Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * 6pack.c	This module implements the 6pack protocol for kernel-based
  4 *		devices like TTY. It interfaces between a raw TTY and the
  5 *		kernel's AX.25 protocol layers.
  6 *
  7 * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
  8 *              Ralf Baechle DL5RB <ralf@linux-mips.org>
  9 *
 10 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
 11 *
 12 *		Laurence Culhane, <loz@holmes.demon.co.uk>
 13 *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
 14 */
 15
 16#include <linux/module.h>
 17#include <linux/uaccess.h>
 
 18#include <linux/bitops.h>
 19#include <linux/string.h>
 20#include <linux/mm.h>
 21#include <linux/interrupt.h>
 22#include <linux/in.h>
 23#include <linux/tty.h>
 24#include <linux/errno.h>
 25#include <linux/netdevice.h>
 26#include <linux/timer.h>
 27#include <linux/slab.h>
 28#include <net/ax25.h>
 29#include <linux/etherdevice.h>
 30#include <linux/skbuff.h>
 31#include <linux/rtnetlink.h>
 32#include <linux/spinlock.h>
 33#include <linux/if_arp.h>
 34#include <linux/init.h>
 35#include <linux/ip.h>
 36#include <linux/tcp.h>
 37#include <linux/semaphore.h>
 38#include <linux/refcount.h>
 
 39
 40#define SIXPACK_VERSION    "Revision: 0.3.0"
 41
 42/* sixpack priority commands */
 43#define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
 44#define SIXP_TX_URUN		0x48	/* transmit overrun */
 45#define SIXP_RX_ORUN		0x50	/* receive overrun */
 46#define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
 47
 48#define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
 49
 50/* masks to get certain bits out of the status bytes sent by the TNC */
 51
 52#define SIXP_CMD_MASK		0xC0
 53#define SIXP_CHN_MASK		0x07
 54#define SIXP_PRIO_CMD_MASK	0x80
 55#define SIXP_STD_CMD_MASK	0x40
 56#define SIXP_PRIO_DATA_MASK	0x38
 57#define SIXP_TX_MASK		0x20
 58#define SIXP_RX_MASK		0x10
 59#define SIXP_RX_DCD_MASK	0x18
 60#define SIXP_LEDS_ON		0x78
 61#define SIXP_LEDS_OFF		0x60
 62#define SIXP_CON		0x08
 63#define SIXP_STA		0x10
 64
 65#define SIXP_FOUND_TNC		0xe9
 66#define SIXP_CON_ON		0x68
 67#define SIXP_DCD_MASK		0x08
 68#define SIXP_DAMA_OFF		0
 69
 70/* default level 2 parameters */
 71#define SIXP_TXDELAY			25	/* 250 ms */
 72#define SIXP_PERSIST			50	/* in 256ths */
 73#define SIXP_SLOTTIME			10	/* 100 ms */
 74#define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
 75#define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
 76
 77/* 6pack configuration. */
 78#define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
 79#define SIXP_MTU			256	/* Default MTU */
 80
 81enum sixpack_flags {
 82	SIXPF_ERROR,	/* Parity, etc. error	*/
 83};
 84
 85struct sixpack {
 86	/* Various fields. */
 87	struct tty_struct	*tty;		/* ptr to TTY structure	*/
 88	struct net_device	*dev;		/* easy for intr handling  */
 89
 90	/* These are pointers to the malloc()ed frame buffers. */
 91	unsigned char		*rbuff;		/* receiver buffer	*/
 92	int			rcount;         /* received chars counter  */
 93	unsigned char		*xbuff;		/* transmitter buffer	*/
 94	unsigned char		*xhead;         /* next byte to XMIT */
 95	int			xleft;          /* bytes left in XMIT queue  */
 96
 97	unsigned char		raw_buf[4];
 98	unsigned char		cooked_buf[400];
 99
100	unsigned int		rx_count;
101	unsigned int		rx_count_cooked;
102	spinlock_t		rxlock;
103
104	int			mtu;		/* Our mtu (to spot changes!) */
105	int			buffsize;       /* Max buffers sizes */
106
107	unsigned long		flags;		/* Flag values/ mode etc */
108	unsigned char		mode;		/* 6pack mode */
109
110	/* 6pack stuff */
111	unsigned char		tx_delay;
112	unsigned char		persistence;
113	unsigned char		slottime;
114	unsigned char		duplex;
115	unsigned char		led_state;
116	unsigned char		status;
117	unsigned char		status1;
118	unsigned char		status2;
119	unsigned char		tx_enable;
120	unsigned char		tnc_state;
121
122	struct timer_list	tx_t;
123	struct timer_list	resync_t;
124	refcount_t		refcnt;
125	struct completion	dead;
126	spinlock_t		lock;
127};
128
129#define AX25_6PACK_HEADER_LEN 0
130
131static void sixpack_decode(struct sixpack *, const unsigned char[], int);
132static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
133
134/*
135 * Perform the persistence/slottime algorithm for CSMA access. If the
136 * persistence check was successful, write the data to the serial driver.
137 * Note that in case of DAMA operation, the data is not sent here.
138 */
139
140static void sp_xmit_on_air(struct timer_list *t)
141{
142	struct sixpack *sp = from_timer(sp, t, tx_t);
143	int actual, when = sp->slottime;
144	static unsigned char random;
145
146	random = random * 17 + 41;
147
148	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
149		sp->led_state = 0x70;
150		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
151		sp->tx_enable = 1;
152		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
153		sp->xleft -= actual;
154		sp->xhead += actual;
155		sp->led_state = 0x60;
156		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
157		sp->status2 = 0;
158	} else
159		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
160}
161
162/* ----> 6pack timer interrupt handler and friends. <---- */
163
164/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
165static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
166{
167	unsigned char *msg, *p = icp;
168	int actual, count;
169
170	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
171		msg = "oversized transmit packet!";
172		goto out_drop;
173	}
174
 
 
 
 
 
175	if (p[0] > 5) {
176		msg = "invalid KISS command";
177		goto out_drop;
178	}
179
180	if ((p[0] != 0) && (len > 2)) {
181		msg = "KISS control packet too long";
182		goto out_drop;
183	}
184
185	if ((p[0] == 0) && (len < 15)) {
186		msg = "bad AX.25 packet to transmit";
187		goto out_drop;
188	}
189
190	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
191	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
192
193	switch (p[0]) {
194	case 1:	sp->tx_delay = p[1];
195		return;
196	case 2:	sp->persistence = p[1];
197		return;
198	case 3:	sp->slottime = p[1];
199		return;
200	case 4:	/* ignored */
201		return;
202	case 5:	sp->duplex = p[1];
203		return;
204	}
205
206	if (p[0] != 0)
207		return;
208
209	/*
210	 * In case of fullduplex or DAMA operation, we don't take care about the
211	 * state of the DCD or of any timers, as the determination of the
212	 * correct time to send is the job of the AX.25 layer. We send
213	 * immediately after data has arrived.
214	 */
215	if (sp->duplex == 1) {
216		sp->led_state = 0x70;
217		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
218		sp->tx_enable = 1;
219		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
220		sp->xleft = count - actual;
221		sp->xhead = sp->xbuff + actual;
222		sp->led_state = 0x60;
223		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
224	} else {
225		sp->xleft = count;
226		sp->xhead = sp->xbuff;
227		sp->status2 = count;
228		sp_xmit_on_air(&sp->tx_t);
229	}
230
231	return;
232
233out_drop:
234	sp->dev->stats.tx_dropped++;
235	netif_start_queue(sp->dev);
236	if (net_ratelimit())
237		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
238}
239
240/* Encapsulate an IP datagram and kick it into a TTY queue. */
241
242static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
243{
244	struct sixpack *sp = netdev_priv(dev);
245
246	if (skb->protocol == htons(ETH_P_IP))
247		return ax25_ip_xmit(skb);
248
249	spin_lock_bh(&sp->lock);
250	/* We were not busy, so we are now... :-) */
251	netif_stop_queue(dev);
252	dev->stats.tx_bytes += skb->len;
253	sp_encaps(sp, skb->data, skb->len);
254	spin_unlock_bh(&sp->lock);
255
256	dev_kfree_skb(skb);
257
258	return NETDEV_TX_OK;
259}
260
261static int sp_open_dev(struct net_device *dev)
262{
263	struct sixpack *sp = netdev_priv(dev);
264
265	if (sp->tty == NULL)
266		return -ENODEV;
267	return 0;
268}
269
270/* Close the low-level part of the 6pack channel. */
271static int sp_close(struct net_device *dev)
272{
273	struct sixpack *sp = netdev_priv(dev);
274
275	spin_lock_bh(&sp->lock);
276	if (sp->tty) {
277		/* TTY discipline is running. */
278		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
279	}
280	netif_stop_queue(dev);
281	spin_unlock_bh(&sp->lock);
282
283	return 0;
284}
285
 
 
 
 
 
 
 
 
 
 
 
 
286static int sp_set_mac_address(struct net_device *dev, void *addr)
287{
288	struct sockaddr_ax25 *sa = addr;
289
290	netif_tx_lock_bh(dev);
291	netif_addr_lock(dev);
292	__dev_addr_set(dev, &sa->sax25_call, AX25_ADDR_LEN);
293	netif_addr_unlock(dev);
294	netif_tx_unlock_bh(dev);
295
296	return 0;
297}
298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
299static const struct net_device_ops sp_netdev_ops = {
300	.ndo_open		= sp_open_dev,
301	.ndo_stop		= sp_close,
302	.ndo_start_xmit		= sp_xmit,
303	.ndo_set_mac_address    = sp_set_mac_address,
304};
305
306static void sp_setup(struct net_device *dev)
307{
308	/* Finish setting up the DEVICE info. */
309	dev->netdev_ops		= &sp_netdev_ops;
 
310	dev->mtu		= SIXP_MTU;
311	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
312	dev->header_ops 	= &ax25_header_ops;
313
314	dev->addr_len		= AX25_ADDR_LEN;
315	dev->type		= ARPHRD_AX25;
316	dev->tx_queue_len	= 10;
317
318	/* Only activated in AX.25 mode */
319	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
320	dev_addr_set(dev, (u8 *)&ax25_defaddr);
321
322	dev->flags		= 0;
323}
324
325/* Send one completely decapsulated IP datagram to the IP layer. */
326
327/*
328 * This is the routine that sends the received data to the kernel AX.25.
329 * 'cmd' is the KISS command. For AX.25 data, it is zero.
330 */
331
332static void sp_bump(struct sixpack *sp, char cmd)
333{
334	struct sk_buff *skb;
335	int count;
336	unsigned char *ptr;
337
338	count = sp->rcount + 1;
339
340	sp->dev->stats.rx_bytes += count;
341
342	if ((skb = dev_alloc_skb(count + 1)) == NULL)
343		goto out_mem;
344
345	ptr = skb_put(skb, count + 1);
346	*ptr++ = cmd;	/* KISS command */
347
348	memcpy(ptr, sp->cooked_buf + 1, count);
349	skb->protocol = ax25_type_trans(skb, sp->dev);
350	netif_rx(skb);
351	sp->dev->stats.rx_packets++;
352
353	return;
354
355out_mem:
356	sp->dev->stats.rx_dropped++;
357}
358
359
360/* ----------------------------------------------------------------------- */
361
362/*
363 * We have a potential race on dereferencing tty->disc_data, because the tty
364 * layer provides no locking at all - thus one cpu could be running
365 * sixpack_receive_buf while another calls sixpack_close, which zeroes
366 * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
367 * best way to fix this is to use a rwlock in the tty struct, but for now we
368 * use a single global rwlock for all ttys in ppp line discipline.
369 */
370static DEFINE_RWLOCK(disc_data_lock);
371                                                                                
372static struct sixpack *sp_get(struct tty_struct *tty)
373{
374	struct sixpack *sp;
375
376	read_lock(&disc_data_lock);
377	sp = tty->disc_data;
378	if (sp)
379		refcount_inc(&sp->refcnt);
380	read_unlock(&disc_data_lock);
381
382	return sp;
383}
384
385static void sp_put(struct sixpack *sp)
386{
387	if (refcount_dec_and_test(&sp->refcnt))
388		complete(&sp->dead);
389}
390
391/*
392 * Called by the TTY driver when there's room for more data.  If we have
393 * more packets to send, we send them here.
394 */
395static void sixpack_write_wakeup(struct tty_struct *tty)
396{
397	struct sixpack *sp = sp_get(tty);
398	int actual;
399
400	if (!sp)
401		return;
402	if (sp->xleft <= 0)  {
403		/* Now serial buffer is almost free & we can start
404		 * transmission of another packet */
405		sp->dev->stats.tx_packets++;
406		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
407		sp->tx_enable = 0;
408		netif_wake_queue(sp->dev);
409		goto out;
410	}
411
412	if (sp->tx_enable) {
413		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
414		sp->xleft -= actual;
415		sp->xhead += actual;
416	}
417
418out:
419	sp_put(sp);
420}
421
422/* ----------------------------------------------------------------------- */
423
424/*
425 * Handle the 'receiver data ready' interrupt.
426 * This function is called by the tty module in the kernel when
427 * a block of 6pack data has been received, which can now be decapsulated
428 * and sent on to some IP layer for further processing.
429 */
430static void sixpack_receive_buf(struct tty_struct *tty, const u8 *cp,
431				const u8 *fp, size_t count)
432{
433	struct sixpack *sp;
 
434	int count1;
435
436	if (!count)
437		return;
438
439	sp = sp_get(tty);
440	if (!sp)
441		return;
442
 
 
443	/* Read the characters out of the buffer */
 
444	count1 = count;
445	while (count) {
446		count--;
447		if (fp && *fp++) {
448			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
449				sp->dev->stats.rx_errors++;
450			continue;
451		}
452	}
453	sixpack_decode(sp, cp, count1);
454
455	sp_put(sp);
456	tty_unthrottle(tty);
457}
458
459/*
460 * Try to resync the TNC. Called by the resync timer defined in
461 * decode_prio_command
462 */
463
464#define TNC_UNINITIALIZED	0
465#define TNC_UNSYNC_STARTUP	1
466#define TNC_UNSYNCED		2
467#define TNC_IN_SYNC		3
468
469static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
470{
471	char *msg;
472
473	switch (new_tnc_state) {
474	default:			/* gcc oh piece-o-crap ... */
475	case TNC_UNSYNC_STARTUP:
476		msg = "Synchronizing with TNC";
477		break;
478	case TNC_UNSYNCED:
479		msg = "Lost synchronization with TNC\n";
480		break;
481	case TNC_IN_SYNC:
482		msg = "Found TNC";
483		break;
484	}
485
486	sp->tnc_state = new_tnc_state;
487	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
488}
489
490static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
491{
492	int old_tnc_state = sp->tnc_state;
493
494	if (old_tnc_state != new_tnc_state)
495		__tnc_set_sync_state(sp, new_tnc_state);
496}
497
498static void resync_tnc(struct timer_list *t)
499{
500	struct sixpack *sp = from_timer(sp, t, resync_t);
501	static char resync_cmd = 0xe8;
502
503	/* clear any data that might have been received */
504
505	sp->rx_count = 0;
506	sp->rx_count_cooked = 0;
507
508	/* reset state machine */
509
510	sp->status = 1;
511	sp->status1 = 1;
512	sp->status2 = 0;
513
514	/* resync the TNC */
515
516	sp->led_state = 0x60;
517	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
518	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
519
520
521	/* Start resync timer again -- the TNC might be still absent */
522	mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
 
 
 
 
 
523}
524
525static inline int tnc_init(struct sixpack *sp)
526{
527	unsigned char inbyte = 0xe8;
528
529	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
530
531	sp->tty->ops->write(sp->tty, &inbyte, 1);
532
533	mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
 
 
 
 
534
535	return 0;
536}
537
538/*
539 * Open the high-level part of the 6pack channel.
540 * This function is called by the TTY module when the
541 * 6pack line discipline is called for.  Because we are
542 * sure the tty line exists, we only have to link it to
543 * a free 6pcack channel...
544 */
545static int sixpack_open(struct tty_struct *tty)
546{
547	char *rbuff = NULL, *xbuff = NULL;
548	struct net_device *dev;
549	struct sixpack *sp;
550	unsigned long len;
551	int err = 0;
552
553	if (!capable(CAP_NET_ADMIN))
554		return -EPERM;
555	if (tty->ops->write == NULL)
556		return -EOPNOTSUPP;
557
558	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
559			   sp_setup);
560	if (!dev) {
561		err = -ENOMEM;
562		goto out;
563	}
564
565	sp = netdev_priv(dev);
566	sp->dev = dev;
567
568	spin_lock_init(&sp->lock);
569	spin_lock_init(&sp->rxlock);
570	refcount_set(&sp->refcnt, 1);
571	init_completion(&sp->dead);
572
573	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
574
575	len = dev->mtu * 2;
576
577	rbuff = kmalloc(len + 4, GFP_KERNEL);
578	xbuff = kmalloc(len + 4, GFP_KERNEL);
579
580	if (rbuff == NULL || xbuff == NULL) {
581		err = -ENOBUFS;
582		goto out_free;
583	}
584
585	spin_lock_bh(&sp->lock);
586
587	sp->tty = tty;
588
589	sp->rbuff	= rbuff;
590	sp->xbuff	= xbuff;
591
592	sp->mtu		= AX25_MTU + 73;
593	sp->buffsize	= len;
594	sp->rcount	= 0;
595	sp->rx_count	= 0;
596	sp->rx_count_cooked = 0;
597	sp->xleft	= 0;
598
599	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
600
601	sp->duplex	= 0;
602	sp->tx_delay    = SIXP_TXDELAY;
603	sp->persistence = SIXP_PERSIST;
604	sp->slottime    = SIXP_SLOTTIME;
605	sp->led_state   = 0x60;
606	sp->status      = 1;
607	sp->status1     = 1;
608	sp->status2     = 0;
609	sp->tx_enable   = 0;
610
611	netif_start_queue(dev);
612
613	timer_setup(&sp->tx_t, sp_xmit_on_air, 0);
 
 
614
615	timer_setup(&sp->resync_t, resync_tnc, 0);
616
617	spin_unlock_bh(&sp->lock);
618
619	/* Done.  We have linked the TTY line to a channel. */
620	tty->disc_data = sp;
621	tty->receive_room = 65536;
622
623	/* Now we're ready to register. */
624	err = register_netdev(dev);
625	if (err)
626		goto out_free;
627
628	tnc_init(sp);
629
630	return 0;
631
632out_free:
633	kfree(xbuff);
634	kfree(rbuff);
635
636	free_netdev(dev);
 
637
638out:
639	return err;
640}
641
642
643/*
644 * Close down a 6pack channel.
645 * This means flushing out any pending queues, and then restoring the
646 * TTY line discipline to what it was before it got hooked to 6pack
647 * (which usually is TTY again).
648 */
649static void sixpack_close(struct tty_struct *tty)
650{
651	struct sixpack *sp;
652
653	write_lock_irq(&disc_data_lock);
654	sp = tty->disc_data;
655	tty->disc_data = NULL;
656	write_unlock_irq(&disc_data_lock);
657	if (!sp)
658		return;
659
660	/*
661	 * We have now ensured that nobody can start using ap from now on, but
662	 * we have to wait for all existing users to finish.
663	 */
664	if (!refcount_dec_and_test(&sp->refcnt))
665		wait_for_completion(&sp->dead);
666
667	/* We must stop the queue to avoid potentially scribbling
668	 * on the free buffers. The sp->dead completion is not sufficient
669	 * to protect us from sp->xbuff access.
670	 */
671	netif_stop_queue(sp->dev);
672
673	unregister_netdev(sp->dev);
674
675	del_timer_sync(&sp->tx_t);
676	del_timer_sync(&sp->resync_t);
677
678	/* Free all 6pack frame buffers after unreg. */
679	kfree(sp->rbuff);
680	kfree(sp->xbuff);
681
682	free_netdev(sp->dev);
683}
684
685/* Perform I/O control on an active 6pack channel. */
686static int sixpack_ioctl(struct tty_struct *tty, unsigned int cmd,
687		unsigned long arg)
688{
689	struct sixpack *sp = sp_get(tty);
690	struct net_device *dev;
691	unsigned int tmp, err;
692
693	if (!sp)
694		return -ENXIO;
695	dev = sp->dev;
696
697	switch(cmd) {
698	case SIOCGIFNAME:
699		err = copy_to_user((void __user *) arg, dev->name,
700		                   strlen(dev->name) + 1) ? -EFAULT : 0;
701		break;
702
703	case SIOCGIFENCAP:
704		err = put_user(0, (int __user *) arg);
705		break;
706
707	case SIOCSIFENCAP:
708		if (get_user(tmp, (int __user *) arg)) {
709			err = -EFAULT;
710			break;
711		}
712
713		sp->mode = tmp;
714		dev->addr_len        = AX25_ADDR_LEN;
715		dev->hard_header_len = AX25_KISS_HEADER_LEN +
716		                       AX25_MAX_HEADER_LEN + 3;
717		dev->type            = ARPHRD_AX25;
718
719		err = 0;
720		break;
721
722	case SIOCSIFHWADDR: {
723			char addr[AX25_ADDR_LEN];
724
725			if (copy_from_user(&addr,
726					   (void __user *)arg, AX25_ADDR_LEN)) {
727				err = -EFAULT;
728				break;
729			}
730
731			netif_tx_lock_bh(dev);
732			__dev_addr_set(dev, &addr, AX25_ADDR_LEN);
733			netif_tx_unlock_bh(dev);
 
734			err = 0;
735			break;
736		}
 
737	default:
738		err = tty_mode_ioctl(tty, cmd, arg);
739	}
740
741	sp_put(sp);
742
743	return err;
744}
745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
746static struct tty_ldisc_ops sp_ldisc = {
747	.owner		= THIS_MODULE,
748	.num		= N_6PACK,
749	.name		= "6pack",
750	.open		= sixpack_open,
751	.close		= sixpack_close,
752	.ioctl		= sixpack_ioctl,
 
 
 
753	.receive_buf	= sixpack_receive_buf,
754	.write_wakeup	= sixpack_write_wakeup,
755};
756
757/* Initialize 6pack control device -- register 6pack line discipline */
758
759static const char msg_banner[]  __initconst = KERN_INFO \
760	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
761static const char msg_regfail[] __initconst = KERN_ERR  \
762	"6pack: can't register line discipline (err = %d)\n";
763
764static int __init sixpack_init_driver(void)
765{
766	int status;
767
768	printk(msg_banner);
769
770	/* Register the provided line protocol discipline */
771	status = tty_register_ldisc(&sp_ldisc);
772	if (status)
773		printk(msg_regfail, status);
774
775	return status;
776}
777
 
 
 
778static void __exit sixpack_exit_driver(void)
779{
780	tty_unregister_ldisc(&sp_ldisc);
 
 
 
781}
782
783/* encode an AX.25 packet into 6pack */
784
785static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
786	int length, unsigned char tx_delay)
787{
788	int count = 0;
789	unsigned char checksum = 0, buf[400];
790	int raw_count = 0;
791
792	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
793	tx_buf_raw[raw_count++] = SIXP_SEOF;
794
795	buf[0] = tx_delay;
796	for (count = 1; count < length; count++)
797		buf[count] = tx_buf[count];
798
799	for (count = 0; count < length; count++)
800		checksum += buf[count];
801	buf[length] = (unsigned char) 0xff - checksum;
802
803	for (count = 0; count <= length; count++) {
804		if ((count % 3) == 0) {
805			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
806			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
807		} else if ((count % 3) == 1) {
808			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
809			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
810		} else {
811			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
812			tx_buf_raw[raw_count++] = (buf[count] >> 2);
813		}
814	}
815	if ((length % 3) != 2)
816		raw_count++;
817	tx_buf_raw[raw_count++] = SIXP_SEOF;
818	return raw_count;
819}
820
821/* decode 4 sixpack-encoded bytes into 3 data bytes */
822
823static void decode_data(struct sixpack *sp, unsigned char inbyte)
824{
825	unsigned char *buf;
826
827	if (sp->rx_count != 3) {
828		sp->raw_buf[sp->rx_count++] = inbyte;
829
830		return;
831	}
832
833	if (sp->rx_count_cooked + 2 >= sizeof(sp->cooked_buf)) {
834		pr_err("6pack: cooked buffer overrun, data loss\n");
835		sp->rx_count = 0;
836		return;
837	}
838
839	buf = sp->raw_buf;
840	sp->cooked_buf[sp->rx_count_cooked++] =
841		buf[0] | ((buf[1] << 2) & 0xc0);
842	sp->cooked_buf[sp->rx_count_cooked++] =
843		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
844	sp->cooked_buf[sp->rx_count_cooked++] =
845		(buf[2] & 0x03) | (inbyte << 2);
846	sp->rx_count = 0;
847}
848
849/* identify and execute a 6pack priority command byte */
850
851static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
852{
 
853	int actual;
854
 
855	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
856
857	/* RX and DCD flags can only be set in the same prio command,
858	   if the DCD flag has been set without the RX flag in the previous
859	   prio command. If DCD has not been set before, something in the
860	   transmission has gone wrong. In this case, RX and DCD are
861	   cleared in order to prevent the decode_data routine from
862	   reading further data that might be corrupt. */
863
864		if (((sp->status & SIXP_DCD_MASK) == 0) &&
865			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
866				if (sp->status != 1)
867					printk(KERN_DEBUG "6pack: protocol violation\n");
868				else
869					sp->status = 0;
870				cmd &= ~SIXP_RX_DCD_MASK;
871		}
872		sp->status = cmd & SIXP_PRIO_DATA_MASK;
873	} else { /* output watchdog char if idle */
874		if ((sp->status2 != 0) && (sp->duplex == 1)) {
875			sp->led_state = 0x70;
876			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
877			sp->tx_enable = 1;
878			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
879			sp->xleft -= actual;
880			sp->xhead += actual;
881			sp->led_state = 0x60;
882			sp->status2 = 0;
883
884		}
885	}
886
887	/* needed to trigger the TNC watchdog */
888	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
889
890        /* if the state byte has been received, the TNC is present,
891           so the resync timer can be reset. */
892
893	if (sp->tnc_state == TNC_IN_SYNC)
894		mod_timer(&sp->resync_t, jiffies + SIXP_INIT_RESYNC_TIMEOUT);
 
 
 
 
 
895
896	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
897}
898
899/* identify and execute a standard 6pack command byte */
900
901static void decode_std_command(struct sixpack *sp, unsigned char cmd)
902{
903	unsigned char checksum = 0, rest = 0;
904	short i;
905
 
906	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
907	case SIXP_SEOF:
908		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
909			if ((sp->status & SIXP_RX_DCD_MASK) ==
910				SIXP_RX_DCD_MASK) {
911				sp->led_state = 0x68;
912				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
913			}
914		} else {
915			sp->led_state = 0x60;
916			/* fill trailing bytes with zeroes */
917			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
918			spin_lock_bh(&sp->rxlock);
919			rest = sp->rx_count;
920			if (rest != 0)
921				 for (i = rest; i <= 3; i++)
922					decode_data(sp, 0);
923			if (rest == 2)
924				sp->rx_count_cooked -= 2;
925			else if (rest == 3)
926				sp->rx_count_cooked -= 1;
927			for (i = 0; i < sp->rx_count_cooked; i++)
928				checksum += sp->cooked_buf[i];
929			if (checksum != SIXP_CHKSUM) {
930				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
931			} else {
932				sp->rcount = sp->rx_count_cooked-2;
933				sp_bump(sp, 0);
934			}
935			sp->rx_count_cooked = 0;
936			spin_unlock_bh(&sp->rxlock);
937		}
938		break;
939	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
940		break;
941	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
942		break;
943	case SIXP_RX_BUF_OVL:
944		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
945	}
946}
947
948/* decode a 6pack packet */
949
950static void
951sixpack_decode(struct sixpack *sp, const unsigned char *pre_rbuff, int count)
952{
953	unsigned char inbyte;
954	int count1;
955
956	for (count1 = 0; count1 < count; count1++) {
957		inbyte = pre_rbuff[count1];
958		if (inbyte == SIXP_FOUND_TNC) {
959			tnc_set_sync_state(sp, TNC_IN_SYNC);
960			del_timer(&sp->resync_t);
961		}
962		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
963			decode_prio_command(sp, inbyte);
964		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
965			decode_std_command(sp, inbyte);
966		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK) {
967			spin_lock_bh(&sp->rxlock);
968			decode_data(sp, inbyte);
969			spin_unlock_bh(&sp->rxlock);
970		}
971	}
972}
973
974MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
975MODULE_DESCRIPTION("6pack driver for AX.25");
976MODULE_LICENSE("GPL");
977MODULE_ALIAS_LDISC(N_6PACK);
978
979module_init(sixpack_init_driver);
980module_exit(sixpack_exit_driver);
v3.1
 
   1/*
   2 * 6pack.c	This module implements the 6pack protocol for kernel-based
   3 *		devices like TTY. It interfaces between a raw TTY and the
   4 *		kernel's AX.25 protocol layers.
   5 *
   6 * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
   7 *              Ralf Baechle DL5RB <ralf@linux-mips.org>
   8 *
   9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
  10 *
  11 *		Laurence Culhane, <loz@holmes.demon.co.uk>
  12 *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
  13 */
  14
  15#include <linux/module.h>
  16#include <asm/system.h>
  17#include <asm/uaccess.h>
  18#include <linux/bitops.h>
  19#include <linux/string.h>
  20#include <linux/mm.h>
  21#include <linux/interrupt.h>
  22#include <linux/in.h>
  23#include <linux/tty.h>
  24#include <linux/errno.h>
  25#include <linux/netdevice.h>
  26#include <linux/timer.h>
  27#include <linux/slab.h>
  28#include <net/ax25.h>
  29#include <linux/etherdevice.h>
  30#include <linux/skbuff.h>
  31#include <linux/rtnetlink.h>
  32#include <linux/spinlock.h>
  33#include <linux/if_arp.h>
  34#include <linux/init.h>
  35#include <linux/ip.h>
  36#include <linux/tcp.h>
  37#include <linux/semaphore.h>
  38#include <linux/compat.h>
  39#include <linux/atomic.h>
  40
  41#define SIXPACK_VERSION    "Revision: 0.3.0"
  42
  43/* sixpack priority commands */
  44#define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
  45#define SIXP_TX_URUN		0x48	/* transmit overrun */
  46#define SIXP_RX_ORUN		0x50	/* receive overrun */
  47#define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
  48
  49#define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
  50
  51/* masks to get certain bits out of the status bytes sent by the TNC */
  52
  53#define SIXP_CMD_MASK		0xC0
  54#define SIXP_CHN_MASK		0x07
  55#define SIXP_PRIO_CMD_MASK	0x80
  56#define SIXP_STD_CMD_MASK	0x40
  57#define SIXP_PRIO_DATA_MASK	0x38
  58#define SIXP_TX_MASK		0x20
  59#define SIXP_RX_MASK		0x10
  60#define SIXP_RX_DCD_MASK	0x18
  61#define SIXP_LEDS_ON		0x78
  62#define SIXP_LEDS_OFF		0x60
  63#define SIXP_CON		0x08
  64#define SIXP_STA		0x10
  65
  66#define SIXP_FOUND_TNC		0xe9
  67#define SIXP_CON_ON		0x68
  68#define SIXP_DCD_MASK		0x08
  69#define SIXP_DAMA_OFF		0
  70
  71/* default level 2 parameters */
  72#define SIXP_TXDELAY			(HZ/4)	/* in 1 s */
  73#define SIXP_PERSIST			50	/* in 256ths */
  74#define SIXP_SLOTTIME			(HZ/10)	/* in 1 s */
  75#define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
  76#define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
  77
  78/* 6pack configuration. */
  79#define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
  80#define SIXP_MTU			256	/* Default MTU */
  81
  82enum sixpack_flags {
  83	SIXPF_ERROR,	/* Parity, etc. error	*/
  84};
  85
  86struct sixpack {
  87	/* Various fields. */
  88	struct tty_struct	*tty;		/* ptr to TTY structure	*/
  89	struct net_device	*dev;		/* easy for intr handling  */
  90
  91	/* These are pointers to the malloc()ed frame buffers. */
  92	unsigned char		*rbuff;		/* receiver buffer	*/
  93	int			rcount;         /* received chars counter  */
  94	unsigned char		*xbuff;		/* transmitter buffer	*/
  95	unsigned char		*xhead;         /* next byte to XMIT */
  96	int			xleft;          /* bytes left in XMIT queue  */
  97
  98	unsigned char		raw_buf[4];
  99	unsigned char		cooked_buf[400];
 100
 101	unsigned int		rx_count;
 102	unsigned int		rx_count_cooked;
 
 103
 104	int			mtu;		/* Our mtu (to spot changes!) */
 105	int			buffsize;       /* Max buffers sizes */
 106
 107	unsigned long		flags;		/* Flag values/ mode etc */
 108	unsigned char		mode;		/* 6pack mode */
 109
 110	/* 6pack stuff */
 111	unsigned char		tx_delay;
 112	unsigned char		persistence;
 113	unsigned char		slottime;
 114	unsigned char		duplex;
 115	unsigned char		led_state;
 116	unsigned char		status;
 117	unsigned char		status1;
 118	unsigned char		status2;
 119	unsigned char		tx_enable;
 120	unsigned char		tnc_state;
 121
 122	struct timer_list	tx_t;
 123	struct timer_list	resync_t;
 124	atomic_t		refcnt;
 125	struct semaphore	dead_sem;
 126	spinlock_t		lock;
 127};
 128
 129#define AX25_6PACK_HEADER_LEN 0
 130
 131static void sixpack_decode(struct sixpack *, unsigned char[], int);
 132static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
 133
 134/*
 135 * Perform the persistence/slottime algorithm for CSMA access. If the
 136 * persistence check was successful, write the data to the serial driver.
 137 * Note that in case of DAMA operation, the data is not sent here.
 138 */
 139
 140static void sp_xmit_on_air(unsigned long channel)
 141{
 142	struct sixpack *sp = (struct sixpack *) channel;
 143	int actual, when = sp->slottime;
 144	static unsigned char random;
 145
 146	random = random * 17 + 41;
 147
 148	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
 149		sp->led_state = 0x70;
 150		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 151		sp->tx_enable = 1;
 152		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
 153		sp->xleft -= actual;
 154		sp->xhead += actual;
 155		sp->led_state = 0x60;
 156		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 157		sp->status2 = 0;
 158	} else
 159		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
 160}
 161
 162/* ----> 6pack timer interrupt handler and friends. <---- */
 163
 164/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
 165static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
 166{
 167	unsigned char *msg, *p = icp;
 168	int actual, count;
 169
 170	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
 171		msg = "oversized transmit packet!";
 172		goto out_drop;
 173	}
 174
 175	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
 176		msg = "oversized transmit packet!";
 177		goto out_drop;
 178	}
 179
 180	if (p[0] > 5) {
 181		msg = "invalid KISS command";
 182		goto out_drop;
 183	}
 184
 185	if ((p[0] != 0) && (len > 2)) {
 186		msg = "KISS control packet too long";
 187		goto out_drop;
 188	}
 189
 190	if ((p[0] == 0) && (len < 15)) {
 191		msg = "bad AX.25 packet to transmit";
 192		goto out_drop;
 193	}
 194
 195	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
 196	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
 197
 198	switch (p[0]) {
 199	case 1:	sp->tx_delay = p[1];
 200		return;
 201	case 2:	sp->persistence = p[1];
 202		return;
 203	case 3:	sp->slottime = p[1];
 204		return;
 205	case 4:	/* ignored */
 206		return;
 207	case 5:	sp->duplex = p[1];
 208		return;
 209	}
 210
 211	if (p[0] != 0)
 212		return;
 213
 214	/*
 215	 * In case of fullduplex or DAMA operation, we don't take care about the
 216	 * state of the DCD or of any timers, as the determination of the
 217	 * correct time to send is the job of the AX.25 layer. We send
 218	 * immediately after data has arrived.
 219	 */
 220	if (sp->duplex == 1) {
 221		sp->led_state = 0x70;
 222		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 223		sp->tx_enable = 1;
 224		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
 225		sp->xleft = count - actual;
 226		sp->xhead = sp->xbuff + actual;
 227		sp->led_state = 0x60;
 228		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 229	} else {
 230		sp->xleft = count;
 231		sp->xhead = sp->xbuff;
 232		sp->status2 = count;
 233		sp_xmit_on_air((unsigned long)sp);
 234	}
 235
 236	return;
 237
 238out_drop:
 239	sp->dev->stats.tx_dropped++;
 240	netif_start_queue(sp->dev);
 241	if (net_ratelimit())
 242		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
 243}
 244
 245/* Encapsulate an IP datagram and kick it into a TTY queue. */
 246
 247static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
 248{
 249	struct sixpack *sp = netdev_priv(dev);
 250
 
 
 
 251	spin_lock_bh(&sp->lock);
 252	/* We were not busy, so we are now... :-) */
 253	netif_stop_queue(dev);
 254	dev->stats.tx_bytes += skb->len;
 255	sp_encaps(sp, skb->data, skb->len);
 256	spin_unlock_bh(&sp->lock);
 257
 258	dev_kfree_skb(skb);
 259
 260	return NETDEV_TX_OK;
 261}
 262
 263static int sp_open_dev(struct net_device *dev)
 264{
 265	struct sixpack *sp = netdev_priv(dev);
 266
 267	if (sp->tty == NULL)
 268		return -ENODEV;
 269	return 0;
 270}
 271
 272/* Close the low-level part of the 6pack channel. */
 273static int sp_close(struct net_device *dev)
 274{
 275	struct sixpack *sp = netdev_priv(dev);
 276
 277	spin_lock_bh(&sp->lock);
 278	if (sp->tty) {
 279		/* TTY discipline is running. */
 280		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
 281	}
 282	netif_stop_queue(dev);
 283	spin_unlock_bh(&sp->lock);
 284
 285	return 0;
 286}
 287
 288/* Return the frame type ID */
 289static int sp_header(struct sk_buff *skb, struct net_device *dev,
 290		     unsigned short type, const void *daddr,
 291		     const void *saddr, unsigned len)
 292{
 293#ifdef CONFIG_INET
 294	if (type != ETH_P_AX25)
 295		return ax25_hard_header(skb, dev, type, daddr, saddr, len);
 296#endif
 297	return 0;
 298}
 299
 300static int sp_set_mac_address(struct net_device *dev, void *addr)
 301{
 302	struct sockaddr_ax25 *sa = addr;
 303
 304	netif_tx_lock_bh(dev);
 305	netif_addr_lock(dev);
 306	memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
 307	netif_addr_unlock(dev);
 308	netif_tx_unlock_bh(dev);
 309
 310	return 0;
 311}
 312
 313static int sp_rebuild_header(struct sk_buff *skb)
 314{
 315#ifdef CONFIG_INET
 316	return ax25_rebuild_header(skb);
 317#else
 318	return 0;
 319#endif
 320}
 321
 322static const struct header_ops sp_header_ops = {
 323	.create		= sp_header,
 324	.rebuild	= sp_rebuild_header,
 325};
 326
 327static const struct net_device_ops sp_netdev_ops = {
 328	.ndo_open		= sp_open_dev,
 329	.ndo_stop		= sp_close,
 330	.ndo_start_xmit		= sp_xmit,
 331	.ndo_set_mac_address    = sp_set_mac_address,
 332};
 333
 334static void sp_setup(struct net_device *dev)
 335{
 336	/* Finish setting up the DEVICE info. */
 337	dev->netdev_ops		= &sp_netdev_ops;
 338	dev->destructor		= free_netdev;
 339	dev->mtu		= SIXP_MTU;
 340	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
 341	dev->header_ops 	= &sp_header_ops;
 342
 343	dev->addr_len		= AX25_ADDR_LEN;
 344	dev->type		= ARPHRD_AX25;
 345	dev->tx_queue_len	= 10;
 346
 347	/* Only activated in AX.25 mode */
 348	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
 349	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
 350
 351	dev->flags		= 0;
 352}
 353
 354/* Send one completely decapsulated IP datagram to the IP layer. */
 355
 356/*
 357 * This is the routine that sends the received data to the kernel AX.25.
 358 * 'cmd' is the KISS command. For AX.25 data, it is zero.
 359 */
 360
 361static void sp_bump(struct sixpack *sp, char cmd)
 362{
 363	struct sk_buff *skb;
 364	int count;
 365	unsigned char *ptr;
 366
 367	count = sp->rcount + 1;
 368
 369	sp->dev->stats.rx_bytes += count;
 370
 371	if ((skb = dev_alloc_skb(count)) == NULL)
 372		goto out_mem;
 373
 374	ptr = skb_put(skb, count);
 375	*ptr++ = cmd;	/* KISS command */
 376
 377	memcpy(ptr, sp->cooked_buf + 1, count);
 378	skb->protocol = ax25_type_trans(skb, sp->dev);
 379	netif_rx(skb);
 380	sp->dev->stats.rx_packets++;
 381
 382	return;
 383
 384out_mem:
 385	sp->dev->stats.rx_dropped++;
 386}
 387
 388
 389/* ----------------------------------------------------------------------- */
 390
 391/*
 392 * We have a potential race on dereferencing tty->disc_data, because the tty
 393 * layer provides no locking at all - thus one cpu could be running
 394 * sixpack_receive_buf while another calls sixpack_close, which zeroes
 395 * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
 396 * best way to fix this is to use a rwlock in the tty struct, but for now we
 397 * use a single global rwlock for all ttys in ppp line discipline.
 398 */
 399static DEFINE_RWLOCK(disc_data_lock);
 400                                                                                
 401static struct sixpack *sp_get(struct tty_struct *tty)
 402{
 403	struct sixpack *sp;
 404
 405	read_lock(&disc_data_lock);
 406	sp = tty->disc_data;
 407	if (sp)
 408		atomic_inc(&sp->refcnt);
 409	read_unlock(&disc_data_lock);
 410
 411	return sp;
 412}
 413
 414static void sp_put(struct sixpack *sp)
 415{
 416	if (atomic_dec_and_test(&sp->refcnt))
 417		up(&sp->dead_sem);
 418}
 419
 420/*
 421 * Called by the TTY driver when there's room for more data.  If we have
 422 * more packets to send, we send them here.
 423 */
 424static void sixpack_write_wakeup(struct tty_struct *tty)
 425{
 426	struct sixpack *sp = sp_get(tty);
 427	int actual;
 428
 429	if (!sp)
 430		return;
 431	if (sp->xleft <= 0)  {
 432		/* Now serial buffer is almost free & we can start
 433		 * transmission of another packet */
 434		sp->dev->stats.tx_packets++;
 435		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 436		sp->tx_enable = 0;
 437		netif_wake_queue(sp->dev);
 438		goto out;
 439	}
 440
 441	if (sp->tx_enable) {
 442		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
 443		sp->xleft -= actual;
 444		sp->xhead += actual;
 445	}
 446
 447out:
 448	sp_put(sp);
 449}
 450
 451/* ----------------------------------------------------------------------- */
 452
 453/*
 454 * Handle the 'receiver data ready' interrupt.
 455 * This function is called by the 'tty_io' module in the kernel when
 456 * a block of 6pack data has been received, which can now be decapsulated
 457 * and sent on to some IP layer for further processing.
 458 */
 459static void sixpack_receive_buf(struct tty_struct *tty,
 460	const unsigned char *cp, char *fp, int count)
 461{
 462	struct sixpack *sp;
 463	unsigned char buf[512];
 464	int count1;
 465
 466	if (!count)
 467		return;
 468
 469	sp = sp_get(tty);
 470	if (!sp)
 471		return;
 472
 473	memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf));
 474
 475	/* Read the characters out of the buffer */
 476
 477	count1 = count;
 478	while (count) {
 479		count--;
 480		if (fp && *fp++) {
 481			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
 482				sp->dev->stats.rx_errors++;
 483			continue;
 484		}
 485	}
 486	sixpack_decode(sp, buf, count1);
 487
 488	sp_put(sp);
 489	tty_unthrottle(tty);
 490}
 491
 492/*
 493 * Try to resync the TNC. Called by the resync timer defined in
 494 * decode_prio_command
 495 */
 496
 497#define TNC_UNINITIALIZED	0
 498#define TNC_UNSYNC_STARTUP	1
 499#define TNC_UNSYNCED		2
 500#define TNC_IN_SYNC		3
 501
 502static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
 503{
 504	char *msg;
 505
 506	switch (new_tnc_state) {
 507	default:			/* gcc oh piece-o-crap ... */
 508	case TNC_UNSYNC_STARTUP:
 509		msg = "Synchronizing with TNC";
 510		break;
 511	case TNC_UNSYNCED:
 512		msg = "Lost synchronization with TNC\n";
 513		break;
 514	case TNC_IN_SYNC:
 515		msg = "Found TNC";
 516		break;
 517	}
 518
 519	sp->tnc_state = new_tnc_state;
 520	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
 521}
 522
 523static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
 524{
 525	int old_tnc_state = sp->tnc_state;
 526
 527	if (old_tnc_state != new_tnc_state)
 528		__tnc_set_sync_state(sp, new_tnc_state);
 529}
 530
 531static void resync_tnc(unsigned long channel)
 532{
 533	struct sixpack *sp = (struct sixpack *) channel;
 534	static char resync_cmd = 0xe8;
 535
 536	/* clear any data that might have been received */
 537
 538	sp->rx_count = 0;
 539	sp->rx_count_cooked = 0;
 540
 541	/* reset state machine */
 542
 543	sp->status = 1;
 544	sp->status1 = 1;
 545	sp->status2 = 0;
 546
 547	/* resync the TNC */
 548
 549	sp->led_state = 0x60;
 550	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 551	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
 552
 553
 554	/* Start resync timer again -- the TNC might be still absent */
 555
 556	del_timer(&sp->resync_t);
 557	sp->resync_t.data	= (unsigned long) sp;
 558	sp->resync_t.function	= resync_tnc;
 559	sp->resync_t.expires	= jiffies + SIXP_RESYNC_TIMEOUT;
 560	add_timer(&sp->resync_t);
 561}
 562
 563static inline int tnc_init(struct sixpack *sp)
 564{
 565	unsigned char inbyte = 0xe8;
 566
 567	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
 568
 569	sp->tty->ops->write(sp->tty, &inbyte, 1);
 570
 571	del_timer(&sp->resync_t);
 572	sp->resync_t.data = (unsigned long) sp;
 573	sp->resync_t.function = resync_tnc;
 574	sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
 575	add_timer(&sp->resync_t);
 576
 577	return 0;
 578}
 579
 580/*
 581 * Open the high-level part of the 6pack channel.
 582 * This function is called by the TTY module when the
 583 * 6pack line discipline is called for.  Because we are
 584 * sure the tty line exists, we only have to link it to
 585 * a free 6pcack channel...
 586 */
 587static int sixpack_open(struct tty_struct *tty)
 588{
 589	char *rbuff = NULL, *xbuff = NULL;
 590	struct net_device *dev;
 591	struct sixpack *sp;
 592	unsigned long len;
 593	int err = 0;
 594
 595	if (!capable(CAP_NET_ADMIN))
 596		return -EPERM;
 597	if (tty->ops->write == NULL)
 598		return -EOPNOTSUPP;
 599
 600	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", sp_setup);
 
 601	if (!dev) {
 602		err = -ENOMEM;
 603		goto out;
 604	}
 605
 606	sp = netdev_priv(dev);
 607	sp->dev = dev;
 608
 609	spin_lock_init(&sp->lock);
 610	atomic_set(&sp->refcnt, 1);
 611	sema_init(&sp->dead_sem, 0);
 
 612
 613	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
 614
 615	len = dev->mtu * 2;
 616
 617	rbuff = kmalloc(len + 4, GFP_KERNEL);
 618	xbuff = kmalloc(len + 4, GFP_KERNEL);
 619
 620	if (rbuff == NULL || xbuff == NULL) {
 621		err = -ENOBUFS;
 622		goto out_free;
 623	}
 624
 625	spin_lock_bh(&sp->lock);
 626
 627	sp->tty = tty;
 628
 629	sp->rbuff	= rbuff;
 630	sp->xbuff	= xbuff;
 631
 632	sp->mtu		= AX25_MTU + 73;
 633	sp->buffsize	= len;
 634	sp->rcount	= 0;
 635	sp->rx_count	= 0;
 636	sp->rx_count_cooked = 0;
 637	sp->xleft	= 0;
 638
 639	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
 640
 641	sp->duplex	= 0;
 642	sp->tx_delay    = SIXP_TXDELAY;
 643	sp->persistence = SIXP_PERSIST;
 644	sp->slottime    = SIXP_SLOTTIME;
 645	sp->led_state   = 0x60;
 646	sp->status      = 1;
 647	sp->status1     = 1;
 648	sp->status2     = 0;
 649	sp->tx_enable   = 0;
 650
 651	netif_start_queue(dev);
 652
 653	init_timer(&sp->tx_t);
 654	sp->tx_t.function = sp_xmit_on_air;
 655	sp->tx_t.data = (unsigned long) sp;
 656
 657	init_timer(&sp->resync_t);
 658
 659	spin_unlock_bh(&sp->lock);
 660
 661	/* Done.  We have linked the TTY line to a channel. */
 662	tty->disc_data = sp;
 663	tty->receive_room = 65536;
 664
 665	/* Now we're ready to register. */
 666	if (register_netdev(dev))
 
 667		goto out_free;
 668
 669	tnc_init(sp);
 670
 671	return 0;
 672
 673out_free:
 674	kfree(xbuff);
 675	kfree(rbuff);
 676
 677	if (dev)
 678		free_netdev(dev);
 679
 680out:
 681	return err;
 682}
 683
 684
 685/*
 686 * Close down a 6pack channel.
 687 * This means flushing out any pending queues, and then restoring the
 688 * TTY line discipline to what it was before it got hooked to 6pack
 689 * (which usually is TTY again).
 690 */
 691static void sixpack_close(struct tty_struct *tty)
 692{
 693	struct sixpack *sp;
 694
 695	write_lock_bh(&disc_data_lock);
 696	sp = tty->disc_data;
 697	tty->disc_data = NULL;
 698	write_unlock_bh(&disc_data_lock);
 699	if (!sp)
 700		return;
 701
 702	/*
 703	 * We have now ensured that nobody can start using ap from now on, but
 704	 * we have to wait for all existing users to finish.
 705	 */
 706	if (!atomic_dec_and_test(&sp->refcnt))
 707		down(&sp->dead_sem);
 
 
 
 
 
 
 708
 709	unregister_netdev(sp->dev);
 710
 711	del_timer(&sp->tx_t);
 712	del_timer(&sp->resync_t);
 713
 714	/* Free all 6pack frame buffers. */
 715	kfree(sp->rbuff);
 716	kfree(sp->xbuff);
 
 
 717}
 718
 719/* Perform I/O control on an active 6pack channel. */
 720static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
 721	unsigned int cmd, unsigned long arg)
 722{
 723	struct sixpack *sp = sp_get(tty);
 724	struct net_device *dev;
 725	unsigned int tmp, err;
 726
 727	if (!sp)
 728		return -ENXIO;
 729	dev = sp->dev;
 730
 731	switch(cmd) {
 732	case SIOCGIFNAME:
 733		err = copy_to_user((void __user *) arg, dev->name,
 734		                   strlen(dev->name) + 1) ? -EFAULT : 0;
 735		break;
 736
 737	case SIOCGIFENCAP:
 738		err = put_user(0, (int __user *) arg);
 739		break;
 740
 741	case SIOCSIFENCAP:
 742		if (get_user(tmp, (int __user *) arg)) {
 743			err = -EFAULT;
 744			break;
 745		}
 746
 747		sp->mode = tmp;
 748		dev->addr_len        = AX25_ADDR_LEN;
 749		dev->hard_header_len = AX25_KISS_HEADER_LEN +
 750		                       AX25_MAX_HEADER_LEN + 3;
 751		dev->type            = ARPHRD_AX25;
 752
 753		err = 0;
 754		break;
 755
 756	 case SIOCSIFHWADDR: {
 757		char addr[AX25_ADDR_LEN];
 758
 759		if (copy_from_user(&addr,
 760		                   (void __user *) arg, AX25_ADDR_LEN)) {
 761				err = -EFAULT;
 762				break;
 763			}
 764
 765			netif_tx_lock_bh(dev);
 766			memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
 767			netif_tx_unlock_bh(dev);
 768
 769			err = 0;
 770			break;
 771		}
 772
 773	default:
 774		err = tty_mode_ioctl(tty, file, cmd, arg);
 775	}
 776
 777	sp_put(sp);
 778
 779	return err;
 780}
 781
 782#ifdef CONFIG_COMPAT
 783static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file,
 784				unsigned int cmd, unsigned long arg)
 785{
 786	switch (cmd) {
 787	case SIOCGIFNAME:
 788	case SIOCGIFENCAP:
 789	case SIOCSIFENCAP:
 790	case SIOCSIFHWADDR:
 791		return sixpack_ioctl(tty, file, cmd,
 792				(unsigned long)compat_ptr(arg));
 793	}
 794
 795	return -ENOIOCTLCMD;
 796}
 797#endif
 798
 799static struct tty_ldisc_ops sp_ldisc = {
 800	.owner		= THIS_MODULE,
 801	.magic		= TTY_LDISC_MAGIC,
 802	.name		= "6pack",
 803	.open		= sixpack_open,
 804	.close		= sixpack_close,
 805	.ioctl		= sixpack_ioctl,
 806#ifdef CONFIG_COMPAT
 807	.compat_ioctl	= sixpack_compat_ioctl,
 808#endif
 809	.receive_buf	= sixpack_receive_buf,
 810	.write_wakeup	= sixpack_write_wakeup,
 811};
 812
 813/* Initialize 6pack control device -- register 6pack line discipline */
 814
 815static const char msg_banner[]  __initdata = KERN_INFO \
 816	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
 817static const char msg_regfail[] __initdata = KERN_ERR  \
 818	"6pack: can't register line discipline (err = %d)\n";
 819
 820static int __init sixpack_init_driver(void)
 821{
 822	int status;
 823
 824	printk(msg_banner);
 825
 826	/* Register the provided line protocol discipline */
 827	if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
 
 828		printk(msg_regfail, status);
 829
 830	return status;
 831}
 832
 833static const char msg_unregfail[] __exitdata = KERN_ERR \
 834	"6pack: can't unregister line discipline (err = %d)\n";
 835
 836static void __exit sixpack_exit_driver(void)
 837{
 838	int ret;
 839
 840	if ((ret = tty_unregister_ldisc(N_6PACK)))
 841		printk(msg_unregfail, ret);
 842}
 843
 844/* encode an AX.25 packet into 6pack */
 845
 846static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
 847	int length, unsigned char tx_delay)
 848{
 849	int count = 0;
 850	unsigned char checksum = 0, buf[400];
 851	int raw_count = 0;
 852
 853	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
 854	tx_buf_raw[raw_count++] = SIXP_SEOF;
 855
 856	buf[0] = tx_delay;
 857	for (count = 1; count < length; count++)
 858		buf[count] = tx_buf[count];
 859
 860	for (count = 0; count < length; count++)
 861		checksum += buf[count];
 862	buf[length] = (unsigned char) 0xff - checksum;
 863
 864	for (count = 0; count <= length; count++) {
 865		if ((count % 3) == 0) {
 866			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
 867			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
 868		} else if ((count % 3) == 1) {
 869			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
 870			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
 871		} else {
 872			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
 873			tx_buf_raw[raw_count++] = (buf[count] >> 2);
 874		}
 875	}
 876	if ((length % 3) != 2)
 877		raw_count++;
 878	tx_buf_raw[raw_count++] = SIXP_SEOF;
 879	return raw_count;
 880}
 881
 882/* decode 4 sixpack-encoded bytes into 3 data bytes */
 883
 884static void decode_data(struct sixpack *sp, unsigned char inbyte)
 885{
 886	unsigned char *buf;
 887
 888	if (sp->rx_count != 3) {
 889		sp->raw_buf[sp->rx_count++] = inbyte;
 890
 891		return;
 892	}
 893
 
 
 
 
 
 
 894	buf = sp->raw_buf;
 895	sp->cooked_buf[sp->rx_count_cooked++] =
 896		buf[0] | ((buf[1] << 2) & 0xc0);
 897	sp->cooked_buf[sp->rx_count_cooked++] =
 898		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
 899	sp->cooked_buf[sp->rx_count_cooked++] =
 900		(buf[2] & 0x03) | (inbyte << 2);
 901	sp->rx_count = 0;
 902}
 903
 904/* identify and execute a 6pack priority command byte */
 905
 906static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
 907{
 908	unsigned char channel;
 909	int actual;
 910
 911	channel = cmd & SIXP_CHN_MASK;
 912	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
 913
 914	/* RX and DCD flags can only be set in the same prio command,
 915	   if the DCD flag has been set without the RX flag in the previous
 916	   prio command. If DCD has not been set before, something in the
 917	   transmission has gone wrong. In this case, RX and DCD are
 918	   cleared in order to prevent the decode_data routine from
 919	   reading further data that might be corrupt. */
 920
 921		if (((sp->status & SIXP_DCD_MASK) == 0) &&
 922			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
 923				if (sp->status != 1)
 924					printk(KERN_DEBUG "6pack: protocol violation\n");
 925				else
 926					sp->status = 0;
 927				cmd &= ~SIXP_RX_DCD_MASK;
 928		}
 929		sp->status = cmd & SIXP_PRIO_DATA_MASK;
 930	} else { /* output watchdog char if idle */
 931		if ((sp->status2 != 0) && (sp->duplex == 1)) {
 932			sp->led_state = 0x70;
 933			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 934			sp->tx_enable = 1;
 935			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
 936			sp->xleft -= actual;
 937			sp->xhead += actual;
 938			sp->led_state = 0x60;
 939			sp->status2 = 0;
 940
 941		}
 942	}
 943
 944	/* needed to trigger the TNC watchdog */
 945	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 946
 947        /* if the state byte has been received, the TNC is present,
 948           so the resync timer can be reset. */
 949
 950	if (sp->tnc_state == TNC_IN_SYNC) {
 951		del_timer(&sp->resync_t);
 952		sp->resync_t.data	= (unsigned long) sp;
 953		sp->resync_t.function	= resync_tnc;
 954		sp->resync_t.expires	= jiffies + SIXP_INIT_RESYNC_TIMEOUT;
 955		add_timer(&sp->resync_t);
 956	}
 957
 958	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
 959}
 960
 961/* identify and execute a standard 6pack command byte */
 962
 963static void decode_std_command(struct sixpack *sp, unsigned char cmd)
 964{
 965	unsigned char checksum = 0, rest = 0, channel;
 966	short i;
 967
 968	channel = cmd & SIXP_CHN_MASK;
 969	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
 970	case SIXP_SEOF:
 971		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
 972			if ((sp->status & SIXP_RX_DCD_MASK) ==
 973				SIXP_RX_DCD_MASK) {
 974				sp->led_state = 0x68;
 975				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 976			}
 977		} else {
 978			sp->led_state = 0x60;
 979			/* fill trailing bytes with zeroes */
 980			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 
 981			rest = sp->rx_count;
 982			if (rest != 0)
 983				 for (i = rest; i <= 3; i++)
 984					decode_data(sp, 0);
 985			if (rest == 2)
 986				sp->rx_count_cooked -= 2;
 987			else if (rest == 3)
 988				sp->rx_count_cooked -= 1;
 989			for (i = 0; i < sp->rx_count_cooked; i++)
 990				checksum += sp->cooked_buf[i];
 991			if (checksum != SIXP_CHKSUM) {
 992				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
 993			} else {
 994				sp->rcount = sp->rx_count_cooked-2;
 995				sp_bump(sp, 0);
 996			}
 997			sp->rx_count_cooked = 0;
 
 998		}
 999		break;
1000	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
1001		break;
1002	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
1003		break;
1004	case SIXP_RX_BUF_OVL:
1005		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
1006	}
1007}
1008
1009/* decode a 6pack packet */
1010
1011static void
1012sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count)
1013{
1014	unsigned char inbyte;
1015	int count1;
1016
1017	for (count1 = 0; count1 < count; count1++) {
1018		inbyte = pre_rbuff[count1];
1019		if (inbyte == SIXP_FOUND_TNC) {
1020			tnc_set_sync_state(sp, TNC_IN_SYNC);
1021			del_timer(&sp->resync_t);
1022		}
1023		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
1024			decode_prio_command(sp, inbyte);
1025		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
1026			decode_std_command(sp, inbyte);
1027		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
 
1028			decode_data(sp, inbyte);
 
 
1029	}
1030}
1031
1032MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1033MODULE_DESCRIPTION("6pack driver for AX.25");
1034MODULE_LICENSE("GPL");
1035MODULE_ALIAS_LDISC(N_6PACK);
1036
1037module_init(sixpack_init_driver);
1038module_exit(sixpack_exit_driver);