Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
Note: File does not exist in v6.8.
   1/*******************************************************************************
   2
   3  Intel(R) Gigabit Ethernet Linux driver
   4  Copyright(c) 2007-2011 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28/* ethtool support for igb */
  29
  30#include <linux/vmalloc.h>
  31#include <linux/netdevice.h>
  32#include <linux/pci.h>
  33#include <linux/delay.h>
  34#include <linux/interrupt.h>
  35#include <linux/if_ether.h>
  36#include <linux/ethtool.h>
  37#include <linux/sched.h>
  38#include <linux/slab.h>
  39
  40#include "igb.h"
  41
  42struct igb_stats {
  43	char stat_string[ETH_GSTRING_LEN];
  44	int sizeof_stat;
  45	int stat_offset;
  46};
  47
  48#define IGB_STAT(_name, _stat) { \
  49	.stat_string = _name, \
  50	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
  51	.stat_offset = offsetof(struct igb_adapter, _stat) \
  52}
  53static const struct igb_stats igb_gstrings_stats[] = {
  54	IGB_STAT("rx_packets", stats.gprc),
  55	IGB_STAT("tx_packets", stats.gptc),
  56	IGB_STAT("rx_bytes", stats.gorc),
  57	IGB_STAT("tx_bytes", stats.gotc),
  58	IGB_STAT("rx_broadcast", stats.bprc),
  59	IGB_STAT("tx_broadcast", stats.bptc),
  60	IGB_STAT("rx_multicast", stats.mprc),
  61	IGB_STAT("tx_multicast", stats.mptc),
  62	IGB_STAT("multicast", stats.mprc),
  63	IGB_STAT("collisions", stats.colc),
  64	IGB_STAT("rx_crc_errors", stats.crcerrs),
  65	IGB_STAT("rx_no_buffer_count", stats.rnbc),
  66	IGB_STAT("rx_missed_errors", stats.mpc),
  67	IGB_STAT("tx_aborted_errors", stats.ecol),
  68	IGB_STAT("tx_carrier_errors", stats.tncrs),
  69	IGB_STAT("tx_window_errors", stats.latecol),
  70	IGB_STAT("tx_abort_late_coll", stats.latecol),
  71	IGB_STAT("tx_deferred_ok", stats.dc),
  72	IGB_STAT("tx_single_coll_ok", stats.scc),
  73	IGB_STAT("tx_multi_coll_ok", stats.mcc),
  74	IGB_STAT("tx_timeout_count", tx_timeout_count),
  75	IGB_STAT("rx_long_length_errors", stats.roc),
  76	IGB_STAT("rx_short_length_errors", stats.ruc),
  77	IGB_STAT("rx_align_errors", stats.algnerrc),
  78	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
  79	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
  80	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
  81	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
  82	IGB_STAT("tx_flow_control_xon", stats.xontxc),
  83	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
  84	IGB_STAT("rx_long_byte_count", stats.gorc),
  85	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
  86	IGB_STAT("tx_smbus", stats.mgptc),
  87	IGB_STAT("rx_smbus", stats.mgprc),
  88	IGB_STAT("dropped_smbus", stats.mgpdc),
  89	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
  90	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
  91	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
  92	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
  93};
  94
  95#define IGB_NETDEV_STAT(_net_stat) { \
  96	.stat_string = __stringify(_net_stat), \
  97	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
  98	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
  99}
 100static const struct igb_stats igb_gstrings_net_stats[] = {
 101	IGB_NETDEV_STAT(rx_errors),
 102	IGB_NETDEV_STAT(tx_errors),
 103	IGB_NETDEV_STAT(tx_dropped),
 104	IGB_NETDEV_STAT(rx_length_errors),
 105	IGB_NETDEV_STAT(rx_over_errors),
 106	IGB_NETDEV_STAT(rx_frame_errors),
 107	IGB_NETDEV_STAT(rx_fifo_errors),
 108	IGB_NETDEV_STAT(tx_fifo_errors),
 109	IGB_NETDEV_STAT(tx_heartbeat_errors)
 110};
 111
 112#define IGB_GLOBAL_STATS_LEN	\
 113	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
 114#define IGB_NETDEV_STATS_LEN	\
 115	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
 116#define IGB_RX_QUEUE_STATS_LEN \
 117	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
 118
 119#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
 120
 121#define IGB_QUEUE_STATS_LEN \
 122	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
 123	  IGB_RX_QUEUE_STATS_LEN) + \
 124	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
 125	  IGB_TX_QUEUE_STATS_LEN))
 126#define IGB_STATS_LEN \
 127	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
 128
 129static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
 130	"Register test  (offline)", "Eeprom test    (offline)",
 131	"Interrupt test (offline)", "Loopback test  (offline)",
 132	"Link test   (on/offline)"
 133};
 134#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
 135
 136static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
 137{
 138	struct igb_adapter *adapter = netdev_priv(netdev);
 139	struct e1000_hw *hw = &adapter->hw;
 140	u32 status;
 141
 142	if (hw->phy.media_type == e1000_media_type_copper) {
 143
 144		ecmd->supported = (SUPPORTED_10baseT_Half |
 145				   SUPPORTED_10baseT_Full |
 146				   SUPPORTED_100baseT_Half |
 147				   SUPPORTED_100baseT_Full |
 148				   SUPPORTED_1000baseT_Full|
 149				   SUPPORTED_Autoneg |
 150				   SUPPORTED_TP);
 151		ecmd->advertising = ADVERTISED_TP;
 152
 153		if (hw->mac.autoneg == 1) {
 154			ecmd->advertising |= ADVERTISED_Autoneg;
 155			/* the e1000 autoneg seems to match ethtool nicely */
 156			ecmd->advertising |= hw->phy.autoneg_advertised;
 157		}
 158
 159		ecmd->port = PORT_TP;
 160		ecmd->phy_address = hw->phy.addr;
 161	} else {
 162		ecmd->supported   = (SUPPORTED_1000baseT_Full |
 163				     SUPPORTED_FIBRE |
 164				     SUPPORTED_Autoneg);
 165
 166		ecmd->advertising = (ADVERTISED_1000baseT_Full |
 167				     ADVERTISED_FIBRE |
 168				     ADVERTISED_Autoneg);
 169
 170		ecmd->port = PORT_FIBRE;
 171	}
 172
 173	ecmd->transceiver = XCVR_INTERNAL;
 174
 175	status = rd32(E1000_STATUS);
 176
 177	if (status & E1000_STATUS_LU) {
 178
 179		if ((status & E1000_STATUS_SPEED_1000) ||
 180		    hw->phy.media_type != e1000_media_type_copper)
 181			ethtool_cmd_speed_set(ecmd, SPEED_1000);
 182		else if (status & E1000_STATUS_SPEED_100)
 183			ethtool_cmd_speed_set(ecmd, SPEED_100);
 184		else
 185			ethtool_cmd_speed_set(ecmd, SPEED_10);
 186
 187		if ((status & E1000_STATUS_FD) ||
 188		    hw->phy.media_type != e1000_media_type_copper)
 189			ecmd->duplex = DUPLEX_FULL;
 190		else
 191			ecmd->duplex = DUPLEX_HALF;
 192	} else {
 193		ethtool_cmd_speed_set(ecmd, -1);
 194		ecmd->duplex = -1;
 195	}
 196
 197	ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
 198	return 0;
 199}
 200
 201static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
 202{
 203	struct igb_adapter *adapter = netdev_priv(netdev);
 204	struct e1000_hw *hw = &adapter->hw;
 205
 206	/* When SoL/IDER sessions are active, autoneg/speed/duplex
 207	 * cannot be changed */
 208	if (igb_check_reset_block(hw)) {
 209		dev_err(&adapter->pdev->dev, "Cannot change link "
 210			"characteristics when SoL/IDER is active.\n");
 211		return -EINVAL;
 212	}
 213
 214	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 215		msleep(1);
 216
 217	if (ecmd->autoneg == AUTONEG_ENABLE) {
 218		hw->mac.autoneg = 1;
 219		hw->phy.autoneg_advertised = ecmd->advertising |
 220					     ADVERTISED_TP |
 221					     ADVERTISED_Autoneg;
 222		ecmd->advertising = hw->phy.autoneg_advertised;
 223		if (adapter->fc_autoneg)
 224			hw->fc.requested_mode = e1000_fc_default;
 225	} else {
 226		u32 speed = ethtool_cmd_speed(ecmd);
 227		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
 228			clear_bit(__IGB_RESETTING, &adapter->state);
 229			return -EINVAL;
 230		}
 231	}
 232
 233	/* reset the link */
 234	if (netif_running(adapter->netdev)) {
 235		igb_down(adapter);
 236		igb_up(adapter);
 237	} else
 238		igb_reset(adapter);
 239
 240	clear_bit(__IGB_RESETTING, &adapter->state);
 241	return 0;
 242}
 243
 244static u32 igb_get_link(struct net_device *netdev)
 245{
 246	struct igb_adapter *adapter = netdev_priv(netdev);
 247	struct e1000_mac_info *mac = &adapter->hw.mac;
 248
 249	/*
 250	 * If the link is not reported up to netdev, interrupts are disabled,
 251	 * and so the physical link state may have changed since we last
 252	 * looked. Set get_link_status to make sure that the true link
 253	 * state is interrogated, rather than pulling a cached and possibly
 254	 * stale link state from the driver.
 255	 */
 256	if (!netif_carrier_ok(netdev))
 257		mac->get_link_status = 1;
 258
 259	return igb_has_link(adapter);
 260}
 261
 262static void igb_get_pauseparam(struct net_device *netdev,
 263			       struct ethtool_pauseparam *pause)
 264{
 265	struct igb_adapter *adapter = netdev_priv(netdev);
 266	struct e1000_hw *hw = &adapter->hw;
 267
 268	pause->autoneg =
 269		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 270
 271	if (hw->fc.current_mode == e1000_fc_rx_pause)
 272		pause->rx_pause = 1;
 273	else if (hw->fc.current_mode == e1000_fc_tx_pause)
 274		pause->tx_pause = 1;
 275	else if (hw->fc.current_mode == e1000_fc_full) {
 276		pause->rx_pause = 1;
 277		pause->tx_pause = 1;
 278	}
 279}
 280
 281static int igb_set_pauseparam(struct net_device *netdev,
 282			      struct ethtool_pauseparam *pause)
 283{
 284	struct igb_adapter *adapter = netdev_priv(netdev);
 285	struct e1000_hw *hw = &adapter->hw;
 286	int retval = 0;
 287
 288	adapter->fc_autoneg = pause->autoneg;
 289
 290	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 291		msleep(1);
 292
 293	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 294		hw->fc.requested_mode = e1000_fc_default;
 295		if (netif_running(adapter->netdev)) {
 296			igb_down(adapter);
 297			igb_up(adapter);
 298		} else {
 299			igb_reset(adapter);
 300		}
 301	} else {
 302		if (pause->rx_pause && pause->tx_pause)
 303			hw->fc.requested_mode = e1000_fc_full;
 304		else if (pause->rx_pause && !pause->tx_pause)
 305			hw->fc.requested_mode = e1000_fc_rx_pause;
 306		else if (!pause->rx_pause && pause->tx_pause)
 307			hw->fc.requested_mode = e1000_fc_tx_pause;
 308		else if (!pause->rx_pause && !pause->tx_pause)
 309			hw->fc.requested_mode = e1000_fc_none;
 310
 311		hw->fc.current_mode = hw->fc.requested_mode;
 312
 313		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
 314			  igb_force_mac_fc(hw) : igb_setup_link(hw));
 315	}
 316
 317	clear_bit(__IGB_RESETTING, &adapter->state);
 318	return retval;
 319}
 320
 321static u32 igb_get_msglevel(struct net_device *netdev)
 322{
 323	struct igb_adapter *adapter = netdev_priv(netdev);
 324	return adapter->msg_enable;
 325}
 326
 327static void igb_set_msglevel(struct net_device *netdev, u32 data)
 328{
 329	struct igb_adapter *adapter = netdev_priv(netdev);
 330	adapter->msg_enable = data;
 331}
 332
 333static int igb_get_regs_len(struct net_device *netdev)
 334{
 335#define IGB_REGS_LEN 551
 336	return IGB_REGS_LEN * sizeof(u32);
 337}
 338
 339static void igb_get_regs(struct net_device *netdev,
 340			 struct ethtool_regs *regs, void *p)
 341{
 342	struct igb_adapter *adapter = netdev_priv(netdev);
 343	struct e1000_hw *hw = &adapter->hw;
 344	u32 *regs_buff = p;
 345	u8 i;
 346
 347	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
 348
 349	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
 350
 351	/* General Registers */
 352	regs_buff[0] = rd32(E1000_CTRL);
 353	regs_buff[1] = rd32(E1000_STATUS);
 354	regs_buff[2] = rd32(E1000_CTRL_EXT);
 355	regs_buff[3] = rd32(E1000_MDIC);
 356	regs_buff[4] = rd32(E1000_SCTL);
 357	regs_buff[5] = rd32(E1000_CONNSW);
 358	regs_buff[6] = rd32(E1000_VET);
 359	regs_buff[7] = rd32(E1000_LEDCTL);
 360	regs_buff[8] = rd32(E1000_PBA);
 361	regs_buff[9] = rd32(E1000_PBS);
 362	regs_buff[10] = rd32(E1000_FRTIMER);
 363	regs_buff[11] = rd32(E1000_TCPTIMER);
 364
 365	/* NVM Register */
 366	regs_buff[12] = rd32(E1000_EECD);
 367
 368	/* Interrupt */
 369	/* Reading EICS for EICR because they read the
 370	 * same but EICS does not clear on read */
 371	regs_buff[13] = rd32(E1000_EICS);
 372	regs_buff[14] = rd32(E1000_EICS);
 373	regs_buff[15] = rd32(E1000_EIMS);
 374	regs_buff[16] = rd32(E1000_EIMC);
 375	regs_buff[17] = rd32(E1000_EIAC);
 376	regs_buff[18] = rd32(E1000_EIAM);
 377	/* Reading ICS for ICR because they read the
 378	 * same but ICS does not clear on read */
 379	regs_buff[19] = rd32(E1000_ICS);
 380	regs_buff[20] = rd32(E1000_ICS);
 381	regs_buff[21] = rd32(E1000_IMS);
 382	regs_buff[22] = rd32(E1000_IMC);
 383	regs_buff[23] = rd32(E1000_IAC);
 384	regs_buff[24] = rd32(E1000_IAM);
 385	regs_buff[25] = rd32(E1000_IMIRVP);
 386
 387	/* Flow Control */
 388	regs_buff[26] = rd32(E1000_FCAL);
 389	regs_buff[27] = rd32(E1000_FCAH);
 390	regs_buff[28] = rd32(E1000_FCTTV);
 391	regs_buff[29] = rd32(E1000_FCRTL);
 392	regs_buff[30] = rd32(E1000_FCRTH);
 393	regs_buff[31] = rd32(E1000_FCRTV);
 394
 395	/* Receive */
 396	regs_buff[32] = rd32(E1000_RCTL);
 397	regs_buff[33] = rd32(E1000_RXCSUM);
 398	regs_buff[34] = rd32(E1000_RLPML);
 399	regs_buff[35] = rd32(E1000_RFCTL);
 400	regs_buff[36] = rd32(E1000_MRQC);
 401	regs_buff[37] = rd32(E1000_VT_CTL);
 402
 403	/* Transmit */
 404	regs_buff[38] = rd32(E1000_TCTL);
 405	regs_buff[39] = rd32(E1000_TCTL_EXT);
 406	regs_buff[40] = rd32(E1000_TIPG);
 407	regs_buff[41] = rd32(E1000_DTXCTL);
 408
 409	/* Wake Up */
 410	regs_buff[42] = rd32(E1000_WUC);
 411	regs_buff[43] = rd32(E1000_WUFC);
 412	regs_buff[44] = rd32(E1000_WUS);
 413	regs_buff[45] = rd32(E1000_IPAV);
 414	regs_buff[46] = rd32(E1000_WUPL);
 415
 416	/* MAC */
 417	regs_buff[47] = rd32(E1000_PCS_CFG0);
 418	regs_buff[48] = rd32(E1000_PCS_LCTL);
 419	regs_buff[49] = rd32(E1000_PCS_LSTAT);
 420	regs_buff[50] = rd32(E1000_PCS_ANADV);
 421	regs_buff[51] = rd32(E1000_PCS_LPAB);
 422	regs_buff[52] = rd32(E1000_PCS_NPTX);
 423	regs_buff[53] = rd32(E1000_PCS_LPABNP);
 424
 425	/* Statistics */
 426	regs_buff[54] = adapter->stats.crcerrs;
 427	regs_buff[55] = adapter->stats.algnerrc;
 428	regs_buff[56] = adapter->stats.symerrs;
 429	regs_buff[57] = adapter->stats.rxerrc;
 430	regs_buff[58] = adapter->stats.mpc;
 431	regs_buff[59] = adapter->stats.scc;
 432	regs_buff[60] = adapter->stats.ecol;
 433	regs_buff[61] = adapter->stats.mcc;
 434	regs_buff[62] = adapter->stats.latecol;
 435	regs_buff[63] = adapter->stats.colc;
 436	regs_buff[64] = adapter->stats.dc;
 437	regs_buff[65] = adapter->stats.tncrs;
 438	regs_buff[66] = adapter->stats.sec;
 439	regs_buff[67] = adapter->stats.htdpmc;
 440	regs_buff[68] = adapter->stats.rlec;
 441	regs_buff[69] = adapter->stats.xonrxc;
 442	regs_buff[70] = adapter->stats.xontxc;
 443	regs_buff[71] = adapter->stats.xoffrxc;
 444	regs_buff[72] = adapter->stats.xofftxc;
 445	regs_buff[73] = adapter->stats.fcruc;
 446	regs_buff[74] = adapter->stats.prc64;
 447	regs_buff[75] = adapter->stats.prc127;
 448	regs_buff[76] = adapter->stats.prc255;
 449	regs_buff[77] = adapter->stats.prc511;
 450	regs_buff[78] = adapter->stats.prc1023;
 451	regs_buff[79] = adapter->stats.prc1522;
 452	regs_buff[80] = adapter->stats.gprc;
 453	regs_buff[81] = adapter->stats.bprc;
 454	regs_buff[82] = adapter->stats.mprc;
 455	regs_buff[83] = adapter->stats.gptc;
 456	regs_buff[84] = adapter->stats.gorc;
 457	regs_buff[86] = adapter->stats.gotc;
 458	regs_buff[88] = adapter->stats.rnbc;
 459	regs_buff[89] = adapter->stats.ruc;
 460	regs_buff[90] = adapter->stats.rfc;
 461	regs_buff[91] = adapter->stats.roc;
 462	regs_buff[92] = adapter->stats.rjc;
 463	regs_buff[93] = adapter->stats.mgprc;
 464	regs_buff[94] = adapter->stats.mgpdc;
 465	regs_buff[95] = adapter->stats.mgptc;
 466	regs_buff[96] = adapter->stats.tor;
 467	regs_buff[98] = adapter->stats.tot;
 468	regs_buff[100] = adapter->stats.tpr;
 469	regs_buff[101] = adapter->stats.tpt;
 470	regs_buff[102] = adapter->stats.ptc64;
 471	regs_buff[103] = adapter->stats.ptc127;
 472	regs_buff[104] = adapter->stats.ptc255;
 473	regs_buff[105] = adapter->stats.ptc511;
 474	regs_buff[106] = adapter->stats.ptc1023;
 475	regs_buff[107] = adapter->stats.ptc1522;
 476	regs_buff[108] = adapter->stats.mptc;
 477	regs_buff[109] = adapter->stats.bptc;
 478	regs_buff[110] = adapter->stats.tsctc;
 479	regs_buff[111] = adapter->stats.iac;
 480	regs_buff[112] = adapter->stats.rpthc;
 481	regs_buff[113] = adapter->stats.hgptc;
 482	regs_buff[114] = adapter->stats.hgorc;
 483	regs_buff[116] = adapter->stats.hgotc;
 484	regs_buff[118] = adapter->stats.lenerrs;
 485	regs_buff[119] = adapter->stats.scvpc;
 486	regs_buff[120] = adapter->stats.hrmpc;
 487
 488	for (i = 0; i < 4; i++)
 489		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
 490	for (i = 0; i < 4; i++)
 491		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
 492	for (i = 0; i < 4; i++)
 493		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
 494	for (i = 0; i < 4; i++)
 495		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
 496	for (i = 0; i < 4; i++)
 497		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
 498	for (i = 0; i < 4; i++)
 499		regs_buff[141 + i] = rd32(E1000_RDH(i));
 500	for (i = 0; i < 4; i++)
 501		regs_buff[145 + i] = rd32(E1000_RDT(i));
 502	for (i = 0; i < 4; i++)
 503		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
 504
 505	for (i = 0; i < 10; i++)
 506		regs_buff[153 + i] = rd32(E1000_EITR(i));
 507	for (i = 0; i < 8; i++)
 508		regs_buff[163 + i] = rd32(E1000_IMIR(i));
 509	for (i = 0; i < 8; i++)
 510		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
 511	for (i = 0; i < 16; i++)
 512		regs_buff[179 + i] = rd32(E1000_RAL(i));
 513	for (i = 0; i < 16; i++)
 514		regs_buff[195 + i] = rd32(E1000_RAH(i));
 515
 516	for (i = 0; i < 4; i++)
 517		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
 518	for (i = 0; i < 4; i++)
 519		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
 520	for (i = 0; i < 4; i++)
 521		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
 522	for (i = 0; i < 4; i++)
 523		regs_buff[223 + i] = rd32(E1000_TDH(i));
 524	for (i = 0; i < 4; i++)
 525		regs_buff[227 + i] = rd32(E1000_TDT(i));
 526	for (i = 0; i < 4; i++)
 527		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
 528	for (i = 0; i < 4; i++)
 529		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
 530	for (i = 0; i < 4; i++)
 531		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
 532	for (i = 0; i < 4; i++)
 533		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
 534
 535	for (i = 0; i < 4; i++)
 536		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
 537	for (i = 0; i < 4; i++)
 538		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
 539	for (i = 0; i < 32; i++)
 540		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
 541	for (i = 0; i < 128; i++)
 542		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
 543	for (i = 0; i < 128; i++)
 544		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
 545	for (i = 0; i < 4; i++)
 546		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
 547
 548	regs_buff[547] = rd32(E1000_TDFH);
 549	regs_buff[548] = rd32(E1000_TDFT);
 550	regs_buff[549] = rd32(E1000_TDFHS);
 551	regs_buff[550] = rd32(E1000_TDFPC);
 552	regs_buff[551] = adapter->stats.o2bgptc;
 553	regs_buff[552] = adapter->stats.b2ospc;
 554	regs_buff[553] = adapter->stats.o2bspc;
 555	regs_buff[554] = adapter->stats.b2ogprc;
 556}
 557
 558static int igb_get_eeprom_len(struct net_device *netdev)
 559{
 560	struct igb_adapter *adapter = netdev_priv(netdev);
 561	return adapter->hw.nvm.word_size * 2;
 562}
 563
 564static int igb_get_eeprom(struct net_device *netdev,
 565			  struct ethtool_eeprom *eeprom, u8 *bytes)
 566{
 567	struct igb_adapter *adapter = netdev_priv(netdev);
 568	struct e1000_hw *hw = &adapter->hw;
 569	u16 *eeprom_buff;
 570	int first_word, last_word;
 571	int ret_val = 0;
 572	u16 i;
 573
 574	if (eeprom->len == 0)
 575		return -EINVAL;
 576
 577	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
 578
 579	first_word = eeprom->offset >> 1;
 580	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 581
 582	eeprom_buff = kmalloc(sizeof(u16) *
 583			(last_word - first_word + 1), GFP_KERNEL);
 584	if (!eeprom_buff)
 585		return -ENOMEM;
 586
 587	if (hw->nvm.type == e1000_nvm_eeprom_spi)
 588		ret_val = hw->nvm.ops.read(hw, first_word,
 589					    last_word - first_word + 1,
 590					    eeprom_buff);
 591	else {
 592		for (i = 0; i < last_word - first_word + 1; i++) {
 593			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
 594						    &eeprom_buff[i]);
 595			if (ret_val)
 596				break;
 597		}
 598	}
 599
 600	/* Device's eeprom is always little-endian, word addressable */
 601	for (i = 0; i < last_word - first_word + 1; i++)
 602		le16_to_cpus(&eeprom_buff[i]);
 603
 604	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
 605			eeprom->len);
 606	kfree(eeprom_buff);
 607
 608	return ret_val;
 609}
 610
 611static int igb_set_eeprom(struct net_device *netdev,
 612			  struct ethtool_eeprom *eeprom, u8 *bytes)
 613{
 614	struct igb_adapter *adapter = netdev_priv(netdev);
 615	struct e1000_hw *hw = &adapter->hw;
 616	u16 *eeprom_buff;
 617	void *ptr;
 618	int max_len, first_word, last_word, ret_val = 0;
 619	u16 i;
 620
 621	if (eeprom->len == 0)
 622		return -EOPNOTSUPP;
 623
 624	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
 625		return -EFAULT;
 626
 627	max_len = hw->nvm.word_size * 2;
 628
 629	first_word = eeprom->offset >> 1;
 630	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 631	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 632	if (!eeprom_buff)
 633		return -ENOMEM;
 634
 635	ptr = (void *)eeprom_buff;
 636
 637	if (eeprom->offset & 1) {
 638		/* need read/modify/write of first changed EEPROM word */
 639		/* only the second byte of the word is being modified */
 640		ret_val = hw->nvm.ops.read(hw, first_word, 1,
 641					    &eeprom_buff[0]);
 642		ptr++;
 643	}
 644	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
 645		/* need read/modify/write of last changed EEPROM word */
 646		/* only the first byte of the word is being modified */
 647		ret_val = hw->nvm.ops.read(hw, last_word, 1,
 648				   &eeprom_buff[last_word - first_word]);
 649	}
 650
 651	/* Device's eeprom is always little-endian, word addressable */
 652	for (i = 0; i < last_word - first_word + 1; i++)
 653		le16_to_cpus(&eeprom_buff[i]);
 654
 655	memcpy(ptr, bytes, eeprom->len);
 656
 657	for (i = 0; i < last_word - first_word + 1; i++)
 658		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
 659
 660	ret_val = hw->nvm.ops.write(hw, first_word,
 661				     last_word - first_word + 1, eeprom_buff);
 662
 663	/* Update the checksum over the first part of the EEPROM if needed
 664	 * and flush shadow RAM for 82573 controllers */
 665	if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
 666		hw->nvm.ops.update(hw);
 667
 668	kfree(eeprom_buff);
 669	return ret_val;
 670}
 671
 672static void igb_get_drvinfo(struct net_device *netdev,
 673			    struct ethtool_drvinfo *drvinfo)
 674{
 675	struct igb_adapter *adapter = netdev_priv(netdev);
 676	char firmware_version[32];
 677	u16 eeprom_data;
 678
 679	strncpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver) - 1);
 680	strncpy(drvinfo->version, igb_driver_version,
 681		sizeof(drvinfo->version) - 1);
 682
 683	/* EEPROM image version # is reported as firmware version # for
 684	 * 82575 controllers */
 685	adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
 686	sprintf(firmware_version, "%d.%d-%d",
 687		(eeprom_data & 0xF000) >> 12,
 688		(eeprom_data & 0x0FF0) >> 4,
 689		eeprom_data & 0x000F);
 690
 691	strncpy(drvinfo->fw_version, firmware_version,
 692		sizeof(drvinfo->fw_version) - 1);
 693	strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
 694		sizeof(drvinfo->bus_info) - 1);
 695	drvinfo->n_stats = IGB_STATS_LEN;
 696	drvinfo->testinfo_len = IGB_TEST_LEN;
 697	drvinfo->regdump_len = igb_get_regs_len(netdev);
 698	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
 699}
 700
 701static void igb_get_ringparam(struct net_device *netdev,
 702			      struct ethtool_ringparam *ring)
 703{
 704	struct igb_adapter *adapter = netdev_priv(netdev);
 705
 706	ring->rx_max_pending = IGB_MAX_RXD;
 707	ring->tx_max_pending = IGB_MAX_TXD;
 708	ring->rx_mini_max_pending = 0;
 709	ring->rx_jumbo_max_pending = 0;
 710	ring->rx_pending = adapter->rx_ring_count;
 711	ring->tx_pending = adapter->tx_ring_count;
 712	ring->rx_mini_pending = 0;
 713	ring->rx_jumbo_pending = 0;
 714}
 715
 716static int igb_set_ringparam(struct net_device *netdev,
 717			     struct ethtool_ringparam *ring)
 718{
 719	struct igb_adapter *adapter = netdev_priv(netdev);
 720	struct igb_ring *temp_ring;
 721	int i, err = 0;
 722	u16 new_rx_count, new_tx_count;
 723
 724	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 725		return -EINVAL;
 726
 727	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
 728	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
 729	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
 730
 731	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
 732	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
 733	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
 734
 735	if ((new_tx_count == adapter->tx_ring_count) &&
 736	    (new_rx_count == adapter->rx_ring_count)) {
 737		/* nothing to do */
 738		return 0;
 739	}
 740
 741	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 742		msleep(1);
 743
 744	if (!netif_running(adapter->netdev)) {
 745		for (i = 0; i < adapter->num_tx_queues; i++)
 746			adapter->tx_ring[i]->count = new_tx_count;
 747		for (i = 0; i < adapter->num_rx_queues; i++)
 748			adapter->rx_ring[i]->count = new_rx_count;
 749		adapter->tx_ring_count = new_tx_count;
 750		adapter->rx_ring_count = new_rx_count;
 751		goto clear_reset;
 752	}
 753
 754	if (adapter->num_tx_queues > adapter->num_rx_queues)
 755		temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
 756	else
 757		temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
 758
 759	if (!temp_ring) {
 760		err = -ENOMEM;
 761		goto clear_reset;
 762	}
 763
 764	igb_down(adapter);
 765
 766	/*
 767	 * We can't just free everything and then setup again,
 768	 * because the ISRs in MSI-X mode get passed pointers
 769	 * to the tx and rx ring structs.
 770	 */
 771	if (new_tx_count != adapter->tx_ring_count) {
 772		for (i = 0; i < adapter->num_tx_queues; i++) {
 773			memcpy(&temp_ring[i], adapter->tx_ring[i],
 774			       sizeof(struct igb_ring));
 775
 776			temp_ring[i].count = new_tx_count;
 777			err = igb_setup_tx_resources(&temp_ring[i]);
 778			if (err) {
 779				while (i) {
 780					i--;
 781					igb_free_tx_resources(&temp_ring[i]);
 782				}
 783				goto err_setup;
 784			}
 785		}
 786
 787		for (i = 0; i < adapter->num_tx_queues; i++) {
 788			igb_free_tx_resources(adapter->tx_ring[i]);
 789
 790			memcpy(adapter->tx_ring[i], &temp_ring[i],
 791			       sizeof(struct igb_ring));
 792		}
 793
 794		adapter->tx_ring_count = new_tx_count;
 795	}
 796
 797	if (new_rx_count != adapter->rx_ring_count) {
 798		for (i = 0; i < adapter->num_rx_queues; i++) {
 799			memcpy(&temp_ring[i], adapter->rx_ring[i],
 800			       sizeof(struct igb_ring));
 801
 802			temp_ring[i].count = new_rx_count;
 803			err = igb_setup_rx_resources(&temp_ring[i]);
 804			if (err) {
 805				while (i) {
 806					i--;
 807					igb_free_rx_resources(&temp_ring[i]);
 808				}
 809				goto err_setup;
 810			}
 811
 812		}
 813
 814		for (i = 0; i < adapter->num_rx_queues; i++) {
 815			igb_free_rx_resources(adapter->rx_ring[i]);
 816
 817			memcpy(adapter->rx_ring[i], &temp_ring[i],
 818			       sizeof(struct igb_ring));
 819		}
 820
 821		adapter->rx_ring_count = new_rx_count;
 822	}
 823err_setup:
 824	igb_up(adapter);
 825	vfree(temp_ring);
 826clear_reset:
 827	clear_bit(__IGB_RESETTING, &adapter->state);
 828	return err;
 829}
 830
 831/* ethtool register test data */
 832struct igb_reg_test {
 833	u16 reg;
 834	u16 reg_offset;
 835	u16 array_len;
 836	u16 test_type;
 837	u32 mask;
 838	u32 write;
 839};
 840
 841/* In the hardware, registers are laid out either singly, in arrays
 842 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
 843 * most tests take place on arrays or single registers (handled
 844 * as a single-element array) and special-case the tables.
 845 * Table tests are always pattern tests.
 846 *
 847 * We also make provision for some required setup steps by specifying
 848 * registers to be written without any read-back testing.
 849 */
 850
 851#define PATTERN_TEST	1
 852#define SET_READ_TEST	2
 853#define WRITE_NO_TEST	3
 854#define TABLE32_TEST	4
 855#define TABLE64_TEST_LO	5
 856#define TABLE64_TEST_HI	6
 857
 858/* i350 reg test */
 859static struct igb_reg_test reg_test_i350[] = {
 860	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 861	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
 862	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
 863	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
 864	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 865	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 866	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
 867	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 868	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 869	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
 870	/* RDH is read-only for i350, only test RDT. */
 871	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 872	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 873	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
 874	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 875	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
 876	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 877	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 878	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
 879	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 880	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 881	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
 882	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 883	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 884	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
 885	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
 886	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
 887	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
 888	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
 889						0xFFFFFFFF, 0xFFFFFFFF },
 890	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
 891						0xC3FFFFFF, 0xFFFFFFFF },
 892	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
 893						0xFFFFFFFF, 0xFFFFFFFF },
 894	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
 895						0xC3FFFFFF, 0xFFFFFFFF },
 896	{ E1000_MTA,	   0, 128, TABLE32_TEST,
 897						0xFFFFFFFF, 0xFFFFFFFF },
 898	{ 0, 0, 0, 0 }
 899};
 900
 901/* 82580 reg test */
 902static struct igb_reg_test reg_test_82580[] = {
 903	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 904	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
 905	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
 906	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 907	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 908	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 909	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
 910	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 911	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 912	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
 913	/* RDH is read-only for 82580, only test RDT. */
 914	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 915	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 916	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
 917	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 918	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
 919	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 920	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 921	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
 922	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 923	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 924	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
 925	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 926	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 927	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
 928	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
 929	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
 930	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
 931	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
 932						0xFFFFFFFF, 0xFFFFFFFF },
 933	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
 934						0x83FFFFFF, 0xFFFFFFFF },
 935	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
 936						0xFFFFFFFF, 0xFFFFFFFF },
 937	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
 938						0x83FFFFFF, 0xFFFFFFFF },
 939	{ E1000_MTA,	   0, 128, TABLE32_TEST,
 940						0xFFFFFFFF, 0xFFFFFFFF },
 941	{ 0, 0, 0, 0 }
 942};
 943
 944/* 82576 reg test */
 945static struct igb_reg_test reg_test_82576[] = {
 946	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 947	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
 948	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
 949	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 950	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 951	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 952	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
 953	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 954	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 955	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
 956	/* Enable all RX queues before testing. */
 957	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
 958	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
 959	/* RDH is read-only for 82576, only test RDT. */
 960	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 961	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 962	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
 963	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
 964	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
 965	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 966	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
 967	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 968	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 969	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
 970	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 971	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 972	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
 973	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
 974	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
 975	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
 976	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
 977	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
 978	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
 979	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
 980	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
 981	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 982	{ 0, 0, 0, 0 }
 983};
 984
 985/* 82575 register test */
 986static struct igb_reg_test reg_test_82575[] = {
 987	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 988	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
 989	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
 990	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 991	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
 992	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
 993	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
 994	/* Enable all four RX queues before testing. */
 995	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
 996	/* RDH is read-only for 82575, only test RDT. */
 997	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
 998	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
 999	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1000	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1001	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1002	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1003	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1004	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1005	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1006	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1007	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1008	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1009	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1010	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1011	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1012	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1013	{ 0, 0, 0, 0 }
1014};
1015
1016static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1017			     int reg, u32 mask, u32 write)
1018{
1019	struct e1000_hw *hw = &adapter->hw;
1020	u32 pat, val;
1021	static const u32 _test[] =
1022		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1023	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1024		wr32(reg, (_test[pat] & write));
1025		val = rd32(reg) & mask;
1026		if (val != (_test[pat] & write & mask)) {
1027			dev_err(&adapter->pdev->dev, "pattern test reg %04X "
1028				"failed: got 0x%08X expected 0x%08X\n",
1029				reg, val, (_test[pat] & write & mask));
1030			*data = reg;
1031			return 1;
1032		}
1033	}
1034
1035	return 0;
1036}
1037
1038static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1039			      int reg, u32 mask, u32 write)
1040{
1041	struct e1000_hw *hw = &adapter->hw;
1042	u32 val;
1043	wr32(reg, write & mask);
1044	val = rd32(reg);
1045	if ((write & mask) != (val & mask)) {
1046		dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
1047			" got 0x%08X expected 0x%08X\n", reg,
1048			(val & mask), (write & mask));
1049		*data = reg;
1050		return 1;
1051	}
1052
1053	return 0;
1054}
1055
1056#define REG_PATTERN_TEST(reg, mask, write) \
1057	do { \
1058		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1059			return 1; \
1060	} while (0)
1061
1062#define REG_SET_AND_CHECK(reg, mask, write) \
1063	do { \
1064		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1065			return 1; \
1066	} while (0)
1067
1068static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1069{
1070	struct e1000_hw *hw = &adapter->hw;
1071	struct igb_reg_test *test;
1072	u32 value, before, after;
1073	u32 i, toggle;
1074
1075	switch (adapter->hw.mac.type) {
1076	case e1000_i350:
1077		test = reg_test_i350;
1078		toggle = 0x7FEFF3FF;
1079		break;
1080	case e1000_82580:
1081		test = reg_test_82580;
1082		toggle = 0x7FEFF3FF;
1083		break;
1084	case e1000_82576:
1085		test = reg_test_82576;
1086		toggle = 0x7FFFF3FF;
1087		break;
1088	default:
1089		test = reg_test_82575;
1090		toggle = 0x7FFFF3FF;
1091		break;
1092	}
1093
1094	/* Because the status register is such a special case,
1095	 * we handle it separately from the rest of the register
1096	 * tests.  Some bits are read-only, some toggle, and some
1097	 * are writable on newer MACs.
1098	 */
1099	before = rd32(E1000_STATUS);
1100	value = (rd32(E1000_STATUS) & toggle);
1101	wr32(E1000_STATUS, toggle);
1102	after = rd32(E1000_STATUS) & toggle;
1103	if (value != after) {
1104		dev_err(&adapter->pdev->dev, "failed STATUS register test "
1105			"got: 0x%08X expected: 0x%08X\n", after, value);
1106		*data = 1;
1107		return 1;
1108	}
1109	/* restore previous status */
1110	wr32(E1000_STATUS, before);
1111
1112	/* Perform the remainder of the register test, looping through
1113	 * the test table until we either fail or reach the null entry.
1114	 */
1115	while (test->reg) {
1116		for (i = 0; i < test->array_len; i++) {
1117			switch (test->test_type) {
1118			case PATTERN_TEST:
1119				REG_PATTERN_TEST(test->reg +
1120						(i * test->reg_offset),
1121						test->mask,
1122						test->write);
1123				break;
1124			case SET_READ_TEST:
1125				REG_SET_AND_CHECK(test->reg +
1126						(i * test->reg_offset),
1127						test->mask,
1128						test->write);
1129				break;
1130			case WRITE_NO_TEST:
1131				writel(test->write,
1132				    (adapter->hw.hw_addr + test->reg)
1133					+ (i * test->reg_offset));
1134				break;
1135			case TABLE32_TEST:
1136				REG_PATTERN_TEST(test->reg + (i * 4),
1137						test->mask,
1138						test->write);
1139				break;
1140			case TABLE64_TEST_LO:
1141				REG_PATTERN_TEST(test->reg + (i * 8),
1142						test->mask,
1143						test->write);
1144				break;
1145			case TABLE64_TEST_HI:
1146				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1147						test->mask,
1148						test->write);
1149				break;
1150			}
1151		}
1152		test++;
1153	}
1154
1155	*data = 0;
1156	return 0;
1157}
1158
1159static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1160{
1161	u16 temp;
1162	u16 checksum = 0;
1163	u16 i;
1164
1165	*data = 0;
1166	/* Read and add up the contents of the EEPROM */
1167	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1168		if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp)) < 0) {
1169			*data = 1;
1170			break;
1171		}
1172		checksum += temp;
1173	}
1174
1175	/* If Checksum is not Correct return error else test passed */
1176	if ((checksum != (u16) NVM_SUM) && !(*data))
1177		*data = 2;
1178
1179	return *data;
1180}
1181
1182static irqreturn_t igb_test_intr(int irq, void *data)
1183{
1184	struct igb_adapter *adapter = (struct igb_adapter *) data;
1185	struct e1000_hw *hw = &adapter->hw;
1186
1187	adapter->test_icr |= rd32(E1000_ICR);
1188
1189	return IRQ_HANDLED;
1190}
1191
1192static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1193{
1194	struct e1000_hw *hw = &adapter->hw;
1195	struct net_device *netdev = adapter->netdev;
1196	u32 mask, ics_mask, i = 0, shared_int = true;
1197	u32 irq = adapter->pdev->irq;
1198
1199	*data = 0;
1200
1201	/* Hook up test interrupt handler just for this test */
1202	if (adapter->msix_entries) {
1203		if (request_irq(adapter->msix_entries[0].vector,
1204		                igb_test_intr, 0, netdev->name, adapter)) {
1205			*data = 1;
1206			return -1;
1207		}
1208	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1209		shared_int = false;
1210		if (request_irq(irq,
1211		                igb_test_intr, 0, netdev->name, adapter)) {
1212			*data = 1;
1213			return -1;
1214		}
1215	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1216				netdev->name, adapter)) {
1217		shared_int = false;
1218	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1219		 netdev->name, adapter)) {
1220		*data = 1;
1221		return -1;
1222	}
1223	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1224		(shared_int ? "shared" : "unshared"));
1225
1226	/* Disable all the interrupts */
1227	wr32(E1000_IMC, ~0);
1228	wrfl();
1229	msleep(10);
1230
1231	/* Define all writable bits for ICS */
1232	switch (hw->mac.type) {
1233	case e1000_82575:
1234		ics_mask = 0x37F47EDD;
1235		break;
1236	case e1000_82576:
1237		ics_mask = 0x77D4FBFD;
1238		break;
1239	case e1000_82580:
1240		ics_mask = 0x77DCFED5;
1241		break;
1242	case e1000_i350:
1243		ics_mask = 0x77DCFED5;
1244		break;
1245	default:
1246		ics_mask = 0x7FFFFFFF;
1247		break;
1248	}
1249
1250	/* Test each interrupt */
1251	for (; i < 31; i++) {
1252		/* Interrupt to test */
1253		mask = 1 << i;
1254
1255		if (!(mask & ics_mask))
1256			continue;
1257
1258		if (!shared_int) {
1259			/* Disable the interrupt to be reported in
1260			 * the cause register and then force the same
1261			 * interrupt and see if one gets posted.  If
1262			 * an interrupt was posted to the bus, the
1263			 * test failed.
1264			 */
1265			adapter->test_icr = 0;
1266
1267			/* Flush any pending interrupts */
1268			wr32(E1000_ICR, ~0);
1269
1270			wr32(E1000_IMC, mask);
1271			wr32(E1000_ICS, mask);
1272			wrfl();
1273			msleep(10);
1274
1275			if (adapter->test_icr & mask) {
1276				*data = 3;
1277				break;
1278			}
1279		}
1280
1281		/* Enable the interrupt to be reported in
1282		 * the cause register and then force the same
1283		 * interrupt and see if one gets posted.  If
1284		 * an interrupt was not posted to the bus, the
1285		 * test failed.
1286		 */
1287		adapter->test_icr = 0;
1288
1289		/* Flush any pending interrupts */
1290		wr32(E1000_ICR, ~0);
1291
1292		wr32(E1000_IMS, mask);
1293		wr32(E1000_ICS, mask);
1294		wrfl();
1295		msleep(10);
1296
1297		if (!(adapter->test_icr & mask)) {
1298			*data = 4;
1299			break;
1300		}
1301
1302		if (!shared_int) {
1303			/* Disable the other interrupts to be reported in
1304			 * the cause register and then force the other
1305			 * interrupts and see if any get posted.  If
1306			 * an interrupt was posted to the bus, the
1307			 * test failed.
1308			 */
1309			adapter->test_icr = 0;
1310
1311			/* Flush any pending interrupts */
1312			wr32(E1000_ICR, ~0);
1313
1314			wr32(E1000_IMC, ~mask);
1315			wr32(E1000_ICS, ~mask);
1316			wrfl();
1317			msleep(10);
1318
1319			if (adapter->test_icr & mask) {
1320				*data = 5;
1321				break;
1322			}
1323		}
1324	}
1325
1326	/* Disable all the interrupts */
1327	wr32(E1000_IMC, ~0);
1328	wrfl();
1329	msleep(10);
1330
1331	/* Unhook test interrupt handler */
1332	if (adapter->msix_entries)
1333		free_irq(adapter->msix_entries[0].vector, adapter);
1334	else
1335		free_irq(irq, adapter);
1336
1337	return *data;
1338}
1339
1340static void igb_free_desc_rings(struct igb_adapter *adapter)
1341{
1342	igb_free_tx_resources(&adapter->test_tx_ring);
1343	igb_free_rx_resources(&adapter->test_rx_ring);
1344}
1345
1346static int igb_setup_desc_rings(struct igb_adapter *adapter)
1347{
1348	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1349	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1350	struct e1000_hw *hw = &adapter->hw;
1351	int ret_val;
1352
1353	/* Setup Tx descriptor ring and Tx buffers */
1354	tx_ring->count = IGB_DEFAULT_TXD;
1355	tx_ring->dev = &adapter->pdev->dev;
1356	tx_ring->netdev = adapter->netdev;
1357	tx_ring->reg_idx = adapter->vfs_allocated_count;
1358
1359	if (igb_setup_tx_resources(tx_ring)) {
1360		ret_val = 1;
1361		goto err_nomem;
1362	}
1363
1364	igb_setup_tctl(adapter);
1365	igb_configure_tx_ring(adapter, tx_ring);
1366
1367	/* Setup Rx descriptor ring and Rx buffers */
1368	rx_ring->count = IGB_DEFAULT_RXD;
1369	rx_ring->dev = &adapter->pdev->dev;
1370	rx_ring->netdev = adapter->netdev;
1371	rx_ring->rx_buffer_len = IGB_RXBUFFER_2048;
1372	rx_ring->reg_idx = adapter->vfs_allocated_count;
1373
1374	if (igb_setup_rx_resources(rx_ring)) {
1375		ret_val = 3;
1376		goto err_nomem;
1377	}
1378
1379	/* set the default queue to queue 0 of PF */
1380	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1381
1382	/* enable receive ring */
1383	igb_setup_rctl(adapter);
1384	igb_configure_rx_ring(adapter, rx_ring);
1385
1386	igb_alloc_rx_buffers_adv(rx_ring, igb_desc_unused(rx_ring));
1387
1388	return 0;
1389
1390err_nomem:
1391	igb_free_desc_rings(adapter);
1392	return ret_val;
1393}
1394
1395static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1396{
1397	struct e1000_hw *hw = &adapter->hw;
1398
1399	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1400	igb_write_phy_reg(hw, 29, 0x001F);
1401	igb_write_phy_reg(hw, 30, 0x8FFC);
1402	igb_write_phy_reg(hw, 29, 0x001A);
1403	igb_write_phy_reg(hw, 30, 0x8FF0);
1404}
1405
1406static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1407{
1408	struct e1000_hw *hw = &adapter->hw;
1409	u32 ctrl_reg = 0;
1410
1411	hw->mac.autoneg = false;
1412
1413	if (hw->phy.type == e1000_phy_m88) {
1414		/* Auto-MDI/MDIX Off */
1415		igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1416		/* reset to update Auto-MDI/MDIX */
1417		igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1418		/* autoneg off */
1419		igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1420	} else if (hw->phy.type == e1000_phy_82580) {
1421		/* enable MII loopback */
1422		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1423	}
1424
1425	ctrl_reg = rd32(E1000_CTRL);
1426
1427	/* force 1000, set loopback */
1428	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1429
1430	/* Now set up the MAC to the same speed/duplex as the PHY. */
1431	ctrl_reg = rd32(E1000_CTRL);
1432	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1433	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1434		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1435		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1436		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1437		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1438
1439	if (hw->phy.type == e1000_phy_m88)
1440		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1441
1442	wr32(E1000_CTRL, ctrl_reg);
1443
1444	/* Disable the receiver on the PHY so when a cable is plugged in, the
1445	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1446	 */
1447	if (hw->phy.type == e1000_phy_m88)
1448		igb_phy_disable_receiver(adapter);
1449
1450	udelay(500);
1451
1452	return 0;
1453}
1454
1455static int igb_set_phy_loopback(struct igb_adapter *adapter)
1456{
1457	return igb_integrated_phy_loopback(adapter);
1458}
1459
1460static int igb_setup_loopback_test(struct igb_adapter *adapter)
1461{
1462	struct e1000_hw *hw = &adapter->hw;
1463	u32 reg;
1464
1465	reg = rd32(E1000_CTRL_EXT);
1466
1467	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1468	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1469		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1470		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1471		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1472		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1473
1474			/* Enable DH89xxCC MPHY for near end loopback */
1475			reg = rd32(E1000_MPHY_ADDR_CTL);
1476			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1477			E1000_MPHY_PCS_CLK_REG_OFFSET;
1478			wr32(E1000_MPHY_ADDR_CTL, reg);
1479
1480			reg = rd32(E1000_MPHY_DATA);
1481			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1482			wr32(E1000_MPHY_DATA, reg);
1483		}
1484
1485		reg = rd32(E1000_RCTL);
1486		reg |= E1000_RCTL_LBM_TCVR;
1487		wr32(E1000_RCTL, reg);
1488
1489		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1490
1491		reg = rd32(E1000_CTRL);
1492		reg &= ~(E1000_CTRL_RFCE |
1493			 E1000_CTRL_TFCE |
1494			 E1000_CTRL_LRST);
1495		reg |= E1000_CTRL_SLU |
1496		       E1000_CTRL_FD;
1497		wr32(E1000_CTRL, reg);
1498
1499		/* Unset switch control to serdes energy detect */
1500		reg = rd32(E1000_CONNSW);
1501		reg &= ~E1000_CONNSW_ENRGSRC;
1502		wr32(E1000_CONNSW, reg);
1503
1504		/* Set PCS register for forced speed */
1505		reg = rd32(E1000_PCS_LCTL);
1506		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1507		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1508		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1509		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1510		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1511		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1512		wr32(E1000_PCS_LCTL, reg);
1513
1514		return 0;
1515	}
1516
1517	return igb_set_phy_loopback(adapter);
1518}
1519
1520static void igb_loopback_cleanup(struct igb_adapter *adapter)
1521{
1522	struct e1000_hw *hw = &adapter->hw;
1523	u32 rctl;
1524	u16 phy_reg;
1525
1526	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1527	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1528	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1529	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1530		u32 reg;
1531
1532		/* Disable near end loopback on DH89xxCC */
1533		reg = rd32(E1000_MPHY_ADDR_CTL);
1534		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1535		E1000_MPHY_PCS_CLK_REG_OFFSET;
1536		wr32(E1000_MPHY_ADDR_CTL, reg);
1537
1538		reg = rd32(E1000_MPHY_DATA);
1539		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1540		wr32(E1000_MPHY_DATA, reg);
1541	}
1542
1543	rctl = rd32(E1000_RCTL);
1544	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1545	wr32(E1000_RCTL, rctl);
1546
1547	hw->mac.autoneg = true;
1548	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1549	if (phy_reg & MII_CR_LOOPBACK) {
1550		phy_reg &= ~MII_CR_LOOPBACK;
1551		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1552		igb_phy_sw_reset(hw);
1553	}
1554}
1555
1556static void igb_create_lbtest_frame(struct sk_buff *skb,
1557				    unsigned int frame_size)
1558{
1559	memset(skb->data, 0xFF, frame_size);
1560	frame_size /= 2;
1561	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1562	memset(&skb->data[frame_size + 10], 0xBE, 1);
1563	memset(&skb->data[frame_size + 12], 0xAF, 1);
1564}
1565
1566static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1567{
1568	frame_size /= 2;
1569	if (*(skb->data + 3) == 0xFF) {
1570		if ((*(skb->data + frame_size + 10) == 0xBE) &&
1571		   (*(skb->data + frame_size + 12) == 0xAF)) {
1572			return 0;
1573		}
1574	}
1575	return 13;
1576}
1577
1578static int igb_clean_test_rings(struct igb_ring *rx_ring,
1579                                struct igb_ring *tx_ring,
1580                                unsigned int size)
1581{
1582	union e1000_adv_rx_desc *rx_desc;
1583	struct igb_buffer *buffer_info;
1584	int rx_ntc, tx_ntc, count = 0;
1585	u32 staterr;
1586
1587	/* initialize next to clean and descriptor values */
1588	rx_ntc = rx_ring->next_to_clean;
1589	tx_ntc = tx_ring->next_to_clean;
1590	rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc);
1591	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1592
1593	while (staterr & E1000_RXD_STAT_DD) {
1594		/* check rx buffer */
1595		buffer_info = &rx_ring->buffer_info[rx_ntc];
1596
1597		/* unmap rx buffer, will be remapped by alloc_rx_buffers */
1598		dma_unmap_single(rx_ring->dev,
1599		                 buffer_info->dma,
1600				 rx_ring->rx_buffer_len,
1601				 DMA_FROM_DEVICE);
1602		buffer_info->dma = 0;
1603
1604		/* verify contents of skb */
1605		if (!igb_check_lbtest_frame(buffer_info->skb, size))
1606			count++;
1607
1608		/* unmap buffer on tx side */
1609		buffer_info = &tx_ring->buffer_info[tx_ntc];
1610		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
1611
1612		/* increment rx/tx next to clean counters */
1613		rx_ntc++;
1614		if (rx_ntc == rx_ring->count)
1615			rx_ntc = 0;
1616		tx_ntc++;
1617		if (tx_ntc == tx_ring->count)
1618			tx_ntc = 0;
1619
1620		/* fetch next descriptor */
1621		rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc);
1622		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1623	}
1624
1625	/* re-map buffers to ring, store next to clean values */
1626	igb_alloc_rx_buffers_adv(rx_ring, count);
1627	rx_ring->next_to_clean = rx_ntc;
1628	tx_ring->next_to_clean = tx_ntc;
1629
1630	return count;
1631}
1632
1633static int igb_run_loopback_test(struct igb_adapter *adapter)
1634{
1635	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1636	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1637	int i, j, lc, good_cnt, ret_val = 0;
1638	unsigned int size = 1024;
1639	netdev_tx_t tx_ret_val;
1640	struct sk_buff *skb;
1641
1642	/* allocate test skb */
1643	skb = alloc_skb(size, GFP_KERNEL);
1644	if (!skb)
1645		return 11;
1646
1647	/* place data into test skb */
1648	igb_create_lbtest_frame(skb, size);
1649	skb_put(skb, size);
1650
1651	/*
1652	 * Calculate the loop count based on the largest descriptor ring
1653	 * The idea is to wrap the largest ring a number of times using 64
1654	 * send/receive pairs during each loop
1655	 */
1656
1657	if (rx_ring->count <= tx_ring->count)
1658		lc = ((tx_ring->count / 64) * 2) + 1;
1659	else
1660		lc = ((rx_ring->count / 64) * 2) + 1;
1661
1662	for (j = 0; j <= lc; j++) { /* loop count loop */
1663		/* reset count of good packets */
1664		good_cnt = 0;
1665
1666		/* place 64 packets on the transmit queue*/
1667		for (i = 0; i < 64; i++) {
1668			skb_get(skb);
1669			tx_ret_val = igb_xmit_frame_ring_adv(skb, tx_ring);
1670			if (tx_ret_val == NETDEV_TX_OK)
1671				good_cnt++;
1672		}
1673
1674		if (good_cnt != 64) {
1675			ret_val = 12;
1676			break;
1677		}
1678
1679		/* allow 200 milliseconds for packets to go from tx to rx */
1680		msleep(200);
1681
1682		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1683		if (good_cnt != 64) {
1684			ret_val = 13;
1685			break;
1686		}
1687	} /* end loop count loop */
1688
1689	/* free the original skb */
1690	kfree_skb(skb);
1691
1692	return ret_val;
1693}
1694
1695static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1696{
1697	/* PHY loopback cannot be performed if SoL/IDER
1698	 * sessions are active */
1699	if (igb_check_reset_block(&adapter->hw)) {
1700		dev_err(&adapter->pdev->dev,
1701			"Cannot do PHY loopback test "
1702			"when SoL/IDER is active.\n");
1703		*data = 0;
1704		goto out;
1705	}
1706	*data = igb_setup_desc_rings(adapter);
1707	if (*data)
1708		goto out;
1709	*data = igb_setup_loopback_test(adapter);
1710	if (*data)
1711		goto err_loopback;
1712	*data = igb_run_loopback_test(adapter);
1713	igb_loopback_cleanup(adapter);
1714
1715err_loopback:
1716	igb_free_desc_rings(adapter);
1717out:
1718	return *data;
1719}
1720
1721static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1722{
1723	struct e1000_hw *hw = &adapter->hw;
1724	*data = 0;
1725	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1726		int i = 0;
1727		hw->mac.serdes_has_link = false;
1728
1729		/* On some blade server designs, link establishment
1730		 * could take as long as 2-3 minutes */
1731		do {
1732			hw->mac.ops.check_for_link(&adapter->hw);
1733			if (hw->mac.serdes_has_link)
1734				return *data;
1735			msleep(20);
1736		} while (i++ < 3750);
1737
1738		*data = 1;
1739	} else {
1740		hw->mac.ops.check_for_link(&adapter->hw);
1741		if (hw->mac.autoneg)
1742			msleep(4000);
1743
1744		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1745			*data = 1;
1746	}
1747	return *data;
1748}
1749
1750static void igb_diag_test(struct net_device *netdev,
1751			  struct ethtool_test *eth_test, u64 *data)
1752{
1753	struct igb_adapter *adapter = netdev_priv(netdev);
1754	u16 autoneg_advertised;
1755	u8 forced_speed_duplex, autoneg;
1756	bool if_running = netif_running(netdev);
1757
1758	set_bit(__IGB_TESTING, &adapter->state);
1759	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1760		/* Offline tests */
1761
1762		/* save speed, duplex, autoneg settings */
1763		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1764		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1765		autoneg = adapter->hw.mac.autoneg;
1766
1767		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1768
1769		/* power up link for link test */
1770		igb_power_up_link(adapter);
1771
1772		/* Link test performed before hardware reset so autoneg doesn't
1773		 * interfere with test result */
1774		if (igb_link_test(adapter, &data[4]))
1775			eth_test->flags |= ETH_TEST_FL_FAILED;
1776
1777		if (if_running)
1778			/* indicate we're in test mode */
1779			dev_close(netdev);
1780		else
1781			igb_reset(adapter);
1782
1783		if (igb_reg_test(adapter, &data[0]))
1784			eth_test->flags |= ETH_TEST_FL_FAILED;
1785
1786		igb_reset(adapter);
1787		if (igb_eeprom_test(adapter, &data[1]))
1788			eth_test->flags |= ETH_TEST_FL_FAILED;
1789
1790		igb_reset(adapter);
1791		if (igb_intr_test(adapter, &data[2]))
1792			eth_test->flags |= ETH_TEST_FL_FAILED;
1793
1794		igb_reset(adapter);
1795		/* power up link for loopback test */
1796		igb_power_up_link(adapter);
1797		if (igb_loopback_test(adapter, &data[3]))
1798			eth_test->flags |= ETH_TEST_FL_FAILED;
1799
1800		/* restore speed, duplex, autoneg settings */
1801		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1802		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1803		adapter->hw.mac.autoneg = autoneg;
1804
1805		/* force this routine to wait until autoneg complete/timeout */
1806		adapter->hw.phy.autoneg_wait_to_complete = true;
1807		igb_reset(adapter);
1808		adapter->hw.phy.autoneg_wait_to_complete = false;
1809
1810		clear_bit(__IGB_TESTING, &adapter->state);
1811		if (if_running)
1812			dev_open(netdev);
1813	} else {
1814		dev_info(&adapter->pdev->dev, "online testing starting\n");
1815
1816		/* PHY is powered down when interface is down */
1817		if (if_running && igb_link_test(adapter, &data[4]))
1818			eth_test->flags |= ETH_TEST_FL_FAILED;
1819		else
1820			data[4] = 0;
1821
1822		/* Online tests aren't run; pass by default */
1823		data[0] = 0;
1824		data[1] = 0;
1825		data[2] = 0;
1826		data[3] = 0;
1827
1828		clear_bit(__IGB_TESTING, &adapter->state);
1829	}
1830	msleep_interruptible(4 * 1000);
1831}
1832
1833static int igb_wol_exclusion(struct igb_adapter *adapter,
1834			     struct ethtool_wolinfo *wol)
1835{
1836	struct e1000_hw *hw = &adapter->hw;
1837	int retval = 1; /* fail by default */
1838
1839	switch (hw->device_id) {
1840	case E1000_DEV_ID_82575GB_QUAD_COPPER:
1841		/* WoL not supported */
1842		wol->supported = 0;
1843		break;
1844	case E1000_DEV_ID_82575EB_FIBER_SERDES:
1845	case E1000_DEV_ID_82576_FIBER:
1846	case E1000_DEV_ID_82576_SERDES:
1847		/* Wake events not supported on port B */
1848		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1849			wol->supported = 0;
1850			break;
1851		}
1852		/* return success for non excluded adapter ports */
1853		retval = 0;
1854		break;
1855	case E1000_DEV_ID_82576_QUAD_COPPER:
1856	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1857		/* quad port adapters only support WoL on port A */
1858		if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1859			wol->supported = 0;
1860			break;
1861		}
1862		/* return success for non excluded adapter ports */
1863		retval = 0;
1864		break;
1865	default:
1866		/* dual port cards only support WoL on port A from now on
1867		 * unless it was enabled in the eeprom for port B
1868		 * so exclude FUNC_1 ports from having WoL enabled */
1869		if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1870		    !adapter->eeprom_wol) {
1871			wol->supported = 0;
1872			break;
1873		}
1874
1875		retval = 0;
1876	}
1877
1878	return retval;
1879}
1880
1881static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1882{
1883	struct igb_adapter *adapter = netdev_priv(netdev);
1884
1885	wol->supported = WAKE_UCAST | WAKE_MCAST |
1886	                 WAKE_BCAST | WAKE_MAGIC |
1887	                 WAKE_PHY;
1888	wol->wolopts = 0;
1889
1890	/* this function will set ->supported = 0 and return 1 if wol is not
1891	 * supported by this hardware */
1892	if (igb_wol_exclusion(adapter, wol) ||
1893	    !device_can_wakeup(&adapter->pdev->dev))
1894		return;
1895
1896	/* apply any specific unsupported masks here */
1897	switch (adapter->hw.device_id) {
1898	default:
1899		break;
1900	}
1901
1902	if (adapter->wol & E1000_WUFC_EX)
1903		wol->wolopts |= WAKE_UCAST;
1904	if (adapter->wol & E1000_WUFC_MC)
1905		wol->wolopts |= WAKE_MCAST;
1906	if (adapter->wol & E1000_WUFC_BC)
1907		wol->wolopts |= WAKE_BCAST;
1908	if (adapter->wol & E1000_WUFC_MAG)
1909		wol->wolopts |= WAKE_MAGIC;
1910	if (adapter->wol & E1000_WUFC_LNKC)
1911		wol->wolopts |= WAKE_PHY;
1912}
1913
1914static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1915{
1916	struct igb_adapter *adapter = netdev_priv(netdev);
1917
1918	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
1919		return -EOPNOTSUPP;
1920
1921	if (igb_wol_exclusion(adapter, wol) ||
1922	    !device_can_wakeup(&adapter->pdev->dev))
1923		return wol->wolopts ? -EOPNOTSUPP : 0;
1924
1925	/* these settings will always override what we currently have */
1926	adapter->wol = 0;
1927
1928	if (wol->wolopts & WAKE_UCAST)
1929		adapter->wol |= E1000_WUFC_EX;
1930	if (wol->wolopts & WAKE_MCAST)
1931		adapter->wol |= E1000_WUFC_MC;
1932	if (wol->wolopts & WAKE_BCAST)
1933		adapter->wol |= E1000_WUFC_BC;
1934	if (wol->wolopts & WAKE_MAGIC)
1935		adapter->wol |= E1000_WUFC_MAG;
1936	if (wol->wolopts & WAKE_PHY)
1937		adapter->wol |= E1000_WUFC_LNKC;
1938	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1939
1940	return 0;
1941}
1942
1943/* bit defines for adapter->led_status */
1944#define IGB_LED_ON		0
1945
1946static int igb_set_phys_id(struct net_device *netdev,
1947			   enum ethtool_phys_id_state state)
1948{
1949	struct igb_adapter *adapter = netdev_priv(netdev);
1950	struct e1000_hw *hw = &adapter->hw;
1951
1952	switch (state) {
1953	case ETHTOOL_ID_ACTIVE:
1954		igb_blink_led(hw);
1955		return 2;
1956	case ETHTOOL_ID_ON:
1957		igb_blink_led(hw);
1958		break;
1959	case ETHTOOL_ID_OFF:
1960		igb_led_off(hw);
1961		break;
1962	case ETHTOOL_ID_INACTIVE:
1963		igb_led_off(hw);
1964		clear_bit(IGB_LED_ON, &adapter->led_status);
1965		igb_cleanup_led(hw);
1966		break;
1967	}
1968
1969	return 0;
1970}
1971
1972static int igb_set_coalesce(struct net_device *netdev,
1973			    struct ethtool_coalesce *ec)
1974{
1975	struct igb_adapter *adapter = netdev_priv(netdev);
1976	int i;
1977
1978	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1979	    ((ec->rx_coalesce_usecs > 3) &&
1980	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1981	    (ec->rx_coalesce_usecs == 2))
1982		return -EINVAL;
1983
1984	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1985	    ((ec->tx_coalesce_usecs > 3) &&
1986	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1987	    (ec->tx_coalesce_usecs == 2))
1988		return -EINVAL;
1989
1990	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
1991		return -EINVAL;
1992
1993	/* If ITR is disabled, disable DMAC */
1994	if (ec->rx_coalesce_usecs == 0) {
1995		if (adapter->flags & IGB_FLAG_DMAC)
1996			adapter->flags &= ~IGB_FLAG_DMAC;
1997	}
1998
1999	/* convert to rate of irq's per second */
2000	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2001		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2002	else
2003		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2004
2005	/* convert to rate of irq's per second */
2006	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2007		adapter->tx_itr_setting = adapter->rx_itr_setting;
2008	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2009		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2010	else
2011		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2012
2013	for (i = 0; i < adapter->num_q_vectors; i++) {
2014		struct igb_q_vector *q_vector = adapter->q_vector[i];
2015		if (q_vector->rx_ring)
2016			q_vector->itr_val = adapter->rx_itr_setting;
2017		else
2018			q_vector->itr_val = adapter->tx_itr_setting;
2019		if (q_vector->itr_val && q_vector->itr_val <= 3)
2020			q_vector->itr_val = IGB_START_ITR;
2021		q_vector->set_itr = 1;
2022	}
2023
2024	return 0;
2025}
2026
2027static int igb_get_coalesce(struct net_device *netdev,
2028			    struct ethtool_coalesce *ec)
2029{
2030	struct igb_adapter *adapter = netdev_priv(netdev);
2031
2032	if (adapter->rx_itr_setting <= 3)
2033		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2034	else
2035		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2036
2037	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2038		if (adapter->tx_itr_setting <= 3)
2039			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2040		else
2041			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2042	}
2043
2044	return 0;
2045}
2046
2047static int igb_nway_reset(struct net_device *netdev)
2048{
2049	struct igb_adapter *adapter = netdev_priv(netdev);
2050	if (netif_running(netdev))
2051		igb_reinit_locked(adapter);
2052	return 0;
2053}
2054
2055static int igb_get_sset_count(struct net_device *netdev, int sset)
2056{
2057	switch (sset) {
2058	case ETH_SS_STATS:
2059		return IGB_STATS_LEN;
2060	case ETH_SS_TEST:
2061		return IGB_TEST_LEN;
2062	default:
2063		return -ENOTSUPP;
2064	}
2065}
2066
2067static void igb_get_ethtool_stats(struct net_device *netdev,
2068				  struct ethtool_stats *stats, u64 *data)
2069{
2070	struct igb_adapter *adapter = netdev_priv(netdev);
2071	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2072	unsigned int start;
2073	struct igb_ring *ring;
2074	int i, j;
2075	char *p;
2076
2077	spin_lock(&adapter->stats64_lock);
2078	igb_update_stats(adapter, net_stats);
2079
2080	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2081		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2082		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2083			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2084	}
2085	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2086		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2087		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2088			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2089	}
2090	for (j = 0; j < adapter->num_tx_queues; j++) {
2091		u64	restart2;
2092
2093		ring = adapter->tx_ring[j];
2094		do {
2095			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2096			data[i]   = ring->tx_stats.packets;
2097			data[i+1] = ring->tx_stats.bytes;
2098			data[i+2] = ring->tx_stats.restart_queue;
2099		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2100		do {
2101			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2102			restart2  = ring->tx_stats.restart_queue2;
2103		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2104		data[i+2] += restart2;
2105
2106		i += IGB_TX_QUEUE_STATS_LEN;
2107	}
2108	for (j = 0; j < adapter->num_rx_queues; j++) {
2109		ring = adapter->rx_ring[j];
2110		do {
2111			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2112			data[i]   = ring->rx_stats.packets;
2113			data[i+1] = ring->rx_stats.bytes;
2114			data[i+2] = ring->rx_stats.drops;
2115			data[i+3] = ring->rx_stats.csum_err;
2116			data[i+4] = ring->rx_stats.alloc_failed;
2117		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2118		i += IGB_RX_QUEUE_STATS_LEN;
2119	}
2120	spin_unlock(&adapter->stats64_lock);
2121}
2122
2123static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2124{
2125	struct igb_adapter *adapter = netdev_priv(netdev);
2126	u8 *p = data;
2127	int i;
2128
2129	switch (stringset) {
2130	case ETH_SS_TEST:
2131		memcpy(data, *igb_gstrings_test,
2132			IGB_TEST_LEN*ETH_GSTRING_LEN);
2133		break;
2134	case ETH_SS_STATS:
2135		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2136			memcpy(p, igb_gstrings_stats[i].stat_string,
2137			       ETH_GSTRING_LEN);
2138			p += ETH_GSTRING_LEN;
2139		}
2140		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2141			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2142			       ETH_GSTRING_LEN);
2143			p += ETH_GSTRING_LEN;
2144		}
2145		for (i = 0; i < adapter->num_tx_queues; i++) {
2146			sprintf(p, "tx_queue_%u_packets", i);
2147			p += ETH_GSTRING_LEN;
2148			sprintf(p, "tx_queue_%u_bytes", i);
2149			p += ETH_GSTRING_LEN;
2150			sprintf(p, "tx_queue_%u_restart", i);
2151			p += ETH_GSTRING_LEN;
2152		}
2153		for (i = 0; i < adapter->num_rx_queues; i++) {
2154			sprintf(p, "rx_queue_%u_packets", i);
2155			p += ETH_GSTRING_LEN;
2156			sprintf(p, "rx_queue_%u_bytes", i);
2157			p += ETH_GSTRING_LEN;
2158			sprintf(p, "rx_queue_%u_drops", i);
2159			p += ETH_GSTRING_LEN;
2160			sprintf(p, "rx_queue_%u_csum_err", i);
2161			p += ETH_GSTRING_LEN;
2162			sprintf(p, "rx_queue_%u_alloc_failed", i);
2163			p += ETH_GSTRING_LEN;
2164		}
2165/*		BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2166		break;
2167	}
2168}
2169
2170static const struct ethtool_ops igb_ethtool_ops = {
2171	.get_settings           = igb_get_settings,
2172	.set_settings           = igb_set_settings,
2173	.get_drvinfo            = igb_get_drvinfo,
2174	.get_regs_len           = igb_get_regs_len,
2175	.get_regs               = igb_get_regs,
2176	.get_wol                = igb_get_wol,
2177	.set_wol                = igb_set_wol,
2178	.get_msglevel           = igb_get_msglevel,
2179	.set_msglevel           = igb_set_msglevel,
2180	.nway_reset             = igb_nway_reset,
2181	.get_link               = igb_get_link,
2182	.get_eeprom_len         = igb_get_eeprom_len,
2183	.get_eeprom             = igb_get_eeprom,
2184	.set_eeprom             = igb_set_eeprom,
2185	.get_ringparam          = igb_get_ringparam,
2186	.set_ringparam          = igb_set_ringparam,
2187	.get_pauseparam         = igb_get_pauseparam,
2188	.set_pauseparam         = igb_set_pauseparam,
2189	.self_test              = igb_diag_test,
2190	.get_strings            = igb_get_strings,
2191	.set_phys_id            = igb_set_phys_id,
2192	.get_sset_count         = igb_get_sset_count,
2193	.get_ethtool_stats      = igb_get_ethtool_stats,
2194	.get_coalesce           = igb_get_coalesce,
2195	.set_coalesce           = igb_set_coalesce,
2196};
2197
2198void igb_set_ethtool_ops(struct net_device *netdev)
2199{
2200	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2201}