY address 0 means that the phy is in isolate mode. Not yet
1357	 * supported due to lack of test hardware. User space should
1358	 * handle it through ethtool.
1359	 */
1360	for (i = 1; i <= 31; i++) {
1361		move_int_phy(dev, i);
1362		tmp = miiport_read(dev, i, MII_BMSR);
1363		if (tmp != 0xffff && tmp != 0x0000) {
1364			/* found something! */
1365			np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1366					+ mdio_read(dev, MII_PHYSID2);
1367	 		if (netif_msg_probe(np)) {
1368				printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1369						pci_name(np->pci_dev), np->mii, i);
1370			}
1371			break;
1372		}
1373	}
1374	/* And switch back to internal phy: */
1375	if (did_switch)
1376		switch_port_internal(dev);
1377	return i;
1378}
1379
1380/* CFG bits [13:16] [18:23] */
1381#define CFG_RESET_SAVE 0xfde000
1382/* WCSR bits [0:4] [9:10] */
1383#define WCSR_RESET_SAVE 0x61f
1384/* RFCR bits [20] [22] [27:31] */
1385#define RFCR_RESET_SAVE 0xf8500000
1386
1387static void natsemi_reset(struct net_device *dev)
1388{
1389	int i;
1390	u32 cfg;
1391	u32 wcsr;
1392	u32 rfcr;
1393	u16 pmatch[3];
1394	u16 sopass[3];
1395	struct netdev_private *np = netdev_priv(dev);
1396	void __iomem *ioaddr = ns_ioaddr(dev);
1397
1398	/*
1399	 * Resetting the chip causes some registers to be lost.
1400	 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1401	 * we save the state that would have been loaded from EEPROM
1402	 * on a normal power-up (see the spec EEPROM map).  This assumes
1403	 * whoever calls this will follow up with init_registers() eventually.
1404	 */
1405
1406	/* CFG */
1407	cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1408	/* WCSR */
1409	wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1410	/* RFCR */
1411	rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1412	/* PMATCH */
1413	for (i = 0; i < 3; i++) {
1414		writel(i*2, ioaddr + RxFilterAddr);
1415		pmatch[i] = readw(ioaddr + RxFilterData);
1416	}
1417	/* SOPAS */
1418	for (i = 0; i < 3; i++) {
1419		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1420		sopass[i] = readw(ioaddr + RxFilterData);
1421	}
1422
1423	/* now whack the chip */
1424	writel(ChipReset, ioaddr + ChipCmd);
1425	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1426		if (!(readl(ioaddr + ChipCmd) & ChipReset))
1427			break;
1428		udelay(5);
1429	}
1430	if (i==NATSEMI_HW_TIMEOUT) {
1431		printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1432			dev->name, i*5);
1433	} else if (netif_msg_hw(np)) {
1434		printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1435			dev->name, i*5);
1436	}
1437
1438	/* restore CFG */
1439	cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1440	/* turn on external phy if it was selected */
1441	if (dev->if_port == PORT_TP)
1442		cfg &= ~(CfgExtPhy | CfgPhyDis);
1443	else
1444		cfg |= (CfgExtPhy | CfgPhyDis);
1445	writel(cfg, ioaddr + ChipConfig);
1446	/* restore WCSR */
1447	wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1448	writel(wcsr, ioaddr + WOLCmd);
1449	/* read RFCR */
1450	rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1451	/* restore PMATCH */
1452	for (i = 0; i < 3; i++) {
1453		writel(i*2, ioaddr + RxFilterAddr);
1454		writew(pmatch[i], ioaddr + RxFilterData);
1455	}
1456	for (i = 0; i < 3; i++) {
1457		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1458		writew(sopass[i], ioaddr + RxFilterData);
1459	}
1460	/* restore RFCR */
1461	writel(rfcr, ioaddr + RxFilterAddr);
1462}
1463
1464static void reset_rx(struct net_device *dev)
1465{
1466	int i;
1467	struct netdev_private *np = netdev_priv(dev);
1468	void __iomem *ioaddr = ns_ioaddr(dev);
1469
1470	np->intr_status &= ~RxResetDone;
1471
1472	writel(RxReset, ioaddr + ChipCmd);
1473
1474	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1475		np->intr_status |= readl(ioaddr + IntrStatus);
1476		if (np->intr_status & RxResetDone)
1477			break;
1478		udelay(15);
1479	}
1480	if (i==NATSEMI_HW_TIMEOUT) {
1481		printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1482		       dev->name, i*15);
1483	} else if (netif_msg_hw(np)) {
1484		printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1485		       dev->name, i*15);
1486	}
1487}
1488
1489static void natsemi_reload_eeprom(struct net_device *dev)
1490{
1491	struct netdev_private *np = netdev_priv(dev);
1492	void __iomem *ioaddr = ns_ioaddr(dev);
1493	int i;
1494
1495	writel(EepromReload, ioaddr + PCIBusCfg);
1496	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1497		udelay(50);
1498		if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1499			break;
1500	}
1501	if (i==NATSEMI_HW_TIMEOUT) {
1502		printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1503			pci_name(np->pci_dev), i*50);
1504	} else if (netif_msg_hw(np)) {
1505		printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1506			pci_name(np->pci_dev), i*50);
1507	}
1508}
1509
1510static void natsemi_stop_rxtx(struct net_device *dev)
1511{
1512	void __iomem * ioaddr = ns_ioaddr(dev);
1513	struct netdev_private *np = netdev_priv(dev);
1514	int i;
1515
1516	writel(RxOff | TxOff, ioaddr + ChipCmd);
1517	for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1518		if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1519			break;
1520		udelay(5);
1521	}
1522	if (i==NATSEMI_HW_TIMEOUT) {
1523		printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1524			dev->name, i*5);
1525	} else if (netif_msg_hw(np)) {
1526		printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1527			dev->name, i*5);
1528	}
1529}
1530
1531static int netdev_open(struct net_device *dev)
1532{
1533	struct netdev_private *np = netdev_priv(dev);
1534	void __iomem * ioaddr = ns_ioaddr(dev);
1535	int i;
1536
1537	/* Reset the chip, just in case. */
1538	natsemi_reset(dev);
1539
1540	i = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
1541	if (i) return i;
1542
1543	if (netif_msg_ifup(np))
1544		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1545			dev->name, dev->irq);
1546	i = alloc_ring(dev);
1547	if (i < 0) {
1548		free_irq(dev->irq, dev);
1549		return i;
1550	}
1551	napi_enable(&np->napi);
1552
1553	init_ring(dev);
1554	spin_lock_irq(&np->lock);
1555	init_registers(dev);
1556	/* now set the MAC address according to dev->dev_addr */
1557	for (i = 0; i < 3; i++) {
1558		u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1559
1560		writel(i*2, ioaddr + RxFilterAddr);
1561		writew(mac, ioaddr + RxFilterData);
1562	}
1563	writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1564	spin_unlock_irq(&np->lock);
1565
1566	netif_start_queue(dev);
1567
1568	if (netif_msg_ifup(np))
1569		printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1570			dev->name, (int)readl(ioaddr + ChipCmd));
1571
1572	/* Set the timer to check for link beat. */
1573	init_timer(&np->timer);
1574	np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1575	np->timer.data = (unsigned long)dev;
1576	np->timer.function = netdev_timer; /* timer handler */
1577	add_timer(&np->timer);
1578
1579	return 0;
1580}
1581
1582static void do_cable_magic(struct net_device *dev)
1583{
1584	struct netdev_private *np = netdev_priv(dev);
1585	void __iomem *ioaddr = ns_ioaddr(dev);
1586
1587	if (dev->if_port != PORT_TP)
1588		return;
1589
1590	if (np->srr >= SRR_DP83816_A5)
1591		return;
1592
1593	/*
1594	 * 100 MBit links with short cables can trip an issue with the chip.
1595	 * The problem manifests as lots of CRC errors and/or flickering
1596	 * activity LED while idle.  This process is based on instructions
1597	 * from engineers at National.
1598	 */
1599	if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1600		u16 data;
1601
1602		writew(1, ioaddr + PGSEL);
1603		/*
1604		 * coefficient visibility should already be enabled via
1605		 * DSPCFG | 0x1000
1606		 */
1607		data = readw(ioaddr + TSTDAT) & 0xff;
1608		/*
1609		 * the value must be negative, and within certain values
1610		 * (these values all come from National)
1611		 */
1612		if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1613			np = netdev_priv(dev);
1614
1615			/* the bug has been triggered - fix the coefficient */
1616			writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1617			/* lock the value */
1618			data = readw(ioaddr + DSPCFG);
1619			np->dspcfg = data | DSPCFG_LOCK;
1620			writew(np->dspcfg, ioaddr + DSPCFG);
1621		}
1622		writew(0, ioaddr + PGSEL);
1623	}
1624}
1625
1626static void undo_cable_magic(struct net_device *dev)
1627{
1628	u16 data;
1629	struct netdev_private *np = netdev_priv(dev);
1630	void __iomem * ioaddr = ns_ioaddr(dev);
1631
1632	if (dev->if_port != PORT_TP)
1633		return;
1634
1635	if (np->srr >= SRR_DP83816_A5)
1636		return;
1637
1638	writew(1, ioaddr + PGSEL);
1639	/* make sure the lock bit is clear */
1640	data = readw(ioaddr + DSPCFG);
1641	np->dspcfg = data & ~DSPCFG_LOCK;
1642	writew(np->dspcfg, ioaddr + DSPCFG);
1643	writew(0, ioaddr + PGSEL);
1644}
1645
1646static void check_link(struct net_device *dev)
1647{
1648	struct netdev_private *np = netdev_priv(dev);
1649	void __iomem * ioaddr = ns_ioaddr(dev);
1650	int duplex = np->duplex;
1651	u16 bmsr;
1652
1653	/* If we are ignoring the PHY then don't try reading it. */
1654	if (np->ignore_phy)
1655		goto propagate_state;
1656
1657	/* The link status field is latched: it remains low after a temporary
1658	 * link failure until it's read. We need the current link status,
1659	 * thus read twice.
1660	 */
1661	mdio_read(dev, MII_BMSR);
1662	bmsr = mdio_read(dev, MII_BMSR);
1663
1664	if (!(bmsr & BMSR_LSTATUS)) {
1665		if (netif_carrier_ok(dev)) {
1666			if (netif_msg_link(np))
1667				printk(KERN_NOTICE "%s: link down.\n",
1668				       dev->name);
1669			netif_carrier_off(dev);
1670			undo_cable_magic(dev);
1671		}
1672		return;
1673	}
1674	if (!netif_carrier_ok(dev)) {
1675		if (netif_msg_link(np))
1676			printk(KERN_NOTICE "%s: link up.\n", dev->name);
1677		netif_carrier_on(dev);
1678		do_cable_magic(dev);
1679	}
1680
1681	duplex = np->full_duplex;
1682	if (!duplex) {
1683		if (bmsr & BMSR_ANEGCOMPLETE) {
1684			int tmp = mii_nway_result(
1685				np->advertising & mdio_read(dev, MII_LPA));
1686			if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1687				duplex = 1;
1688		} else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1689			duplex = 1;
1690	}
1691
1692propagate_state:
1693	/* if duplex is set then bit 28 must be set, too */
1694	if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1695		if (netif_msg_link(np))
1696			printk(KERN_INFO
1697				"%s: Setting %s-duplex based on negotiated "
1698				"link capability.\n", dev->name,
1699				duplex ? "full" : "half");
1700		if (duplex) {
1701			np->rx_config |= RxAcceptTx;
1702			np->tx_config |= TxCarrierIgn | TxHeartIgn;
1703		} else {
1704			np->rx_config &= ~RxAcceptTx;
1705			np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1706		}
1707		writel(np->tx_config, ioaddr + TxConfig);
1708		writel(np->rx_config, ioaddr + RxConfig);
1709	}
1710}
1711
1712static void init_registers(struct net_device *dev)
1713{
1714	struct netdev_private *np = netdev_priv(dev);
1715	void __iomem * ioaddr = ns_ioaddr(dev);
1716
1717	init_phy_fixup(dev);
1718
1719	/* clear any interrupts that are pending, such as wake events */
1720	readl(ioaddr + IntrStatus);
1721
1722	writel(np->ring_dma, ioaddr + RxRingPtr);
1723	writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1724		ioaddr + TxRingPtr);
1725
1726	/* Initialize other registers.
1727	 * Configure the PCI bus bursts and FIFO thresholds.
1728	 * Configure for standard, in-spec Ethernet.
1729	 * Start with half-duplex. check_link will update
1730	 * to the correct settings.
1731	 */
1732
1733	/* DRTH: 2: start tx if 64 bytes are in the fifo
1734	 * FLTH: 0x10: refill with next packet if 512 bytes are free
1735	 * MXDMA: 0: up to 256 byte bursts.
1736	 * 	MXDMA must be <= FLTH
1737	 * ECRETRY=1
1738	 * ATP=1
1739	 */
1740	np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1741				TX_FLTH_VAL | TX_DRTH_VAL_START;
1742	writel(np->tx_config, ioaddr + TxConfig);
1743
1744	/* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1745	 * MXDMA 0: up to 256 byte bursts
1746	 */
1747	np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1748	/* if receive ring now has bigger buffers than normal, enable jumbo */
1749	if (np->rx_buf_sz > NATSEMI_LONGPKT)
1750		np->rx_config |= RxAcceptLong;
1751
1752	writel(np->rx_config, ioaddr + RxConfig);
1753
1754	/* Disable PME:
1755	 * The PME bit is initialized from the EEPROM contents.
1756	 * PCI cards probably have PME disabled, but motherboard
1757	 * implementations may have PME set to enable WakeOnLan.
1758	 * With PME set the chip will scan incoming packets but
1759	 * nothing will be written to memory. */
1760	np->SavedClkRun = readl(ioaddr + ClkRun);
1761	writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1762	if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1763		printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1764			dev->name, readl(ioaddr + WOLCmd));
1765	}
1766
1767	check_link(dev);
1768	__set_rx_mode(dev);
1769
1770	/* Enable interrupts by setting the interrupt mask. */
1771	writel(DEFAULT_INTR, ioaddr + IntrMask);
1772	natsemi_irq_enable(dev);
1773
1774	writel(RxOn | TxOn, ioaddr + ChipCmd);
1775	writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1776}
1777
1778/*
1779 * netdev_timer:
1780 * Purpose:
1781 * 1) check for link changes. Usually they are handled by the MII interrupt
1782 *    but it doesn't hurt to check twice.
1783 * 2) check for sudden death of the NIC:
1784 *    It seems that a reference set for this chip went out with incorrect info,
1785 *    and there exist boards that aren't quite right.  An unexpected voltage
1786 *    drop can cause the PHY to get itself in a weird state (basically reset).
1787 *    NOTE: this only seems to affect revC chips.  The user can disable
1788 *    this check via dspcfg_workaround sysfs option.
1789 * 3) check of death of the RX path due to OOM
1790 */
1791static void netdev_timer(unsigned long data)
1792{
1793	struct net_device *dev = (struct net_device *)data;
1794	struct netdev_private *np = netdev_priv(dev);
1795	void __iomem * ioaddr = ns_ioaddr(dev);
1796	int next_tick = NATSEMI_TIMER_FREQ;
1797
1798	if (netif_msg_timer(np)) {
1799		/* DO NOT read the IntrStatus register,
1800		 * a read clears any pending interrupts.
1801		 */
1802		printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1803			dev->name);
1804	}
1805
1806	if (dev->if_port == PORT_TP) {
1807		u16 dspcfg;
1808
1809		spin_lock_irq(&np->lock);
1810		/* check for a nasty random phy-reset - use dspcfg as a flag */
1811		writew(1, ioaddr+PGSEL);
1812		dspcfg = readw(ioaddr+DSPCFG);
1813		writew(0, ioaddr+PGSEL);
1814		if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1815			if (!netif_queue_stopped(dev)) {
1816				spin_unlock_irq(&np->lock);
1817				if (netif_msg_drv(np))
1818					printk(KERN_NOTICE "%s: possible phy reset: "
1819						"re-initializing\n", dev->name);
1820				disable_irq(dev->irq);
1821				spin_lock_irq(&np->lock);
1822				natsemi_stop_rxtx(dev);
1823				dump_ring(dev);
1824				reinit_ring(dev);
1825				init_registers(dev);
1826				spin_unlock_irq(&np->lock);
1827				enable_irq(dev->irq);
1828			} else {
1829				/* hurry back */
1830				next_tick = HZ;
1831				spin_unlock_irq(&np->lock);
1832			}
1833		} else {
1834			/* init_registers() calls check_link() for the above case */
1835			check_link(dev);
1836			spin_unlock_irq(&np->lock);
1837		}
1838	} else {
1839		spin_lock_irq(&np->lock);
1840		check_link(dev);
1841		spin_unlock_irq(&np->lock);
1842	}
1843	if (np->oom) {
1844		disable_irq(dev->irq);
1845		np->oom = 0;
1846		refill_rx(dev);
1847		enable_irq(dev->irq);
1848		if (!np->oom) {
1849			writel(RxOn, ioaddr + ChipCmd);
1850		} else {
1851			next_tick = 1;
1852		}
1853	}
1854
1855	if (next_tick > 1)
1856		mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1857	else
1858		mod_timer(&np->timer, jiffies + next_tick);
1859}
1860
1861static void dump_ring(struct net_device *dev)
1862{
1863	struct netdev_private *np = netdev_priv(dev);
1864
1865	if (netif_msg_pktdata(np)) {
1866		int i;
1867		printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
1868		for (i = 0; i < TX_RING_SIZE; i++) {
1869			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1870				i, np->tx_ring[i].next_desc,
1871				np->tx_ring[i].cmd_status,
1872				np->tx_ring[i].addr);
1873		}
1874		printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1875		for (i = 0; i < RX_RING_SIZE; i++) {
1876			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1877				i, np->rx_ring[i].next_desc,
1878				np->rx_ring[i].cmd_status,
1879				np->rx_ring[i].addr);
1880		}
1881	}
1882}
1883
1884static void ns_tx_timeout(struct net_device *dev)
1885{
1886	struct netdev_private *np = netdev_priv(dev);
1887	void __iomem * ioaddr = ns_ioaddr(dev);
1888
1889	disable_irq(dev->irq);
1890	spin_lock_irq(&np->lock);
1891	if (!np->hands_off) {
1892		if (netif_msg_tx_err(np))
1893			printk(KERN_WARNING
1894				"%s: Transmit timed out, status %#08x,"
1895				" resetting...\n",
1896				dev->name, readl(ioaddr + IntrStatus));
1897		dump_ring(dev);
1898
1899		natsemi_reset(dev);
1900		reinit_ring(dev);
1901		init_registers(dev);
1902	} else {
1903		printk(KERN_WARNING
1904			"%s: tx_timeout while in hands_off state?\n",
1905			dev->name);
1906	}
1907	spin_unlock_irq(&np->lock);
1908	enable_irq(dev->irq);
1909
1910	dev->trans_start = jiffies; /* prevent tx timeout */
1911	dev->stats.tx_errors++;
1912	netif_wake_queue(dev);
1913}
1914
1915static int alloc_ring(struct net_device *dev)
1916{
1917	struct netdev_private *np = netdev_priv(dev);
1918	np->rx_ring = pci_alloc_consistent(np->pci_dev,
1919		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1920		&np->ring_dma);
1921	if (!np->rx_ring)
1922		return -ENOMEM;
1923	np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1924	return 0;
1925}
1926
1927static void refill_rx(struct net_device *dev)
1928{
1929	struct netdev_private *np = netdev_priv(dev);
1930
1931	/* Refill the Rx ring buffers. */
1932	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1933		struct sk_buff *skb;
1934		int entry = np->dirty_rx % RX_RING_SIZE;
1935		if (np->rx_skbuff[entry] == NULL) {
1936			unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1937			skb = dev_alloc_skb(buflen);
1938			np->rx_skbuff[entry] = skb;
1939			if (skb == NULL)
1940				break; /* Better luck next round. */
1941			skb->dev = dev; /* Mark as being used by this device. */
1942			np->rx_dma[entry] = pci_map_single(np->pci_dev,
1943				skb->data, buflen, PCI_DMA_FROMDEVICE);
1944			np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1945		}
1946		np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1947	}
1948	if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1949		if (netif_msg_rx_err(np))
1950			printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1951		np->oom = 1;
1952	}
1953}
1954
1955static void set_bufsize(struct net_device *dev)
1956{
1957	struct netdev_private *np = netdev_priv(dev);
1958	if (dev->mtu <= ETH_DATA_LEN)
1959		np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1960	else
1961		np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1962}
1963
1964/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1965static void init_ring(struct net_device *dev)
1966{
1967	struct netdev_private *np = netdev_priv(dev);
1968	int i;
1969
1970	/* 1) TX ring */
1971	np->dirty_tx = np->cur_tx = 0;
1972	for (i = 0; i < TX_RING_SIZE; i++) {
1973		np->tx_skbuff[i] = NULL;
1974		np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1975			+sizeof(struct netdev_desc)
1976			*((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1977		np->tx_ring[i].cmd_status = 0;
1978	}
1979
1980	/* 2) RX ring */
1981	np->dirty_rx = 0;
1982	np->cur_rx = RX_RING_SIZE;
1983	np->oom = 0;
1984	set_bufsize(dev);
1985
1986	np->rx_head_desc = &np->rx_ring[0];
1987
1988	/* Please be careful before changing this loop - at least gcc-2.95.1
1989	 * miscompiles it otherwise.
1990	 */
1991	/* Initialize all Rx descriptors. */
1992	for (i = 0; i < RX_RING_SIZE; i++) {
1993		np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1994				+sizeof(struct netdev_desc)
1995				*((i+1)%RX_RING_SIZE));
1996		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1997		np->rx_skbuff[i] = NULL;
1998	}
1999	refill_rx(dev);
2000	dump_ring(dev);
2001}
2002
2003static void drain_tx(struct net_device *dev)
2004{
2005	struct netdev_private *np = netdev_priv(dev);
2006	int i;
2007
2008	for (i = 0; i < TX_RING_SIZE; i++) {
2009		if (np->tx_skbuff[i]) {
2010			pci_unmap_single(np->pci_dev,
2011				np->tx_dma[i], np->tx_skbuff[i]->len,
2012				PCI_DMA_TODEVICE);
2013			dev_kfree_skb(np->tx_skbuff[i]);
2014			dev->stats.tx_dropped++;
2015		}
2016		np->tx_skbuff[i] = NULL;
2017	}
2018}
2019
2020static void drain_rx(struct net_device *dev)
2021{
2022	struct netdev_private *np = netdev_priv(dev);
2023	unsigned int buflen = np->rx_buf_sz;
2024	int i;
2025
2026	/* Free all the skbuffs in the Rx queue. */
2027	for (i = 0; i < RX_RING_SIZE; i++) {
2028		np->rx_ring[i].cmd_status = 0;
2029		np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2030		if (np->rx_skbuff[i]) {
2031			pci_unmap_single(np->pci_dev, np->rx_dma[i],
2032				buflen + NATSEMI_PADDING,
2033				PCI_DMA_FROMDEVICE);
2034			dev_kfree_skb(np->rx_skbuff[i]);
2035		}
2036		np->rx_skbuff[i] = NULL;
2037	}
2038}
2039
2040static void drain_ring(struct net_device *dev)
2041{
2042	drain_rx(dev);
2043	drain_tx(dev);
2044}
2045
2046static void free_ring(struct net_device *dev)
2047{
2048	struct netdev_private *np = netdev_priv(dev);
2049	pci_free_consistent(np->pci_dev,
2050		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2051		np->rx_ring, np->ring_dma);
2052}
2053
2054static void reinit_rx(struct net_device *dev)
2055{
2056	struct netdev_private *np = netdev_priv(dev);
2057	int i;
2058
2059	/* RX Ring */
2060	np->dirty_rx = 0;
2061	np->cur_rx = RX_RING_SIZE;
2062	np->rx_head_desc = &np->rx_ring[0];
2063	/* Initialize all Rx descriptors. */
2064	for (i = 0; i < RX_RING_SIZE; i++)
2065		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2066
2067	refill_rx(dev);
2068}
2069
2070static void reinit_ring(struct net_device *dev)
2071{
2072	struct netdev_private *np = netdev_priv(dev);
2073	int i;
2074
2075	/* drain TX ring */
2076	drain_tx(dev);
2077	np->dirty_tx = np->cur_tx = 0;
2078	for (i=0;i<TX_RING_SIZE;i++)
2079		np->tx_ring[i].cmd_status = 0;
2080
2081	reinit_rx(dev);
2082}
2083
2084static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2085{
2086	struct netdev_private *np = netdev_priv(dev);
2087	void __iomem * ioaddr = ns_ioaddr(dev);
2088	unsigned entry;
2089	unsigned long flags;
2090
2091	/* Note: Ordering is important here, set the field with the
2092	   "ownership" bit last, and only then increment cur_tx. */
2093
2094	/* Calculate the next Tx descriptor entry. */
2095	entry = np->cur_tx % TX_RING_SIZE;
2096
2097	np->tx_skbuff[entry] = skb;
2098	np->tx_dma[entry] = pci_map_single(np->pci_dev,
2099				skb->data,skb->len, PCI_DMA_TODEVICE);
2100
2101	np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2102
2103	spin_lock_irqsave(&np->lock, flags);
2104
2105	if (!np->hands_off) {
2106		np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2107		/* StrongARM: Explicitly cache flush np->tx_ring and
2108		 * skb->data,skb->len. */
2109		wmb();
2110		np->cur_tx++;
2111		if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2112			netdev_tx_done(dev);
2113			if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2114				netif_stop_queue(dev);
2115		}
2116		/* Wake the potentially-idle transmit channel. */
2117		writel(TxOn, ioaddr + ChipCmd);
2118	} else {
2119		dev_kfree_skb_irq(skb);
2120		dev->stats.tx_dropped++;
2121	}
2122	spin_unlock_irqrestore(&np->lock, flags);
2123
2124	if (netif_msg_tx_queued(np)) {
2125		printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2126			dev->name, np->cur_tx, entry);
2127	}
2128	return NETDEV_TX_OK;
2129}
2130
2131static void netdev_tx_done(struct net_device *dev)
2132{
2133	struct netdev_private *np = netdev_priv(dev);
2134
2135	for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2136		int entry = np->dirty_tx % TX_RING_SIZE;
2137		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2138			break;
2139		if (netif_msg_tx_done(np))
2140			printk(KERN_DEBUG
2141				"%s: tx frame #%d finished, status %#08x.\n",
2142					dev->name, np->dirty_tx,
2143					le32_to_cpu(np->tx_ring[entry].cmd_status));
2144		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2145			dev->stats.tx_packets++;
2146			dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
2147		} else { /* Various Tx errors */
2148			int tx_status =
2149				le32_to_cpu(np->tx_ring[entry].cmd_status);
2150			if (tx_status & (DescTxAbort|DescTxExcColl))
2151				dev->stats.tx_aborted_errors++;
2152			if (tx_status & DescTxFIFO)
2153				dev->stats.tx_fifo_errors++;
2154			if (tx_status & DescTxCarrier)
2155				dev->stats.tx_carrier_errors++;
2156			if (tx_status & DescTxOOWCol)
2157				dev->stats.tx_window_errors++;
2158			dev->stats.tx_errors++;
2159		}
2160		pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2161					np->tx_skbuff[entry]->len,
2162					PCI_DMA_TODEVICE);
2163		/* Free the original skb. */
2164		dev_kfree_skb_irq(np->tx_skbuff[entry]);
2165		np->tx_skbuff[entry] = NULL;
2166	}
2167	if (netif_queue_stopped(dev) &&
2168	    np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2169		/* The ring is no longer full, wake queue. */
2170		netif_wake_queue(dev);
2171	}
2172}
2173
2174/* The interrupt handler doesn't actually handle interrupts itself, it
2175 * schedules a NAPI poll if there is anything to do. */
2176static irqreturn_t intr_handler(int irq, void *dev_instance)
2177{
2178	struct net_device *dev = dev_instance;
2179	struct netdev_private *np = netdev_priv(dev);
2180	void __iomem * ioaddr = ns_ioaddr(dev);
2181
2182	/* Reading IntrStatus automatically acknowledges so don't do
2183	 * that while interrupts are disabled, (for example, while a
2184	 * poll is scheduled).  */
2185	if (np->hands_off || !readl(ioaddr + IntrEnable))
2186		return IRQ_NONE;
2187
2188	np->intr_status = readl(ioaddr + IntrStatus);
2189
2190	if (!np->intr_status)
2191		return IRQ_NONE;
2192
2193	if (netif_msg_intr(np))
2194		printk(KERN_DEBUG
2195		       "%s: Interrupt, status %#08x, mask %#08x.\n",
2196		       dev->name, np->intr_status,
2197		       readl(ioaddr + IntrMask));
2198
2199	prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2200
2201	if (napi_schedule_prep(&np->napi)) {
2202		/* Disable interrupts and register for poll */
2203		natsemi_irq_disable(dev);
2204		__napi_schedule(&np->napi);
2205	} else
2206		printk(KERN_WARNING
2207	       	       "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2208		       dev->name, np->intr_status,
2209		       readl(ioaddr + IntrMask));
2210
2211	return IRQ_HANDLED;
2212}
2213
2214/* This is the NAPI poll routine.  As well as the standard RX handling
2215 * it also handles all other interrupts that the chip might raise.
2216 */
2217static int natsemi_poll(struct napi_struct *napi, int budget)
2218{
2219	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2220	struct net_device *dev = np->dev;
2221	void __iomem * ioaddr = ns_ioaddr(dev);
2222	int work_done = 0;
2223
2224	do {
2225		if (netif_msg_intr(np))
2226			printk(KERN_DEBUG
2227			       "%s: Poll, status %#08x, mask %#08x.\n",
2228			       dev->name, np->intr_status,
2229			       readl(ioaddr + IntrMask));
2230
2231		/* netdev_rx() may read IntrStatus again if the RX state
2232		 * machine falls over so do it first. */
2233		if (np->intr_status &
2234		    (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2235		     IntrRxErr | IntrRxOverrun)) {
2236			netdev_rx(dev, &work_done, budget);
2237		}
2238
2239		if (np->intr_status &
2240		    (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2241			spin_lock(&np->lock);
2242			netdev_tx_done(dev);
2243			spin_unlock(&np->lock);
2244		}
2245
2246		/* Abnormal error summary/uncommon events handlers. */
2247		if (np->intr_status & IntrAbnormalSummary)
2248			netdev_error(dev, np->intr_status);
2249
2250		if (work_done >= budget)
2251			return work_done;
2252
2253		np->intr_status = readl(ioaddr + IntrStatus);
2254	} while (np->intr_status);
2255
2256	napi_complete(napi);
2257
2258	/* Reenable interrupts providing nothing is trying to shut
2259	 * the chip down. */
2260	spin_lock(&np->lock);
2261	if (!np->hands_off)
2262		natsemi_irq_enable(dev);
2263	spin_unlock(&np->lock);
2264
2265	return work_done;
2266}
2267
2268/* This routine is logically part of the interrupt handler, but separated
2269   for clarity and better register allocation. */
2270static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2271{
2272	struct netdev_private *np = netdev_priv(dev);
2273	int entry = np->cur_rx % RX_RING_SIZE;
2274	int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2275	s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2276	unsigned int buflen = np->rx_buf_sz;
2277	void __iomem * ioaddr = ns_ioaddr(dev);
2278
2279	/* If the driver owns the next entry it's a new packet. Send it up. */
2280	while (desc_status < 0) { /* e.g. & DescOwn */
2281		int pkt_len;
2282		if (netif_msg_rx_status(np))
2283			printk(KERN_DEBUG
2284				"  netdev_rx() entry %d status was %#08x.\n",
2285				entry, desc_status);
2286		if (--boguscnt < 0)
2287			break;
2288
2289		if (*work_done >= work_to_do)
2290			break;
2291
2292		(*work_done)++;
2293
2294		pkt_len = (desc_status & DescSizeMask) - 4;
2295		if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2296			if (desc_status & DescMore) {
2297				unsigned long flags;
2298
2299				if (netif_msg_rx_err(np))
2300					printk(KERN_WARNING
2301						"%s: Oversized(?) Ethernet "
2302						"frame spanned multiple "
2303						"buffers, entry %#08x "
2304						"status %#08x.\n", dev->name,
2305						np->cur_rx, desc_status);
2306				dev->stats.rx_length_errors++;
2307
2308				/* The RX state machine has probably
2309				 * locked up beneath us.  Follow the
2310				 * reset procedure documented in
2311				 * AN-1287. */
2312
2313				spin_lock_irqsave(&np->lock, flags);
2314				reset_rx(dev);
2315				reinit_rx(dev);
2316				writel(np->ring_dma, ioaddr + RxRingPtr);
2317				check_link(dev);
2318				spin_unlock_irqrestore(&np->lock, flags);
2319
2320				/* We'll enable RX on exit from this
2321				 * function. */
2322				break;
2323
2324			} else {
2325				/* There was an error. */
2326				dev->stats.rx_errors++;
2327				if (desc_status & (DescRxAbort|DescRxOver))
2328					dev->stats.rx_over_errors++;
2329				if (desc_status & (DescRxLong|DescRxRunt))
2330					dev->stats.rx_length_errors++;
2331				if (desc_status & (DescRxInvalid|DescRxAlign))
2332					dev->stats.rx_frame_errors++;
2333				if (desc_status & DescRxCRC)
2334					dev->stats.rx_crc_errors++;
2335			}
2336		} else if (pkt_len > np->rx_buf_sz) {
2337			/* if this is the tail of a double buffer
2338			 * packet, we've already counted the error
2339			 * on the first part.  Ignore the second half.
2340			 */
2341		} else {
2342			struct sk_buff *skb;
2343			/* Omit CRC size. */
2344			/* Check if the packet is long enough to accept
2345			 * without copying to a minimally-sized skbuff. */
2346			if (pkt_len < rx_copybreak &&
2347			    (skb = dev_alloc_skb(pkt_len + RX_OFFSET)) != NULL) {
2348				/* 16 byte align the IP header */
2349				skb_reserve(skb, RX_OFFSET);
2350				pci_dma_sync_single_for_cpu(np->pci_dev,
2351					np->rx_dma[entry],
2352					buflen,
2353					PCI_DMA_FROMDEVICE);
2354				skb_copy_to_linear_data(skb,
2355					np->rx_skbuff[entry]->data, pkt_len);
2356				skb_put(skb, pkt_len);
2357				pci_dma_sync_single_for_device(np->pci_dev,
2358					np->rx_dma[entry],
2359					buflen,
2360					PCI_DMA_FROMDEVICE);
2361			} else {
2362				pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2363						 buflen + NATSEMI_PADDING,
2364						 PCI_DMA_FROMDEVICE);
2365				skb_put(skb = np->rx_skbuff[entry], pkt_len);
2366				np->rx_skbuff[entry] = NULL;
2367			}
2368			skb->protocol = eth_type_trans(skb, dev);
2369			netif_receive_skb(skb);
2370			dev->stats.rx_packets++;
2371			dev->stats.rx_bytes += pkt_len;
2372		}
2373		entry = (++np->cur_rx) % RX_RING_SIZE;
2374		np->rx_head_desc = &np->rx_ring[entry];
2375		desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2376	}
2377	refill_rx(dev);
2378
2379	/* Restart Rx engine if stopped. */
2380	if (np->oom)
2381		mod_timer(&np->timer, jiffies + 1);
2382	else
2383		writel(RxOn, ioaddr + ChipCmd);
2384}
2385
2386static void netdev_error(struct net_device *dev, int intr_status)
2387{
2388	struct netdev_private *np = netdev_priv(dev);
2389	void __iomem * ioaddr = ns_ioaddr(dev);
2390
2391	spin_lock(&np->lock);
2392	if (intr_status & LinkChange) {
2393		u16 lpa = mdio_read(dev, MII_LPA);
2394		if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2395		    netif_msg_link(np)) {
2396			printk(KERN_INFO
2397				"%s: Autonegotiation advertising"
2398				" %#04x  partner %#04x.\n", dev->name,
2399				np->advertising, lpa);
2400		}
2401
2402		/* read MII int status to clear the flag */
2403		readw(ioaddr + MIntrStatus);
2404		check_link(dev);
2405	}
2406	if (intr_status & StatsMax) {
2407		__get_stats(dev);
2408	}
2409	if (intr_status & IntrTxUnderrun) {
2410		if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2411			np->tx_config += TX_DRTH_VAL_INC;
2412			if (netif_msg_tx_err(np))
2413				printk(KERN_NOTICE
2414					"%s: increased tx threshold, txcfg %#08x.\n",
2415					dev->name, np->tx_config);
2416		} else {
2417			if (netif_msg_tx_err(np))
2418				printk(KERN_NOTICE
2419					"%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2420					dev->name, np->tx_config);
2421		}
2422		writel(np->tx_config, ioaddr + TxConfig);
2423	}
2424	if (intr_status & WOLPkt && netif_msg_wol(np)) {
2425		int wol_status = readl(ioaddr + WOLCmd);
2426		printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2427			dev->name, wol_status);
2428	}
2429	if (intr_status & RxStatusFIFOOver) {
2430		if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2431			printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2432				dev->name);
2433		}
2434		dev->stats.rx_fifo_errors++;
2435		dev->stats.rx_errors++;
2436	}
2437	/* Hmmmmm, it's not clear how to recover from PCI faults. */
2438	if (intr_status & IntrPCIErr) {
2439		printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2440			intr_status & IntrPCIErr);
2441		dev->stats.tx_fifo_errors++;
2442		dev->stats.tx_errors++;
2443		dev->stats.rx_fifo_errors++;
2444		dev->stats.rx_errors++;
2445	}
2446	spin_unlock(&np->lock);
2447}
2448
2449static void __get_stats(struct net_device *dev)
2450{
2451	void __iomem * ioaddr = ns_ioaddr(dev);
2452
2453	/* The chip only need report frame silently dropped. */
2454	dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2455	dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2456}
2457
2458static struct net_device_stats *get_stats(struct net_device *dev)
2459{
2460	struct netdev_private *np = netdev_priv(dev);
2461
2462	/* The chip only need report frame silently dropped. */
2463	spin_lock_irq(&np->lock);
2464	if (netif_running(dev) && !np->hands_off)
2465		__get_stats(dev);
2466	spin_unlock_irq(&np->lock);
2467
2468	return &dev->stats;
2469}
2470
2471#ifdef CONFIG_NET_POLL_CONTROLLER
2472static void natsemi_poll_controller(struct net_device *dev)
2473{
2474	disable_irq(dev->irq);
2475	intr_handler(dev->irq, dev);
2476	enable_irq(dev->irq);
2477}
2478#endif
2479
2480#define HASH_TABLE	0x200
2481static void __set_rx_mode(struct net_device *dev)
2482{
2483	void __iomem * ioaddr = ns_ioaddr(dev);
2484	struct netdev_private *np = netdev_priv(dev);
2485	u8 mc_filter[64]; /* Multicast hash filter */
2486	u32 rx_mode;
2487
2488	if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2489		rx_mode = RxFilterEnable | AcceptBroadcast
2490			| AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2491	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2492		   (dev->flags & IFF_ALLMULTI)) {
2493		rx_mode = RxFilterEnable | AcceptBroadcast
2494			| AcceptAllMulticast | AcceptMyPhys;
2495	} else {
2496		struct netdev_hw_addr *ha;
2497		int i;
2498
2499		memset(mc_filter, 0, sizeof(mc_filter));
2500		netdev_for_each_mc_addr(ha, dev) {
2501			int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
2502			mc_filter[b/8] |= (1 << (b & 0x07));
2503		}
2504		rx_mode = RxFilterEnable | AcceptBroadcast
2505			| AcceptMulticast | AcceptMyPhys;
2506		for (i = 0; i < 64; i += 2) {
2507			writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2508			writel((mc_filter[i + 1] << 8) + mc_filter[i],
2509			       ioaddr + RxFilterData);
2510		}
2511	}
2512	writel(rx_mode, ioaddr + RxFilterAddr);
2513	np->cur_rx_mode = rx_mode;
2514}
2515
2516static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2517{
2518	if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2519		return -EINVAL;
2520
2521	dev->mtu = new_mtu;
2522
2523	/* synchronized against open : rtnl_lock() held by caller */
2524	if (netif_running(dev)) {
2525		struct netdev_private *np = netdev_priv(dev);
2526		void __iomem * ioaddr = ns_ioaddr(dev);
2527
2528		disable_irq(dev->irq);
2529		spin_lock(&np->lock);
2530		/* stop engines */
2531		natsemi_stop_rxtx(dev);
2532		/* drain rx queue */
2533		drain_rx(dev);
2534		/* change buffers */
2535		set_bufsize(dev);
2536		reinit_rx(dev);
2537		writel(np->ring_dma, ioaddr + RxRingPtr);
2538		/* restart engines */
2539		writel(RxOn | TxOn, ioaddr + ChipCmd);
2540		spin_unlock(&np->lock);
2541		enable_irq(dev->irq);
2542	}
2543	return 0;
2544}
2545
2546static void set_rx_mode(struct net_device *dev)
2547{
2548	struct netdev_private *np = netdev_priv(dev);
2549	spin_lock_irq(&np->lock);
2550	if (!np->hands_off)
2551		__set_rx_mode(dev);
2552	spin_unlock_irq(&np->lock);
2553}
2554
2555static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2556{
2557	struct netdev_private *np = netdev_priv(dev);
2558	strncpy(info->driver, DRV_NAME, ETHTOOL_BUSINFO_LEN);
2559	strncpy(info->version, DRV_VERSION, ETHTOOL_BUSINFO_LEN);
2560	strncpy(info->bus_info, pci_name(np->pci_dev), ETHTOOL_BUSINFO_LEN);
2561}
2562
2563static int get_regs_len(struct net_device *dev)
2564{
2565	return NATSEMI_REGS_SIZE;
2566}
2567
2568static int get_eeprom_len(struct net_device *dev)
2569{
2570	struct netdev_private *np = netdev_priv(dev);
2571	return np->eeprom_size;
2572}
2573
2574static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2575{
2576	struct netdev_private *np = netdev_priv(dev);
2577	spin_lock_irq(&np->lock);
2578	netdev_get_ecmd(dev, ecmd);
2579	spin_unlock_irq(&np->lock);
2580	return 0;
2581}
2582
2583static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2584{
2585	struct netdev_private *np = netdev_priv(dev);
2586	int res;
2587	spin_lock_irq(&np->lock);
2588	res = netdev_set_ecmd(dev, ecmd);
2589	spin_unlock_irq(&np->lock);
2590	return res;
2591}
2592
2593static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2594{
2595	struct netdev_private *np = netdev_priv(dev);
2596	spin_lock_irq(&np->lock);
2597	netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2598	netdev_get_sopass(dev, wol->sopass);
2599	spin_unlock_irq(&np->lock);
2600}
2601
2602static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2603{
2604	struct netdev_private *np = netdev_priv(dev);
2605	int res;
2606	spin_lock_irq(&np->lock);
2607	netdev_set_wol(dev, wol->wolopts);
2608	res = netdev_set_sopass(dev, wol->sopass);
2609	spin_unlock_irq(&np->lock);
2610	return res;
2611}
2612
2613static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2614{
2615	struct netdev_private *np = netdev_priv(dev);
2616	regs->version = NATSEMI_REGS_VER;
2617	spin_lock_irq(&np->lock);
2618	netdev_get_regs(dev, buf);
2619	spin_unlock_irq(&np->lock);
2620}
2621
2622static u32 get_msglevel(struct net_device *dev)
2623{
2624	struct netdev_private *np = netdev_priv(dev);
2625	return np->msg_enable;
2626}
2627
2628static void set_msglevel(struct net_device *dev, u32 val)
2629{
2630	struct netdev_private *np = netdev_priv(dev);
2631	np->msg_enable = val;
2632}
2633
2634static int nway_reset(struct net_device *dev)
2635{
2636	int tmp;
2637	int r = -EINVAL;
2638	/* if autoneg is off, it's an error */
2639	tmp = mdio_read(dev, MII_BMCR);
2640	if (tmp & BMCR_ANENABLE) {
2641		tmp |= (BMCR_ANRESTART);
2642		mdio_write(dev, MII_BMCR, tmp);
2643		r = 0;
2644	}
2645	return r;
2646}
2647
2648static u32 get_link(struct net_device *dev)
2649{
2650	/* LSTATUS is latched low until a read - so read twice */
2651	mdio_read(dev, MII_BMSR);
2652	return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2653}
2654
2655static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2656{
2657	struct netdev_private *np = netdev_priv(dev);
2658	u8 *eebuf;
2659	int res;
2660
2661	eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2662	if (!eebuf)
2663		return -ENOMEM;
2664
2665	eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2666	spin_lock_irq(&np->lock);
2667	res = netdev_get_eeprom(dev, eebuf);
2668	spin_unlock_irq(&np->lock);
2669	if (!res)
2670		memcpy(data, eebuf+eeprom->offset, eeprom->len);
2671	kfree(eebuf);
2672	return res;
2673}
2674
2675static const struct ethtool_ops ethtool_ops = {
2676	.get_drvinfo = get_drvinfo,
2677	.get_regs_len = get_regs_len,
2678	.get_eeprom_len = get_eeprom_len,
2679	.get_settings = get_settings,
2680	.set_settings = set_settings,
2681	.get_wol = get_wol,
2682	.set_wol = set_wol,
2683	.get_regs = get_regs,
2684	.get_msglevel = get_msglevel,
2685	.set_msglevel = set_msglevel,
2686	.nway_reset = nway_reset,
2687	.get_link = get_link,
2688	.get_eeprom = get_eeprom,
2689};
2690
2691static int netdev_set_wol(struct net_device *dev, u32 newval)
2692{
2693	struct netdev_private *np = netdev_priv(dev);
2694	void __iomem * ioaddr = ns_ioaddr(dev);
2695	u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2696
2697	/* translate to bitmasks this chip understands */
2698	if (newval & WAKE_PHY)
2699		data |= WakePhy;
2700	if (newval & WAKE_UCAST)
2701		data |= WakeUnicast;
2702	if (newval & WAKE_MCAST)
2703		data |= WakeMulticast;
2704	if (newval & WAKE_BCAST)
2705		data |= WakeBroadcast;
2706	if (newval & WAKE_ARP)
2707		data |= WakeArp;
2708	if (newval & WAKE_MAGIC)
2709		data |= WakeMagic;
2710	if (np->srr >= SRR_DP83815_D) {
2711		if (newval & WAKE_MAGICSECURE) {
2712			data |= WakeMagicSecure;
2713		}
2714	}
2715
2716	writel(data, ioaddr + WOLCmd);
2717
2718	return 0;
2719}
2720
2721static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2722{
2723	struct netdev_private *np = netdev_priv(dev);
2724	void __iomem * ioaddr = ns_ioaddr(dev);
2725	u32 regval = readl(ioaddr + WOLCmd);
2726
2727	*supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2728			| WAKE_ARP | WAKE_MAGIC);
2729
2730	if (np->srr >= SRR_DP83815_D) {
2731		/* SOPASS works on revD and higher */
2732		*supported |= WAKE_MAGICSECURE;
2733	}
2734	*cur = 0;
2735
2736	/* translate from chip bitmasks */
2737	if (regval & WakePhy)
2738		*cur |= WAKE_PHY;
2739	if (regval & WakeUnicast)
2740		*cur |= WAKE_UCAST;
2741	if (regval & WakeMulticast)
2742		*cur |= WAKE_MCAST;
2743	if (regval & WakeBroadcast)
2744		*cur |= WAKE_BCAST;
2745	if (regval & WakeArp)
2746		*cur |= WAKE_ARP;
2747	if (regval & WakeMagic)
2748		*cur |= WAKE_MAGIC;
2749	if (regval & WakeMagicSecure) {
2750		/* this can be on in revC, but it's broken */
2751		*cur |= WAKE_MAGICSECURE;
2752	}
2753
2754	return 0;
2755}
2756
2757static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2758{
2759	struct netdev_private *np = netdev_priv(dev);
2760	void __iomem * ioaddr = ns_ioaddr(dev);
2761	u16 *sval = (u16 *)newval;
2762	u32 addr;
2763
2764	if (np->srr < SRR_DP83815_D) {
2765		return 0;
2766	}
2767
2768	/* enable writing to these registers by disabling the RX filter */
2769	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2770	addr &= ~RxFilterEnable;
2771	writel(addr, ioaddr + RxFilterAddr);
2772
2773	/* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2774	writel(addr | 0xa, ioaddr + RxFilterAddr);
2775	writew(sval[0], ioaddr + RxFilterData);
2776
2777	writel(addr | 0xc, ioaddr + RxFilterAddr);
2778	writew(sval[1], ioaddr + RxFilterData);
2779
2780	writel(addr | 0xe, ioaddr + RxFilterAddr);
2781	writew(sval[2], ioaddr + RxFilterData);
2782
2783	/* re-enable the RX filter */
2784	writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2785
2786	return 0;
2787}
2788
2789static int netdev_get_sopass(struct net_device *dev, u8 *data)
2790{
2791	struct netdev_private *np = netdev_priv(dev);
2792	void __iomem * ioaddr = ns_ioaddr(dev);
2793	u16 *sval = (u16 *)data;
2794	u32 addr;
2795
2796	if (np->srr < SRR_DP83815_D) {
2797		sval[0] = sval[1] = sval[2] = 0;
2798		return 0;
2799	}
2800
2801	/* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2802	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2803
2804	writel(addr | 0xa, ioaddr + RxFilterAddr);
2805	sval[0] = readw(ioaddr + RxFilterData);
2806
2807	writel(addr | 0xc, ioaddr + RxFilterAddr);
2808	sval[1] = readw(ioaddr + RxFilterData);
2809
2810	writel(addr | 0xe, ioaddr + RxFilterAddr);
2811	sval[2] = readw(ioaddr + RxFilterData);
2812
2813	writel(addr, ioaddr + RxFilterAddr);
2814
2815	return 0;
2816}
2817
2818static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2819{
2820	struct netdev_private *np = netdev_priv(dev);
2821	u32 tmp;
2822
2823	ecmd->port        = dev->if_port;
2824	ethtool_cmd_speed_set(ecmd, np->speed);
2825	ecmd->duplex      = np->duplex;
2826	ecmd->autoneg     = np->autoneg;
2827	ecmd->advertising = 0;
2828	if (np->advertising & ADVERTISE_10HALF)
2829		ecmd->advertising |= ADVERTISED_10baseT_Half;
2830	if (np->advertising & ADVERTISE_10FULL)
2831		ecmd->advertising |= ADVERTISED_10baseT_Full;
2832	if (np->advertising & ADVERTISE_100HALF)
2833		ecmd->advertising |= ADVERTISED_100baseT_Half;
2834	if (np->advertising & ADVERTISE_100FULL)
2835		ecmd->advertising |= ADVERTISED_100baseT_Full;
2836	ecmd->supported   = (SUPPORTED_Autoneg |
2837		SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
2838		SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2839		SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2840	ecmd->phy_address = np->phy_addr_external;
2841	/*
2842	 * We intentionally report the phy address of the external
2843	 * phy, even if the internal phy is used. This is necessary
2844	 * to work around a deficiency of the ethtool interface:
2845	 * It's only possible to query the settings of the active
2846	 * port. Therefore
2847	 * # ethtool -s ethX port mii
2848	 * actually sends an ioctl to switch to port mii with the
2849	 * settings that are used for the current active port.
2850	 * If we would report a different phy address in this
2851	 * command, then
2852	 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2853	 * would unintentionally change the phy address.
2854	 *
2855	 * Fortunately the phy address doesn't matter with the
2856	 * internal phy...
2857	 */
2858
2859	/* set information based on active port type */
2860	switch (ecmd->port) {
2861	default:
2862	case PORT_TP:
2863		ecmd->advertising |= ADVERTISED_TP;
2864		ecmd->transceiver = XCVR_INTERNAL;
2865		break;
2866	case PORT_MII:
2867		ecmd->advertising |= ADVERTISED_MII;
2868		ecmd->transceiver = XCVR_EXTERNAL;
2869		break;
2870	case PORT_FIBRE:
2871		ecmd->advertising |= ADVERTISED_FIBRE;
2872		ecmd->transceiver = XCVR_EXTERNAL;
2873		break;
2874	}
2875
2876	/* if autonegotiation is on, try to return the active speed/duplex */
2877	if (ecmd->autoneg == AUTONEG_ENABLE) {
2878		ecmd->advertising |= ADVERTISED_Autoneg;
2879		tmp = mii_nway_result(
2880			np->advertising & mdio_read(dev, MII_LPA));
2881		if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2882			ethtool_cmd_speed_set(ecmd, SPEED_100);
2883		else
2884			ethtool_cmd_speed_set(ecmd, SPEED_10);
2885		if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2886			ecmd->duplex = DUPLEX_FULL;
2887		else
2888			ecmd->duplex = DUPLEX_HALF;
2889	}
2890
2891	/* ignore maxtxpkt, maxrxpkt for now */
2892
2893	return 0;
2894}
2895
2896static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2897{
2898	struct netdev_private *np = netdev_priv(dev);
2899
2900	if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2901		return -EINVAL;
2902	if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2903		return -EINVAL;
2904	if (ecmd->autoneg == AUTONEG_ENABLE) {
2905		if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2906					  ADVERTISED_10baseT_Full |
2907					  ADVERTISED_100baseT_Half |
2908					  ADVERTISED_100baseT_Full)) == 0) {
2909			return -EINVAL;
2910		}
2911	} else if (ecmd->autoneg == AUTONEG_DISABLE) {
2912		u32 speed = ethtool_cmd_speed(ecmd);
2913		if (speed != SPEED_10 && speed != SPEED_100)
2914			return -EINVAL;
2915		if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2916			return -EINVAL;
2917	} else {
2918		return -EINVAL;
2919	}
2920
2921	/*
2922	 * If we're ignoring the PHY then autoneg and the internal
2923	 * transceiver are really not going to work so don't let the
2924	 * user select them.
2925	 */
2926	if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
2927			       ecmd->port == PORT_TP))
2928		return -EINVAL;
2929
2930	/*
2931	 * maxtxpkt, maxrxpkt: ignored for now.
2932	 *
2933	 * transceiver:
2934	 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2935	 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2936	 * selects based on ecmd->port.
2937	 *
2938	 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2939	 * phys that are connected to the mii bus. It's used to apply fibre
2940	 * specific updates.
2941	 */
2942
2943	/* WHEW! now lets bang some bits */
2944
2945	/* save the parms */
2946	dev->if_port          = ecmd->port;
2947	np->autoneg           = ecmd->autoneg;
2948	np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2949	if (np->autoneg == AUTONEG_ENABLE) {
2950		/* advertise only what has been requested */
2951		np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2952		if (ecmd->advertising & ADVERTISED_10baseT_Half)
2953			np->advertising |= ADVERTISE_10HALF;
2954		if (ecmd->advertising & ADVERTISED_10baseT_Full)
2955			np->advertising |= ADVERTISE_10FULL;
2956		if (ecmd->advertising & ADVERTISED_100baseT_Half)
2957			np->advertising |= ADVERTISE_100HALF;
2958		if (ecmd->advertising & ADVERTISED_100baseT_Full)
2959			np->advertising |= ADVERTISE_100FULL;
2960	} else {
2961		np->speed  = ethtool_cmd_speed(ecmd);
2962		np->duplex = ecmd->duplex;
2963		/* user overriding the initial full duplex parm? */
2964		if (np->duplex == DUPLEX_HALF)
2965			np->full_duplex = 0;
2966	}
2967
2968	/* get the right phy enabled */
2969	if (ecmd->port == PORT_TP)
2970		switch_port_internal(dev);
2971	else
2972		switch_port_external(dev);
2973
2974	/* set parms and see how this affected our link status */
2975	init_phy_fixup(dev);
2976	check_link(dev);
2977	return 0;
2978}
2979
2980static int netdev_get_regs(struct net_device *dev, u8 *buf)
2981{
2982	int i;
2983	int j;
2984	u32 rfcr;
2985	u32 *rbuf = (u32 *)buf;
2986	void __iomem * ioaddr = ns_ioaddr(dev);
2987
2988	/* read non-mii page 0 of registers */
2989	for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2990		rbuf[i] = readl(ioaddr + i*4);
2991	}
2992
2993	/* read current mii registers */
2994	for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2995		rbuf[i] = mdio_read(dev, i & 0x1f);
2996
2997	/* read only the 'magic' registers from page 1 */
2998	writew(1, ioaddr + PGSEL);
2999	rbuf[i++] = readw(ioaddr + PMDCSR);
3000	rbuf[i++] = readw(ioaddr + TSTDAT);
3001	rbuf[i++] = readw(ioaddr + DSPCFG);
3002	rbuf[i++] = readw(ioaddr + SDCFG);
3003	writew(0, ioaddr + PGSEL);
3004
3005	/* read RFCR indexed registers */
3006	rfcr = readl(ioaddr + RxFilterAddr);
3007	for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3008		writel(j*2, ioaddr + RxFilterAddr);
3009		rbuf[i++] = readw(ioaddr + RxFilterData);
3010	}
3011	writel(rfcr, ioaddr + RxFilterAddr);
3012
3013	/* the interrupt status is clear-on-read - see if we missed any */
3014	if (rbuf[4] & rbuf[5]) {
3015		printk(KERN_WARNING
3016			"%s: shoot, we dropped an interrupt (%#08x)\n",
3017			dev->name, rbuf[4] & rbuf[5]);
3018	}
3019
3020	return 0;
3021}
3022
3023#define SWAP_BITS(x)	( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3024			| (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
3025			| (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
3026			| (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
3027			| (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
3028			| (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
3029			| (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
3030			| (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3031
3032static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3033{
3034	int i;
3035	u16 *ebuf = (u16 *)buf;
3036	void __iomem * ioaddr = ns_ioaddr(dev);
3037	struct netdev_private *np = netdev_priv(dev);
3038
3039	/* eeprom_read reads 16 bits, and indexes by 16 bits */
3040	for (i = 0; i < np->eeprom_size/2; i++) {
3041		ebuf[i] = eeprom_read(ioaddr, i);
3042		/* The EEPROM itself stores data bit-swapped, but eeprom_read
3043		 * reads it back "sanely". So we swap it back here in order to
3044		 * present it to userland as it is stored. */
3045		ebuf[i] = SWAP_BITS(ebuf[i]);
3046	}
3047	return 0;
3048}
3049
3050static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3051{
3052	struct mii_ioctl_data *data = if_mii(rq);
3053	struct netdev_private *np = netdev_priv(dev);
3054
3055	switch(cmd) {
3056	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
3057		data->phy_id = np->phy_addr_external;
3058		/* Fall Through */
3059
3060	case SIOCGMIIREG:		/* Read MII PHY register. */
3061		/* The phy_id is not enough to uniquely identify
3062		 * the intended target. Therefore the command is sent to
3063		 * the given mii on the current port.
3064		 */
3065		if (dev->if_port == PORT_TP) {
3066			if ((data->phy_id & 0x1f) == np->phy_addr_external)
3067				data->val_out = mdio_read(dev,
3068							data->reg_num & 0x1f);
3069			else
3070				data->val_out = 0;
3071		} else {
3072			move_int_phy(dev, data->phy_id & 0x1f);
3073			data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3074							data->reg_num & 0x1f);
3075		}
3076		return 0;
3077
3078	case SIOCSMIIREG:		/* Write MII PHY register. */
3079		if (dev->if_port == PORT_TP) {
3080			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3081 				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3082					np->advertising = data->val_in;
3083				mdio_write(dev, data->reg_num & 0x1f,
3084							data->val_in);
3085			}
3086		} else {
3087			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3088 				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3089					np->advertising = data->val_in;
3090			}
3091			move_int_phy(dev, data->phy_id & 0x1f);
3092			miiport_write(dev, data->phy_id & 0x1f,
3093						data->reg_num & 0x1f,
3094						data->val_in);
3095		}
3096		return 0;
3097	default:
3098		return -EOPNOTSUPP;
3099	}
3100}
3101
3102static void enable_wol_mode(struct net_device *dev, int enable_intr)
3103{
3104	void __iomem * ioaddr = ns_ioaddr(dev);
3105	struct netdev_private *np = netdev_priv(dev);
3106
3107	if (netif_msg_wol(np))
3108		printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3109			dev->name);
3110
3111	/* For WOL we must restart the rx process in silent mode.
3112	 * Write NULL to the RxRingPtr. Only possible if
3113	 * rx process is stopped
3114	 */
3115	writel(0, ioaddr + RxRingPtr);
3116
3117	/* read WoL status to clear */
3118	readl(ioaddr + WOLCmd);
3119
3120	/* PME on, clear status */
3121	writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3122
3123	/* and restart the rx process */
3124	writel(RxOn, ioaddr + ChipCmd);
3125
3126	if (enable_intr) {
3127		/* enable the WOL interrupt.
3128		 * Could be used to send a netlink message.
3129		 */
3130		writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3131		natsemi_irq_enable(dev);
3132	}
3133}
3134
3135static int netdev_close(struct net_device *dev)
3136{
3137	void __iomem * ioaddr = ns_ioaddr(dev);
3138	struct netdev_private *np = netdev_priv(dev);
3139
3140	if (netif_msg_ifdown(np))
3141		printk(KERN_DEBUG
3142			"%s: Shutting down ethercard, status was %#04x.\n",
3143			dev->name, (int)readl(ioaddr + ChipCmd));
3144	if (netif_msg_pktdata(np))
3145		printk(KERN_DEBUG
3146			"%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
3147			dev->name, np->cur_tx, np->dirty_tx,
3148			np->cur_rx, np->dirty_rx);
3149
3150	napi_disable(&np->napi);
3151
3152	/*
3153	 * FIXME: what if someone tries to close a device
3154	 * that is suspended?
3155	 * Should we reenable the nic to switch to
3156	 * the final WOL settings?
3157	 */
3158
3159	del_timer_sync(&np->timer);
3160	disable_irq(dev->irq);
3161	spin_lock_irq(&np->lock);
3162	natsemi_irq_disable(dev);
3163	np->hands_off = 1;
3164	spin_unlock_irq(&np->lock);
3165	enable_irq(dev->irq);
3166
3167	free_irq(dev->irq, dev);
3168
3169	/* Interrupt disabled, interrupt handler released,
3170	 * queue stopped, timer deleted, rtnl_lock held
3171	 * All async codepaths that access the driver are disabled.
3172	 */
3173	spin_lock_irq(&np->lock);
3174	np->hands_off = 0;
3175	readl(ioaddr + IntrMask);
3176	readw(ioaddr + MIntrStatus);
3177
3178	/* Freeze Stats */
3179	writel(StatsFreeze, ioaddr + StatsCtrl);
3180
3181	/* Stop the chip's Tx and Rx processes. */
3182	natsemi_stop_rxtx(dev);
3183
3184	__get_stats(dev);
3185	spin_unlock_irq(&np->lock);
3186
3187	/* clear the carrier last - an interrupt could reenable it otherwise */
3188	netif_carrier_off(dev);
3189	netif_stop_queue(dev);
3190
3191	dump_ring(dev);
3192	drain_ring(dev);
3193	free_ring(dev);
3194
3195	{
3196		u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3197		if (wol) {
3198			/* restart the NIC in WOL mode.
3199			 * The nic must be stopped for this.
3200			 */
3201			enable_wol_mode(dev, 0);
3202		} else {
3203			/* Restore PME enable bit unmolested */
3204			writel(np->SavedClkRun, ioaddr + ClkRun);
3205		}
3206	}
3207	return 0;
3208}
3209
3210
3211static void __devexit natsemi_remove1 (struct pci_dev *pdev)
3212{
3213	struct net_device *dev = pci_get_drvdata(pdev);
3214	void __iomem * ioaddr = ns_ioaddr(dev);
3215
3216	NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3217	unregister_netdev (dev);
3218	pci_release_regions (pdev);
3219	iounmap(ioaddr);
3220	free_netdev (dev);
3221	pci_set_drvdata(pdev, NULL);
3222}
3223
3224#ifdef CONFIG_PM
3225
3226/*
3227 * The ns83815 chip doesn't have explicit RxStop bits.
3228 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3229 * of the nic, thus this function must be very careful:
3230 *
3231 * suspend/resume synchronization:
3232 * entry points:
3233 *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3234 *   start_tx, ns_tx_timeout
3235 *
3236 * No function accesses the hardware without checking np->hands_off.
3237 *	the check occurs under spin_lock_irq(&np->lock);
3238 * exceptions:
3239 *	* netdev_ioctl: noncritical access.
3240 *	* netdev_open: cannot happen due to the device_detach
3241 *	* netdev_close: doesn't hurt.
3242 *	* netdev_timer: timer stopped by natsemi_suspend.
3243 *	* intr_handler: doesn't acquire the spinlock. suspend calls
3244 *		disable_irq() to enforce synchronization.
3245 *      * natsemi_poll: checks before reenabling interrupts.  suspend
3246 *              sets hands_off, disables interrupts and then waits with
3247 *              napi_disable().
3248 *
3249 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3250 */
3251
3252static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3253{
3254	struct net_device *dev = pci_get_drvdata (pdev);
3255	struct netdev_private *np = netdev_priv(dev);
3256	void __iomem * ioaddr = ns_ioaddr(dev);
3257
3258	rtnl_lock();
3259	if (netif_running (dev)) {
3260		del_timer_sync(&np->timer);
3261
3262		disable_irq(dev->irq);
3263		spin_lock_irq(&np->lock);
3264
3265		natsemi_irq_disable(dev);
3266		np->hands_off = 1;
3267		natsemi_stop_rxtx(dev);
3268		netif_stop_queue(dev);
3269
3270		spin_unlock_irq(&np->lock);
3271		enable_irq(dev->irq);
3272
3273		napi_disable(&np->napi);
3274
3275		/* Update the error counts. */
3276		__get_stats(dev);
3277
3278		/* pci_power_off(pdev, -1); */
3279		drain_ring(dev);
3280		{
3281			u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3282			/* Restore PME enable bit */
3283			if (wol) {
3284				/* restart the NIC in WOL mode.
3285				 * The nic must be stopped for this.
3286				 * FIXME: use the WOL interrupt
3287				 */
3288				enable_wol_mode(dev, 0);
3289			} else {
3290				/* Restore PME enable bit unmolested */
3291				writel(np->SavedClkRun, ioaddr + ClkRun);
3292			}
3293		}
3294	}
3295	netif_device_detach(dev);
3296	rtnl_unlock();
3297	return 0;
3298}
3299
3300
3301static int natsemi_resume (struct pci_dev *pdev)
3302{
3303	struct net_device *dev = pci_get_drvdata (pdev);
3304	struct netdev_private *np = netdev_priv(dev);
3305	int ret = 0;
3306
3307	rtnl_lock();
3308	if (netif_device_present(dev))
3309		goto out;
3310	if (netif_running(dev)) {
3311		BUG_ON(!np->hands_off);
3312		ret = pci_enable_device(pdev);
3313		if (ret < 0) {
3314			dev_err(&pdev->dev,
3315				"pci_enable_device() failed: %d\n", ret);
3316			goto out;
3317		}
3318	/*	pci_power_on(pdev); */
3319
3320		napi_enable(&np->napi);
3321
3322		natsemi_reset(dev);
3323		init_ring(dev);
3324		disable_irq(dev->irq);
3325		spin_lock_irq(&np->lock);
3326		np->hands_off = 0;
3327		init_registers(dev);
3328		netif_device_attach(dev);
3329		spin_unlock_irq(&np->lock);
3330		enable_irq(dev->irq);
3331
3332		mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3333	}
3334	netif_device_attach(dev);
3335out:
3336	rtnl_unlock();
3337	return ret;
3338}
3339
3340#endif /* CONFIG_PM */
3341
3342static struct pci_driver natsemi_driver = {
3343	.name		= DRV_NAME,
3344	.id_table	= natsemi_pci_tbl,
3345	.probe		= natsemi_probe1,
3346	.remove		= __devexit_p(natsemi_remove1),
3347#ifdef CONFIG_PM
3348	.suspend	= natsemi_suspend,
3349	.resume		= natsemi_resume,
3350#endif
3351};
3352
3353static int __init natsemi_init_mod (void)
3354{
3355/* when a module, this is printed whether or not devices are found in probe */
3356#ifdef MODULE
3357	printk(version);
3358#endif
3359
3360	return pci_register_driver(&natsemi_driver);
3361}
3362
3363static void __exit natsemi_exit_mod (void)
3364{
3365	pci_unregister_driver (&natsemi_driver);
3366}
3367
3368module_init(natsemi_init_mod);
3369module_exit(natsemi_exit_mod);
3370