Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   4 *
   5 * Right now, I am very wasteful with the buffers.  I allocate memory
   6 * pages and then divide them into 2K frame buffers.  This way I know I
   7 * have buffers large enough to hold one frame within one buffer descriptor.
   8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
   9 * will be much more memory efficient and will easily handle lots of
  10 * small packets.
  11 *
  12 * Much better multiple PHY support by Magnus Damm.
  13 * Copyright (c) 2000 Ericsson Radio Systems AB.
  14 *
  15 * Support for FEC controller of ColdFire processors.
  16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  17 *
  18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  19 * Copyright (c) 2004-2006 Macq Electronique SA.
  20 *
  21 * Copyright (C) 2010 Freescale Semiconductor, Inc.
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/kernel.h>
  26#include <linux/string.h>
  27#include <linux/ptrace.h>
  28#include <linux/errno.h>
  29#include <linux/ioport.h>
  30#include <linux/slab.h>
  31#include <linux/interrupt.h>
  32#include <linux/pci.h>
  33#include <linux/init.h>
  34#include <linux/delay.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/skbuff.h>
  38#include <linux/spinlock.h>
  39#include <linux/workqueue.h>
  40#include <linux/bitops.h>
  41#include <linux/io.h>
  42#include <linux/irq.h>
  43#include <linux/clk.h>
  44#include <linux/platform_device.h>
  45#include <linux/phy.h>
  46#include <linux/fec.h>
  47#include <linux/of.h>
  48#include <linux/of_device.h>
  49#include <linux/of_gpio.h>
  50#include <linux/of_net.h>
  51
  52#include <asm/cacheflush.h>
  53
  54#ifndef CONFIG_ARM
  55#include <asm/coldfire.h>
  56#include <asm/mcfsim.h>
  57#endif
  58
  59#include "fec.h"
  60
  61#if defined(CONFIG_ARM)
  62#define FEC_ALIGNMENT	0xf
  63#else
  64#define FEC_ALIGNMENT	0x3
  65#endif
  66
  67#define DRIVER_NAME	"fec"
  68
  69/* Controller is ENET-MAC */
  70#define FEC_QUIRK_ENET_MAC		(1 << 0)
  71/* Controller needs driver to swap frame */
  72#define FEC_QUIRK_SWAP_FRAME		(1 << 1)
  73/* Controller uses gasket */
  74#define FEC_QUIRK_USE_GASKET		(1 << 2)
  75
  76static struct platform_device_id fec_devtype[] = {
  77	{
  78		/* keep it for coldfire */
  79		.name = DRIVER_NAME,
  80		.driver_data = 0,
  81	}, {
  82		.name = "imx25-fec",
  83		.driver_data = FEC_QUIRK_USE_GASKET,
  84	}, {
  85		.name = "imx27-fec",
  86		.driver_data = 0,
  87	}, {
  88		.name = "imx28-fec",
  89		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
  90	}, {
  91		/* sentinel */
  92	}
  93};
  94MODULE_DEVICE_TABLE(platform, fec_devtype);
  95
  96enum imx_fec_type {
  97	IMX25_FEC = 1, 	/* runs on i.mx25/50/53 */
  98	IMX27_FEC,	/* runs on i.mx27/35/51 */
  99	IMX28_FEC,
 100};
 101
 102static const struct of_device_id fec_dt_ids[] = {
 103	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
 104	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
 105	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
 106	{ /* sentinel */ }
 107};
 108MODULE_DEVICE_TABLE(of, fec_dt_ids);
 109
 110static unsigned char macaddr[ETH_ALEN];
 111module_param_array(macaddr, byte, NULL, 0);
 112MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 113
 114#if defined(CONFIG_M5272)
 115/*
 116 * Some hardware gets it MAC address out of local flash memory.
 117 * if this is non-zero then assume it is the address to get MAC from.
 118 */
 119#if defined(CONFIG_NETtel)
 120#define	FEC_FLASHMAC	0xf0006006
 121#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 122#define	FEC_FLASHMAC	0xf0006000
 123#elif defined(CONFIG_CANCam)
 124#define	FEC_FLASHMAC	0xf0020000
 125#elif defined (CONFIG_M5272C3)
 126#define	FEC_FLASHMAC	(0xffe04000 + 4)
 127#elif defined(CONFIG_MOD5272)
 128#define FEC_FLASHMAC 	0xffc0406b
 129#else
 130#define	FEC_FLASHMAC	0
 131#endif
 132#endif /* CONFIG_M5272 */
 133
 134/* The number of Tx and Rx buffers.  These are allocated from the page
 135 * pool.  The code may assume these are power of two, so it it best
 136 * to keep them that size.
 137 * We don't need to allocate pages for the transmitter.  We just use
 138 * the skbuffer directly.
 139 */
 140#define FEC_ENET_RX_PAGES	8
 141#define FEC_ENET_RX_FRSIZE	2048
 142#define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE)
 143#define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
 144#define FEC_ENET_TX_FRSIZE	2048
 145#define FEC_ENET_TX_FRPPG	(PAGE_SIZE / FEC_ENET_TX_FRSIZE)
 146#define TX_RING_SIZE		16	/* Must be power of two */
 147#define TX_RING_MOD_MASK	15	/*   for this to work */
 148
 149#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
 150#error "FEC: descriptor ring size constants too large"
 151#endif
 152
 153/* Interrupt events/masks. */
 154#define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
 155#define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
 156#define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
 157#define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
 158#define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
 159#define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
 160#define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
 161#define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
 162#define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
 163#define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
 164
 165#define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
 166
 167/* The FEC stores dest/src/type, data, and checksum for receive packets.
 168 */
 169#define PKT_MAXBUF_SIZE		1518
 170#define PKT_MINBUF_SIZE		64
 171#define PKT_MAXBLR_SIZE		1520
 172
 173
 174/*
 175 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 176 * size bits. Other FEC hardware does not, so we need to take that into
 177 * account when setting it.
 178 */
 179#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 180    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
 181#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
 182#else
 183#define	OPT_FRAME_SIZE	0
 184#endif
 185
 186/* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and
 187 * tx_bd_base always point to the base of the buffer descriptors.  The
 188 * cur_rx and cur_tx point to the currently available buffer.
 189 * The dirty_tx tracks the current buffer that is being sent by the
 190 * controller.  The cur_tx and dirty_tx are equal under both completely
 191 * empty and completely full conditions.  The empty/ready indicator in
 192 * the buffer descriptor determines the actual condition.
 193 */
 194struct fec_enet_private {
 195	/* Hardware registers of the FEC device */
 196	void __iomem *hwp;
 197
 198	struct net_device *netdev;
 199
 200	struct clk *clk;
 201
 202	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
 203	unsigned char *tx_bounce[TX_RING_SIZE];
 204	struct	sk_buff* tx_skbuff[TX_RING_SIZE];
 205	struct	sk_buff* rx_skbuff[RX_RING_SIZE];
 206	ushort	skb_cur;
 207	ushort	skb_dirty;
 208
 209	/* CPM dual port RAM relative addresses */
 210	dma_addr_t	bd_dma;
 211	/* Address of Rx and Tx buffers */
 212	struct bufdesc	*rx_bd_base;
 213	struct bufdesc	*tx_bd_base;
 214	/* The next free ring entry */
 215	struct bufdesc	*cur_rx, *cur_tx;
 216	/* The ring entries to be free()ed */
 217	struct bufdesc	*dirty_tx;
 218
 219	uint	tx_full;
 220	/* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
 221	spinlock_t hw_lock;
 222
 223	struct	platform_device *pdev;
 224
 225	int	opened;
 226
 227	/* Phylib and MDIO interface */
 228	struct	mii_bus *mii_bus;
 229	struct	phy_device *phy_dev;
 230	int	mii_timeout;
 231	uint	phy_speed;
 232	phy_interface_t	phy_interface;
 233	int	link;
 234	int	full_duplex;
 235	struct	completion mdio_done;
 236};
 237
 238/* FEC MII MMFR bits definition */
 239#define FEC_MMFR_ST		(1 << 30)
 240#define FEC_MMFR_OP_READ	(2 << 28)
 241#define FEC_MMFR_OP_WRITE	(1 << 28)
 242#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
 243#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
 244#define FEC_MMFR_TA		(2 << 16)
 245#define FEC_MMFR_DATA(v)	(v & 0xffff)
 246
 247#define FEC_MII_TIMEOUT		1000 /* us */
 248
 249/* Transmitter timeout */
 250#define TX_TIMEOUT (2 * HZ)
 251
 252static void *swap_buffer(void *bufaddr, int len)
 253{
 254	int i;
 255	unsigned int *buf = bufaddr;
 256
 257	for (i = 0; i < (len + 3) / 4; i++, buf++)
 258		*buf = cpu_to_be32(*buf);
 259
 260	return bufaddr;
 261}
 262
 263static netdev_tx_t
 264fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 265{
 266	struct fec_enet_private *fep = netdev_priv(ndev);
 267	const struct platform_device_id *id_entry =
 268				platform_get_device_id(fep->pdev);
 269	struct bufdesc *bdp;
 270	void *bufaddr;
 271	unsigned short	status;
 272	unsigned long flags;
 273
 274	if (!fep->link) {
 275		/* Link is down or autonegotiation is in progress. */
 276		return NETDEV_TX_BUSY;
 277	}
 278
 279	spin_lock_irqsave(&fep->hw_lock, flags);
 280	/* Fill in a Tx ring entry */
 281	bdp = fep->cur_tx;
 282
 283	status = bdp->cbd_sc;
 284
 285	if (status & BD_ENET_TX_READY) {
 286		/* Ooops.  All transmit buffers are full.  Bail out.
 287		 * This should not happen, since ndev->tbusy should be set.
 288		 */
 289		printk("%s: tx queue full!.\n", ndev->name);
 290		spin_unlock_irqrestore(&fep->hw_lock, flags);
 291		return NETDEV_TX_BUSY;
 292	}
 293
 294	/* Clear all of the status flags */
 295	status &= ~BD_ENET_TX_STATS;
 296
 297	/* Set buffer length and buffer pointer */
 298	bufaddr = skb->data;
 299	bdp->cbd_datlen = skb->len;
 300
 301	/*
 302	 * On some FEC implementations data must be aligned on
 303	 * 4-byte boundaries. Use bounce buffers to copy data
 304	 * and get it aligned. Ugh.
 305	 */
 306	if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
 307		unsigned int index;
 308		index = bdp - fep->tx_bd_base;
 309		memcpy(fep->tx_bounce[index], skb->data, skb->len);
 310		bufaddr = fep->tx_bounce[index];
 311	}
 312
 313	/*
 314	 * Some design made an incorrect assumption on endian mode of
 315	 * the system that it's running on. As the result, driver has to
 316	 * swap every frame going to and coming from the controller.
 317	 */
 318	if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
 319		swap_buffer(bufaddr, skb->len);
 320
 321	/* Save skb pointer */
 322	fep->tx_skbuff[fep->skb_cur] = skb;
 323
 324	ndev->stats.tx_bytes += skb->len;
 325	fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
 326
 327	/* Push the data cache so the CPM does not get stale memory
 328	 * data.
 329	 */
 330	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
 331			FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
 332
 333	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
 334	 * it's the last BD of the frame, and to put the CRC on the end.
 335	 */
 336	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
 337			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
 338	bdp->cbd_sc = status;
 339
 340	/* Trigger transmission start */
 341	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
 342
 343	/* If this was the last BD in the ring, start at the beginning again. */
 344	if (status & BD_ENET_TX_WRAP)
 345		bdp = fep->tx_bd_base;
 346	else
 347		bdp++;
 348
 349	if (bdp == fep->dirty_tx) {
 350		fep->tx_full = 1;
 351		netif_stop_queue(ndev);
 352	}
 353
 354	fep->cur_tx = bdp;
 355
 356	skb_tx_timestamp(skb);
 357
 358	spin_unlock_irqrestore(&fep->hw_lock, flags);
 359
 360	return NETDEV_TX_OK;
 361}
 362
 363/* This function is called to start or restart the FEC during a link
 364 * change.  This only happens when switching between half and full
 365 * duplex.
 366 */
 367static void
 368fec_restart(struct net_device *ndev, int duplex)
 369{
 370	struct fec_enet_private *fep = netdev_priv(ndev);
 371	const struct platform_device_id *id_entry =
 372				platform_get_device_id(fep->pdev);
 373	int i;
 374	u32 temp_mac[2];
 375	u32 rcntl = OPT_FRAME_SIZE | 0x04;
 376
 377	/* Whack a reset.  We should wait for this. */
 378	writel(1, fep->hwp + FEC_ECNTRL);
 379	udelay(10);
 380
 381	/*
 382	 * enet-mac reset will reset mac address registers too,
 383	 * so need to reconfigure it.
 384	 */
 385	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
 386		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
 387		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
 388		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
 389	}
 390
 391	/* Clear any outstanding interrupt. */
 392	writel(0xffc00000, fep->hwp + FEC_IEVENT);
 393
 394	/* Reset all multicast.	*/
 395	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
 396	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
 397#ifndef CONFIG_M5272
 398	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
 399	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
 400#endif
 401
 402	/* Set maximum receive buffer size. */
 403	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
 404
 405	/* Set receive and transmit descriptor base. */
 406	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
 407	writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
 408			fep->hwp + FEC_X_DES_START);
 409
 410	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
 411	fep->cur_rx = fep->rx_bd_base;
 412
 413	/* Reset SKB transmit buffers. */
 414	fep->skb_cur = fep->skb_dirty = 0;
 415	for (i = 0; i <= TX_RING_MOD_MASK; i++) {
 416		if (fep->tx_skbuff[i]) {
 417			dev_kfree_skb_any(fep->tx_skbuff[i]);
 418			fep->tx_skbuff[i] = NULL;
 419		}
 420	}
 421
 422	/* Enable MII mode */
 423	if (duplex) {
 424		/* FD enable */
 425		writel(0x04, fep->hwp + FEC_X_CNTRL);
 426	} else {
 427		/* No Rcv on Xmit */
 428		rcntl |= 0x02;
 429		writel(0x0, fep->hwp + FEC_X_CNTRL);
 430	}
 431
 432	fep->full_duplex = duplex;
 433
 434	/* Set MII speed */
 435	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 436
 437	/*
 438	 * The phy interface and speed need to get configured
 439	 * differently on enet-mac.
 440	 */
 441	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
 442		/* Enable flow control and length check */
 443		rcntl |= 0x40000000 | 0x00000020;
 444
 445		/* MII or RMII */
 446		if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
 447			rcntl |= (1 << 8);
 448		else
 449			rcntl &= ~(1 << 8);
 450
 451		/* 10M or 100M */
 452		if (fep->phy_dev && fep->phy_dev->speed == SPEED_100)
 453			rcntl &= ~(1 << 9);
 454		else
 455			rcntl |= (1 << 9);
 456
 457	} else {
 458#ifdef FEC_MIIGSK_ENR
 459		if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
 460			/* disable the gasket and wait */
 461			writel(0, fep->hwp + FEC_MIIGSK_ENR);
 462			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
 463				udelay(1);
 464
 465			/*
 466			 * configure the gasket:
 467			 *   RMII, 50 MHz, no loopback, no echo
 468			 *   MII, 25 MHz, no loopback, no echo
 469			 */
 470			writel((fep->phy_interface == PHY_INTERFACE_MODE_RMII) ?
 471					1 : 0, fep->hwp + FEC_MIIGSK_CFGR);
 472
 473
 474			/* re-enable the gasket */
 475			writel(2, fep->hwp + FEC_MIIGSK_ENR);
 476		}
 477#endif
 478	}
 479	writel(rcntl, fep->hwp + FEC_R_CNTRL);
 480
 481	/* And last, enable the transmit and receive processing */
 482	writel(2, fep->hwp + FEC_ECNTRL);
 483	writel(0, fep->hwp + FEC_R_DES_ACTIVE);
 484
 485	/* Enable interrupts we wish to service */
 486	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
 487}
 488
 489static void
 490fec_stop(struct net_device *ndev)
 491{
 492	struct fec_enet_private *fep = netdev_priv(ndev);
 493
 494	/* We cannot expect a graceful transmit stop without link !!! */
 495	if (fep->link) {
 496		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
 497		udelay(10);
 498		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
 499			printk("fec_stop : Graceful transmit stop did not complete !\n");
 500	}
 501
 502	/* Whack a reset.  We should wait for this. */
 503	writel(1, fep->hwp + FEC_ECNTRL);
 504	udelay(10);
 505	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 506	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
 507}
 508
 509
 510static void
 511fec_timeout(struct net_device *ndev)
 512{
 513	struct fec_enet_private *fep = netdev_priv(ndev);
 514
 515	ndev->stats.tx_errors++;
 516
 517	fec_restart(ndev, fep->full_duplex);
 518	netif_wake_queue(ndev);
 519}
 520
 521static void
 522fec_enet_tx(struct net_device *ndev)
 523{
 524	struct	fec_enet_private *fep;
 525	struct bufdesc *bdp;
 526	unsigned short status;
 527	struct	sk_buff	*skb;
 528
 529	fep = netdev_priv(ndev);
 530	spin_lock(&fep->hw_lock);
 531	bdp = fep->dirty_tx;
 532
 533	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
 534		if (bdp == fep->cur_tx && fep->tx_full == 0)
 535			break;
 536
 537		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
 538				FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
 539		bdp->cbd_bufaddr = 0;
 540
 541		skb = fep->tx_skbuff[fep->skb_dirty];
 542		/* Check for errors. */
 543		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
 544				   BD_ENET_TX_RL | BD_ENET_TX_UN |
 545				   BD_ENET_TX_CSL)) {
 546			ndev->stats.tx_errors++;
 547			if (status & BD_ENET_TX_HB)  /* No heartbeat */
 548				ndev->stats.tx_heartbeat_errors++;
 549			if (status & BD_ENET_TX_LC)  /* Late collision */
 550				ndev->stats.tx_window_errors++;
 551			if (status & BD_ENET_TX_RL)  /* Retrans limit */
 552				ndev->stats.tx_aborted_errors++;
 553			if (status & BD_ENET_TX_UN)  /* Underrun */
 554				ndev->stats.tx_fifo_errors++;
 555			if (status & BD_ENET_TX_CSL) /* Carrier lost */
 556				ndev->stats.tx_carrier_errors++;
 557		} else {
 558			ndev->stats.tx_packets++;
 559		}
 560
 561		if (status & BD_ENET_TX_READY)
 562			printk("HEY! Enet xmit interrupt and TX_READY.\n");
 563
 564		/* Deferred means some collisions occurred during transmit,
 565		 * but we eventually sent the packet OK.
 566		 */
 567		if (status & BD_ENET_TX_DEF)
 568			ndev->stats.collisions++;
 569
 570		/* Free the sk buffer associated with this last transmit */
 571		dev_kfree_skb_any(skb);
 572		fep->tx_skbuff[fep->skb_dirty] = NULL;
 573		fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
 574
 575		/* Update pointer to next buffer descriptor to be transmitted */
 576		if (status & BD_ENET_TX_WRAP)
 577			bdp = fep->tx_bd_base;
 578		else
 579			bdp++;
 580
 581		/* Since we have freed up a buffer, the ring is no longer full
 582		 */
 583		if (fep->tx_full) {
 584			fep->tx_full = 0;
 585			if (netif_queue_stopped(ndev))
 586				netif_wake_queue(ndev);
 587		}
 588	}
 589	fep->dirty_tx = bdp;
 590	spin_unlock(&fep->hw_lock);
 591}
 592
 593
 594/* During a receive, the cur_rx points to the current incoming buffer.
 595 * When we update through the ring, if the next incoming buffer has
 596 * not been given to the system, we just set the empty indicator,
 597 * effectively tossing the packet.
 598 */
 599static void
 600fec_enet_rx(struct net_device *ndev)
 601{
 602	struct fec_enet_private *fep = netdev_priv(ndev);
 603	const struct platform_device_id *id_entry =
 604				platform_get_device_id(fep->pdev);
 605	struct bufdesc *bdp;
 606	unsigned short status;
 607	struct	sk_buff	*skb;
 608	ushort	pkt_len;
 609	__u8 *data;
 610
 611#ifdef CONFIG_M532x
 612	flush_cache_all();
 613#endif
 614
 615	spin_lock(&fep->hw_lock);
 616
 617	/* First, grab all of the stats for the incoming packet.
 618	 * These get messed up if we get called due to a busy condition.
 619	 */
 620	bdp = fep->cur_rx;
 621
 622	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
 623
 624		/* Since we have allocated space to hold a complete frame,
 625		 * the last indicator should be set.
 626		 */
 627		if ((status & BD_ENET_RX_LAST) == 0)
 628			printk("FEC ENET: rcv is not +last\n");
 629
 630		if (!fep->opened)
 631			goto rx_processing_done;
 632
 633		/* Check for errors. */
 634		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
 635			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
 636			ndev->stats.rx_errors++;
 637			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
 638				/* Frame too long or too short. */
 639				ndev->stats.rx_length_errors++;
 640			}
 641			if (status & BD_ENET_RX_NO)	/* Frame alignment */
 642				ndev->stats.rx_frame_errors++;
 643			if (status & BD_ENET_RX_CR)	/* CRC Error */
 644				ndev->stats.rx_crc_errors++;
 645			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
 646				ndev->stats.rx_fifo_errors++;
 647		}
 648
 649		/* Report late collisions as a frame error.
 650		 * On this error, the BD is closed, but we don't know what we
 651		 * have in the buffer.  So, just drop this frame on the floor.
 652		 */
 653		if (status & BD_ENET_RX_CL) {
 654			ndev->stats.rx_errors++;
 655			ndev->stats.rx_frame_errors++;
 656			goto rx_processing_done;
 657		}
 658
 659		/* Process the incoming frame. */
 660		ndev->stats.rx_packets++;
 661		pkt_len = bdp->cbd_datlen;
 662		ndev->stats.rx_bytes += pkt_len;
 663		data = (__u8*)__va(bdp->cbd_bufaddr);
 664
 665		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
 666				FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
 667
 668		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
 669			swap_buffer(data, pkt_len);
 670
 671		/* This does 16 byte alignment, exactly what we need.
 672		 * The packet length includes FCS, but we don't want to
 673		 * include that when passing upstream as it messes up
 674		 * bridging applications.
 675		 */
 676		skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
 677
 678		if (unlikely(!skb)) {
 679			printk("%s: Memory squeeze, dropping packet.\n",
 680					ndev->name);
 681			ndev->stats.rx_dropped++;
 682		} else {
 683			skb_reserve(skb, NET_IP_ALIGN);
 684			skb_put(skb, pkt_len - 4);	/* Make room */
 685			skb_copy_to_linear_data(skb, data, pkt_len - 4);
 686			skb->protocol = eth_type_trans(skb, ndev);
 687			if (!skb_defer_rx_timestamp(skb))
 688				netif_rx(skb);
 689		}
 690
 691		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
 692				FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
 693rx_processing_done:
 694		/* Clear the status flags for this buffer */
 695		status &= ~BD_ENET_RX_STATS;
 696
 697		/* Mark the buffer empty */
 698		status |= BD_ENET_RX_EMPTY;
 699		bdp->cbd_sc = status;
 700
 701		/* Update BD pointer to next entry */
 702		if (status & BD_ENET_RX_WRAP)
 703			bdp = fep->rx_bd_base;
 704		else
 705			bdp++;
 706		/* Doing this here will keep the FEC running while we process
 707		 * incoming frames.  On a heavily loaded network, we should be
 708		 * able to keep up at the expense of system resources.
 709		 */
 710		writel(0, fep->hwp + FEC_R_DES_ACTIVE);
 711	}
 712	fep->cur_rx = bdp;
 713
 714	spin_unlock(&fep->hw_lock);
 715}
 716
 717static irqreturn_t
 718fec_enet_interrupt(int irq, void *dev_id)
 719{
 720	struct net_device *ndev = dev_id;
 721	struct fec_enet_private *fep = netdev_priv(ndev);
 722	uint int_events;
 723	irqreturn_t ret = IRQ_NONE;
 724
 725	do {
 726		int_events = readl(fep->hwp + FEC_IEVENT);
 727		writel(int_events, fep->hwp + FEC_IEVENT);
 728
 729		if (int_events & FEC_ENET_RXF) {
 730			ret = IRQ_HANDLED;
 731			fec_enet_rx(ndev);
 732		}
 733
 734		/* Transmit OK, or non-fatal error. Update the buffer
 735		 * descriptors. FEC handles all errors, we just discover
 736		 * them as part of the transmit process.
 737		 */
 738		if (int_events & FEC_ENET_TXF) {
 739			ret = IRQ_HANDLED;
 740			fec_enet_tx(ndev);
 741		}
 742
 743		if (int_events & FEC_ENET_MII) {
 744			ret = IRQ_HANDLED;
 745			complete(&fep->mdio_done);
 746		}
 747	} while (int_events);
 748
 749	return ret;
 750}
 751
 752
 753
 754/* ------------------------------------------------------------------------- */
 755static void __inline__ fec_get_mac(struct net_device *ndev)
 756{
 757	struct fec_enet_private *fep = netdev_priv(ndev);
 758	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
 759	unsigned char *iap, tmpaddr[ETH_ALEN];
 760
 761	/*
 762	 * try to get mac address in following order:
 763	 *
 764	 * 1) module parameter via kernel command line in form
 765	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
 766	 */
 767	iap = macaddr;
 768
 769#ifdef CONFIG_OF
 770	/*
 771	 * 2) from device tree data
 772	 */
 773	if (!is_valid_ether_addr(iap)) {
 774		struct device_node *np = fep->pdev->dev.of_node;
 775		if (np) {
 776			const char *mac = of_get_mac_address(np);
 777			if (mac)
 778				iap = (unsigned char *) mac;
 779		}
 780	}
 781#endif
 782
 783	/*
 784	 * 3) from flash or fuse (via platform data)
 785	 */
 786	if (!is_valid_ether_addr(iap)) {
 787#ifdef CONFIG_M5272
 788		if (FEC_FLASHMAC)
 789			iap = (unsigned char *)FEC_FLASHMAC;
 790#else
 791		if (pdata)
 792			memcpy(iap, pdata->mac, ETH_ALEN);
 793#endif
 794	}
 795
 796	/*
 797	 * 4) FEC mac registers set by bootloader
 798	 */
 799	if (!is_valid_ether_addr(iap)) {
 800		*((unsigned long *) &tmpaddr[0]) =
 801			be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
 802		*((unsigned short *) &tmpaddr[4]) =
 803			be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
 804		iap = &tmpaddr[0];
 805	}
 806
 807	memcpy(ndev->dev_addr, iap, ETH_ALEN);
 808
 809	/* Adjust MAC if using macaddr */
 810	if (iap == macaddr)
 811		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->pdev->id;
 812}
 813
 814/* ------------------------------------------------------------------------- */
 815
 816/*
 817 * Phy section
 818 */
 819static void fec_enet_adjust_link(struct net_device *ndev)
 820{
 821	struct fec_enet_private *fep = netdev_priv(ndev);
 822	struct phy_device *phy_dev = fep->phy_dev;
 823	unsigned long flags;
 824
 825	int status_change = 0;
 826
 827	spin_lock_irqsave(&fep->hw_lock, flags);
 828
 829	/* Prevent a state halted on mii error */
 830	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
 831		phy_dev->state = PHY_RESUMING;
 832		goto spin_unlock;
 833	}
 834
 835	/* Duplex link change */
 836	if (phy_dev->link) {
 837		if (fep->full_duplex != phy_dev->duplex) {
 838			fec_restart(ndev, phy_dev->duplex);
 839			status_change = 1;
 840		}
 841	}
 842
 843	/* Link on or off change */
 844	if (phy_dev->link != fep->link) {
 845		fep->link = phy_dev->link;
 846		if (phy_dev->link)
 847			fec_restart(ndev, phy_dev->duplex);
 848		else
 849			fec_stop(ndev);
 850		status_change = 1;
 851	}
 852
 853spin_unlock:
 854	spin_unlock_irqrestore(&fep->hw_lock, flags);
 855
 856	if (status_change)
 857		phy_print_status(phy_dev);
 858}
 859
 860static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
 861{
 862	struct fec_enet_private *fep = bus->priv;
 863	unsigned long time_left;
 864
 865	fep->mii_timeout = 0;
 866	init_completion(&fep->mdio_done);
 867
 868	/* start a read op */
 869	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
 870		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
 871		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
 872
 873	/* wait for end of transfer */
 874	time_left = wait_for_completion_timeout(&fep->mdio_done,
 875			usecs_to_jiffies(FEC_MII_TIMEOUT));
 876	if (time_left == 0) {
 877		fep->mii_timeout = 1;
 878		printk(KERN_ERR "FEC: MDIO read timeout\n");
 879		return -ETIMEDOUT;
 880	}
 881
 882	/* return value */
 883	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
 884}
 885
 886static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
 887			   u16 value)
 888{
 889	struct fec_enet_private *fep = bus->priv;
 890	unsigned long time_left;
 891
 892	fep->mii_timeout = 0;
 893	init_completion(&fep->mdio_done);
 894
 895	/* start a write op */
 896	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
 897		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
 898		FEC_MMFR_TA | FEC_MMFR_DATA(value),
 899		fep->hwp + FEC_MII_DATA);
 900
 901	/* wait for end of transfer */
 902	time_left = wait_for_completion_timeout(&fep->mdio_done,
 903			usecs_to_jiffies(FEC_MII_TIMEOUT));
 904	if (time_left == 0) {
 905		fep->mii_timeout = 1;
 906		printk(KERN_ERR "FEC: MDIO write timeout\n");
 907		return -ETIMEDOUT;
 908	}
 909
 910	return 0;
 911}
 912
 913static int fec_enet_mdio_reset(struct mii_bus *bus)
 914{
 915	return 0;
 916}
 917
 918static int fec_enet_mii_probe(struct net_device *ndev)
 919{
 920	struct fec_enet_private *fep = netdev_priv(ndev);
 921	struct phy_device *phy_dev = NULL;
 922	char mdio_bus_id[MII_BUS_ID_SIZE];
 923	char phy_name[MII_BUS_ID_SIZE + 3];
 924	int phy_id;
 925	int dev_id = fep->pdev->id;
 926
 927	fep->phy_dev = NULL;
 928
 929	/* check for attached phy */
 930	for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
 931		if ((fep->mii_bus->phy_mask & (1 << phy_id)))
 932			continue;
 933		if (fep->mii_bus->phy_map[phy_id] == NULL)
 934			continue;
 935		if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
 936			continue;
 937		if (dev_id--)
 938			continue;
 939		strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
 940		break;
 941	}
 942
 943	if (phy_id >= PHY_MAX_ADDR) {
 944		printk(KERN_INFO "%s: no PHY, assuming direct connection "
 945			"to switch\n", ndev->name);
 946		strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE);
 947		phy_id = 0;
 948	}
 949
 950	snprintf(phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id);
 951	phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 0,
 952		PHY_INTERFACE_MODE_MII);
 953	if (IS_ERR(phy_dev)) {
 954		printk(KERN_ERR "%s: could not attach to PHY\n", ndev->name);
 955		return PTR_ERR(phy_dev);
 956	}
 957
 958	/* mask with MAC supported features */
 959	phy_dev->supported &= PHY_BASIC_FEATURES;
 960	phy_dev->advertising = phy_dev->supported;
 961
 962	fep->phy_dev = phy_dev;
 963	fep->link = 0;
 964	fep->full_duplex = 0;
 965
 966	printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
 967		"(mii_bus:phy_addr=%s, irq=%d)\n", ndev->name,
 968		fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
 969		fep->phy_dev->irq);
 970
 971	return 0;
 972}
 973
 974static int fec_enet_mii_init(struct platform_device *pdev)
 975{
 976	static struct mii_bus *fec0_mii_bus;
 977	struct net_device *ndev = platform_get_drvdata(pdev);
 978	struct fec_enet_private *fep = netdev_priv(ndev);
 979	const struct platform_device_id *id_entry =
 980				platform_get_device_id(fep->pdev);
 981	int err = -ENXIO, i;
 982
 983	/*
 984	 * The dual fec interfaces are not equivalent with enet-mac.
 985	 * Here are the differences:
 986	 *
 987	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
 988	 *  - fec0 acts as the 1588 time master while fec1 is slave
 989	 *  - external phys can only be configured by fec0
 990	 *
 991	 * That is to say fec1 can not work independently. It only works
 992	 * when fec0 is working. The reason behind this design is that the
 993	 * second interface is added primarily for Switch mode.
 994	 *
 995	 * Because of the last point above, both phys are attached on fec0
 996	 * mdio interface in board design, and need to be configured by
 997	 * fec0 mii_bus.
 998	 */
 999	if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && pdev->id) {
1000		/* fec1 uses fec0 mii_bus */
1001		fep->mii_bus = fec0_mii_bus;
1002		return 0;
1003	}
1004
1005	fep->mii_timeout = 0;
1006
1007	/*
1008	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1009	 */
1010	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1;
1011	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1012
1013	fep->mii_bus = mdiobus_alloc();
1014	if (fep->mii_bus == NULL) {
1015		err = -ENOMEM;
1016		goto err_out;
1017	}
1018
1019	fep->mii_bus->name = "fec_enet_mii_bus";
1020	fep->mii_bus->read = fec_enet_mdio_read;
1021	fep->mii_bus->write = fec_enet_mdio_write;
1022	fep->mii_bus->reset = fec_enet_mdio_reset;
1023	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id + 1);
1024	fep->mii_bus->priv = fep;
1025	fep->mii_bus->parent = &pdev->dev;
1026
1027	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1028	if (!fep->mii_bus->irq) {
1029		err = -ENOMEM;
1030		goto err_out_free_mdiobus;
1031	}
1032
1033	for (i = 0; i < PHY_MAX_ADDR; i++)
1034		fep->mii_bus->irq[i] = PHY_POLL;
1035
1036	if (mdiobus_register(fep->mii_bus))
1037		goto err_out_free_mdio_irq;
1038
1039	/* save fec0 mii_bus */
1040	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1041		fec0_mii_bus = fep->mii_bus;
1042
1043	return 0;
1044
1045err_out_free_mdio_irq:
1046	kfree(fep->mii_bus->irq);
1047err_out_free_mdiobus:
1048	mdiobus_free(fep->mii_bus);
1049err_out:
1050	return err;
1051}
1052
1053static void fec_enet_mii_remove(struct fec_enet_private *fep)
1054{
1055	if (fep->phy_dev)
1056		phy_disconnect(fep->phy_dev);
1057	mdiobus_unregister(fep->mii_bus);
1058	kfree(fep->mii_bus->irq);
1059	mdiobus_free(fep->mii_bus);
1060}
1061
1062static int fec_enet_get_settings(struct net_device *ndev,
1063				  struct ethtool_cmd *cmd)
1064{
1065	struct fec_enet_private *fep = netdev_priv(ndev);
1066	struct phy_device *phydev = fep->phy_dev;
1067
1068	if (!phydev)
1069		return -ENODEV;
1070
1071	return phy_ethtool_gset(phydev, cmd);
1072}
1073
1074static int fec_enet_set_settings(struct net_device *ndev,
1075				 struct ethtool_cmd *cmd)
1076{
1077	struct fec_enet_private *fep = netdev_priv(ndev);
1078	struct phy_device *phydev = fep->phy_dev;
1079
1080	if (!phydev)
1081		return -ENODEV;
1082
1083	return phy_ethtool_sset(phydev, cmd);
1084}
1085
1086static void fec_enet_get_drvinfo(struct net_device *ndev,
1087				 struct ethtool_drvinfo *info)
1088{
1089	struct fec_enet_private *fep = netdev_priv(ndev);
1090
1091	strcpy(info->driver, fep->pdev->dev.driver->name);
1092	strcpy(info->version, "Revision: 1.0");
1093	strcpy(info->bus_info, dev_name(&ndev->dev));
1094}
1095
1096static struct ethtool_ops fec_enet_ethtool_ops = {
1097	.get_settings		= fec_enet_get_settings,
1098	.set_settings		= fec_enet_set_settings,
1099	.get_drvinfo		= fec_enet_get_drvinfo,
1100	.get_link		= ethtool_op_get_link,
1101};
1102
1103static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1104{
1105	struct fec_enet_private *fep = netdev_priv(ndev);
1106	struct phy_device *phydev = fep->phy_dev;
1107
1108	if (!netif_running(ndev))
1109		return -EINVAL;
1110
1111	if (!phydev)
1112		return -ENODEV;
1113
1114	return phy_mii_ioctl(phydev, rq, cmd);
1115}
1116
1117static void fec_enet_free_buffers(struct net_device *ndev)
1118{
1119	struct fec_enet_private *fep = netdev_priv(ndev);
1120	int i;
1121	struct sk_buff *skb;
1122	struct bufdesc	*bdp;
1123
1124	bdp = fep->rx_bd_base;
1125	for (i = 0; i < RX_RING_SIZE; i++) {
1126		skb = fep->rx_skbuff[i];
1127
1128		if (bdp->cbd_bufaddr)
1129			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1130					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1131		if (skb)
1132			dev_kfree_skb(skb);
1133		bdp++;
1134	}
1135
1136	bdp = fep->tx_bd_base;
1137	for (i = 0; i < TX_RING_SIZE; i++)
1138		kfree(fep->tx_bounce[i]);
1139}
1140
1141static int fec_enet_alloc_buffers(struct net_device *ndev)
1142{
1143	struct fec_enet_private *fep = netdev_priv(ndev);
1144	int i;
1145	struct sk_buff *skb;
1146	struct bufdesc	*bdp;
1147
1148	bdp = fep->rx_bd_base;
1149	for (i = 0; i < RX_RING_SIZE; i++) {
1150		skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
1151		if (!skb) {
1152			fec_enet_free_buffers(ndev);
1153			return -ENOMEM;
1154		}
1155		fep->rx_skbuff[i] = skb;
1156
1157		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1158				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1159		bdp->cbd_sc = BD_ENET_RX_EMPTY;
1160		bdp++;
1161	}
1162
1163	/* Set the last buffer to wrap. */
1164	bdp--;
1165	bdp->cbd_sc |= BD_SC_WRAP;
1166
1167	bdp = fep->tx_bd_base;
1168	for (i = 0; i < TX_RING_SIZE; i++) {
1169		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1170
1171		bdp->cbd_sc = 0;
1172		bdp->cbd_bufaddr = 0;
1173		bdp++;
1174	}
1175
1176	/* Set the last buffer to wrap. */
1177	bdp--;
1178	bdp->cbd_sc |= BD_SC_WRAP;
1179
1180	return 0;
1181}
1182
1183static int
1184fec_enet_open(struct net_device *ndev)
1185{
1186	struct fec_enet_private *fep = netdev_priv(ndev);
1187	int ret;
1188
1189	/* I should reset the ring buffers here, but I don't yet know
1190	 * a simple way to do that.
1191	 */
1192
1193	ret = fec_enet_alloc_buffers(ndev);
1194	if (ret)
1195		return ret;
1196
1197	/* Probe and connect to PHY when open the interface */
1198	ret = fec_enet_mii_probe(ndev);
1199	if (ret) {
1200		fec_enet_free_buffers(ndev);
1201		return ret;
1202	}
1203	phy_start(fep->phy_dev);
1204	netif_start_queue(ndev);
1205	fep->opened = 1;
1206	return 0;
1207}
1208
1209static int
1210fec_enet_close(struct net_device *ndev)
1211{
1212	struct fec_enet_private *fep = netdev_priv(ndev);
1213
1214	/* Don't know what to do yet. */
1215	fep->opened = 0;
1216	netif_stop_queue(ndev);
1217	fec_stop(ndev);
1218
1219	if (fep->phy_dev) {
1220		phy_stop(fep->phy_dev);
1221		phy_disconnect(fep->phy_dev);
1222	}
1223
1224	fec_enet_free_buffers(ndev);
1225
1226	return 0;
1227}
1228
1229/* Set or clear the multicast filter for this adaptor.
1230 * Skeleton taken from sunlance driver.
1231 * The CPM Ethernet implementation allows Multicast as well as individual
1232 * MAC address filtering.  Some of the drivers check to make sure it is
1233 * a group multicast address, and discard those that are not.  I guess I
1234 * will do the same for now, but just remove the test if you want
1235 * individual filtering as well (do the upper net layers want or support
1236 * this kind of feature?).
1237 */
1238
1239#define HASH_BITS	6		/* #bits in hash */
1240#define CRC32_POLY	0xEDB88320
1241
1242static void set_multicast_list(struct net_device *ndev)
1243{
1244	struct fec_enet_private *fep = netdev_priv(ndev);
1245	struct netdev_hw_addr *ha;
1246	unsigned int i, bit, data, crc, tmp;
1247	unsigned char hash;
1248
1249	if (ndev->flags & IFF_PROMISC) {
1250		tmp = readl(fep->hwp + FEC_R_CNTRL);
1251		tmp |= 0x8;
1252		writel(tmp, fep->hwp + FEC_R_CNTRL);
1253		return;
1254	}
1255
1256	tmp = readl(fep->hwp + FEC_R_CNTRL);
1257	tmp &= ~0x8;
1258	writel(tmp, fep->hwp + FEC_R_CNTRL);
1259
1260	if (ndev->flags & IFF_ALLMULTI) {
1261		/* Catch all multicast addresses, so set the
1262		 * filter to all 1's
1263		 */
1264		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1265		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1266
1267		return;
1268	}
1269
1270	/* Clear filter and add the addresses in hash register
1271	 */
1272	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1273	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1274
1275	netdev_for_each_mc_addr(ha, ndev) {
1276		/* calculate crc32 value of mac address */
1277		crc = 0xffffffff;
1278
1279		for (i = 0; i < ndev->addr_len; i++) {
1280			data = ha->addr[i];
1281			for (bit = 0; bit < 8; bit++, data >>= 1) {
1282				crc = (crc >> 1) ^
1283				(((crc ^ data) & 1) ? CRC32_POLY : 0);
1284			}
1285		}
1286
1287		/* only upper 6 bits (HASH_BITS) are used
1288		 * which point to specific bit in he hash registers
1289		 */
1290		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1291
1292		if (hash > 31) {
1293			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1294			tmp |= 1 << (hash - 32);
1295			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1296		} else {
1297			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1298			tmp |= 1 << hash;
1299			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1300		}
1301	}
1302}
1303
1304/* Set a MAC change in hardware. */
1305static int
1306fec_set_mac_address(struct net_device *ndev, void *p)
1307{
1308	struct fec_enet_private *fep = netdev_priv(ndev);
1309	struct sockaddr *addr = p;
1310
1311	if (!is_valid_ether_addr(addr->sa_data))
1312		return -EADDRNOTAVAIL;
1313
1314	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1315
1316	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1317		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1318		fep->hwp + FEC_ADDR_LOW);
1319	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1320		fep->hwp + FEC_ADDR_HIGH);
1321	return 0;
1322}
1323
1324static const struct net_device_ops fec_netdev_ops = {
1325	.ndo_open		= fec_enet_open,
1326	.ndo_stop		= fec_enet_close,
1327	.ndo_start_xmit		= fec_enet_start_xmit,
1328	.ndo_set_multicast_list = set_multicast_list,
1329	.ndo_change_mtu		= eth_change_mtu,
1330	.ndo_validate_addr	= eth_validate_addr,
1331	.ndo_tx_timeout		= fec_timeout,
1332	.ndo_set_mac_address	= fec_set_mac_address,
1333	.ndo_do_ioctl		= fec_enet_ioctl,
1334};
1335
1336 /*
1337  * XXX:  We need to clean up on failure exits here.
1338  *
1339  */
1340static int fec_enet_init(struct net_device *ndev)
1341{
1342	struct fec_enet_private *fep = netdev_priv(ndev);
1343	struct bufdesc *cbd_base;
1344	struct bufdesc *bdp;
1345	int i;
1346
1347	/* Allocate memory for buffer descriptors. */
1348	cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1349			GFP_KERNEL);
1350	if (!cbd_base) {
1351		printk("FEC: allocate descriptor memory failed?\n");
1352		return -ENOMEM;
1353	}
1354
1355	spin_lock_init(&fep->hw_lock);
1356
1357	fep->netdev = ndev;
1358
1359	/* Get the Ethernet address */
1360	fec_get_mac(ndev);
1361
1362	/* Set receive and transmit descriptor base. */
1363	fep->rx_bd_base = cbd_base;
1364	fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1365
1366	/* The FEC Ethernet specific entries in the device structure */
1367	ndev->watchdog_timeo = TX_TIMEOUT;
1368	ndev->netdev_ops = &fec_netdev_ops;
1369	ndev->ethtool_ops = &fec_enet_ethtool_ops;
1370
1371	/* Initialize the receive buffer descriptors. */
1372	bdp = fep->rx_bd_base;
1373	for (i = 0; i < RX_RING_SIZE; i++) {
1374
1375		/* Initialize the BD for every fragment in the page. */
1376		bdp->cbd_sc = 0;
1377		bdp++;
1378	}
1379
1380	/* Set the last buffer to wrap */
1381	bdp--;
1382	bdp->cbd_sc |= BD_SC_WRAP;
1383
1384	/* ...and the same for transmit */
1385	bdp = fep->tx_bd_base;
1386	for (i = 0; i < TX_RING_SIZE; i++) {
1387
1388		/* Initialize the BD for every fragment in the page. */
1389		bdp->cbd_sc = 0;
1390		bdp->cbd_bufaddr = 0;
1391		bdp++;
1392	}
1393
1394	/* Set the last buffer to wrap */
1395	bdp--;
1396	bdp->cbd_sc |= BD_SC_WRAP;
1397
1398	fec_restart(ndev, 0);
1399
1400	return 0;
1401}
1402
1403#ifdef CONFIG_OF
1404static int __devinit fec_get_phy_mode_dt(struct platform_device *pdev)
1405{
1406	struct device_node *np = pdev->dev.of_node;
1407
1408	if (np)
1409		return of_get_phy_mode(np);
1410
1411	return -ENODEV;
1412}
1413
1414static int __devinit fec_reset_phy(struct platform_device *pdev)
1415{
1416	int err, phy_reset;
1417	struct device_node *np = pdev->dev.of_node;
1418
1419	if (!np)
1420		return -ENODEV;
1421
1422	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
1423	err = gpio_request_one(phy_reset, GPIOF_OUT_INIT_LOW, "phy-reset");
1424	if (err) {
1425		pr_warn("FEC: failed to get gpio phy-reset: %d\n", err);
1426		return err;
1427	}
1428	msleep(1);
1429	gpio_set_value(phy_reset, 1);
1430
1431	return 0;
1432}
1433#else /* CONFIG_OF */
1434static inline int fec_get_phy_mode_dt(struct platform_device *pdev)
1435{
1436	return -ENODEV;
1437}
1438
1439static inline int fec_reset_phy(struct platform_device *pdev)
1440{
1441	/*
1442	 * In case of platform probe, the reset has been done
1443	 * by machine code.
1444	 */
1445	return 0;
1446}
1447#endif /* CONFIG_OF */
1448
1449static int __devinit
1450fec_probe(struct platform_device *pdev)
1451{
1452	struct fec_enet_private *fep;
1453	struct fec_platform_data *pdata;
1454	struct net_device *ndev;
1455	int i, irq, ret = 0;
1456	struct resource *r;
1457	const struct of_device_id *of_id;
1458
1459	of_id = of_match_device(fec_dt_ids, &pdev->dev);
1460	if (of_id)
1461		pdev->id_entry = of_id->data;
1462
1463	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1464	if (!r)
1465		return -ENXIO;
1466
1467	r = request_mem_region(r->start, resource_size(r), pdev->name);
1468	if (!r)
1469		return -EBUSY;
1470
1471	/* Init network device */
1472	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
1473	if (!ndev) {
1474		ret = -ENOMEM;
1475		goto failed_alloc_etherdev;
1476	}
1477
1478	SET_NETDEV_DEV(ndev, &pdev->dev);
1479
1480	/* setup board info structure */
1481	fep = netdev_priv(ndev);
1482
1483	fep->hwp = ioremap(r->start, resource_size(r));
1484	fep->pdev = pdev;
1485
1486	if (!fep->hwp) {
1487		ret = -ENOMEM;
1488		goto failed_ioremap;
1489	}
1490
1491	platform_set_drvdata(pdev, ndev);
1492
1493	ret = fec_get_phy_mode_dt(pdev);
1494	if (ret < 0) {
1495		pdata = pdev->dev.platform_data;
1496		if (pdata)
1497			fep->phy_interface = pdata->phy;
1498		else
1499			fep->phy_interface = PHY_INTERFACE_MODE_MII;
1500	} else {
1501		fep->phy_interface = ret;
1502	}
1503
1504	fec_reset_phy(pdev);
1505
1506	/* This device has up to three irqs on some platforms */
1507	for (i = 0; i < 3; i++) {
1508		irq = platform_get_irq(pdev, i);
1509		if (i && irq < 0)
1510			break;
1511		ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1512		if (ret) {
1513			while (--i >= 0) {
1514				irq = platform_get_irq(pdev, i);
1515				free_irq(irq, ndev);
1516			}
1517			goto failed_irq;
1518		}
1519	}
1520
1521	fep->clk = clk_get(&pdev->dev, "fec_clk");
1522	if (IS_ERR(fep->clk)) {
1523		ret = PTR_ERR(fep->clk);
1524		goto failed_clk;
1525	}
1526	clk_enable(fep->clk);
1527
1528	ret = fec_enet_init(ndev);
1529	if (ret)
1530		goto failed_init;
1531
1532	ret = fec_enet_mii_init(pdev);
1533	if (ret)
1534		goto failed_mii_init;
1535
1536	/* Carrier starts down, phylib will bring it up */
1537	netif_carrier_off(ndev);
1538
1539	ret = register_netdev(ndev);
1540	if (ret)
1541		goto failed_register;
1542
1543	return 0;
1544
1545failed_register:
1546	fec_enet_mii_remove(fep);
1547failed_mii_init:
1548failed_init:
1549	clk_disable(fep->clk);
1550	clk_put(fep->clk);
1551failed_clk:
1552	for (i = 0; i < 3; i++) {
1553		irq = platform_get_irq(pdev, i);
1554		if (irq > 0)
1555			free_irq(irq, ndev);
1556	}
1557failed_irq:
1558	iounmap(fep->hwp);
1559failed_ioremap:
1560	free_netdev(ndev);
1561failed_alloc_etherdev:
1562	release_mem_region(r->start, resource_size(r));
1563
1564	return ret;
1565}
1566
1567static int __devexit
1568fec_drv_remove(struct platform_device *pdev)
1569{
1570	struct net_device *ndev = platform_get_drvdata(pdev);
1571	struct fec_enet_private *fep = netdev_priv(ndev);
1572	struct resource *r;
1573
1574	fec_stop(ndev);
1575	fec_enet_mii_remove(fep);
1576	clk_disable(fep->clk);
1577	clk_put(fep->clk);
1578	iounmap(fep->hwp);
1579	unregister_netdev(ndev);
1580	free_netdev(ndev);
1581
1582	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1583	BUG_ON(!r);
1584	release_mem_region(r->start, resource_size(r));
1585
1586	platform_set_drvdata(pdev, NULL);
1587
1588	return 0;
1589}
1590
1591#ifdef CONFIG_PM
1592static int
1593fec_suspend(struct device *dev)
1594{
1595	struct net_device *ndev = dev_get_drvdata(dev);
1596	struct fec_enet_private *fep = netdev_priv(ndev);
1597
1598	if (netif_running(ndev)) {
1599		fec_stop(ndev);
1600		netif_device_detach(ndev);
1601	}
1602	clk_disable(fep->clk);
1603
1604	return 0;
1605}
1606
1607static int
1608fec_resume(struct device *dev)
1609{
1610	struct net_device *ndev = dev_get_drvdata(dev);
1611	struct fec_enet_private *fep = netdev_priv(ndev);
1612
1613	clk_enable(fep->clk);
1614	if (netif_running(ndev)) {
1615		fec_restart(ndev, fep->full_duplex);
1616		netif_device_attach(ndev);
1617	}
1618
1619	return 0;
1620}
1621
1622static const struct dev_pm_ops fec_pm_ops = {
1623	.suspend	= fec_suspend,
1624	.resume		= fec_resume,
1625	.freeze		= fec_suspend,
1626	.thaw		= fec_resume,
1627	.poweroff	= fec_suspend,
1628	.restore	= fec_resume,
1629};
1630#endif
1631
1632static struct platform_driver fec_driver = {
1633	.driver	= {
1634		.name	= DRIVER_NAME,
1635		.owner	= THIS_MODULE,
1636#ifdef CONFIG_PM
1637		.pm	= &fec_pm_ops,
1638#endif
1639		.of_match_table = fec_dt_ids,
1640	},
1641	.id_table = fec_devtype,
1642	.probe	= fec_probe,
1643	.remove	= __devexit_p(fec_drv_remove),
1644};
1645
1646static int __init
1647fec_enet_module_init(void)
1648{
1649	printk(KERN_INFO "FEC Ethernet Driver\n");
1650
1651	return platform_driver_register(&fec_driver);
1652}
1653
1654static void __exit
1655fec_enet_cleanup(void)
1656{
1657	platform_driver_unregister(&fec_driver);
1658}
1659
1660module_exit(fec_enet_cleanup);
1661module_init(fec_enet_module_init);
1662
1663MODULE_LICENSE("GPL");