Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
   3 *
   4 * Copyright (C) 2003, 2007  IC Plus Corp
   5 *
   6 * Original Author:
   7 *
   8 *   Craig Rich
   9 *   Sundance Technology, Inc.
  10 *   www.sundanceti.com
  11 *   craig_rich@sundanceti.com
  12 *
  13 * Current Maintainer:
  14 *
  15 *   Sorbica Shieh.
  16 *   http://www.icplus.com.tw
  17 *   sorbica@icplus.com.tw
  18 *
  19 *   Jesse Huang
  20 *   http://www.icplus.com.tw
  21 *   jesse@icplus.com.tw
  22 */
  23#include <linux/crc32.h>
  24#include <linux/ethtool.h>
  25#include <linux/interrupt.h>
  26#include <linux/gfp.h>
  27#include <linux/mii.h>
  28#include <linux/mutex.h>
  29
  30#include <asm/div64.h>
  31
  32#define IPG_RX_RING_BYTES	(sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
  33#define IPG_TX_RING_BYTES	(sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
  34#define IPG_RESET_MASK \
  35	(IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
  36	 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
  37	 IPG_AC_AUTO_INIT)
  38
  39#define ipg_w32(val32, reg)	iowrite32((val32), ioaddr + (reg))
  40#define ipg_w16(val16, reg)	iowrite16((val16), ioaddr + (reg))
  41#define ipg_w8(val8, reg)	iowrite8((val8), ioaddr + (reg))
  42
  43#define ipg_r32(reg)		ioread32(ioaddr + (reg))
  44#define ipg_r16(reg)		ioread16(ioaddr + (reg))
  45#define ipg_r8(reg)		ioread8(ioaddr + (reg))
  46
  47enum {
  48	netdev_io_size = 128
  49};
  50
  51#include "ipg.h"
  52#define DRV_NAME	"ipg"
  53
  54MODULE_AUTHOR("IC Plus Corp. 2003");
  55MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
  56MODULE_LICENSE("GPL");
  57
  58/*
  59 * Defaults
  60 */
  61#define IPG_MAX_RXFRAME_SIZE	0x0600
  62#define IPG_RXFRAG_SIZE		0x0600
  63#define IPG_RXSUPPORT_SIZE	0x0600
  64#define IPG_IS_JUMBO		false
  65
  66/*
  67 * Variable record -- index by leading revision/length
  68 * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
  69 */
  70static unsigned short DefaultPhyParam[] = {
  71	/* 11/12/03 IP1000A v1-3 rev=0x40 */
  72	/*--------------------------------------------------------------------------
  73	(0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
  74				 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
  75				 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7,  9, 0x0700,
  76	  --------------------------------------------------------------------------*/
  77	/* 12/17/03 IP1000A v1-4 rev=0x40 */
  78	(0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
  79	    0x0000,
  80	30, 0x005e, 9, 0x0700,
  81	/* 01/09/04 IP1000A v1-5 rev=0x41 */
  82	(0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
  83	    0x0000,
  84	30, 0x005e, 9, 0x0700,
  85	0x0000
  86};
  87
  88static const char *ipg_brand_name[] = {
  89	"IC PLUS IP1000 1000/100/10 based NIC",
  90	"Sundance Technology ST2021 based NIC",
  91	"Tamarack Microelectronics TC9020/9021 based NIC",
  92	"D-Link NIC IP1000A"
  93};
  94
  95static DEFINE_PCI_DEVICE_TABLE(ipg_pci_tbl) = {
  96	{ PCI_VDEVICE(SUNDANCE,	0x1023), 0 },
  97	{ PCI_VDEVICE(SUNDANCE,	0x2021), 1 },
  98	{ PCI_VDEVICE(DLINK,	0x9021), 2 },
  99	{ PCI_VDEVICE(DLINK,	0x4020), 3 },
 100	{ 0, }
 101};
 102
 103MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
 104
 105static inline void __iomem *ipg_ioaddr(struct net_device *dev)
 106{
 107	struct ipg_nic_private *sp = netdev_priv(dev);
 108	return sp->ioaddr;
 109}
 110
 111#ifdef IPG_DEBUG
 112static void ipg_dump_rfdlist(struct net_device *dev)
 113{
 114	struct ipg_nic_private *sp = netdev_priv(dev);
 115	void __iomem *ioaddr = sp->ioaddr;
 116	unsigned int i;
 117	u32 offset;
 118
 119	IPG_DEBUG_MSG("_dump_rfdlist\n");
 120
 121	printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current);
 122	printk(KERN_INFO "rx_dirty   = %2.2x\n", sp->rx_dirty);
 123	printk(KERN_INFO "RFDList start address = %16.16lx\n",
 124	       (unsigned long) sp->rxd_map);
 125	printk(KERN_INFO "RFDListPtr register   = %8.8x%8.8x\n",
 126	       ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
 127
 128	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
 129		offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
 130		printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i,
 131		       offset, (unsigned long) sp->rxd[i].next_desc);
 132		offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
 133		printk(KERN_INFO "%2.2x %4.4x RFS        = %16.16lx\n", i,
 134		       offset, (unsigned long) sp->rxd[i].rfs);
 135		offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
 136		printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
 137		       offset, (unsigned long) sp->rxd[i].frag_info);
 138	}
 139}
 140
 141static void ipg_dump_tfdlist(struct net_device *dev)
 142{
 143	struct ipg_nic_private *sp = netdev_priv(dev);
 144	void __iomem *ioaddr = sp->ioaddr;
 145	unsigned int i;
 146	u32 offset;
 147
 148	IPG_DEBUG_MSG("_dump_tfdlist\n");
 149
 150	printk(KERN_INFO "tx_current         = %2.2x\n", sp->tx_current);
 151	printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty);
 152	printk(KERN_INFO "TFDList start address = %16.16lx\n",
 153	       (unsigned long) sp->txd_map);
 154	printk(KERN_INFO "TFDListPtr register   = %8.8x%8.8x\n",
 155	       ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
 156
 157	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
 158		offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
 159		printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i,
 160		       offset, (unsigned long) sp->txd[i].next_desc);
 161
 162		offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
 163		printk(KERN_INFO "%2.2x %4.4x TFC        = %16.16lx\n", i,
 164		       offset, (unsigned long) sp->txd[i].tfc);
 165		offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
 166		printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
 167		       offset, (unsigned long) sp->txd[i].frag_info);
 168	}
 169}
 170#endif
 171
 172static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
 173{
 174	ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
 175	ndelay(IPG_PC_PHYCTRLWAIT_NS);
 176}
 177
 178static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
 179{
 180	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
 181	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
 182}
 183
 184static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
 185{
 186	phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
 187
 188	ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
 189}
 190
 191static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
 192{
 193	ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
 194		phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
 195}
 196
 197static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity)
 198{
 199	u16 bit_data;
 200
 201	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
 202
 203	bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
 204
 205	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
 206
 207	return bit_data;
 208}
 209
 210/*
 211 * Read a register from the Physical Layer device located
 212 * on the IPG NIC, using the IPG PHYCTRL register.
 213 */
 214static int mdio_read(struct net_device *dev, int phy_id, int phy_reg)
 215{
 216	void __iomem *ioaddr = ipg_ioaddr(dev);
 217	/*
 218	 * The GMII mangement frame structure for a read is as follows:
 219	 *
 220	 * |Preamble|st|op|phyad|regad|ta|      data      |idle|
 221	 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
 222	 *
 223	 * <32 1s> = 32 consecutive logic 1 values
 224	 * A = bit of Physical Layer device address (MSB first)
 225	 * R = bit of register address (MSB first)
 226	 * z = High impedance state
 227	 * D = bit of read data (MSB first)
 228	 *
 229	 * Transmission order is 'Preamble' field first, bits transmitted
 230	 * left to right (first to last).
 231	 */
 232	struct {
 233		u32 field;
 234		unsigned int len;
 235	} p[] = {
 236		{ GMII_PREAMBLE,	32 },	/* Preamble */
 237		{ GMII_ST,		2  },	/* ST */
 238		{ GMII_READ,		2  },	/* OP */
 239		{ phy_id,		5  },	/* PHYAD */
 240		{ phy_reg,		5  },	/* REGAD */
 241		{ 0x0000,		2  },	/* TA */
 242		{ 0x0000,		16 },	/* DATA */
 243		{ 0x0000,		1  }	/* IDLE */
 244	};
 245	unsigned int i, j;
 246	u8 polarity, data;
 247
 248	polarity  = ipg_r8(PHY_CTRL);
 249	polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
 250
 251	/* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
 252	for (j = 0; j < 5; j++) {
 253		for (i = 0; i < p[j].len; i++) {
 254			/* For each variable length field, the MSB must be
 255			 * transmitted first. Rotate through the field bits,
 256			 * starting with the MSB, and move each bit into the
 257			 * the 1st (2^1) bit position (this is the bit position
 258			 * corresponding to the MgmtData bit of the PhyCtrl
 259			 * register for the IPG).
 260			 *
 261			 * Example: ST = 01;
 262			 *
 263			 *          First write a '0' to bit 1 of the PhyCtrl
 264			 *          register, then write a '1' to bit 1 of the
 265			 *          PhyCtrl register.
 266			 *
 267			 * To do this, right shift the MSB of ST by the value:
 268			 * [field length - 1 - #ST bits already written]
 269			 * then left shift this result by 1.
 270			 */
 271			data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
 272			data &= IPG_PC_MGMTDATA;
 273			data |= polarity | IPG_PC_MGMTDIR;
 274
 275			ipg_drive_phy_ctl_low_high(ioaddr, data);
 276		}
 277	}
 278
 279	send_three_state(ioaddr, polarity);
 280
 281	read_phy_bit(ioaddr, polarity);
 282
 283	/*
 284	 * For a read cycle, the bits for the next two fields (TA and
 285	 * DATA) are driven by the PHY (the IPG reads these bits).
 286	 */
 287	for (i = 0; i < p[6].len; i++) {
 288		p[6].field |=
 289		    (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
 290	}
 291
 292	send_three_state(ioaddr, polarity);
 293	send_three_state(ioaddr, polarity);
 294	send_three_state(ioaddr, polarity);
 295	send_end(ioaddr, polarity);
 296
 297	/* Return the value of the DATA field. */
 298	return p[6].field;
 299}
 300
 301/*
 302 * Write to a register from the Physical Layer device located
 303 * on the IPG NIC, using the IPG PHYCTRL register.
 304 */
 305static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
 306{
 307	void __iomem *ioaddr = ipg_ioaddr(dev);
 308	/*
 309	 * The GMII mangement frame structure for a read is as follows:
 310	 *
 311	 * |Preamble|st|op|phyad|regad|ta|      data      |idle|
 312	 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
 313	 *
 314	 * <32 1s> = 32 consecutive logic 1 values
 315	 * A = bit of Physical Layer device address (MSB first)
 316	 * R = bit of register address (MSB first)
 317	 * z = High impedance state
 318	 * D = bit of write data (MSB first)
 319	 *
 320	 * Transmission order is 'Preamble' field first, bits transmitted
 321	 * left to right (first to last).
 322	 */
 323	struct {
 324		u32 field;
 325		unsigned int len;
 326	} p[] = {
 327		{ GMII_PREAMBLE,	32 },	/* Preamble */
 328		{ GMII_ST,		2  },	/* ST */
 329		{ GMII_WRITE,		2  },	/* OP */
 330		{ phy_id,		5  },	/* PHYAD */
 331		{ phy_reg,		5  },	/* REGAD */
 332		{ 0x0002,		2  },	/* TA */
 333		{ val & 0xffff,		16 },	/* DATA */
 334		{ 0x0000,		1  }	/* IDLE */
 335	};
 336	unsigned int i, j;
 337	u8 polarity, data;
 338
 339	polarity  = ipg_r8(PHY_CTRL);
 340	polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
 341
 342	/* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
 343	for (j = 0; j < 7; j++) {
 344		for (i = 0; i < p[j].len; i++) {
 345			/* For each variable length field, the MSB must be
 346			 * transmitted first. Rotate through the field bits,
 347			 * starting with the MSB, and move each bit into the
 348			 * the 1st (2^1) bit position (this is the bit position
 349			 * corresponding to the MgmtData bit of the PhyCtrl
 350			 * register for the IPG).
 351			 *
 352			 * Example: ST = 01;
 353			 *
 354			 *          First write a '0' to bit 1 of the PhyCtrl
 355			 *          register, then write a '1' to bit 1 of the
 356			 *          PhyCtrl register.
 357			 *
 358			 * To do this, right shift the MSB of ST by the value:
 359			 * [field length - 1 - #ST bits already written]
 360			 * then left shift this result by 1.
 361			 */
 362			data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
 363			data &= IPG_PC_MGMTDATA;
 364			data |= polarity | IPG_PC_MGMTDIR;
 365
 366			ipg_drive_phy_ctl_low_high(ioaddr, data);
 367		}
 368	}
 369
 370	/* The last cycle is a tri-state, so read from the PHY. */
 371	for (j = 7; j < 8; j++) {
 372		for (i = 0; i < p[j].len; i++) {
 373			ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
 374
 375			p[j].field |= ((ipg_r8(PHY_CTRL) &
 376				IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i);
 377
 378			ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
 379		}
 380	}
 381}
 382
 383static void ipg_set_led_mode(struct net_device *dev)
 384{
 385	struct ipg_nic_private *sp = netdev_priv(dev);
 386	void __iomem *ioaddr = sp->ioaddr;
 387	u32 mode;
 388
 389	mode = ipg_r32(ASIC_CTRL);
 390	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
 391
 392	if ((sp->led_mode & 0x03) > 1)
 393		mode |= IPG_AC_LED_MODE_BIT_1;	/* Write Asic Control Bit 29 */
 394
 395	if ((sp->led_mode & 0x01) == 1)
 396		mode |= IPG_AC_LED_MODE;	/* Write Asic Control Bit 14 */
 397
 398	if ((sp->led_mode & 0x08) == 8)
 399		mode |= IPG_AC_LED_SPEED;	/* Write Asic Control Bit 27 */
 400
 401	ipg_w32(mode, ASIC_CTRL);
 402}
 403
 404static void ipg_set_phy_set(struct net_device *dev)
 405{
 406	struct ipg_nic_private *sp = netdev_priv(dev);
 407	void __iomem *ioaddr = sp->ioaddr;
 408	int physet;
 409
 410	physet = ipg_r8(PHY_SET);
 411	physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
 412	physet |= ((sp->led_mode & 0x70) >> 4);
 413	ipg_w8(physet, PHY_SET);
 414}
 415
 416static int ipg_reset(struct net_device *dev, u32 resetflags)
 417{
 418	/* Assert functional resets via the IPG AsicCtrl
 419	 * register as specified by the 'resetflags' input
 420	 * parameter.
 421	 */
 422	void __iomem *ioaddr = ipg_ioaddr(dev);
 423	unsigned int timeout_count = 0;
 424
 425	IPG_DEBUG_MSG("_reset\n");
 426
 427	ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
 428
 429	/* Delay added to account for problem with 10Mbps reset. */
 430	mdelay(IPG_AC_RESETWAIT);
 431
 432	while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
 433		mdelay(IPG_AC_RESETWAIT);
 434		if (++timeout_count > IPG_AC_RESET_TIMEOUT)
 435			return -ETIME;
 436	}
 437	/* Set LED Mode in Asic Control */
 438	ipg_set_led_mode(dev);
 439
 440	/* Set PHYSet Register Value */
 441	ipg_set_phy_set(dev);
 442	return 0;
 443}
 444
 445/* Find the GMII PHY address. */
 446static int ipg_find_phyaddr(struct net_device *dev)
 447{
 448	unsigned int phyaddr, i;
 449
 450	for (i = 0; i < 32; i++) {
 451		u32 status;
 452
 453		/* Search for the correct PHY address among 32 possible. */
 454		phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
 455
 456		/* 10/22/03 Grace change verify from GMII_PHY_STATUS to
 457		   GMII_PHY_ID1
 458		 */
 459
 460		status = mdio_read(dev, phyaddr, MII_BMSR);
 461
 462		if ((status != 0xFFFF) && (status != 0))
 463			return phyaddr;
 464	}
 465
 466	return 0x1f;
 467}
 468
 469/*
 470 * Configure IPG based on result of IEEE 802.3 PHY
 471 * auto-negotiation.
 472 */
 473static int ipg_config_autoneg(struct net_device *dev)
 474{
 475	struct ipg_nic_private *sp = netdev_priv(dev);
 476	void __iomem *ioaddr = sp->ioaddr;
 477	unsigned int txflowcontrol;
 478	unsigned int rxflowcontrol;
 479	unsigned int fullduplex;
 480	u32 mac_ctrl_val;
 481	u32 asicctrl;
 482	u8 phyctrl;
 483
 484	IPG_DEBUG_MSG("_config_autoneg\n");
 485
 486	asicctrl = ipg_r32(ASIC_CTRL);
 487	phyctrl = ipg_r8(PHY_CTRL);
 488	mac_ctrl_val = ipg_r32(MAC_CTRL);
 489
 490	/* Set flags for use in resolving auto-negotiation, assuming
 491	 * non-1000Mbps, half duplex, no flow control.
 492	 */
 493	fullduplex = 0;
 494	txflowcontrol = 0;
 495	rxflowcontrol = 0;
 496
 497	/* To accommodate a problem in 10Mbps operation,
 498	 * set a global flag if PHY running in 10Mbps mode.
 499	 */
 500	sp->tenmbpsmode = 0;
 501
 502	printk(KERN_INFO "%s: Link speed = ", dev->name);
 503
 504	/* Determine actual speed of operation. */
 505	switch (phyctrl & IPG_PC_LINK_SPEED) {
 506	case IPG_PC_LINK_SPEED_10MBPS:
 507		printk("10Mbps.\n");
 508		printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n",
 509		       dev->name);
 510		sp->tenmbpsmode = 1;
 511		break;
 512	case IPG_PC_LINK_SPEED_100MBPS:
 513		printk("100Mbps.\n");
 514		break;
 515	case IPG_PC_LINK_SPEED_1000MBPS:
 516		printk("1000Mbps.\n");
 517		break;
 518	default:
 519		printk("undefined!\n");
 520		return 0;
 521	}
 522
 523	if (phyctrl & IPG_PC_DUPLEX_STATUS) {
 524		fullduplex = 1;
 525		txflowcontrol = 1;
 526		rxflowcontrol = 1;
 527	}
 528
 529	/* Configure full duplex, and flow control. */
 530	if (fullduplex == 1) {
 531		/* Configure IPG for full duplex operation. */
 532		printk(KERN_INFO "%s: setting full duplex, ", dev->name);
 533
 534		mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
 535
 536		if (txflowcontrol == 1) {
 537			printk("TX flow control");
 538			mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
 539		} else {
 540			printk("no TX flow control");
 541			mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
 542		}
 543
 544		if (rxflowcontrol == 1) {
 545			printk(", RX flow control.");
 546			mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
 547		} else {
 548			printk(", no RX flow control.");
 549			mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
 550		}
 551
 552		printk("\n");
 553	} else {
 554		/* Configure IPG for half duplex operation. */
 555		printk(KERN_INFO "%s: setting half duplex, "
 556		       "no TX flow control, no RX flow control.\n", dev->name);
 557
 558		mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD &
 559			~IPG_MC_TX_FLOW_CONTROL_ENABLE &
 560			~IPG_MC_RX_FLOW_CONTROL_ENABLE;
 561	}
 562	ipg_w32(mac_ctrl_val, MAC_CTRL);
 563	return 0;
 564}
 565
 566/* Determine and configure multicast operation and set
 567 * receive mode for IPG.
 568 */
 569static void ipg_nic_set_multicast_list(struct net_device *dev)
 570{
 571	void __iomem *ioaddr = ipg_ioaddr(dev);
 572	struct netdev_hw_addr *ha;
 573	unsigned int hashindex;
 574	u32 hashtable[2];
 575	u8 receivemode;
 576
 577	IPG_DEBUG_MSG("_nic_set_multicast_list\n");
 578
 579	receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
 580
 581	if (dev->flags & IFF_PROMISC) {
 582		/* NIC to be configured in promiscuous mode. */
 583		receivemode = IPG_RM_RECEIVEALLFRAMES;
 584	} else if ((dev->flags & IFF_ALLMULTI) ||
 585		   ((dev->flags & IFF_MULTICAST) &&
 586		    (netdev_mc_count(dev) > IPG_MULTICAST_HASHTABLE_SIZE))) {
 587		/* NIC to be configured to receive all multicast
 588		 * frames. */
 589		receivemode |= IPG_RM_RECEIVEMULTICAST;
 590	} else if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
 591		/* NIC to be configured to receive selected
 592		 * multicast addresses. */
 593		receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
 594	}
 595
 596	/* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
 597	 * The IPG applies a cyclic-redundancy-check (the same CRC
 598	 * used to calculate the frame data FCS) to the destination
 599	 * address all incoming multicast frames whose destination
 600	 * address has the multicast bit set. The least significant
 601	 * 6 bits of the CRC result are used as an addressing index
 602	 * into the hash table. If the value of the bit addressed by
 603	 * this index is a 1, the frame is passed to the host system.
 604	 */
 605
 606	/* Clear hashtable. */
 607	hashtable[0] = 0x00000000;
 608	hashtable[1] = 0x00000000;
 609
 610	/* Cycle through all multicast addresses to filter. */
 611	netdev_for_each_mc_addr(ha, dev) {
 612		/* Calculate CRC result for each multicast address. */
 613		hashindex = crc32_le(0xffffffff, ha->addr,
 614				     ETH_ALEN);
 615
 616		/* Use only the least significant 6 bits. */
 617		hashindex = hashindex & 0x3F;
 618
 619		/* Within "hashtable", set bit number "hashindex"
 620		 * to a logic 1.
 621		 */
 622		set_bit(hashindex, (void *)hashtable);
 623	}
 624
 625	/* Write the value of the hashtable, to the 4, 16 bit
 626	 * HASHTABLE IPG registers.
 627	 */
 628	ipg_w32(hashtable[0], HASHTABLE_0);
 629	ipg_w32(hashtable[1], HASHTABLE_1);
 630
 631	ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
 632
 633	IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
 634}
 635
 636static int ipg_io_config(struct net_device *dev)
 637{
 638	struct ipg_nic_private *sp = netdev_priv(dev);
 639	void __iomem *ioaddr = ipg_ioaddr(dev);
 640	u32 origmacctrl;
 641	u32 restoremacctrl;
 642
 643	IPG_DEBUG_MSG("_io_config\n");
 644
 645	origmacctrl = ipg_r32(MAC_CTRL);
 646
 647	restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
 648
 649	/* Based on compilation option, determine if FCS is to be
 650	 * stripped on receive frames by IPG.
 651	 */
 652	if (!IPG_STRIP_FCS_ON_RX)
 653		restoremacctrl |= IPG_MC_RCV_FCS;
 654
 655	/* Determine if transmitter and/or receiver are
 656	 * enabled so we may restore MACCTRL correctly.
 657	 */
 658	if (origmacctrl & IPG_MC_TX_ENABLED)
 659		restoremacctrl |= IPG_MC_TX_ENABLE;
 660
 661	if (origmacctrl & IPG_MC_RX_ENABLED)
 662		restoremacctrl |= IPG_MC_RX_ENABLE;
 663
 664	/* Transmitter and receiver must be disabled before setting
 665	 * IFSSelect.
 666	 */
 667	ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
 668		IPG_MC_RSVD_MASK, MAC_CTRL);
 669
 670	/* Now that transmitter and receiver are disabled, write
 671	 * to IFSSelect.
 672	 */
 673	ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
 674
 675	/* Set RECEIVEMODE register. */
 676	ipg_nic_set_multicast_list(dev);
 677
 678	ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE);
 679
 680	ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE,   RX_DMA_POLL_PERIOD);
 681	ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
 682	ipg_w8(IPG_RXDMABURSTTHRESH_VALUE,  RX_DMA_BURST_THRESH);
 683	ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE,   TX_DMA_POLL_PERIOD);
 684	ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
 685	ipg_w8(IPG_TXDMABURSTTHRESH_VALUE,  TX_DMA_BURST_THRESH);
 686	ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
 687		 IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
 688		 IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
 689		 IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
 690	ipg_w16(IPG_FLOWONTHRESH_VALUE,  FLOW_ON_THRESH);
 691	ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
 692
 693	/* IPG multi-frag frame bug workaround.
 694	 * Per silicon revision B3 eratta.
 695	 */
 696	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
 697
 698	/* IPG TX poll now bug workaround.
 699	 * Per silicon revision B3 eratta.
 700	 */
 701	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
 702
 703	/* IPG RX poll now bug workaround.
 704	 * Per silicon revision B3 eratta.
 705	 */
 706	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
 707
 708	/* Now restore MACCTRL to original setting. */
 709	ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
 710
 711	/* Disable unused RMON statistics. */
 712	ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
 713
 714	/* Disable unused MIB statistics. */
 715	ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
 716		IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
 717		IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
 718		IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
 719		IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
 720		IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
 721
 722	return 0;
 723}
 724
 725/*
 726 * Create a receive buffer within system memory and update
 727 * NIC private structure appropriately.
 728 */
 729static int ipg_get_rxbuff(struct net_device *dev, int entry)
 730{
 731	struct ipg_nic_private *sp = netdev_priv(dev);
 732	struct ipg_rx *rxfd = sp->rxd + entry;
 733	struct sk_buff *skb;
 734	u64 rxfragsize;
 735
 736	IPG_DEBUG_MSG("_get_rxbuff\n");
 737
 738	skb = netdev_alloc_skb_ip_align(dev, sp->rxsupport_size);
 739	if (!skb) {
 740		sp->rx_buff[entry] = NULL;
 741		return -ENOMEM;
 742	}
 743
 744	/* Associate the receive buffer with the IPG NIC. */
 745	skb->dev = dev;
 746
 747	/* Save the address of the sk_buff structure. */
 748	sp->rx_buff[entry] = skb;
 749
 750	rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
 751		sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
 752
 753	/* Set the RFD fragment length. */
 754	rxfragsize = sp->rxfrag_size;
 755	rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
 756
 757	return 0;
 758}
 759
 760static int init_rfdlist(struct net_device *dev)
 761{
 762	struct ipg_nic_private *sp = netdev_priv(dev);
 763	void __iomem *ioaddr = sp->ioaddr;
 764	unsigned int i;
 765
 766	IPG_DEBUG_MSG("_init_rfdlist\n");
 767
 768	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
 769		struct ipg_rx *rxfd = sp->rxd + i;
 770
 771		if (sp->rx_buff[i]) {
 772			pci_unmap_single(sp->pdev,
 773				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
 774				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
 775			dev_kfree_skb_irq(sp->rx_buff[i]);
 776			sp->rx_buff[i] = NULL;
 777		}
 778
 779		/* Clear out the RFS field. */
 780		rxfd->rfs = 0x0000000000000000;
 781
 782		if (ipg_get_rxbuff(dev, i) < 0) {
 783			/*
 784			 * A receive buffer was not ready, break the
 785			 * RFD list here.
 786			 */
 787			IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");
 788
 789			/* Just in case we cannot allocate a single RFD.
 790			 * Should not occur.
 791			 */
 792			if (i == 0) {
 793				printk(KERN_ERR "%s: No memory available"
 794					" for RFD list.\n", dev->name);
 795				return -ENOMEM;
 796			}
 797		}
 798
 799		rxfd->next_desc = cpu_to_le64(sp->rxd_map +
 800			sizeof(struct ipg_rx)*(i + 1));
 801	}
 802	sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
 803
 804	sp->rx_current = 0;
 805	sp->rx_dirty = 0;
 806
 807	/* Write the location of the RFDList to the IPG. */
 808	ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
 809	ipg_w32(0x00000000, RFD_LIST_PTR_1);
 810
 811	return 0;
 812}
 813
 814static void init_tfdlist(struct net_device *dev)
 815{
 816	struct ipg_nic_private *sp = netdev_priv(dev);
 817	void __iomem *ioaddr = sp->ioaddr;
 818	unsigned int i;
 819
 820	IPG_DEBUG_MSG("_init_tfdlist\n");
 821
 822	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
 823		struct ipg_tx *txfd = sp->txd + i;
 824
 825		txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
 826
 827		if (sp->tx_buff[i]) {
 828			dev_kfree_skb_irq(sp->tx_buff[i]);
 829			sp->tx_buff[i] = NULL;
 830		}
 831
 832		txfd->next_desc = cpu_to_le64(sp->txd_map +
 833			sizeof(struct ipg_tx)*(i + 1));
 834	}
 835	sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
 836
 837	sp->tx_current = 0;
 838	sp->tx_dirty = 0;
 839
 840	/* Write the location of the TFDList to the IPG. */
 841	IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
 842		       (u32) sp->txd_map);
 843	ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
 844	ipg_w32(0x00000000, TFD_LIST_PTR_1);
 845
 846	sp->reset_current_tfd = 1;
 847}
 848
 849/*
 850 * Free all transmit buffers which have already been transferred
 851 * via DMA to the IPG.
 852 */
 853static void ipg_nic_txfree(struct net_device *dev)
 854{
 855	struct ipg_nic_private *sp = netdev_priv(dev);
 856	unsigned int released, pending, dirty;
 857
 858	IPG_DEBUG_MSG("_nic_txfree\n");
 859
 860	pending = sp->tx_current - sp->tx_dirty;
 861	dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
 862
 863	for (released = 0; released < pending; released++) {
 864		struct sk_buff *skb = sp->tx_buff[dirty];
 865		struct ipg_tx *txfd = sp->txd + dirty;
 866
 867		IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc);
 868
 869		/* Look at each TFD's TFC field beginning
 870		 * at the last freed TFD up to the current TFD.
 871		 * If the TFDDone bit is set, free the associated
 872		 * buffer.
 873		 */
 874		if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
 875                        break;
 876
 877		/* Free the transmit buffer. */
 878		if (skb) {
 879			pci_unmap_single(sp->pdev,
 880				le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
 881				skb->len, PCI_DMA_TODEVICE);
 882
 883			dev_kfree_skb_irq(skb);
 884
 885			sp->tx_buff[dirty] = NULL;
 886		}
 887		dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
 888	}
 889
 890	sp->tx_dirty += released;
 891
 892	if (netif_queue_stopped(dev) &&
 893	    (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
 894		netif_wake_queue(dev);
 895	}
 896}
 897
 898static void ipg_tx_timeout(struct net_device *dev)
 899{
 900	struct ipg_nic_private *sp = netdev_priv(dev);
 901	void __iomem *ioaddr = sp->ioaddr;
 902
 903	ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
 904		  IPG_AC_FIFO);
 905
 906	spin_lock_irq(&sp->lock);
 907
 908	/* Re-configure after DMA reset. */
 909	if (ipg_io_config(dev) < 0) {
 910		printk(KERN_INFO "%s: Error during re-configuration.\n",
 911		       dev->name);
 912	}
 913
 914	init_tfdlist(dev);
 915
 916	spin_unlock_irq(&sp->lock);
 917
 918	ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
 919		MAC_CTRL);
 920}
 921
 922/*
 923 * For TxComplete interrupts, free all transmit
 924 * buffers which have already been transferred via DMA
 925 * to the IPG.
 926 */
 927static void ipg_nic_txcleanup(struct net_device *dev)
 928{
 929	struct ipg_nic_private *sp = netdev_priv(dev);
 930	void __iomem *ioaddr = sp->ioaddr;
 931	unsigned int i;
 932
 933	IPG_DEBUG_MSG("_nic_txcleanup\n");
 934
 935	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
 936		/* Reading the TXSTATUS register clears the
 937		 * TX_COMPLETE interrupt.
 938		 */
 939		u32 txstatusdword = ipg_r32(TX_STATUS);
 940
 941		IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword);
 942
 943		/* Check for Transmit errors. Error bits only valid if
 944		 * TX_COMPLETE bit in the TXSTATUS register is a 1.
 945		 */
 946		if (!(txstatusdword & IPG_TS_TX_COMPLETE))
 947			break;
 948
 949		/* If in 10Mbps mode, indicate transmit is ready. */
 950		if (sp->tenmbpsmode) {
 951			netif_wake_queue(dev);
 952		}
 953
 954		/* Transmit error, increment stat counters. */
 955		if (txstatusdword & IPG_TS_TX_ERROR) {
 956			IPG_DEBUG_MSG("Transmit error.\n");
 957			sp->stats.tx_errors++;
 958		}
 959
 960		/* Late collision, re-enable transmitter. */
 961		if (txstatusdword & IPG_TS_LATE_COLLISION) {
 962			IPG_DEBUG_MSG("Late collision on transmit.\n");
 963			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
 964				IPG_MC_RSVD_MASK, MAC_CTRL);
 965		}
 966
 967		/* Maximum collisions, re-enable transmitter. */
 968		if (txstatusdword & IPG_TS_TX_MAX_COLL) {
 969			IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
 970			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
 971				IPG_MC_RSVD_MASK, MAC_CTRL);
 972		}
 973
 974		/* Transmit underrun, reset and re-enable
 975		 * transmitter.
 976		 */
 977		if (txstatusdword & IPG_TS_TX_UNDERRUN) {
 978			IPG_DEBUG_MSG("Transmitter underrun.\n");
 979			sp->stats.tx_fifo_errors++;
 980			ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
 981				  IPG_AC_NETWORK | IPG_AC_FIFO);
 982
 983			/* Re-configure after DMA reset. */
 984			if (ipg_io_config(dev) < 0) {
 985				printk(KERN_INFO
 986				       "%s: Error during re-configuration.\n",
 987				       dev->name);
 988			}
 989			init_tfdlist(dev);
 990
 991			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
 992				IPG_MC_RSVD_MASK, MAC_CTRL);
 993		}
 994	}
 995
 996	ipg_nic_txfree(dev);
 997}
 998
 999/* Provides statistical information about the IPG NIC. */
1000static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
1001{
1002	struct ipg_nic_private *sp = netdev_priv(dev);
1003	void __iomem *ioaddr = sp->ioaddr;
1004	u16 temp1;
1005	u16 temp2;
1006
1007	IPG_DEBUG_MSG("_nic_get_stats\n");
1008
1009	/* Check to see if the NIC has been initialized via nic_open,
1010	 * before trying to read statistic registers.
1011	 */
1012	if (!test_bit(__LINK_STATE_START, &dev->state))
1013		return &sp->stats;
1014
1015	sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
1016	sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
1017	sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
1018	sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
1019	temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
1020	sp->stats.rx_errors += temp1;
1021	sp->stats.rx_missed_errors += temp1;
1022	temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
1023		ipg_r32(IPG_LATECOLLISIONS);
1024	temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
1025	sp->stats.collisions += temp1;
1026	sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
1027	sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
1028		ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
1029	sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
1030
1031	/* detailed tx_errors */
1032	sp->stats.tx_carrier_errors += temp2;
1033
1034	/* detailed rx_errors */
1035	sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
1036		ipg_r16(IPG_FRAMETOOLONGERRRORS);
1037	sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
1038
1039	/* Unutilized IPG statistic registers. */
1040	ipg_r32(IPG_MCSTFRAMESRCVDOK);
1041
1042	return &sp->stats;
1043}
1044
1045/* Restore used receive buffers. */
1046static int ipg_nic_rxrestore(struct net_device *dev)
1047{
1048	struct ipg_nic_private *sp = netdev_priv(dev);
1049	const unsigned int curr = sp->rx_current;
1050	unsigned int dirty = sp->rx_dirty;
1051
1052	IPG_DEBUG_MSG("_nic_rxrestore\n");
1053
1054	for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
1055		unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
1056
1057		/* rx_copybreak may poke hole here and there. */
1058		if (sp->rx_buff[entry])
1059			continue;
1060
1061		/* Generate a new receive buffer to replace the
1062		 * current buffer (which will be released by the
1063		 * Linux system).
1064		 */
1065		if (ipg_get_rxbuff(dev, entry) < 0) {
1066			IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");
1067
1068			break;
1069		}
1070
1071		/* Reset the RFS field. */
1072		sp->rxd[entry].rfs = 0x0000000000000000;
1073	}
1074	sp->rx_dirty = dirty;
1075
1076	return 0;
1077}
1078
1079/* use jumboindex and jumbosize to control jumbo frame status
1080 * initial status is jumboindex=-1 and jumbosize=0
1081 * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1082 * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1083 * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1084 *               previous receiving and need to continue dumping the current one
1085 */
1086enum {
1087	NORMAL_PACKET,
1088	ERROR_PACKET
1089};
1090
1091enum {
1092	FRAME_NO_START_NO_END	= 0,
1093	FRAME_WITH_START		= 1,
1094	FRAME_WITH_END		= 10,
1095	FRAME_WITH_START_WITH_END = 11
1096};
1097
1098static void ipg_nic_rx_free_skb(struct net_device *dev)
1099{
1100	struct ipg_nic_private *sp = netdev_priv(dev);
1101	unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1102
1103	if (sp->rx_buff[entry]) {
1104		struct ipg_rx *rxfd = sp->rxd + entry;
1105
1106		pci_unmap_single(sp->pdev,
1107			le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1108			sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1109		dev_kfree_skb_irq(sp->rx_buff[entry]);
1110		sp->rx_buff[entry] = NULL;
1111	}
1112}
1113
1114static int ipg_nic_rx_check_frame_type(struct net_device *dev)
1115{
1116	struct ipg_nic_private *sp = netdev_priv(dev);
1117	struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
1118	int type = FRAME_NO_START_NO_END;
1119
1120	if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
1121		type += FRAME_WITH_START;
1122	if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
1123		type += FRAME_WITH_END;
1124	return type;
1125}
1126
1127static int ipg_nic_rx_check_error(struct net_device *dev)
1128{
1129	struct ipg_nic_private *sp = netdev_priv(dev);
1130	unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1131	struct ipg_rx *rxfd = sp->rxd + entry;
1132
1133	if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1134	     (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1135	      IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1136	      IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
1137		IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1138			      (unsigned long) rxfd->rfs);
1139
1140		/* Increment general receive error statistic. */
1141		sp->stats.rx_errors++;
1142
1143		/* Increment detailed receive error statistics. */
1144		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1145			IPG_DEBUG_MSG("RX FIFO overrun occurred.\n");
1146
1147			sp->stats.rx_fifo_errors++;
1148		}
1149
1150		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1151			IPG_DEBUG_MSG("RX runt occurred.\n");
1152			sp->stats.rx_length_errors++;
1153		}
1154
1155		/* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1156		 * error count handled by a IPG statistic register.
1157		 */
1158
1159		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1160			IPG_DEBUG_MSG("RX alignment error occurred.\n");
1161			sp->stats.rx_frame_errors++;
1162		}
1163
1164		/* Do nothing for IPG_RFS_RXFCSERROR, error count
1165		 * handled by a IPG statistic register.
1166		 */
1167
1168		/* Free the memory associated with the RX
1169		 * buffer since it is erroneous and we will
1170		 * not pass it to higher layer processes.
1171		 */
1172		if (sp->rx_buff[entry]) {
1173			pci_unmap_single(sp->pdev,
1174				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1175				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1176
1177			dev_kfree_skb_irq(sp->rx_buff[entry]);
1178			sp->rx_buff[entry] = NULL;
1179		}
1180		return ERROR_PACKET;
1181	}
1182	return NORMAL_PACKET;
1183}
1184
1185static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
1186					  struct ipg_nic_private *sp,
1187					  struct ipg_rx *rxfd, unsigned entry)
1188{
1189	struct ipg_jumbo *jumbo = &sp->jumbo;
1190	struct sk_buff *skb;
1191	int framelen;
1192
1193	if (jumbo->found_start) {
1194		dev_kfree_skb_irq(jumbo->skb);
1195		jumbo->found_start = 0;
1196		jumbo->current_size = 0;
1197		jumbo->skb = NULL;
1198	}
1199
1200	/* 1: found error, 0 no error */
1201	if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1202		return;
1203
1204	skb = sp->rx_buff[entry];
1205	if (!skb)
1206		return;
1207
1208	/* accept this frame and send to upper layer */
1209	framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1210	if (framelen > sp->rxfrag_size)
1211		framelen = sp->rxfrag_size;
1212
1213	skb_put(skb, framelen);
1214	skb->protocol = eth_type_trans(skb, dev);
1215	skb_checksum_none_assert(skb);
1216	netif_rx(skb);
1217	sp->rx_buff[entry] = NULL;
1218}
1219
1220static void ipg_nic_rx_with_start(struct net_device *dev,
1221				  struct ipg_nic_private *sp,
1222				  struct ipg_rx *rxfd, unsigned entry)
1223{
1224	struct ipg_jumbo *jumbo = &sp->jumbo;
1225	struct pci_dev *pdev = sp->pdev;
1226	struct sk_buff *skb;
1227
1228	/* 1: found error, 0 no error */
1229	if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1230		return;
1231
1232	/* accept this frame and send to upper layer */
1233	skb = sp->rx_buff[entry];
1234	if (!skb)
1235		return;
1236
1237	if (jumbo->found_start)
1238		dev_kfree_skb_irq(jumbo->skb);
1239
1240	pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1241			 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1242
1243	skb_put(skb, sp->rxfrag_size);
1244
1245	jumbo->found_start = 1;
1246	jumbo->current_size = sp->rxfrag_size;
1247	jumbo->skb = skb;
1248
1249	sp->rx_buff[entry] = NULL;
1250}
1251
1252static void ipg_nic_rx_with_end(struct net_device *dev,
1253				struct ipg_nic_private *sp,
1254				struct ipg_rx *rxfd, unsigned entry)
1255{
1256	struct ipg_jumbo *jumbo = &sp->jumbo;
1257
1258	/* 1: found error, 0 no error */
1259	if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1260		struct sk_buff *skb = sp->rx_buff[entry];
1261
1262		if (!skb)
1263			return;
1264
1265		if (jumbo->found_start) {
1266			int framelen, endframelen;
1267
1268			framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1269
1270			endframelen = framelen - jumbo->current_size;
1271			if (framelen > sp->rxsupport_size)
1272				dev_kfree_skb_irq(jumbo->skb);
1273			else {
1274				memcpy(skb_put(jumbo->skb, endframelen),
1275				       skb->data, endframelen);
1276
1277				jumbo->skb->protocol =
1278				    eth_type_trans(jumbo->skb, dev);
1279
1280				skb_checksum_none_assert(jumbo->skb);
1281				netif_rx(jumbo->skb);
1282			}
1283		}
1284
1285		jumbo->found_start = 0;
1286		jumbo->current_size = 0;
1287		jumbo->skb = NULL;
1288
1289		ipg_nic_rx_free_skb(dev);
1290	} else {
1291		dev_kfree_skb_irq(jumbo->skb);
1292		jumbo->found_start = 0;
1293		jumbo->current_size = 0;
1294		jumbo->skb = NULL;
1295	}
1296}
1297
1298static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
1299				       struct ipg_nic_private *sp,
1300				       struct ipg_rx *rxfd, unsigned entry)
1301{
1302	struct ipg_jumbo *jumbo = &sp->jumbo;
1303
1304	/* 1: found error, 0 no error */
1305	if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1306		struct sk_buff *skb = sp->rx_buff[entry];
1307
1308		if (skb) {
1309			if (jumbo->found_start) {
1310				jumbo->current_size += sp->rxfrag_size;
1311				if (jumbo->current_size <= sp->rxsupport_size) {
1312					memcpy(skb_put(jumbo->skb,
1313						       sp->rxfrag_size),
1314					       skb->data, sp->rxfrag_size);
1315				}
1316			}
1317			ipg_nic_rx_free_skb(dev);
1318		}
1319	} else {
1320		dev_kfree_skb_irq(jumbo->skb);
1321		jumbo->found_start = 0;
1322		jumbo->current_size = 0;
1323		jumbo->skb = NULL;
1324	}
1325}
1326
1327static int ipg_nic_rx_jumbo(struct net_device *dev)
1328{
1329	struct ipg_nic_private *sp = netdev_priv(dev);
1330	unsigned int curr = sp->rx_current;
1331	void __iomem *ioaddr = sp->ioaddr;
1332	unsigned int i;
1333
1334	IPG_DEBUG_MSG("_nic_rx\n");
1335
1336	for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1337		unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1338		struct ipg_rx *rxfd = sp->rxd + entry;
1339
1340		if (!(rxfd->rfs & cpu_to_le64(IPG_RFS_RFDDONE)))
1341			break;
1342
1343		switch (ipg_nic_rx_check_frame_type(dev)) {
1344		case FRAME_WITH_START_WITH_END:
1345			ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry);
1346			break;
1347		case FRAME_WITH_START:
1348			ipg_nic_rx_with_start(dev, sp, rxfd, entry);
1349			break;
1350		case FRAME_WITH_END:
1351			ipg_nic_rx_with_end(dev, sp, rxfd, entry);
1352			break;
1353		case FRAME_NO_START_NO_END:
1354			ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry);
1355			break;
1356		}
1357	}
1358
1359	sp->rx_current = curr;
1360
1361	if (i == IPG_MAXRFDPROCESS_COUNT) {
1362		/* There are more RFDs to process, however the
1363		 * allocated amount of RFD processing time has
1364		 * expired. Assert Interrupt Requested to make
1365		 * sure we come back to process the remaining RFDs.
1366		 */
1367		ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1368	}
1369
1370	ipg_nic_rxrestore(dev);
1371
1372	return 0;
1373}
1374
1375static int ipg_nic_rx(struct net_device *dev)
1376{
1377	/* Transfer received Ethernet frames to higher network layers. */
1378	struct ipg_nic_private *sp = netdev_priv(dev);
1379	unsigned int curr = sp->rx_current;
1380	void __iomem *ioaddr = sp->ioaddr;
1381	struct ipg_rx *rxfd;
1382	unsigned int i;
1383
1384	IPG_DEBUG_MSG("_nic_rx\n");
1385
1386#define __RFS_MASK \
1387	cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1388
1389	for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1390		unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1391		struct sk_buff *skb = sp->rx_buff[entry];
1392		unsigned int framelen;
1393
1394		rxfd = sp->rxd + entry;
1395
1396		if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
1397			break;
1398
1399		/* Get received frame length. */
1400		framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1401
1402		/* Check for jumbo frame arrival with too small
1403		 * RXFRAG_SIZE.
1404		 */
1405		if (framelen > sp->rxfrag_size) {
1406			IPG_DEBUG_MSG
1407			    ("RFS FrameLen > allocated fragment size.\n");
1408
1409			framelen = sp->rxfrag_size;
1410		}
1411
1412		if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1413		       (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1414			IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1415			IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
1416
1417			IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1418				      (unsigned long int) rxfd->rfs);
1419
1420			/* Increment general receive error statistic. */
1421			sp->stats.rx_errors++;
1422
1423			/* Increment detailed receive error statistics. */
1424			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1425				IPG_DEBUG_MSG("RX FIFO overrun occurred.\n");
1426				sp->stats.rx_fifo_errors++;
1427			}
1428
1429			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1430				IPG_DEBUG_MSG("RX runt occurred.\n");
1431				sp->stats.rx_length_errors++;
1432			}
1433
1434			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
1435			/* Do nothing, error count handled by a IPG
1436			 * statistic register.
1437			 */
1438
1439			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1440				IPG_DEBUG_MSG("RX alignment error occurred.\n");
1441				sp->stats.rx_frame_errors++;
1442			}
1443
1444			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
1445			/* Do nothing, error count handled by a IPG
1446			 * statistic register.
1447			 */
1448
1449			/* Free the memory associated with the RX
1450			 * buffer since it is erroneous and we will
1451			 * not pass it to higher layer processes.
1452			 */
1453			if (skb) {
1454				__le64 info = rxfd->frag_info;
1455
1456				pci_unmap_single(sp->pdev,
1457					le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
1458					sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1459
1460				dev_kfree_skb_irq(skb);
1461			}
1462		} else {
1463
1464			/* Adjust the new buffer length to accommodate the size
1465			 * of the received frame.
1466			 */
1467			skb_put(skb, framelen);
1468
1469			/* Set the buffer's protocol field to Ethernet. */
1470			skb->protocol = eth_type_trans(skb, dev);
1471
1472			/* The IPG encountered an error with (or
1473			 * there were no) IP/TCP/UDP checksums.
1474			 * This may or may not indicate an invalid
1475			 * IP/TCP/UDP frame was received. Let the
1476			 * upper layer decide.
1477			 */
1478			skb_checksum_none_assert(skb);
1479
1480			/* Hand off frame for higher layer processing.
1481			 * The function netif_rx() releases the sk_buff
1482			 * when processing completes.
1483			 */
1484			netif_rx(skb);
1485		}
1486
1487		/* Assure RX buffer is not reused by IPG. */
1488		sp->rx_buff[entry] = NULL;
1489	}
1490
1491	/*
1492	 * If there are more RFDs to process and the allocated amount of RFD
1493	 * processing time has expired, assert Interrupt Requested to make
1494	 * sure we come back to process the remaining RFDs.
1495	 */
1496	if (i == IPG_MAXRFDPROCESS_COUNT)
1497		ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1498
1499#ifdef IPG_DEBUG
1500	/* Check if the RFD list contained no receive frame data. */
1501	if (!i)
1502		sp->EmptyRFDListCount++;
1503#endif
1504	while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
1505	       !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
1506		 (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
1507		unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
1508
1509		rxfd = sp->rxd + entry;
1510
1511		IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");
1512
1513		/* An unexpected event, additional code needed to handle
1514		 * properly. So for the time being, just disregard the
1515		 * frame.
1516		 */
1517
1518		/* Free the memory associated with the RX
1519		 * buffer since it is erroneous and we will
1520		 * not pass it to higher layer processes.
1521		 */
1522		if (sp->rx_buff[entry]) {
1523			pci_unmap_single(sp->pdev,
1524				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1525				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1526			dev_kfree_skb_irq(sp->rx_buff[entry]);
1527		}
1528
1529		/* Assure RX buffer is not reused by IPG. */
1530		sp->rx_buff[entry] = NULL;
1531	}
1532
1533	sp->rx_current = curr;
1534
1535	/* Check to see if there are a minimum number of used
1536	 * RFDs before restoring any (should improve performance.)
1537	 */
1538	if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
1539		ipg_nic_rxrestore(dev);
1540
1541	return 0;
1542}
1543
1544static void ipg_reset_after_host_error(struct work_struct *work)
1545{
1546	struct ipg_nic_private *sp =
1547		container_of(work, struct ipg_nic_private, task.work);
1548	struct net_device *dev = sp->dev;
1549
1550	/*
1551	 * Acknowledge HostError interrupt by resetting
1552	 * IPG DMA and HOST.
1553	 */
1554	ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1555
1556	init_rfdlist(dev);
1557	init_tfdlist(dev);
1558
1559	if (ipg_io_config(dev) < 0) {
1560		printk(KERN_INFO "%s: Cannot recover from PCI error.\n",
1561		       dev->name);
1562		schedule_delayed_work(&sp->task, HZ);
1563	}
1564}
1565
1566static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
1567{
1568	struct net_device *dev = dev_inst;
1569	struct ipg_nic_private *sp = netdev_priv(dev);
1570	void __iomem *ioaddr = sp->ioaddr;
1571	unsigned int handled = 0;
1572	u16 status;
1573
1574	IPG_DEBUG_MSG("_interrupt_handler\n");
1575
1576	if (sp->is_jumbo)
1577		ipg_nic_rxrestore(dev);
1578
1579	spin_lock(&sp->lock);
1580
1581	/* Get interrupt source information, and acknowledge
1582	 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1583	 * IntRequested, MacControlFrame, LinkEvent) interrupts
1584	 * if issued. Also, all IPG interrupts are disabled by
1585	 * reading IntStatusAck.
1586	 */
1587	status = ipg_r16(INT_STATUS_ACK);
1588
1589	IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status);
1590
1591	/* Shared IRQ of remove event. */
1592	if (!(status & IPG_IS_RSVD_MASK))
1593		goto out_enable;
1594
1595	handled = 1;
1596
1597	if (unlikely(!netif_running(dev)))
1598		goto out_unlock;
1599
1600	/* If RFDListEnd interrupt, restore all used RFDs. */
1601	if (status & IPG_IS_RFD_LIST_END) {
1602		IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");
1603
1604		/* The RFD list end indicates an RFD was encountered
1605		 * with a 0 NextPtr, or with an RFDDone bit set to 1
1606		 * (indicating the RFD is not read for use by the
1607		 * IPG.) Try to restore all RFDs.
1608		 */
1609		ipg_nic_rxrestore(dev);
1610
1611#ifdef IPG_DEBUG
1612		/* Increment the RFDlistendCount counter. */
1613		sp->RFDlistendCount++;
1614#endif
1615	}
1616
1617	/* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1618	 * IntRequested interrupt, process received frames. */
1619	if ((status & IPG_IS_RX_DMA_PRIORITY) ||
1620	    (status & IPG_IS_RFD_LIST_END) ||
1621	    (status & IPG_IS_RX_DMA_COMPLETE) ||
1622	    (status & IPG_IS_INT_REQUESTED)) {
1623#ifdef IPG_DEBUG
1624		/* Increment the RFD list checked counter if interrupted
1625		 * only to check the RFD list. */
1626		if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
1627				IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
1628			       (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
1629				IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
1630				IPG_IS_UPDATE_STATS)))
1631			sp->RFDListCheckedCount++;
1632#endif
1633
1634		if (sp->is_jumbo)
1635			ipg_nic_rx_jumbo(dev);
1636		else
1637			ipg_nic_rx(dev);
1638	}
1639
1640	/* If TxDMAComplete interrupt, free used TFDs. */
1641	if (status & IPG_IS_TX_DMA_COMPLETE)
1642		ipg_nic_txfree(dev);
1643
1644	/* TxComplete interrupts indicate one of numerous actions.
1645	 * Determine what action to take based on TXSTATUS register.
1646	 */
1647	if (status & IPG_IS_TX_COMPLETE)
1648		ipg_nic_txcleanup(dev);
1649
1650	/* If UpdateStats interrupt, update Linux Ethernet statistics */
1651	if (status & IPG_IS_UPDATE_STATS)
1652		ipg_nic_get_stats(dev);
1653
1654	/* If HostError interrupt, reset IPG. */
1655	if (status & IPG_IS_HOST_ERROR) {
1656		IPG_DDEBUG_MSG("HostError Interrupt\n");
1657
1658		schedule_delayed_work(&sp->task, 0);
1659	}
1660
1661	/* If LinkEvent interrupt, resolve autonegotiation. */
1662	if (status & IPG_IS_LINK_EVENT) {
1663		if (ipg_config_autoneg(dev) < 0)
1664			printk(KERN_INFO "%s: Auto-negotiation error.\n",
1665			       dev->name);
1666	}
1667
1668	/* If MACCtrlFrame interrupt, do nothing. */
1669	if (status & IPG_IS_MAC_CTRL_FRAME)
1670		IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");
1671
1672	/* If RxComplete interrupt, do nothing. */
1673	if (status & IPG_IS_RX_COMPLETE)
1674		IPG_DEBUG_MSG("RxComplete interrupt.\n");
1675
1676	/* If RxEarly interrupt, do nothing. */
1677	if (status & IPG_IS_RX_EARLY)
1678		IPG_DEBUG_MSG("RxEarly interrupt.\n");
1679
1680out_enable:
1681	/* Re-enable IPG interrupts. */
1682	ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
1683		IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
1684		IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
1685out_unlock:
1686	spin_unlock(&sp->lock);
1687
1688	return IRQ_RETVAL(handled);
1689}
1690
1691static void ipg_rx_clear(struct ipg_nic_private *sp)
1692{
1693	unsigned int i;
1694
1695	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
1696		if (sp->rx_buff[i]) {
1697			struct ipg_rx *rxfd = sp->rxd + i;
1698
1699			dev_kfree_skb_irq(sp->rx_buff[i]);
1700			sp->rx_buff[i] = NULL;
1701			pci_unmap_single(sp->pdev,
1702				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1703				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1704		}
1705	}
1706}
1707
1708static void ipg_tx_clear(struct ipg_nic_private *sp)
1709{
1710	unsigned int i;
1711
1712	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
1713		if (sp->tx_buff[i]) {
1714			struct ipg_tx *txfd = sp->txd + i;
1715
1716			pci_unmap_single(sp->pdev,
1717				le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
1718				sp->tx_buff[i]->len, PCI_DMA_TODEVICE);
1719
1720			dev_kfree_skb_irq(sp->tx_buff[i]);
1721
1722			sp->tx_buff[i] = NULL;
1723		}
1724	}
1725}
1726
1727static int ipg_nic_open(struct net_device *dev)
1728{
1729	struct ipg_nic_private *sp = netdev_priv(dev);
1730	void __iomem *ioaddr = sp->ioaddr;
1731	struct pci_dev *pdev = sp->pdev;
1732	int rc;
1733
1734	IPG_DEBUG_MSG("_nic_open\n");
1735
1736	sp->rx_buf_sz = sp->rxsupport_size;
1737
1738	/* Check for interrupt line conflicts, and request interrupt
1739	 * line for IPG.
1740	 *
1741	 * IMPORTANT: Disable IPG interrupts prior to registering
1742	 *            IRQ.
1743	 */
1744	ipg_w16(0x0000, INT_ENABLE);
1745
1746	/* Register the interrupt line to be used by the IPG within
1747	 * the Linux system.
1748	 */
1749	rc = request_irq(pdev->irq, ipg_interrupt_handler, IRQF_SHARED,
1750			 dev->name, dev);
1751	if (rc < 0) {
1752		printk(KERN_INFO "%s: Error when requesting interrupt.\n",
1753		       dev->name);
1754		goto out;
1755	}
1756
1757	dev->irq = pdev->irq;
1758
1759	rc = -ENOMEM;
1760
1761	sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
1762				     &sp->rxd_map, GFP_KERNEL);
1763	if (!sp->rxd)
1764		goto err_free_irq_0;
1765
1766	sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
1767				     &sp->txd_map, GFP_KERNEL);
1768	if (!sp->txd)
1769		goto err_free_rx_1;
1770
1771	rc = init_rfdlist(dev);
1772	if (rc < 0) {
1773		printk(KERN_INFO "%s: Error during configuration.\n",
1774		       dev->name);
1775		goto err_free_tx_2;
1776	}
1777
1778	init_tfdlist(dev);
1779
1780	rc = ipg_io_config(dev);
1781	if (rc < 0) {
1782		printk(KERN_INFO "%s: Error during configuration.\n",
1783		       dev->name);
1784		goto err_release_tfdlist_3;
1785	}
1786
1787	/* Resolve autonegotiation. */
1788	if (ipg_config_autoneg(dev) < 0)
1789		printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name);
1790
1791	/* initialize JUMBO Frame control variable */
1792	sp->jumbo.found_start = 0;
1793	sp->jumbo.current_size = 0;
1794	sp->jumbo.skb = NULL;
1795
1796	/* Enable transmit and receive operation of the IPG. */
1797	ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
1798		 IPG_MC_RSVD_MASK, MAC_CTRL);
1799
1800	netif_start_queue(dev);
1801out:
1802	return rc;
1803
1804err_release_tfdlist_3:
1805	ipg_tx_clear(sp);
1806	ipg_rx_clear(sp);
1807err_free_tx_2:
1808	dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1809err_free_rx_1:
1810	dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1811err_free_irq_0:
1812	free_irq(pdev->irq, dev);
1813	goto out;
1814}
1815
1816static int ipg_nic_stop(struct net_device *dev)
1817{
1818	struct ipg_nic_private *sp = netdev_priv(dev);
1819	void __iomem *ioaddr = sp->ioaddr;
1820	struct pci_dev *pdev = sp->pdev;
1821
1822	IPG_DEBUG_MSG("_nic_stop\n");
1823
1824	netif_stop_queue(dev);
1825
1826	IPG_DUMPTFDLIST(dev);
1827
1828	do {
1829		(void) ipg_r16(INT_STATUS_ACK);
1830
1831		ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1832
1833		synchronize_irq(pdev->irq);
1834	} while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
1835
1836	ipg_rx_clear(sp);
1837
1838	ipg_tx_clear(sp);
1839
1840	pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1841	pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1842
1843	free_irq(pdev->irq, dev);
1844
1845	return 0;
1846}
1847
1848static netdev_tx_t ipg_nic_hard_start_xmit(struct sk_buff *skb,
1849					   struct net_device *dev)
1850{
1851	struct ipg_nic_private *sp = netdev_priv(dev);
1852	void __iomem *ioaddr = sp->ioaddr;
1853	unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
1854	unsigned long flags;
1855	struct ipg_tx *txfd;
1856
1857	IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1858
1859	/* If in 10Mbps mode, stop the transmit queue so
1860	 * no more transmit frames are accepted.
1861	 */
1862	if (sp->tenmbpsmode)
1863		netif_stop_queue(dev);
1864
1865	if (sp->reset_current_tfd) {
1866		sp->reset_current_tfd = 0;
1867		entry = 0;
1868	}
1869
1870	txfd = sp->txd + entry;
1871
1872	sp->tx_buff[entry] = skb;
1873
1874	/* Clear all TFC fields, except TFDDONE. */
1875	txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
1876
1877	/* Specify the TFC field within the TFD. */
1878	txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
1879		(IPG_TFC_FRAMEID & sp->tx_current) |
1880		(IPG_TFC_FRAGCOUNT & (1 << 24)));
1881	/*
1882	 * 16--17 (WordAlign) <- 3 (disable),
1883	 * 0--15 (FrameId) <- sp->tx_current,
1884	 * 24--27 (FragCount) <- 1
1885	 */
1886
1887	/* Request TxComplete interrupts at an interval defined
1888	 * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1889	 * Request TxComplete interrupt for every frame
1890	 * if in 10Mbps mode to accommodate problem with 10Mbps
1891	 * processing.
1892	 */
1893	if (sp->tenmbpsmode)
1894		txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
1895	txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
1896	/* Based on compilation option, determine if FCS is to be
1897	 * appended to transmit frame by IPG.
1898	 */
1899	if (!(IPG_APPEND_FCS_ON_TX))
1900		txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
1901
1902	/* Based on compilation option, determine if IP, TCP and/or
1903	 * UDP checksums are to be added to transmit frame by IPG.
1904	 */
1905	if (IPG_ADD_IPCHECKSUM_ON_TX)
1906		txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
1907
1908	if (IPG_ADD_TCPCHECKSUM_ON_TX)
1909		txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
1910
1911	if (IPG_ADD_UDPCHECKSUM_ON_TX)
1912		txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
1913
1914	/* Based on compilation option, determine if VLAN tag info is to be
1915	 * inserted into transmit frame by IPG.
1916	 */
1917	if (IPG_INSERT_MANUAL_VLAN_TAG) {
1918		txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
1919			((u64) IPG_MANUAL_VLAN_VID << 32) |
1920			((u64) IPG_MANUAL_VLAN_CFI << 44) |
1921			((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
1922	}
1923
1924	/* The fragment start location within system memory is defined
1925	 * by the sk_buff structure's data field. The physical address
1926	 * of this location within the system's virtual memory space
1927	 * is determined using the IPG_HOST2BUS_MAP function.
1928	 */
1929	txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
1930		skb->len, PCI_DMA_TODEVICE));
1931
1932	/* The length of the fragment within system memory is defined by
1933	 * the sk_buff structure's len field.
1934	 */
1935	txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
1936		((u64) (skb->len & 0xffff) << 48));
1937
1938	/* Clear the TFDDone bit last to indicate the TFD is ready
1939	 * for transfer to the IPG.
1940	 */
1941	txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
1942
1943	spin_lock_irqsave(&sp->lock, flags);
1944
1945	sp->tx_current++;
1946
1947	mmiowb();
1948
1949	ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
1950
1951	if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
1952		netif_stop_queue(dev);
1953
1954	spin_unlock_irqrestore(&sp->lock, flags);
1955
1956	return NETDEV_TX_OK;
1957}
1958
1959static void ipg_set_phy_default_param(unsigned char rev,
1960				      struct net_device *dev, int phy_address)
1961{
1962	unsigned short length;
1963	unsigned char revision;
1964	unsigned short *phy_param;
1965	unsigned short address, value;
1966
1967	phy_param = &DefaultPhyParam[0];
1968	length = *phy_param & 0x00FF;
1969	revision = (unsigned char)((*phy_param) >> 8);
1970	phy_param++;
1971	while (length != 0) {
1972		if (rev == revision) {
1973			while (length > 1) {
1974				address = *phy_param;
1975				value = *(phy_param + 1);
1976				phy_param += 2;
1977				mdio_write(dev, phy_address, address, value);
1978				length -= 4;
1979			}
1980			break;
1981		} else {
1982			phy_param += length / 2;
1983			length = *phy_param & 0x00FF;
1984			revision = (unsigned char)((*phy_param) >> 8);
1985			phy_param++;
1986		}
1987	}
1988}
1989
1990static int read_eeprom(struct net_device *dev, int eep_addr)
1991{
1992	void __iomem *ioaddr = ipg_ioaddr(dev);
1993	unsigned int i;
1994	int ret = 0;
1995	u16 value;
1996
1997	value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
1998	ipg_w16(value, EEPROM_CTRL);
1999
2000	for (i = 0; i < 1000; i++) {
2001		u16 data;
2002
2003		mdelay(10);
2004		data = ipg_r16(EEPROM_CTRL);
2005		if (!(data & IPG_EC_EEPROM_BUSY)) {
2006			ret = ipg_r16(EEPROM_DATA);
2007			break;
2008		}
2009	}
2010	return ret;
2011}
2012
2013static void ipg_init_mii(struct net_device *dev)
2014{
2015	struct ipg_nic_private *sp = netdev_priv(dev);
2016	struct mii_if_info *mii_if = &sp->mii_if;
2017	int phyaddr;
2018
2019	mii_if->dev          = dev;
2020	mii_if->mdio_read    = mdio_read;
2021	mii_if->mdio_write   = mdio_write;
2022	mii_if->phy_id_mask  = 0x1f;
2023	mii_if->reg_num_mask = 0x1f;
2024
2025	mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
2026
2027	if (phyaddr != 0x1f) {
2028		u16 mii_phyctrl, mii_1000cr;
2029
2030		mii_1000cr  = mdio_read(dev, phyaddr, MII_CTRL1000);
2031		mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
2032			GMII_PHY_1000BASETCONTROL_PreferMaster;
2033		mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
2034
2035		mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
2036
2037		/* Set default phyparam */
2038		ipg_set_phy_default_param(sp->pdev->revision, dev, phyaddr);
2039
2040		/* Reset PHY */
2041		mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
2042		mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
2043
2044	}
2045}
2046
2047static int ipg_hw_init(struct net_device *dev)
2048{
2049	struct ipg_nic_private *sp = netdev_priv(dev);
2050	void __iomem *ioaddr = sp->ioaddr;
2051	unsigned int i;
2052	int rc;
2053
2054	/* Read/Write and Reset EEPROM Value */
2055	/* Read LED Mode Configuration from EEPROM */
2056	sp->led_mode = read_eeprom(dev, 6);
2057
2058	/* Reset all functions within the IPG. Do not assert
2059	 * RST_OUT as not compatible with some PHYs.
2060	 */
2061	rc = ipg_reset(dev, IPG_RESET_MASK);
2062	if (rc < 0)
2063		goto out;
2064
2065	ipg_init_mii(dev);
2066
2067	/* Read MAC Address from EEPROM */
2068	for (i = 0; i < 3; i++)
2069		sp->station_addr[i] = read_eeprom(dev, 16 + i);
2070
2071	for (i = 0; i < 3; i++)
2072		ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
2073
2074	/* Set station address in ethernet_device structure. */
2075	dev->dev_addr[0] =  ipg_r16(STATION_ADDRESS_0) & 0x00ff;
2076	dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
2077	dev->dev_addr[2] =  ipg_r16(STATION_ADDRESS_1) & 0x00ff;
2078	dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
2079	dev->dev_addr[4] =  ipg_r16(STATION_ADDRESS_2) & 0x00ff;
2080	dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
2081out:
2082	return rc;
2083}
2084
2085static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2086{
2087	struct ipg_nic_private *sp = netdev_priv(dev);
2088	int rc;
2089
2090	mutex_lock(&sp->mii_mutex);
2091	rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
2092	mutex_unlock(&sp->mii_mutex);
2093
2094	return rc;
2095}
2096
2097static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
2098{
2099	struct ipg_nic_private *sp = netdev_priv(dev);
2100	int err;
2101
2102	/* Function to accommodate changes to Maximum Transfer Unit
2103	 * (or MTU) of IPG NIC. Cannot use default function since
2104	 * the default will not allow for MTU > 1500 bytes.
2105	 */
2106
2107	IPG_DEBUG_MSG("_nic_change_mtu\n");
2108
2109	/*
2110	 * Check that the new MTU value is between 68 (14 byte header, 46 byte
2111	 * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU.
2112	 */
2113	if (new_mtu < 68 || new_mtu > 10240)
2114		return -EINVAL;
2115
2116	err = ipg_nic_stop(dev);
2117	if (err)
2118		return err;
2119
2120	dev->mtu = new_mtu;
2121
2122	sp->max_rxframe_size = new_mtu;
2123
2124	sp->rxfrag_size = new_mtu;
2125	if (sp->rxfrag_size > 4088)
2126		sp->rxfrag_size = 4088;
2127
2128	sp->rxsupport_size = sp->max_rxframe_size;
2129
2130	if (new_mtu > 0x0600)
2131		sp->is_jumbo = true;
2132	else
2133		sp->is_jumbo = false;
2134
2135	return ipg_nic_open(dev);
2136}
2137
2138static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2139{
2140	struct ipg_nic_private *sp = netdev_priv(dev);
2141	int rc;
2142
2143	mutex_lock(&sp->mii_mutex);
2144	rc = mii_ethtool_gset(&sp->mii_if, cmd);
2145	mutex_unlock(&sp->mii_mutex);
2146
2147	return rc;
2148}
2149
2150static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2151{
2152	struct ipg_nic_private *sp = netdev_priv(dev);
2153	int rc;
2154
2155	mutex_lock(&sp->mii_mutex);
2156	rc = mii_ethtool_sset(&sp->mii_if, cmd);
2157	mutex_unlock(&sp->mii_mutex);
2158
2159	return rc;
2160}
2161
2162static int ipg_nway_reset(struct net_device *dev)
2163{
2164	struct ipg_nic_private *sp = netdev_priv(dev);
2165	int rc;
2166
2167	mutex_lock(&sp->mii_mutex);
2168	rc = mii_nway_restart(&sp->mii_if);
2169	mutex_unlock(&sp->mii_mutex);
2170
2171	return rc;
2172}
2173
2174static const struct ethtool_ops ipg_ethtool_ops = {
2175	.get_settings = ipg_get_settings,
2176	.set_settings = ipg_set_settings,
2177	.nway_reset   = ipg_nway_reset,
2178};
2179
2180static void __devexit ipg_remove(struct pci_dev *pdev)
2181{
2182	struct net_device *dev = pci_get_drvdata(pdev);
2183	struct ipg_nic_private *sp = netdev_priv(dev);
2184
2185	IPG_DEBUG_MSG("_remove\n");
2186
2187	/* Un-register Ethernet device. */
2188	unregister_netdev(dev);
2189
2190	pci_iounmap(pdev, sp->ioaddr);
2191
2192	pci_release_regions(pdev);
2193
2194	free_netdev(dev);
2195	pci_disable_device(pdev);
2196	pci_set_drvdata(pdev, NULL);
2197}
2198
2199static const struct net_device_ops ipg_netdev_ops = {
2200	.ndo_open		= ipg_nic_open,
2201	.ndo_stop		= ipg_nic_stop,
2202	.ndo_start_xmit		= ipg_nic_hard_start_xmit,
2203	.ndo_get_stats		= ipg_nic_get_stats,
2204	.ndo_set_multicast_list = ipg_nic_set_multicast_list,
2205	.ndo_do_ioctl		= ipg_ioctl,
2206	.ndo_tx_timeout 	= ipg_tx_timeout,
2207	.ndo_change_mtu 	= ipg_nic_change_mtu,
2208	.ndo_set_mac_address	= eth_mac_addr,
2209	.ndo_validate_addr	= eth_validate_addr,
2210};
2211
2212static int __devinit ipg_probe(struct pci_dev *pdev,
2213			       const struct pci_device_id *id)
2214{
2215	unsigned int i = id->driver_data;
2216	struct ipg_nic_private *sp;
2217	struct net_device *dev;
2218	void __iomem *ioaddr;
2219	int rc;
2220
2221	rc = pci_enable_device(pdev);
2222	if (rc < 0)
2223		goto out;
2224
2225	printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
2226
2227	pci_set_master(pdev);
2228
2229	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
2230	if (rc < 0) {
2231		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2232		if (rc < 0) {
2233			printk(KERN_ERR "%s: DMA config failed.\n",
2234			       pci_name(pdev));
2235			goto err_disable_0;
2236		}
2237	}
2238
2239	/*
2240	 * Initialize net device.
2241	 */
2242	dev = alloc_etherdev(sizeof(struct ipg_nic_private));
2243	if (!dev) {
2244		printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev));
2245		rc = -ENOMEM;
2246		goto err_disable_0;
2247	}
2248
2249	sp = netdev_priv(dev);
2250	spin_lock_init(&sp->lock);
2251	mutex_init(&sp->mii_mutex);
2252
2253	sp->is_jumbo = IPG_IS_JUMBO;
2254	sp->rxfrag_size = IPG_RXFRAG_SIZE;
2255	sp->rxsupport_size = IPG_RXSUPPORT_SIZE;
2256	sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE;
2257
2258	/* Declare IPG NIC functions for Ethernet device methods.
2259	 */
2260	dev->netdev_ops = &ipg_netdev_ops;
2261	SET_NETDEV_DEV(dev, &pdev->dev);
2262	SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);
2263
2264	rc = pci_request_regions(pdev, DRV_NAME);
2265	if (rc)
2266		goto err_free_dev_1;
2267
2268	ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
2269	if (!ioaddr) {
2270		printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev));
2271		rc = -EIO;
2272		goto err_release_regions_2;
2273	}
2274
2275	/* Save the pointer to the PCI device information. */
2276	sp->ioaddr = ioaddr;
2277	sp->pdev = pdev;
2278	sp->dev = dev;
2279
2280	INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
2281
2282	pci_set_drvdata(pdev, dev);
2283
2284	rc = ipg_hw_init(dev);
2285	if (rc < 0)
2286		goto err_unmap_3;
2287
2288	rc = register_netdev(dev);
2289	if (rc < 0)
2290		goto err_unmap_3;
2291
2292	printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name);
2293out:
2294	return rc;
2295
2296err_unmap_3:
2297	pci_iounmap(pdev, ioaddr);
2298err_release_regions_2:
2299	pci_release_regions(pdev);
2300err_free_dev_1:
2301	free_netdev(dev);
2302err_disable_0:
2303	pci_disable_device(pdev);
2304	goto out;
2305}
2306
2307static struct pci_driver ipg_pci_driver = {
2308	.name		= IPG_DRIVER_NAME,
2309	.id_table	= ipg_pci_tbl,
2310	.probe		= ipg_probe,
2311	.remove		= __devexit_p(ipg_remove),
2312};
2313
2314static int __init ipg_init_module(void)
2315{
2316	return pci_register_driver(&ipg_pci_driver);
2317}
2318
2319static void __exit ipg_exit_module(void)
2320{
2321	pci_unregister_driver(&ipg_pci_driver);
2322}
2323
2324module_init(ipg_init_module);
2325module_exit(ipg_exit_module);