Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/* drivers/net/ks8851.c
   2 *
   3 * Copyright 2009 Simtec Electronics
   4 *	http://www.simtec.co.uk/
   5 *	Ben Dooks <ben@simtec.co.uk>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#define DEBUG
  15
  16#include <linux/interrupt.h>
  17#include <linux/module.h>
  18#include <linux/kernel.h>
  19#include <linux/netdevice.h>
  20#include <linux/etherdevice.h>
  21#include <linux/ethtool.h>
  22#include <linux/cache.h>
  23#include <linux/crc32.h>
  24#include <linux/mii.h>
  25
  26#include <linux/spi/spi.h>
  27
  28#include "ks8851.h"
  29
  30/**
  31 * struct ks8851_rxctrl - KS8851 driver rx control
  32 * @mchash: Multicast hash-table data.
  33 * @rxcr1: KS_RXCR1 register setting
  34 * @rxcr2: KS_RXCR2 register setting
  35 *
  36 * Representation of the settings needs to control the receive filtering
  37 * such as the multicast hash-filter and the receive register settings. This
  38 * is used to make the job of working out if the receive settings change and
  39 * then issuing the new settings to the worker that will send the necessary
  40 * commands.
  41 */
  42struct ks8851_rxctrl {
  43	u16	mchash[4];
  44	u16	rxcr1;
  45	u16	rxcr2;
  46};
  47
  48/**
  49 * union ks8851_tx_hdr - tx header data
  50 * @txb: The header as bytes
  51 * @txw: The header as 16bit, little-endian words
  52 *
  53 * A dual representation of the tx header data to allow
  54 * access to individual bytes, and to allow 16bit accesses
  55 * with 16bit alignment.
  56 */
  57union ks8851_tx_hdr {
  58	u8	txb[6];
  59	__le16	txw[3];
  60};
  61
  62/**
  63 * struct ks8851_net - KS8851 driver private data
  64 * @netdev: The network device we're bound to
  65 * @spidev: The spi device we're bound to.
  66 * @lock: Lock to ensure that the device is not accessed when busy.
  67 * @statelock: Lock on this structure for tx list.
  68 * @mii: The MII state information for the mii calls.
  69 * @rxctrl: RX settings for @rxctrl_work.
  70 * @tx_work: Work queue for tx packets
  71 * @irq_work: Work queue for servicing interrupts
  72 * @rxctrl_work: Work queue for updating RX mode and multicast lists
  73 * @txq: Queue of packets for transmission.
  74 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
  75 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
  76 * @txh: Space for generating packet TX header in DMA-able data
  77 * @rxd: Space for receiving SPI data, in DMA-able space.
  78 * @txd: Space for transmitting SPI data, in DMA-able space.
  79 * @msg_enable: The message flags controlling driver output (see ethtool).
  80 * @fid: Incrementing frame id tag.
  81 * @rc_ier: Cached copy of KS_IER.
  82 * @rc_ccr: Cached copy of KS_CCR.
  83 * @rc_rxqcr: Cached copy of KS_RXQCR.
  84 * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
  85 *
  86 * The @lock ensures that the chip is protected when certain operations are
  87 * in progress. When the read or write packet transfer is in progress, most
  88 * of the chip registers are not ccessible until the transfer is finished and
  89 * the DMA has been de-asserted.
  90 *
  91 * The @statelock is used to protect information in the structure which may
  92 * need to be accessed via several sources, such as the network driver layer
  93 * or one of the work queues.
  94 *
  95 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
  96 * wants to DMA map them, it will not have any problems with data the driver
  97 * modifies.
  98 */
  99struct ks8851_net {
 100	struct net_device	*netdev;
 101	struct spi_device	*spidev;
 102	struct mutex		lock;
 103	spinlock_t		statelock;
 104
 105	union ks8851_tx_hdr	txh ____cacheline_aligned;
 106	u8			rxd[8];
 107	u8			txd[8];
 108
 109	u32			msg_enable ____cacheline_aligned;
 110	u16			tx_space;
 111	u8			fid;
 112
 113	u16			rc_ier;
 114	u16			rc_rxqcr;
 115	u16			rc_ccr;
 116	u16			eeprom_size;
 117
 118	struct mii_if_info	mii;
 119	struct ks8851_rxctrl	rxctrl;
 120
 121	struct work_struct	tx_work;
 122	struct work_struct	irq_work;
 123	struct work_struct	rxctrl_work;
 124
 125	struct sk_buff_head	txq;
 126
 127	struct spi_message	spi_msg1;
 128	struct spi_message	spi_msg2;
 129	struct spi_transfer	spi_xfer1;
 130	struct spi_transfer	spi_xfer2[2];
 131};
 132
 133static int msg_enable;
 134
 135/* shift for byte-enable data */
 136#define BYTE_EN(_x)	((_x) << 2)
 137
 138/* turn register number and byte-enable mask into data for start of packet */
 139#define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg)  << (8+2) | (_reg) >> 6)
 140
 141/* SPI register read/write calls.
 142 *
 143 * All these calls issue SPI transactions to access the chip's registers. They
 144 * all require that the necessary lock is held to prevent accesses when the
 145 * chip is busy transferring packet data (RX/TX FIFO accesses).
 146 */
 147
 148/**
 149 * ks8851_wrreg16 - write 16bit register value to chip
 150 * @ks: The chip state
 151 * @reg: The register address
 152 * @val: The value to write
 153 *
 154 * Issue a write to put the value @val into the register specified in @reg.
 155 */
 156static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
 157{
 158	struct spi_transfer *xfer = &ks->spi_xfer1;
 159	struct spi_message *msg = &ks->spi_msg1;
 160	__le16 txb[2];
 161	int ret;
 162
 163	txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
 164	txb[1] = cpu_to_le16(val);
 165
 166	xfer->tx_buf = txb;
 167	xfer->rx_buf = NULL;
 168	xfer->len = 4;
 169
 170	ret = spi_sync(ks->spidev, msg);
 171	if (ret < 0)
 172		netdev_err(ks->netdev, "spi_sync() failed\n");
 173}
 174
 175/**
 176 * ks8851_wrreg8 - write 8bit register value to chip
 177 * @ks: The chip state
 178 * @reg: The register address
 179 * @val: The value to write
 180 *
 181 * Issue a write to put the value @val into the register specified in @reg.
 182 */
 183static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
 184{
 185	struct spi_transfer *xfer = &ks->spi_xfer1;
 186	struct spi_message *msg = &ks->spi_msg1;
 187	__le16 txb[2];
 188	int ret;
 189	int bit;
 190
 191	bit = 1 << (reg & 3);
 192
 193	txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
 194	txb[1] = val;
 195
 196	xfer->tx_buf = txb;
 197	xfer->rx_buf = NULL;
 198	xfer->len = 3;
 199
 200	ret = spi_sync(ks->spidev, msg);
 201	if (ret < 0)
 202		netdev_err(ks->netdev, "spi_sync() failed\n");
 203}
 204
 205/**
 206 * ks8851_rx_1msg - select whether to use one or two messages for spi read
 207 * @ks: The device structure
 208 *
 209 * Return whether to generate a single message with a tx and rx buffer
 210 * supplied to spi_sync(), or alternatively send the tx and rx buffers
 211 * as separate messages.
 212 *
 213 * Depending on the hardware in use, a single message may be more efficient
 214 * on interrupts or work done by the driver.
 215 *
 216 * This currently always returns true until we add some per-device data passed
 217 * from the platform code to specify which mode is better.
 218 */
 219static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
 220{
 221	return true;
 222}
 223
 224/**
 225 * ks8851_rdreg - issue read register command and return the data
 226 * @ks: The device state
 227 * @op: The register address and byte enables in message format.
 228 * @rxb: The RX buffer to return the result into
 229 * @rxl: The length of data expected.
 230 *
 231 * This is the low level read call that issues the necessary spi message(s)
 232 * to read data from the register specified in @op.
 233 */
 234static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
 235			 u8 *rxb, unsigned rxl)
 236{
 237	struct spi_transfer *xfer;
 238	struct spi_message *msg;
 239	__le16 *txb = (__le16 *)ks->txd;
 240	u8 *trx = ks->rxd;
 241	int ret;
 242
 243	txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
 244
 245	if (ks8851_rx_1msg(ks)) {
 246		msg = &ks->spi_msg1;
 247		xfer = &ks->spi_xfer1;
 248
 249		xfer->tx_buf = txb;
 250		xfer->rx_buf = trx;
 251		xfer->len = rxl + 2;
 252	} else {
 253		msg = &ks->spi_msg2;
 254		xfer = ks->spi_xfer2;
 255
 256		xfer->tx_buf = txb;
 257		xfer->rx_buf = NULL;
 258		xfer->len = 2;
 259
 260		xfer++;
 261		xfer->tx_buf = NULL;
 262		xfer->rx_buf = trx;
 263		xfer->len = rxl;
 264	}
 265
 266	ret = spi_sync(ks->spidev, msg);
 267	if (ret < 0)
 268		netdev_err(ks->netdev, "read: spi_sync() failed\n");
 269	else if (ks8851_rx_1msg(ks))
 270		memcpy(rxb, trx + 2, rxl);
 271	else
 272		memcpy(rxb, trx, rxl);
 273}
 274
 275/**
 276 * ks8851_rdreg8 - read 8 bit register from device
 277 * @ks: The chip information
 278 * @reg: The register address
 279 *
 280 * Read a 8bit register from the chip, returning the result
 281*/
 282static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
 283{
 284	u8 rxb[1];
 285
 286	ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
 287	return rxb[0];
 288}
 289
 290/**
 291 * ks8851_rdreg16 - read 16 bit register from device
 292 * @ks: The chip information
 293 * @reg: The register address
 294 *
 295 * Read a 16bit register from the chip, returning the result
 296*/
 297static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
 298{
 299	__le16 rx = 0;
 300
 301	ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
 302	return le16_to_cpu(rx);
 303}
 304
 305/**
 306 * ks8851_rdreg32 - read 32 bit register from device
 307 * @ks: The chip information
 308 * @reg: The register address
 309 *
 310 * Read a 32bit register from the chip.
 311 *
 312 * Note, this read requires the address be aligned to 4 bytes.
 313*/
 314static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
 315{
 316	__le32 rx = 0;
 317
 318	WARN_ON(reg & 3);
 319
 320	ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
 321	return le32_to_cpu(rx);
 322}
 323
 324/**
 325 * ks8851_soft_reset - issue one of the soft reset to the device
 326 * @ks: The device state.
 327 * @op: The bit(s) to set in the GRR
 328 *
 329 * Issue the relevant soft-reset command to the device's GRR register
 330 * specified by @op.
 331 *
 332 * Note, the delays are in there as a caution to ensure that the reset
 333 * has time to take effect and then complete. Since the datasheet does
 334 * not currently specify the exact sequence, we have chosen something
 335 * that seems to work with our device.
 336 */
 337static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
 338{
 339	ks8851_wrreg16(ks, KS_GRR, op);
 340	mdelay(1);	/* wait a short time to effect reset */
 341	ks8851_wrreg16(ks, KS_GRR, 0);
 342	mdelay(1);	/* wait for condition to clear */
 343}
 344
 345/**
 346 * ks8851_write_mac_addr - write mac address to device registers
 347 * @dev: The network device
 348 *
 349 * Update the KS8851 MAC address registers from the address in @dev.
 350 *
 351 * This call assumes that the chip is not running, so there is no need to
 352 * shutdown the RXQ process whilst setting this.
 353*/
 354static int ks8851_write_mac_addr(struct net_device *dev)
 355{
 356	struct ks8851_net *ks = netdev_priv(dev);
 357	int i;
 358
 359	mutex_lock(&ks->lock);
 360
 361	for (i = 0; i < ETH_ALEN; i++)
 362		ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
 363
 364	mutex_unlock(&ks->lock);
 365
 366	return 0;
 367}
 368
 369/**
 370 * ks8851_init_mac - initialise the mac address
 371 * @ks: The device structure
 372 *
 373 * Get or create the initial mac address for the device and then set that
 374 * into the station address register. Currently we assume that the device
 375 * does not have a valid mac address in it, and so we use random_ether_addr()
 376 * to create a new one.
 377 *
 378 * In future, the driver should check to see if the device has an EEPROM
 379 * attached and whether that has a valid ethernet address in it.
 380 */
 381static void ks8851_init_mac(struct ks8851_net *ks)
 382{
 383	struct net_device *dev = ks->netdev;
 384
 385	random_ether_addr(dev->dev_addr);
 386	ks8851_write_mac_addr(dev);
 387}
 388
 389/**
 390 * ks8851_irq - device interrupt handler
 391 * @irq: Interrupt number passed from the IRQ hnalder.
 392 * @pw: The private word passed to register_irq(), our struct ks8851_net.
 393 *
 394 * Disable the interrupt from happening again until we've processed the
 395 * current status by scheduling ks8851_irq_work().
 396 */
 397static irqreturn_t ks8851_irq(int irq, void *pw)
 398{
 399	struct ks8851_net *ks = pw;
 400
 401	disable_irq_nosync(irq);
 402	schedule_work(&ks->irq_work);
 403	return IRQ_HANDLED;
 404}
 405
 406/**
 407 * ks8851_rdfifo - read data from the receive fifo
 408 * @ks: The device state.
 409 * @buff: The buffer address
 410 * @len: The length of the data to read
 411 *
 412 * Issue an RXQ FIFO read command and read the @len amount of data from
 413 * the FIFO into the buffer specified by @buff.
 414 */
 415static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
 416{
 417	struct spi_transfer *xfer = ks->spi_xfer2;
 418	struct spi_message *msg = &ks->spi_msg2;
 419	u8 txb[1];
 420	int ret;
 421
 422	netif_dbg(ks, rx_status, ks->netdev,
 423		  "%s: %d@%p\n", __func__, len, buff);
 424
 425	/* set the operation we're issuing */
 426	txb[0] = KS_SPIOP_RXFIFO;
 427
 428	xfer->tx_buf = txb;
 429	xfer->rx_buf = NULL;
 430	xfer->len = 1;
 431
 432	xfer++;
 433	xfer->rx_buf = buff;
 434	xfer->tx_buf = NULL;
 435	xfer->len = len;
 436
 437	ret = spi_sync(ks->spidev, msg);
 438	if (ret < 0)
 439		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
 440}
 441
 442/**
 443 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
 444 * @ks: The device state
 445 * @rxpkt: The data for the received packet
 446 *
 447 * Dump the initial data from the packet to dev_dbg().
 448*/
 449static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
 450{
 451	netdev_dbg(ks->netdev,
 452		   "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
 453		   rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
 454		   rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
 455		   rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
 456}
 457
 458/**
 459 * ks8851_rx_pkts - receive packets from the host
 460 * @ks: The device information.
 461 *
 462 * This is called from the IRQ work queue when the system detects that there
 463 * are packets in the receive queue. Find out how many packets there are and
 464 * read them from the FIFO.
 465 */
 466static void ks8851_rx_pkts(struct ks8851_net *ks)
 467{
 468	struct sk_buff *skb;
 469	unsigned rxfc;
 470	unsigned rxlen;
 471	unsigned rxstat;
 472	u32 rxh;
 473	u8 *rxpkt;
 474
 475	rxfc = ks8851_rdreg8(ks, KS_RXFC);
 476
 477	netif_dbg(ks, rx_status, ks->netdev,
 478		  "%s: %d packets\n", __func__, rxfc);
 479
 480	/* Currently we're issuing a read per packet, but we could possibly
 481	 * improve the code by issuing a single read, getting the receive
 482	 * header, allocating the packet and then reading the packet data
 483	 * out in one go.
 484	 *
 485	 * This form of operation would require us to hold the SPI bus'
 486	 * chipselect low during the entie transaction to avoid any
 487	 * reset to the data stream coming from the chip.
 488	 */
 489
 490	for (; rxfc != 0; rxfc--) {
 491		rxh = ks8851_rdreg32(ks, KS_RXFHSR);
 492		rxstat = rxh & 0xffff;
 493		rxlen = rxh >> 16;
 494
 495		netif_dbg(ks, rx_status, ks->netdev,
 496			  "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
 497
 498		/* the length of the packet includes the 32bit CRC */
 499
 500		/* set dma read address */
 501		ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
 502
 503		/* start the packet dma process, and set auto-dequeue rx */
 504		ks8851_wrreg16(ks, KS_RXQCR,
 505			       ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
 506
 507		if (rxlen > 4) {
 508			unsigned int rxalign;
 509
 510			rxlen -= 4;
 511			rxalign = ALIGN(rxlen, 4);
 512			skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
 513			if (skb) {
 514
 515				/* 4 bytes of status header + 4 bytes of
 516				 * garbage: we put them before ethernet
 517				 * header, so that they are copied,
 518				 * but ignored.
 519				 */
 520
 521				rxpkt = skb_put(skb, rxlen) - 8;
 522
 523				ks8851_rdfifo(ks, rxpkt, rxalign + 8);
 524
 525				if (netif_msg_pktdata(ks))
 526					ks8851_dbg_dumpkkt(ks, rxpkt);
 527
 528				skb->protocol = eth_type_trans(skb, ks->netdev);
 529				netif_rx(skb);
 530
 531				ks->netdev->stats.rx_packets++;
 532				ks->netdev->stats.rx_bytes += rxlen;
 533			}
 534		}
 535
 536		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 537	}
 538}
 539
 540/**
 541 * ks8851_irq_work - work queue handler for dealing with interrupt requests
 542 * @work: The work structure that was scheduled by schedule_work()
 543 *
 544 * This is the handler invoked when the ks8851_irq() is called to find out
 545 * what happened, as we cannot allow ourselves to sleep whilst waiting for
 546 * anything other process has the chip's lock.
 547 *
 548 * Read the interrupt status, work out what needs to be done and then clear
 549 * any of the interrupts that are not needed.
 550 */
 551static void ks8851_irq_work(struct work_struct *work)
 552{
 553	struct ks8851_net *ks = container_of(work, struct ks8851_net, irq_work);
 554	unsigned status;
 555	unsigned handled = 0;
 556
 557	mutex_lock(&ks->lock);
 558
 559	status = ks8851_rdreg16(ks, KS_ISR);
 560
 561	netif_dbg(ks, intr, ks->netdev,
 562		  "%s: status 0x%04x\n", __func__, status);
 563
 564	if (status & IRQ_LCI) {
 565		/* should do something about checking link status */
 566		handled |= IRQ_LCI;
 567	}
 568
 569	if (status & IRQ_LDI) {
 570		u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
 571		pmecr &= ~PMECR_WKEVT_MASK;
 572		ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
 573
 574		handled |= IRQ_LDI;
 575	}
 576
 577	if (status & IRQ_RXPSI)
 578		handled |= IRQ_RXPSI;
 579
 580	if (status & IRQ_TXI) {
 581		handled |= IRQ_TXI;
 582
 583		/* no lock here, tx queue should have been stopped */
 584
 585		/* update our idea of how much tx space is available to the
 586		 * system */
 587		ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
 588
 589		netif_dbg(ks, intr, ks->netdev,
 590			  "%s: txspace %d\n", __func__, ks->tx_space);
 591	}
 592
 593	if (status & IRQ_RXI)
 594		handled |= IRQ_RXI;
 595
 596	if (status & IRQ_SPIBEI) {
 597		dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
 598		handled |= IRQ_SPIBEI;
 599	}
 600
 601	ks8851_wrreg16(ks, KS_ISR, handled);
 602
 603	if (status & IRQ_RXI) {
 604		/* the datasheet says to disable the rx interrupt during
 605		 * packet read-out, however we're masking the interrupt
 606		 * from the device so do not bother masking just the RX
 607		 * from the device. */
 608
 609		ks8851_rx_pkts(ks);
 610	}
 611
 612	/* if something stopped the rx process, probably due to wanting
 613	 * to change the rx settings, then do something about restarting
 614	 * it. */
 615	if (status & IRQ_RXPSI) {
 616		struct ks8851_rxctrl *rxc = &ks->rxctrl;
 617
 618		/* update the multicast hash table */
 619		ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
 620		ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
 621		ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
 622		ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
 623
 624		ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
 625		ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
 626	}
 627
 628	mutex_unlock(&ks->lock);
 629
 630	if (status & IRQ_TXI)
 631		netif_wake_queue(ks->netdev);
 632
 633	enable_irq(ks->netdev->irq);
 634}
 635
 636/**
 637 * calc_txlen - calculate size of message to send packet
 638 * @len: Length of data
 639 *
 640 * Returns the size of the TXFIFO message needed to send
 641 * this packet.
 642 */
 643static inline unsigned calc_txlen(unsigned len)
 644{
 645	return ALIGN(len + 4, 4);
 646}
 647
 648/**
 649 * ks8851_wrpkt - write packet to TX FIFO
 650 * @ks: The device state.
 651 * @txp: The sk_buff to transmit.
 652 * @irq: IRQ on completion of the packet.
 653 *
 654 * Send the @txp to the chip. This means creating the relevant packet header
 655 * specifying the length of the packet and the other information the chip
 656 * needs, such as IRQ on completion. Send the header and the packet data to
 657 * the device.
 658 */
 659static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
 660{
 661	struct spi_transfer *xfer = ks->spi_xfer2;
 662	struct spi_message *msg = &ks->spi_msg2;
 663	unsigned fid = 0;
 664	int ret;
 665
 666	netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
 667		  __func__, txp, txp->len, txp->data, irq);
 668
 669	fid = ks->fid++;
 670	fid &= TXFR_TXFID_MASK;
 671
 672	if (irq)
 673		fid |= TXFR_TXIC;	/* irq on completion */
 674
 675	/* start header at txb[1] to align txw entries */
 676	ks->txh.txb[1] = KS_SPIOP_TXFIFO;
 677	ks->txh.txw[1] = cpu_to_le16(fid);
 678	ks->txh.txw[2] = cpu_to_le16(txp->len);
 679
 680	xfer->tx_buf = &ks->txh.txb[1];
 681	xfer->rx_buf = NULL;
 682	xfer->len = 5;
 683
 684	xfer++;
 685	xfer->tx_buf = txp->data;
 686	xfer->rx_buf = NULL;
 687	xfer->len = ALIGN(txp->len, 4);
 688
 689	ret = spi_sync(ks->spidev, msg);
 690	if (ret < 0)
 691		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
 692}
 693
 694/**
 695 * ks8851_done_tx - update and then free skbuff after transmitting
 696 * @ks: The device state
 697 * @txb: The buffer transmitted
 698 */
 699static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
 700{
 701	struct net_device *dev = ks->netdev;
 702
 703	dev->stats.tx_bytes += txb->len;
 704	dev->stats.tx_packets++;
 705
 706	dev_kfree_skb(txb);
 707}
 708
 709/**
 710 * ks8851_tx_work - process tx packet(s)
 711 * @work: The work strucutre what was scheduled.
 712 *
 713 * This is called when a number of packets have been scheduled for
 714 * transmission and need to be sent to the device.
 715 */
 716static void ks8851_tx_work(struct work_struct *work)
 717{
 718	struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
 719	struct sk_buff *txb;
 720	bool last = skb_queue_empty(&ks->txq);
 721
 722	mutex_lock(&ks->lock);
 723
 724	while (!last) {
 725		txb = skb_dequeue(&ks->txq);
 726		last = skb_queue_empty(&ks->txq);
 727
 728		if (txb != NULL) {
 729			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
 730			ks8851_wrpkt(ks, txb, last);
 731			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 732			ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
 733
 734			ks8851_done_tx(ks, txb);
 735		}
 736	}
 737
 738	mutex_unlock(&ks->lock);
 739}
 740
 741/**
 742 * ks8851_set_powermode - set power mode of the device
 743 * @ks: The device state
 744 * @pwrmode: The power mode value to write to KS_PMECR.
 745 *
 746 * Change the power mode of the chip.
 747 */
 748static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
 749{
 750	unsigned pmecr;
 751
 752	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
 753
 754	pmecr = ks8851_rdreg16(ks, KS_PMECR);
 755	pmecr &= ~PMECR_PM_MASK;
 756	pmecr |= pwrmode;
 757
 758	ks8851_wrreg16(ks, KS_PMECR, pmecr);
 759}
 760
 761/**
 762 * ks8851_net_open - open network device
 763 * @dev: The network device being opened.
 764 *
 765 * Called when the network device is marked active, such as a user executing
 766 * 'ifconfig up' on the device.
 767 */
 768static int ks8851_net_open(struct net_device *dev)
 769{
 770	struct ks8851_net *ks = netdev_priv(dev);
 771
 772	/* lock the card, even if we may not actually be doing anything
 773	 * else at the moment */
 774	mutex_lock(&ks->lock);
 775
 776	netif_dbg(ks, ifup, ks->netdev, "opening\n");
 777
 778	/* bring chip out of any power saving mode it was in */
 779	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 780
 781	/* issue a soft reset to the RX/TX QMU to put it into a known
 782	 * state. */
 783	ks8851_soft_reset(ks, GRR_QMU);
 784
 785	/* setup transmission parameters */
 786
 787	ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
 788				     TXCR_TXPE | /* pad to min length */
 789				     TXCR_TXCRC | /* add CRC */
 790				     TXCR_TXFCE)); /* enable flow control */
 791
 792	/* auto-increment tx data, reset tx pointer */
 793	ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
 794
 795	/* setup receiver control */
 796
 797	ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
 798				      RXCR1_RXFCE | /* enable flow control */
 799				      RXCR1_RXBE | /* broadcast enable */
 800				      RXCR1_RXUE | /* unicast enable */
 801				      RXCR1_RXE)); /* enable rx block */
 802
 803	/* transfer entire frames out in one go */
 804	ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
 805
 806	/* set receive counter timeouts */
 807	ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
 808	ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
 809	ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
 810
 811	ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
 812			RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
 813			RXQCR_RXDTTE);  /* IRQ on time exceeded */
 814
 815	ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 816
 817	/* clear then enable interrupts */
 818
 819#define STD_IRQ (IRQ_LCI |	/* Link Change */	\
 820		 IRQ_TXI |	/* TX done */		\
 821		 IRQ_RXI |	/* RX done */		\
 822		 IRQ_SPIBEI |	/* SPI bus error */	\
 823		 IRQ_TXPSI |	/* TX process stop */	\
 824		 IRQ_RXPSI)	/* RX process stop */
 825
 826	ks->rc_ier = STD_IRQ;
 827	ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
 828	ks8851_wrreg16(ks, KS_IER, STD_IRQ);
 829
 830	netif_start_queue(ks->netdev);
 831
 832	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
 833
 834	mutex_unlock(&ks->lock);
 835	return 0;
 836}
 837
 838/**
 839 * ks8851_net_stop - close network device
 840 * @dev: The device being closed.
 841 *
 842 * Called to close down a network device which has been active. Cancell any
 843 * work, shutdown the RX and TX process and then place the chip into a low
 844 * power state whilst it is not being used.
 845 */
 846static int ks8851_net_stop(struct net_device *dev)
 847{
 848	struct ks8851_net *ks = netdev_priv(dev);
 849
 850	netif_info(ks, ifdown, dev, "shutting down\n");
 851
 852	netif_stop_queue(dev);
 853
 854	mutex_lock(&ks->lock);
 855
 856	/* stop any outstanding work */
 857	flush_work(&ks->irq_work);
 858	flush_work(&ks->tx_work);
 859	flush_work(&ks->rxctrl_work);
 860
 861	/* turn off the IRQs and ack any outstanding */
 862	ks8851_wrreg16(ks, KS_IER, 0x0000);
 863	ks8851_wrreg16(ks, KS_ISR, 0xffff);
 864
 865	/* shutdown RX process */
 866	ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
 867
 868	/* shutdown TX process */
 869	ks8851_wrreg16(ks, KS_TXCR, 0x0000);
 870
 871	/* set powermode to soft power down to save power */
 872	ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 873
 874	/* ensure any queued tx buffers are dumped */
 875	while (!skb_queue_empty(&ks->txq)) {
 876		struct sk_buff *txb = skb_dequeue(&ks->txq);
 877
 878		netif_dbg(ks, ifdown, ks->netdev,
 879			  "%s: freeing txb %p\n", __func__, txb);
 880
 881		dev_kfree_skb(txb);
 882	}
 883
 884	mutex_unlock(&ks->lock);
 885	return 0;
 886}
 887
 888/**
 889 * ks8851_start_xmit - transmit packet
 890 * @skb: The buffer to transmit
 891 * @dev: The device used to transmit the packet.
 892 *
 893 * Called by the network layer to transmit the @skb. Queue the packet for
 894 * the device and schedule the necessary work to transmit the packet when
 895 * it is free.
 896 *
 897 * We do this to firstly avoid sleeping with the network device locked,
 898 * and secondly so we can round up more than one packet to transmit which
 899 * means we can try and avoid generating too many transmit done interrupts.
 900 */
 901static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
 902				     struct net_device *dev)
 903{
 904	struct ks8851_net *ks = netdev_priv(dev);
 905	unsigned needed = calc_txlen(skb->len);
 906	netdev_tx_t ret = NETDEV_TX_OK;
 907
 908	netif_dbg(ks, tx_queued, ks->netdev,
 909		  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
 910
 911	spin_lock(&ks->statelock);
 912
 913	if (needed > ks->tx_space) {
 914		netif_stop_queue(dev);
 915		ret = NETDEV_TX_BUSY;
 916	} else {
 917		ks->tx_space -= needed;
 918		skb_queue_tail(&ks->txq, skb);
 919	}
 920
 921	spin_unlock(&ks->statelock);
 922	schedule_work(&ks->tx_work);
 923
 924	return ret;
 925}
 926
 927/**
 928 * ks8851_rxctrl_work - work handler to change rx mode
 929 * @work: The work structure this belongs to.
 930 *
 931 * Lock the device and issue the necessary changes to the receive mode from
 932 * the network device layer. This is done so that we can do this without
 933 * having to sleep whilst holding the network device lock.
 934 *
 935 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
 936 * receive parameters are programmed, we issue a write to disable the RXQ and
 937 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
 938 * complete. The interrupt handler then writes the new values into the chip.
 939 */
 940static void ks8851_rxctrl_work(struct work_struct *work)
 941{
 942	struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
 943
 944	mutex_lock(&ks->lock);
 945
 946	/* need to shutdown RXQ before modifying filter parameters */
 947	ks8851_wrreg16(ks, KS_RXCR1, 0x00);
 948
 949	mutex_unlock(&ks->lock);
 950}
 951
 952static void ks8851_set_rx_mode(struct net_device *dev)
 953{
 954	struct ks8851_net *ks = netdev_priv(dev);
 955	struct ks8851_rxctrl rxctrl;
 956
 957	memset(&rxctrl, 0, sizeof(rxctrl));
 958
 959	if (dev->flags & IFF_PROMISC) {
 960		/* interface to receive everything */
 961
 962		rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
 963	} else if (dev->flags & IFF_ALLMULTI) {
 964		/* accept all multicast packets */
 965
 966		rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
 967				RXCR1_RXPAFMA | RXCR1_RXMAFMA);
 968	} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
 969		struct netdev_hw_addr *ha;
 970		u32 crc;
 971
 972		/* accept some multicast */
 973
 974		netdev_for_each_mc_addr(ha, dev) {
 975			crc = ether_crc(ETH_ALEN, ha->addr);
 976			crc >>= (32 - 6);  /* get top six bits */
 977
 978			rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
 979		}
 980
 981		rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
 982	} else {
 983		/* just accept broadcast / unicast */
 984		rxctrl.rxcr1 = RXCR1_RXPAFMA;
 985	}
 986
 987	rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
 988			 RXCR1_RXBE | /* broadcast enable */
 989			 RXCR1_RXE | /* RX process enable */
 990			 RXCR1_RXFCE); /* enable flow control */
 991
 992	rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
 993
 994	/* schedule work to do the actual set of the data if needed */
 995
 996	spin_lock(&ks->statelock);
 997
 998	if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
 999		memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1000		schedule_work(&ks->rxctrl_work);
1001	}
1002
1003	spin_unlock(&ks->statelock);
1004}
1005
1006static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1007{
1008	struct sockaddr *sa = addr;
1009
1010	if (netif_running(dev))
1011		return -EBUSY;
1012
1013	if (!is_valid_ether_addr(sa->sa_data))
1014		return -EADDRNOTAVAIL;
1015
1016	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1017	return ks8851_write_mac_addr(dev);
1018}
1019
1020static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1021{
1022	struct ks8851_net *ks = netdev_priv(dev);
1023
1024	if (!netif_running(dev))
1025		return -EINVAL;
1026
1027	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1028}
1029
1030static const struct net_device_ops ks8851_netdev_ops = {
1031	.ndo_open		= ks8851_net_open,
1032	.ndo_stop		= ks8851_net_stop,
1033	.ndo_do_ioctl		= ks8851_net_ioctl,
1034	.ndo_start_xmit		= ks8851_start_xmit,
1035	.ndo_set_mac_address	= ks8851_set_mac_address,
1036	.ndo_set_rx_mode	= ks8851_set_rx_mode,
1037	.ndo_change_mtu		= eth_change_mtu,
1038	.ndo_validate_addr	= eth_validate_addr,
1039};
1040
1041/* Companion eeprom access */
1042
1043enum {	/* EEPROM programming states */
1044	EEPROM_CONTROL,
1045	EEPROM_ADDRESS,
1046	EEPROM_DATA,
1047	EEPROM_COMPLETE
1048};
1049
1050/**
1051 * ks8851_eeprom_read - read a 16bits word in ks8851 companion EEPROM
1052 * @dev: The network device the PHY is on.
1053 * @addr: EEPROM address to read
1054 *
1055 * eeprom_size: used to define the data coding length. Can be changed
1056 * through debug-fs.
1057 *
1058 * Programs a read on the EEPROM using ks8851 EEPROM SW access feature.
1059 * Warning: The READ feature is not supported on ks8851 revision 0.
1060 *
1061 * Rough programming model:
1062 *  - on period start: set clock high and read value on bus
1063 *  - on period / 2: set clock low and program value on bus
1064 *  - start on period / 2
1065 */
1066unsigned int ks8851_eeprom_read(struct net_device *dev, unsigned int addr)
1067{
1068	struct ks8851_net *ks = netdev_priv(dev);
1069	int eepcr;
1070	int ctrl = EEPROM_OP_READ;
1071	int state = EEPROM_CONTROL;
1072	int bit_count = EEPROM_OP_LEN - 1;
1073	unsigned int data = 0;
1074	int dummy;
1075	unsigned int addr_len;
1076
1077	addr_len = (ks->eeprom_size == 128) ? 6 : 8;
1078
1079	/* start transaction: chip select high, authorize write */
1080	mutex_lock(&ks->lock);
1081	eepcr = EEPCR_EESA | EEPCR_EESRWA;
1082	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1083	eepcr |= EEPCR_EECS;
1084	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1085	mutex_unlock(&ks->lock);
1086
1087	while (state != EEPROM_COMPLETE) {
1088		/* falling clock period starts... */
1089		/* set EED_IO pin for control and address */
1090		eepcr &= ~EEPCR_EEDO;
1091		switch (state) {
1092		case EEPROM_CONTROL:
1093			eepcr |= ((ctrl >> bit_count) & 1) << 2;
1094			if (bit_count-- <= 0) {
1095				bit_count = addr_len - 1;
1096				state = EEPROM_ADDRESS;
1097			}
1098			break;
1099		case EEPROM_ADDRESS:
1100			eepcr |= ((addr >> bit_count) & 1) << 2;
1101			bit_count--;
1102			break;
1103		case EEPROM_DATA:
1104			/* Change to receive mode */
1105			eepcr &= ~EEPCR_EESRWA;
1106			break;
1107		}
1108
1109		/* lower clock  */
1110		eepcr &= ~EEPCR_EESCK;
1111
1112		mutex_lock(&ks->lock);
1113		ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1114		mutex_unlock(&ks->lock);
1115
1116		/* waitread period / 2 */
1117		udelay(EEPROM_SK_PERIOD / 2);
1118
1119		/* rising clock period starts... */
1120
1121		/* raise clock */
1122		mutex_lock(&ks->lock);
1123		eepcr |= EEPCR_EESCK;
1124		ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1125		mutex_unlock(&ks->lock);
1126
1127		/* Manage read */
1128		switch (state) {
1129		case EEPROM_ADDRESS:
1130			if (bit_count < 0) {
1131				bit_count = EEPROM_DATA_LEN - 1;
1132				state = EEPROM_DATA;
1133			}
1134			break;
1135		case EEPROM_DATA:
1136			mutex_lock(&ks->lock);
1137			dummy = ks8851_rdreg16(ks, KS_EEPCR);
1138			mutex_unlock(&ks->lock);
1139			data |= ((dummy >> EEPCR_EESB_OFFSET) & 1) << bit_count;
1140			if (bit_count-- <= 0)
1141				state = EEPROM_COMPLETE;
1142			break;
1143		}
1144
1145		/* wait period / 2 */
1146		udelay(EEPROM_SK_PERIOD / 2);
1147	}
1148
1149	/* close transaction */
1150	mutex_lock(&ks->lock);
1151	eepcr &= ~EEPCR_EECS;
1152	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1153	eepcr = 0;
1154	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1155	mutex_unlock(&ks->lock);
1156
1157	return data;
1158}
1159
1160/**
1161 * ks8851_eeprom_write - write a 16bits word in ks8851 companion EEPROM
1162 * @dev: The network device the PHY is on.
1163 * @op: operand (can be WRITE, EWEN, EWDS)
1164 * @addr: EEPROM address to write
1165 * @data: data to write
1166 *
1167 * eeprom_size: used to define the data coding length. Can be changed
1168 * through debug-fs.
1169 *
1170 * Programs a write on the EEPROM using ks8851 EEPROM SW access feature.
1171 *
1172 * Note that a write enable is required before writing data.
1173 *
1174 * Rough programming model:
1175 *  - on period start: set clock high
1176 *  - on period / 2: set clock low and program value on bus
1177 *  - start on period / 2
1178 */
1179void ks8851_eeprom_write(struct net_device *dev, unsigned int op,
1180					unsigned int addr, unsigned int data)
1181{
1182	struct ks8851_net *ks = netdev_priv(dev);
1183	int eepcr;
1184	int state = EEPROM_CONTROL;
1185	int bit_count = EEPROM_OP_LEN - 1;
1186	unsigned int addr_len;
1187
1188	addr_len = (ks->eeprom_size == 128) ? 6 : 8;
1189
1190	switch (op) {
1191	case EEPROM_OP_EWEN:
1192		addr = 0x30;
1193	break;
1194	case EEPROM_OP_EWDS:
1195		addr = 0;
1196		break;
1197	}
1198
1199	/* start transaction: chip select high, authorize write */
1200	mutex_lock(&ks->lock);
1201	eepcr = EEPCR_EESA | EEPCR_EESRWA;
1202	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1203	eepcr |= EEPCR_EECS;
1204	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1205	mutex_unlock(&ks->lock);
1206
1207	while (state != EEPROM_COMPLETE) {
1208		/* falling clock period starts... */
1209		/* set EED_IO pin for control and address */
1210		eepcr &= ~EEPCR_EEDO;
1211		switch (state) {
1212		case EEPROM_CONTROL:
1213			eepcr |= ((op >> bit_count) & 1) << 2;
1214			if (bit_count-- <= 0) {
1215				bit_count = addr_len - 1;
1216				state = EEPROM_ADDRESS;
1217			}
1218			break;
1219		case EEPROM_ADDRESS:
1220			eepcr |= ((addr >> bit_count) & 1) << 2;
1221			if (bit_count-- <= 0) {
1222				if (op == EEPROM_OP_WRITE) {
1223					bit_count = EEPROM_DATA_LEN - 1;
1224					state = EEPROM_DATA;
1225				} else {
1226					state = EEPROM_COMPLETE;
1227				}
1228			}
1229			break;
1230		case EEPROM_DATA:
1231			eepcr |= ((data >> bit_count) & 1) << 2;
1232			if (bit_count-- <= 0)
1233				state = EEPROM_COMPLETE;
1234			break;
1235		}
1236
1237		/* lower clock  */
1238		eepcr &= ~EEPCR_EESCK;
1239
1240		mutex_lock(&ks->lock);
1241		ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1242		mutex_unlock(&ks->lock);
1243
1244		/* wait period / 2 */
1245		udelay(EEPROM_SK_PERIOD / 2);
1246
1247		/* rising clock period starts... */
1248
1249		/* raise clock */
1250		eepcr |= EEPCR_EESCK;
1251		mutex_lock(&ks->lock);
1252		ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1253		mutex_unlock(&ks->lock);
1254
1255		/* wait period / 2 */
1256		udelay(EEPROM_SK_PERIOD / 2);
1257	}
1258
1259	/* close transaction */
1260	mutex_lock(&ks->lock);
1261	eepcr &= ~EEPCR_EECS;
1262	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1263	eepcr = 0;
1264	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1265	mutex_unlock(&ks->lock);
1266
1267}
1268
1269/* ethtool support */
1270
1271static void ks8851_get_drvinfo(struct net_device *dev,
1272			       struct ethtool_drvinfo *di)
1273{
1274	strlcpy(di->driver, "KS8851", sizeof(di->driver));
1275	strlcpy(di->version, "1.00", sizeof(di->version));
1276	strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1277}
1278
1279static u32 ks8851_get_msglevel(struct net_device *dev)
1280{
1281	struct ks8851_net *ks = netdev_priv(dev);
1282	return ks->msg_enable;
1283}
1284
1285static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1286{
1287	struct ks8851_net *ks = netdev_priv(dev);
1288	ks->msg_enable = to;
1289}
1290
1291static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1292{
1293	struct ks8851_net *ks = netdev_priv(dev);
1294	return mii_ethtool_gset(&ks->mii, cmd);
1295}
1296
1297static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1298{
1299	struct ks8851_net *ks = netdev_priv(dev);
1300	return mii_ethtool_sset(&ks->mii, cmd);
1301}
1302
1303static u32 ks8851_get_link(struct net_device *dev)
1304{
1305	struct ks8851_net *ks = netdev_priv(dev);
1306	return mii_link_ok(&ks->mii);
1307}
1308
1309static int ks8851_nway_reset(struct net_device *dev)
1310{
1311	struct ks8851_net *ks = netdev_priv(dev);
1312	return mii_nway_restart(&ks->mii);
1313}
1314
1315static int ks8851_get_eeprom_len(struct net_device *dev)
1316{
1317	struct ks8851_net *ks = netdev_priv(dev);
1318	return ks->eeprom_size;
1319}
1320
1321static int ks8851_get_eeprom(struct net_device *dev,
1322			    struct ethtool_eeprom *eeprom, u8 *bytes)
1323{
1324	struct ks8851_net *ks = netdev_priv(dev);
1325	u16 *eeprom_buff;
1326	int first_word;
1327	int last_word;
1328	int ret_val = 0;
1329	u16 i;
1330
1331	if (eeprom->len == 0)
1332		return -EINVAL;
1333
1334	if (eeprom->len > ks->eeprom_size)
1335		return -EINVAL;
1336
1337	eeprom->magic = ks8851_rdreg16(ks, KS_CIDER);
1338
1339	first_word = eeprom->offset >> 1;
1340	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
1341
1342	eeprom_buff = kmalloc(sizeof(u16) *
1343			(last_word - first_word + 1), GFP_KERNEL);
1344	if (!eeprom_buff)
1345		return -ENOMEM;
1346
1347	for (i = 0; i < last_word - first_word + 1; i++)
1348		eeprom_buff[i] = ks8851_eeprom_read(dev, first_word + 1);
1349
1350	/* Device's eeprom is little-endian, word addressable */
1351	for (i = 0; i < last_word - first_word + 1; i++)
1352		le16_to_cpus(&eeprom_buff[i]);
1353
1354	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
1355	kfree(eeprom_buff);
1356
1357	return ret_val;
1358}
1359
1360static int ks8851_set_eeprom(struct net_device *dev,
1361			    struct ethtool_eeprom *eeprom, u8 *bytes)
1362{
1363	struct ks8851_net *ks = netdev_priv(dev);
1364	u16 *eeprom_buff;
1365	void *ptr;
1366	int max_len;
1367	int first_word;
1368	int last_word;
1369	int ret_val = 0;
1370	u16 i;
1371
1372	if (eeprom->len == 0)
1373		return -EOPNOTSUPP;
1374
1375	if (eeprom->len > ks->eeprom_size)
1376		return -EINVAL;
1377
1378	if (eeprom->magic != ks8851_rdreg16(ks, KS_CIDER))
1379		return -EFAULT;
1380
1381	first_word = eeprom->offset >> 1;
1382	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
1383	max_len = (last_word - first_word + 1) * 2;
1384	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
1385	if (!eeprom_buff)
1386		return -ENOMEM;
1387
1388	ptr = (void *)eeprom_buff;
1389
1390	if (eeprom->offset & 1) {
1391		/* need read/modify/write of first changed EEPROM word */
1392		/* only the second byte of the word is being modified */
1393		eeprom_buff[0] = ks8851_eeprom_read(dev, first_word);
1394		ptr++;
1395	}
1396	if ((eeprom->offset + eeprom->len) & 1)
1397		/* need read/modify/write of last changed EEPROM word */
1398		/* only the first byte of the word is being modified */
1399		eeprom_buff[last_word - first_word] =
1400					ks8851_eeprom_read(dev, last_word);
1401
1402
1403	/* Device's eeprom is little-endian, word addressable */
1404	le16_to_cpus(&eeprom_buff[0]);
1405	le16_to_cpus(&eeprom_buff[last_word - first_word]);
1406
1407	memcpy(ptr, bytes, eeprom->len);
1408
1409	for (i = 0; i < last_word - first_word + 1; i++)
1410		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
1411
1412	ks8851_eeprom_write(dev, EEPROM_OP_EWEN, 0, 0);
1413
1414	for (i = 0; i < last_word - first_word + 1; i++) {
1415		ks8851_eeprom_write(dev, EEPROM_OP_WRITE, first_word + i,
1416							eeprom_buff[i]);
1417		mdelay(EEPROM_WRITE_TIME);
1418	}
1419
1420	ks8851_eeprom_write(dev, EEPROM_OP_EWDS, 0, 0);
1421
1422	kfree(eeprom_buff);
1423	return ret_val;
1424}
1425
1426static const struct ethtool_ops ks8851_ethtool_ops = {
1427	.get_drvinfo	= ks8851_get_drvinfo,
1428	.get_msglevel	= ks8851_get_msglevel,
1429	.set_msglevel	= ks8851_set_msglevel,
1430	.get_settings	= ks8851_get_settings,
1431	.set_settings	= ks8851_set_settings,
1432	.get_link	= ks8851_get_link,
1433	.nway_reset	= ks8851_nway_reset,
1434	.get_eeprom_len	= ks8851_get_eeprom_len,
1435	.get_eeprom	= ks8851_get_eeprom,
1436	.set_eeprom	= ks8851_set_eeprom,
1437};
1438
1439/* MII interface controls */
1440
1441/**
1442 * ks8851_phy_reg - convert MII register into a KS8851 register
1443 * @reg: MII register number.
1444 *
1445 * Return the KS8851 register number for the corresponding MII PHY register
1446 * if possible. Return zero if the MII register has no direct mapping to the
1447 * KS8851 register set.
1448 */
1449static int ks8851_phy_reg(int reg)
1450{
1451	switch (reg) {
1452	case MII_BMCR:
1453		return KS_P1MBCR;
1454	case MII_BMSR:
1455		return KS_P1MBSR;
1456	case MII_PHYSID1:
1457		return KS_PHY1ILR;
1458	case MII_PHYSID2:
1459		return KS_PHY1IHR;
1460	case MII_ADVERTISE:
1461		return KS_P1ANAR;
1462	case MII_LPA:
1463		return KS_P1ANLPR;
1464	}
1465
1466	return 0x0;
1467}
1468
1469/**
1470 * ks8851_phy_read - MII interface PHY register read.
1471 * @dev: The network device the PHY is on.
1472 * @phy_addr: Address of PHY (ignored as we only have one)
1473 * @reg: The register to read.
1474 *
1475 * This call reads data from the PHY register specified in @reg. Since the
1476 * device does not support all the MII registers, the non-existent values
1477 * are always returned as zero.
1478 *
1479 * We return zero for unsupported registers as the MII code does not check
1480 * the value returned for any error status, and simply returns it to the
1481 * caller. The mii-tool that the driver was tested with takes any -ve error
1482 * as real PHY capabilities, thus displaying incorrect data to the user.
1483 */
1484static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1485{
1486	struct ks8851_net *ks = netdev_priv(dev);
1487	int ksreg;
1488	int result;
1489
1490	ksreg = ks8851_phy_reg(reg);
1491	if (!ksreg)
1492		return 0x0;	/* no error return allowed, so use zero */
1493
1494	mutex_lock(&ks->lock);
1495	result = ks8851_rdreg16(ks, ksreg);
1496	mutex_unlock(&ks->lock);
1497
1498	return result;
1499}
1500
1501static void ks8851_phy_write(struct net_device *dev,
1502			     int phy, int reg, int value)
1503{
1504	struct ks8851_net *ks = netdev_priv(dev);
1505	int ksreg;
1506
1507	ksreg = ks8851_phy_reg(reg);
1508	if (ksreg) {
1509		mutex_lock(&ks->lock);
1510		ks8851_wrreg16(ks, ksreg, value);
1511		mutex_unlock(&ks->lock);
1512	}
1513}
1514
1515/**
1516 * ks8851_read_selftest - read the selftest memory info.
1517 * @ks: The device state
1518 *
1519 * Read and check the TX/RX memory selftest information.
1520 */
1521static int ks8851_read_selftest(struct ks8851_net *ks)
1522{
1523	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1524	int ret = 0;
1525	unsigned rd;
1526
1527	rd = ks8851_rdreg16(ks, KS_MBIR);
1528
1529	if ((rd & both_done) != both_done) {
1530		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1531		return 0;
1532	}
1533
1534	if (rd & MBIR_TXMBFA) {
1535		netdev_err(ks->netdev, "TX memory selftest fail\n");
1536		ret |= 1;
1537	}
1538
1539	if (rd & MBIR_RXMBFA) {
1540		netdev_err(ks->netdev, "RX memory selftest fail\n");
1541		ret |= 2;
1542	}
1543
1544	return 0;
1545}
1546
1547/* driver bus management functions */
1548
1549#ifdef CONFIG_PM
1550static int ks8851_suspend(struct spi_device *spi, pm_message_t state)
1551{
1552	struct ks8851_net *ks = dev_get_drvdata(&spi->dev);
1553	struct net_device *dev = ks->netdev;
1554
1555	if (netif_running(dev)) {
1556		netif_device_detach(dev);
1557		ks8851_net_stop(dev);
1558	}
1559
1560	return 0;
1561}
1562
1563static int ks8851_resume(struct spi_device *spi)
1564{
1565	struct ks8851_net *ks = dev_get_drvdata(&spi->dev);
1566	struct net_device *dev = ks->netdev;
1567
1568	if (netif_running(dev)) {
1569		ks8851_net_open(dev);
1570		netif_device_attach(dev);
1571	}
1572
1573	return 0;
1574}
1575#else
1576#define ks8851_suspend NULL
1577#define ks8851_resume NULL
1578#endif
1579
1580static int __devinit ks8851_probe(struct spi_device *spi)
1581{
1582	struct net_device *ndev;
1583	struct ks8851_net *ks;
1584	int ret;
1585
1586	ndev = alloc_etherdev(sizeof(struct ks8851_net));
1587	if (!ndev) {
1588		dev_err(&spi->dev, "failed to alloc ethernet device\n");
1589		return -ENOMEM;
1590	}
1591
1592	spi->bits_per_word = 8;
1593
1594	ks = netdev_priv(ndev);
1595
1596	ks->netdev = ndev;
1597	ks->spidev = spi;
1598	ks->tx_space = 6144;
1599
1600	mutex_init(&ks->lock);
1601	spin_lock_init(&ks->statelock);
1602
1603	INIT_WORK(&ks->tx_work, ks8851_tx_work);
1604	INIT_WORK(&ks->irq_work, ks8851_irq_work);
1605	INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1606
1607	/* initialise pre-made spi transfer messages */
1608
1609	spi_message_init(&ks->spi_msg1);
1610	spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1611
1612	spi_message_init(&ks->spi_msg2);
1613	spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1614	spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1615
1616	/* setup mii state */
1617	ks->mii.dev		= ndev;
1618	ks->mii.phy_id		= 1,
1619	ks->mii.phy_id_mask	= 1;
1620	ks->mii.reg_num_mask	= 0xf;
1621	ks->mii.mdio_read	= ks8851_phy_read;
1622	ks->mii.mdio_write	= ks8851_phy_write;
1623
1624	dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1625
1626	/* set the default message enable */
1627	ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1628						     NETIF_MSG_PROBE |
1629						     NETIF_MSG_LINK));
1630
1631	skb_queue_head_init(&ks->txq);
1632
1633	SET_ETHTOOL_OPS(ndev, &ks8851_ethtool_ops);
1634	SET_NETDEV_DEV(ndev, &spi->dev);
1635
1636	dev_set_drvdata(&spi->dev, ks);
1637
1638	ndev->if_port = IF_PORT_100BASET;
1639	ndev->netdev_ops = &ks8851_netdev_ops;
1640	ndev->irq = spi->irq;
1641
1642	/* issue a global soft reset to reset the device. */
1643	ks8851_soft_reset(ks, GRR_GSR);
1644
1645	/* simple check for a valid chip being connected to the bus */
1646
1647	if ((ks8851_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
1648		dev_err(&spi->dev, "failed to read device ID\n");
1649		ret = -ENODEV;
1650		goto err_id;
1651	}
1652
1653	/* cache the contents of the CCR register for EEPROM, etc. */
1654	ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1655
1656	if (ks->rc_ccr & CCR_EEPROM)
1657		ks->eeprom_size = 128;
1658	else
1659		ks->eeprom_size = 0;
1660
1661	ks8851_read_selftest(ks);
1662	ks8851_init_mac(ks);
1663
1664	ret = request_irq(spi->irq, ks8851_irq, IRQF_TRIGGER_LOW,
1665			  ndev->name, ks);
1666	if (ret < 0) {
1667		dev_err(&spi->dev, "failed to get irq\n");
1668		goto err_irq;
1669	}
1670
1671	ret = register_netdev(ndev);
1672	if (ret) {
1673		dev_err(&spi->dev, "failed to register network device\n");
1674		goto err_netdev;
1675	}
1676
1677	netdev_info(ndev, "revision %d, MAC %pM, IRQ %d\n",
1678		    CIDER_REV_GET(ks8851_rdreg16(ks, KS_CIDER)),
1679		    ndev->dev_addr, ndev->irq);
1680
1681	return 0;
1682
1683
1684err_netdev:
1685	free_irq(ndev->irq, ndev);
1686
1687err_id:
1688err_irq:
1689	free_netdev(ndev);
1690	return ret;
1691}
1692
1693static int __devexit ks8851_remove(struct spi_device *spi)
1694{
1695	struct ks8851_net *priv = dev_get_drvdata(&spi->dev);
1696
1697	if (netif_msg_drv(priv))
1698		dev_info(&spi->dev, "remove\n");
1699
1700	unregister_netdev(priv->netdev);
1701	free_irq(spi->irq, priv);
1702	free_netdev(priv->netdev);
1703
1704	return 0;
1705}
1706
1707static struct spi_driver ks8851_driver = {
1708	.driver = {
1709		.name = "ks8851",
1710		.owner = THIS_MODULE,
1711	},
1712	.probe = ks8851_probe,
1713	.remove = __devexit_p(ks8851_remove),
1714	.suspend = ks8851_suspend,
1715	.resume = ks8851_resume,
1716};
1717
1718static int __init ks8851_init(void)
1719{
1720	return spi_register_driver(&ks8851_driver);
1721}
1722
1723static void __exit ks8851_exit(void)
1724{
1725	spi_unregister_driver(&ks8851_driver);
1726}
1727
1728module_init(ks8851_init);
1729module_exit(ks8851_exit);
1730
1731MODULE_DESCRIPTION("KS8851 Network driver");
1732MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1733MODULE_LICENSE("GPL");
1734
1735module_param_named(message, msg_enable, int, 0);
1736MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1737MODULE_ALIAS("spi:ks8851");