Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2	Written 1998-2000 by Donald Becker.
   3
   4	This software may be used and distributed according to the terms of
   5	the GNU General Public License (GPL), incorporated herein by reference.
   6	Drivers based on or derived from this code fall under the GPL and must
   7	retain the authorship, copyright and license notice.  This file is not
   8	a complete program and may only be used when the entire operating
   9	system is licensed under the GPL.
  10
  11	The author may be reached as becker@scyld.com, or C/O
  12	Scyld Computing Corporation
  13	410 Severn Ave., Suite 210
  14	Annapolis MD 21403
  15
  16	Support information and updates available at
  17	http://www.scyld.com/network/pci-skeleton.html
  18
  19	Linux kernel updates:
  20
  21	Version 2.51, Nov 17, 2001 (jgarzik):
  22	- Add ethtool support
  23	- Replace some MII-related magic numbers with constants
  24
  25*/
  26
  27#define DRV_NAME	"fealnx"
  28#define DRV_VERSION	"2.52"
  29#define DRV_RELDATE	"Sep-11-2006"
  30
  31static int debug;		/* 1-> print debug message */
  32static int max_interrupt_work = 20;
  33
  34/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). */
  35static int multicast_filter_limit = 32;
  36
  37/* Set the copy breakpoint for the copy-only-tiny-frames scheme. */
  38/* Setting to > 1518 effectively disables this feature.          */
  39static int rx_copybreak;
  40
  41/* Used to pass the media type, etc.                            */
  42/* Both 'options[]' and 'full_duplex[]' should exist for driver */
  43/* interoperability.                                            */
  44/* The media type is usually passed in 'options[]'.             */
  45#define MAX_UNITS 8		/* More are supported, limit only on options */
  46static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
  47static int full_duplex[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
  48
  49/* Operational parameters that are set at compile time.                 */
  50/* Keep the ring sizes a power of two for compile efficiency.           */
  51/* The compiler will convert <unsigned>'%'<2^N> into a bit mask.        */
  52/* Making the Tx ring too large decreases the effectiveness of channel  */
  53/* bonding and packet priority.                                         */
  54/* There are no ill effects from too-large receive rings.               */
  55// 88-12-9 modify,
  56// #define TX_RING_SIZE    16
  57// #define RX_RING_SIZE    32
  58#define TX_RING_SIZE    6
  59#define RX_RING_SIZE    12
  60#define TX_TOTAL_SIZE	TX_RING_SIZE*sizeof(struct fealnx_desc)
  61#define RX_TOTAL_SIZE	RX_RING_SIZE*sizeof(struct fealnx_desc)
  62
  63/* Operational parameters that usually are not changed. */
  64/* Time in jiffies before concluding the transmitter is hung. */
  65#define TX_TIMEOUT      (2*HZ)
  66
  67#define PKT_BUF_SZ      1536	/* Size of each temporary Rx buffer. */
  68
  69
  70/* Include files, designed to support most kernel versions 2.0.0 and later. */
  71#include <linux/module.h>
  72#include <linux/kernel.h>
  73#include <linux/string.h>
  74#include <linux/timer.h>
  75#include <linux/errno.h>
  76#include <linux/ioport.h>
  77#include <linux/interrupt.h>
  78#include <linux/pci.h>
  79#include <linux/netdevice.h>
  80#include <linux/etherdevice.h>
  81#include <linux/skbuff.h>
  82#include <linux/init.h>
  83#include <linux/mii.h>
  84#include <linux/ethtool.h>
  85#include <linux/crc32.h>
  86#include <linux/delay.h>
  87#include <linux/bitops.h>
  88
  89#include <asm/processor.h>	/* Processor type for cache alignment. */
  90#include <asm/io.h>
  91#include <asm/uaccess.h>
  92#include <asm/byteorder.h>
  93
  94/* These identify the driver base version and may not be removed. */
  95static const char version[] __devinitconst =
  96	KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE "\n";
  97
  98
  99/* This driver was written to use PCI memory space, however some x86 systems
 100   work only with I/O space accesses. */
 101#ifndef __alpha__
 102#define USE_IO_OPS
 103#endif
 104
 105/* Kernel compatibility defines, some common to David Hinds' PCMCIA package. */
 106/* This is only in the support-all-kernels source code. */
 107
 108#define RUN_AT(x) (jiffies + (x))
 109
 110MODULE_AUTHOR("Myson or whoever");
 111MODULE_DESCRIPTION("Myson MTD-8xx 100/10M Ethernet PCI Adapter Driver");
 112MODULE_LICENSE("GPL");
 113module_param(max_interrupt_work, int, 0);
 114module_param(debug, int, 0);
 115module_param(rx_copybreak, int, 0);
 116module_param(multicast_filter_limit, int, 0);
 117module_param_array(options, int, NULL, 0);
 118module_param_array(full_duplex, int, NULL, 0);
 119MODULE_PARM_DESC(max_interrupt_work, "fealnx maximum events handled per interrupt");
 120MODULE_PARM_DESC(debug, "fealnx enable debugging (0-1)");
 121MODULE_PARM_DESC(rx_copybreak, "fealnx copy breakpoint for copy-only-tiny-frames");
 122MODULE_PARM_DESC(multicast_filter_limit, "fealnx maximum number of filtered multicast addresses");
 123MODULE_PARM_DESC(options, "fealnx: Bits 0-3: media type, bit 17: full duplex");
 124MODULE_PARM_DESC(full_duplex, "fealnx full duplex setting(s) (1)");
 125
 126enum {
 127	MIN_REGION_SIZE		= 136,
 128};
 129
 130/* A chip capabilities table, matching the entries in pci_tbl[] above. */
 131enum chip_capability_flags {
 132	HAS_MII_XCVR,
 133	HAS_CHIP_XCVR,
 134};
 135
 136/* 89/6/13 add, */
 137/* for different PHY */
 138enum phy_type_flags {
 139	MysonPHY = 1,
 140	AhdocPHY = 2,
 141	SeeqPHY = 3,
 142	MarvellPHY = 4,
 143	Myson981 = 5,
 144	LevelOnePHY = 6,
 145	OtherPHY = 10,
 146};
 147
 148struct chip_info {
 149	char *chip_name;
 150	int flags;
 151};
 152
 153static const struct chip_info skel_netdrv_tbl[] __devinitdata = {
 154 	{ "100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
 155	{ "100/10M Ethernet PCI Adapter",	HAS_CHIP_XCVR },
 156	{ "1000/100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
 157};
 158
 159/* Offsets to the Command and Status Registers. */
 160enum fealnx_offsets {
 161	PAR0 = 0x0,		/* physical address 0-3 */
 162	PAR1 = 0x04,		/* physical address 4-5 */
 163	MAR0 = 0x08,		/* multicast address 0-3 */
 164	MAR1 = 0x0C,		/* multicast address 4-7 */
 165	FAR0 = 0x10,		/* flow-control address 0-3 */
 166	FAR1 = 0x14,		/* flow-control address 4-5 */
 167	TCRRCR = 0x18,		/* receive & transmit configuration */
 168	BCR = 0x1C,		/* bus command */
 169	TXPDR = 0x20,		/* transmit polling demand */
 170	RXPDR = 0x24,		/* receive polling demand */
 171	RXCWP = 0x28,		/* receive current word pointer */
 172	TXLBA = 0x2C,		/* transmit list base address */
 173	RXLBA = 0x30,		/* receive list base address */
 174	ISR = 0x34,		/* interrupt status */
 175	IMR = 0x38,		/* interrupt mask */
 176	FTH = 0x3C,		/* flow control high/low threshold */
 177	MANAGEMENT = 0x40,	/* bootrom/eeprom and mii management */
 178	TALLY = 0x44,		/* tally counters for crc and mpa */
 179	TSR = 0x48,		/* tally counter for transmit status */
 180	BMCRSR = 0x4c,		/* basic mode control and status */
 181	PHYIDENTIFIER = 0x50,	/* phy identifier */
 182	ANARANLPAR = 0x54,	/* auto-negotiation advertisement and link
 183				   partner ability */
 184	ANEROCR = 0x58,		/* auto-negotiation expansion and pci conf. */
 185	BPREMRPSR = 0x5c,	/* bypass & receive error mask and phy status */
 186};
 187
 188/* Bits in the interrupt status/enable registers. */
 189/* The bits in the Intr Status/Enable registers, mostly interrupt sources. */
 190enum intr_status_bits {
 191	RFCON = 0x00020000,	/* receive flow control xon packet */
 192	RFCOFF = 0x00010000,	/* receive flow control xoff packet */
 193	LSCStatus = 0x00008000,	/* link status change */
 194	ANCStatus = 0x00004000,	/* autonegotiation completed */
 195	FBE = 0x00002000,	/* fatal bus error */
 196	FBEMask = 0x00001800,	/* mask bit12-11 */
 197	ParityErr = 0x00000000,	/* parity error */
 198	TargetErr = 0x00001000,	/* target abort */
 199	MasterErr = 0x00000800,	/* master error */
 200	TUNF = 0x00000400,	/* transmit underflow */
 201	ROVF = 0x00000200,	/* receive overflow */
 202	ETI = 0x00000100,	/* transmit early int */
 203	ERI = 0x00000080,	/* receive early int */
 204	CNTOVF = 0x00000040,	/* counter overflow */
 205	RBU = 0x00000020,	/* receive buffer unavailable */
 206	TBU = 0x00000010,	/* transmit buffer unavilable */
 207	TI = 0x00000008,	/* transmit interrupt */
 208	RI = 0x00000004,	/* receive interrupt */
 209	RxErr = 0x00000002,	/* receive error */
 210};
 211
 212/* Bits in the NetworkConfig register, W for writing, R for reading */
 213/* FIXME: some names are invented by me. Marked with (name?) */
 214/* If you have docs and know bit names, please fix 'em */
 215enum rx_mode_bits {
 216	CR_W_ENH	= 0x02000000,	/* enhanced mode (name?) */
 217	CR_W_FD		= 0x00100000,	/* full duplex */
 218	CR_W_PS10	= 0x00080000,	/* 10 mbit */
 219	CR_W_TXEN	= 0x00040000,	/* tx enable (name?) */
 220	CR_W_PS1000	= 0x00010000,	/* 1000 mbit */
 221     /* CR_W_RXBURSTMASK= 0x00000e00, Im unsure about this */
 222	CR_W_RXMODEMASK	= 0x000000e0,
 223	CR_W_PROM	= 0x00000080,	/* promiscuous mode */
 224	CR_W_AB		= 0x00000040,	/* accept broadcast */
 225	CR_W_AM		= 0x00000020,	/* accept mutlicast */
 226	CR_W_ARP	= 0x00000008,	/* receive runt pkt */
 227	CR_W_ALP	= 0x00000004,	/* receive long pkt */
 228	CR_W_SEP	= 0x00000002,	/* receive error pkt */
 229	CR_W_RXEN	= 0x00000001,	/* rx enable (unicast?) (name?) */
 230
 231	CR_R_TXSTOP	= 0x04000000,	/* tx stopped (name?) */
 232	CR_R_FD		= 0x00100000,	/* full duplex detected */
 233	CR_R_PS10	= 0x00080000,	/* 10 mbit detected */
 234	CR_R_RXSTOP	= 0x00008000,	/* rx stopped (name?) */
 235};
 236
 237/* The Tulip Rx and Tx buffer descriptors. */
 238struct fealnx_desc {
 239	s32 status;
 240	s32 control;
 241	u32 buffer;
 242	u32 next_desc;
 243	struct fealnx_desc *next_desc_logical;
 244	struct sk_buff *skbuff;
 245	u32 reserved1;
 246	u32 reserved2;
 247};
 248
 249/* Bits in network_desc.status */
 250enum rx_desc_status_bits {
 251	RXOWN = 0x80000000,	/* own bit */
 252	FLNGMASK = 0x0fff0000,	/* frame length */
 253	FLNGShift = 16,
 254	MARSTATUS = 0x00004000,	/* multicast address received */
 255	BARSTATUS = 0x00002000,	/* broadcast address received */
 256	PHYSTATUS = 0x00001000,	/* physical address received */
 257	RXFSD = 0x00000800,	/* first descriptor */
 258	RXLSD = 0x00000400,	/* last descriptor */
 259	ErrorSummary = 0x80,	/* error summary */
 260	RUNT = 0x40,		/* runt packet received */
 261	LONG = 0x20,		/* long packet received */
 262	FAE = 0x10,		/* frame align error */
 263	CRC = 0x08,		/* crc error */
 264	RXER = 0x04,		/* receive error */
 265};
 266
 267enum rx_desc_control_bits {
 268	RXIC = 0x00800000,	/* interrupt control */
 269	RBSShift = 0,
 270};
 271
 272enum tx_desc_status_bits {
 273	TXOWN = 0x80000000,	/* own bit */
 274	JABTO = 0x00004000,	/* jabber timeout */
 275	CSL = 0x00002000,	/* carrier sense lost */
 276	LC = 0x00001000,	/* late collision */
 277	EC = 0x00000800,	/* excessive collision */
 278	UDF = 0x00000400,	/* fifo underflow */
 279	DFR = 0x00000200,	/* deferred */
 280	HF = 0x00000100,	/* heartbeat fail */
 281	NCRMask = 0x000000ff,	/* collision retry count */
 282	NCRShift = 0,
 283};
 284
 285enum tx_desc_control_bits {
 286	TXIC = 0x80000000,	/* interrupt control */
 287	ETIControl = 0x40000000,	/* early transmit interrupt */
 288	TXLD = 0x20000000,	/* last descriptor */
 289	TXFD = 0x10000000,	/* first descriptor */
 290	CRCEnable = 0x08000000,	/* crc control */
 291	PADEnable = 0x04000000,	/* padding control */
 292	RetryTxLC = 0x02000000,	/* retry late collision */
 293	PKTSMask = 0x3ff800,	/* packet size bit21-11 */
 294	PKTSShift = 11,
 295	TBSMask = 0x000007ff,	/* transmit buffer bit 10-0 */
 296	TBSShift = 0,
 297};
 298
 299/* BootROM/EEPROM/MII Management Register */
 300#define MASK_MIIR_MII_READ       0x00000000
 301#define MASK_MIIR_MII_WRITE      0x00000008
 302#define MASK_MIIR_MII_MDO        0x00000004
 303#define MASK_MIIR_MII_MDI        0x00000002
 304#define MASK_MIIR_MII_MDC        0x00000001
 305
 306/* ST+OP+PHYAD+REGAD+TA */
 307#define OP_READ             0x6000	/* ST:01+OP:10+PHYAD+REGAD+TA:Z0 */
 308#define OP_WRITE            0x5002	/* ST:01+OP:01+PHYAD+REGAD+TA:10 */
 309
 310/* ------------------------------------------------------------------------- */
 311/*      Constants for Myson PHY                                              */
 312/* ------------------------------------------------------------------------- */
 313#define MysonPHYID      0xd0000302
 314/* 89-7-27 add, (begin) */
 315#define MysonPHYID0     0x0302
 316#define StatusRegister  18
 317#define SPEED100        0x0400	// bit10
 318#define FULLMODE        0x0800	// bit11
 319/* 89-7-27 add, (end) */
 320
 321/* ------------------------------------------------------------------------- */
 322/*      Constants for Seeq 80225 PHY                                         */
 323/* ------------------------------------------------------------------------- */
 324#define SeeqPHYID0      0x0016
 325
 326#define MIIRegister18   18
 327#define SPD_DET_100     0x80
 328#define DPLX_DET_FULL   0x40
 329
 330/* ------------------------------------------------------------------------- */
 331/*      Constants for Ahdoc 101 PHY                                          */
 332/* ------------------------------------------------------------------------- */
 333#define AhdocPHYID0     0x0022
 334
 335#define DiagnosticReg   18
 336#define DPLX_FULL       0x0800
 337#define Speed_100       0x0400
 338
 339/* 89/6/13 add, */
 340/* -------------------------------------------------------------------------- */
 341/*      Constants                                                             */
 342/* -------------------------------------------------------------------------- */
 343#define MarvellPHYID0           0x0141
 344#define LevelOnePHYID0		0x0013
 345
 346#define MII1000BaseTControlReg  9
 347#define MII1000BaseTStatusReg   10
 348#define SpecificReg		17
 349
 350/* for 1000BaseT Control Register */
 351#define PHYAbletoPerform1000FullDuplex  0x0200
 352#define PHYAbletoPerform1000HalfDuplex  0x0100
 353#define PHY1000AbilityMask              0x300
 354
 355// for phy specific status register, marvell phy.
 356#define SpeedMask       0x0c000
 357#define Speed_1000M     0x08000
 358#define Speed_100M      0x4000
 359#define Speed_10M       0
 360#define Full_Duplex     0x2000
 361
 362// 89/12/29 add, for phy specific status register, levelone phy, (begin)
 363#define LXT1000_100M    0x08000
 364#define LXT1000_1000M   0x0c000
 365#define LXT1000_Full    0x200
 366// 89/12/29 add, for phy specific status register, levelone phy, (end)
 367
 368/* for 3-in-1 case, BMCRSR register */
 369#define LinkIsUp2	0x00040000
 370
 371/* for PHY */
 372#define LinkIsUp        0x0004
 373
 374
 375struct netdev_private {
 376	/* Descriptor rings first for alignment. */
 377	struct fealnx_desc *rx_ring;
 378	struct fealnx_desc *tx_ring;
 379
 380	dma_addr_t rx_ring_dma;
 381	dma_addr_t tx_ring_dma;
 382
 383	spinlock_t lock;
 384
 385	/* Media monitoring timer. */
 386	struct timer_list timer;
 387
 388	/* Reset timer */
 389	struct timer_list reset_timer;
 390	int reset_timer_armed;
 391	unsigned long crvalue_sv;
 392	unsigned long imrvalue_sv;
 393
 394	/* Frequently used values: keep some adjacent for cache effect. */
 395	int flags;
 396	struct pci_dev *pci_dev;
 397	unsigned long crvalue;
 398	unsigned long bcrvalue;
 399	unsigned long imrvalue;
 400	struct fealnx_desc *cur_rx;
 401	struct fealnx_desc *lack_rxbuf;
 402	int really_rx_count;
 403	struct fealnx_desc *cur_tx;
 404	struct fealnx_desc *cur_tx_copy;
 405	int really_tx_count;
 406	int free_tx_count;
 407	unsigned int rx_buf_sz;	/* Based on MTU+slack. */
 408
 409	/* These values are keep track of the transceiver/media in use. */
 410	unsigned int linkok;
 411	unsigned int line_speed;
 412	unsigned int duplexmode;
 413	unsigned int default_port:4;	/* Last dev->if_port value. */
 414	unsigned int PHYType;
 415
 416	/* MII transceiver section. */
 417	int mii_cnt;		/* MII device addresses. */
 418	unsigned char phys[2];	/* MII device addresses. */
 419	struct mii_if_info mii;
 420	void __iomem *mem;
 421};
 422
 423
 424static int mdio_read(struct net_device *dev, int phy_id, int location);
 425static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
 426static int netdev_open(struct net_device *dev);
 427static void getlinktype(struct net_device *dev);
 428static void getlinkstatus(struct net_device *dev);
 429static void netdev_timer(unsigned long data);
 430static void reset_timer(unsigned long data);
 431static void fealnx_tx_timeout(struct net_device *dev);
 432static void init_ring(struct net_device *dev);
 433static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
 434static irqreturn_t intr_handler(int irq, void *dev_instance);
 435static int netdev_rx(struct net_device *dev);
 436static void set_rx_mode(struct net_device *dev);
 437static void __set_rx_mode(struct net_device *dev);
 438static struct net_device_stats *get_stats(struct net_device *dev);
 439static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 440static const struct ethtool_ops netdev_ethtool_ops;
 441static int netdev_close(struct net_device *dev);
 442static void reset_rx_descriptors(struct net_device *dev);
 443static void reset_tx_descriptors(struct net_device *dev);
 444
 445static void stop_nic_rx(void __iomem *ioaddr, long crvalue)
 446{
 447	int delay = 0x1000;
 448	iowrite32(crvalue & ~(CR_W_RXEN), ioaddr + TCRRCR);
 449	while (--delay) {
 450		if ( (ioread32(ioaddr + TCRRCR) & CR_R_RXSTOP) == CR_R_RXSTOP)
 451			break;
 452	}
 453}
 454
 455
 456static void stop_nic_rxtx(void __iomem *ioaddr, long crvalue)
 457{
 458	int delay = 0x1000;
 459	iowrite32(crvalue & ~(CR_W_RXEN+CR_W_TXEN), ioaddr + TCRRCR);
 460	while (--delay) {
 461		if ( (ioread32(ioaddr + TCRRCR) & (CR_R_RXSTOP+CR_R_TXSTOP))
 462					    == (CR_R_RXSTOP+CR_R_TXSTOP) )
 463			break;
 464	}
 465}
 466
 467static const struct net_device_ops netdev_ops = {
 468	.ndo_open		= netdev_open,
 469	.ndo_stop		= netdev_close,
 470	.ndo_start_xmit		= start_tx,
 471	.ndo_get_stats 		= get_stats,
 472	.ndo_set_multicast_list = set_rx_mode,
 473	.ndo_do_ioctl		= mii_ioctl,
 474	.ndo_tx_timeout		= fealnx_tx_timeout,
 475	.ndo_change_mtu		= eth_change_mtu,
 476	.ndo_set_mac_address 	= eth_mac_addr,
 477	.ndo_validate_addr	= eth_validate_addr,
 478};
 479
 480static int __devinit fealnx_init_one(struct pci_dev *pdev,
 481				     const struct pci_device_id *ent)
 482{
 483	struct netdev_private *np;
 484	int i, option, err, irq;
 485	static int card_idx = -1;
 486	char boardname[12];
 487	void __iomem *ioaddr;
 488	unsigned long len;
 489	unsigned int chip_id = ent->driver_data;
 490	struct net_device *dev;
 491	void *ring_space;
 492	dma_addr_t ring_dma;
 493#ifdef USE_IO_OPS
 494	int bar = 0;
 495#else
 496	int bar = 1;
 497#endif
 498
 499/* when built into the kernel, we only print version if device is found */
 500#ifndef MODULE
 501	static int printed_version;
 502	if (!printed_version++)
 503		printk(version);
 504#endif
 505
 506	card_idx++;
 507	sprintf(boardname, "fealnx%d", card_idx);
 508
 509	option = card_idx < MAX_UNITS ? options[card_idx] : 0;
 510
 511	i = pci_enable_device(pdev);
 512	if (i) return i;
 513	pci_set_master(pdev);
 514
 515	len = pci_resource_len(pdev, bar);
 516	if (len < MIN_REGION_SIZE) {
 517		dev_err(&pdev->dev,
 518			   "region size %ld too small, aborting\n", len);
 519		return -ENODEV;
 520	}
 521
 522	i = pci_request_regions(pdev, boardname);
 523	if (i)
 524		return i;
 525
 526	irq = pdev->irq;
 527
 528	ioaddr = pci_iomap(pdev, bar, len);
 529	if (!ioaddr) {
 530		err = -ENOMEM;
 531		goto err_out_res;
 532	}
 533
 534	dev = alloc_etherdev(sizeof(struct netdev_private));
 535	if (!dev) {
 536		err = -ENOMEM;
 537		goto err_out_unmap;
 538	}
 539	SET_NETDEV_DEV(dev, &pdev->dev);
 540
 541	/* read ethernet id */
 542	for (i = 0; i < 6; ++i)
 543		dev->dev_addr[i] = ioread8(ioaddr + PAR0 + i);
 544
 545	/* Reset the chip to erase previous misconfiguration. */
 546	iowrite32(0x00000001, ioaddr + BCR);
 547
 548	dev->base_addr = (unsigned long)ioaddr;
 549	dev->irq = irq;
 550
 551	/* Make certain the descriptor lists are aligned. */
 552	np = netdev_priv(dev);
 553	np->mem = ioaddr;
 554	spin_lock_init(&np->lock);
 555	np->pci_dev = pdev;
 556	np->flags = skel_netdrv_tbl[chip_id].flags;
 557	pci_set_drvdata(pdev, dev);
 558	np->mii.dev = dev;
 559	np->mii.mdio_read = mdio_read;
 560	np->mii.mdio_write = mdio_write;
 561	np->mii.phy_id_mask = 0x1f;
 562	np->mii.reg_num_mask = 0x1f;
 563
 564	ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
 565	if (!ring_space) {
 566		err = -ENOMEM;
 567		goto err_out_free_dev;
 568	}
 569	np->rx_ring = ring_space;
 570	np->rx_ring_dma = ring_dma;
 571
 572	ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
 573	if (!ring_space) {
 574		err = -ENOMEM;
 575		goto err_out_free_rx;
 576	}
 577	np->tx_ring = ring_space;
 578	np->tx_ring_dma = ring_dma;
 579
 580	/* find the connected MII xcvrs */
 581	if (np->flags == HAS_MII_XCVR) {
 582		int phy, phy_idx = 0;
 583
 584		for (phy = 1; phy < 32 && phy_idx < ARRAY_SIZE(np->phys);
 585			       phy++) {
 586			int mii_status = mdio_read(dev, phy, 1);
 587
 588			if (mii_status != 0xffff && mii_status != 0x0000) {
 589				np->phys[phy_idx++] = phy;
 590				dev_info(&pdev->dev,
 591				       "MII PHY found at address %d, status "
 592				       "0x%4.4x.\n", phy, mii_status);
 593				/* get phy type */
 594				{
 595					unsigned int data;
 596
 597					data = mdio_read(dev, np->phys[0], 2);
 598					if (data == SeeqPHYID0)
 599						np->PHYType = SeeqPHY;
 600					else if (data == AhdocPHYID0)
 601						np->PHYType = AhdocPHY;
 602					else if (data == MarvellPHYID0)
 603						np->PHYType = MarvellPHY;
 604					else if (data == MysonPHYID0)
 605						np->PHYType = Myson981;
 606					else if (data == LevelOnePHYID0)
 607						np->PHYType = LevelOnePHY;
 608					else
 609						np->PHYType = OtherPHY;
 610				}
 611			}
 612		}
 613
 614		np->mii_cnt = phy_idx;
 615		if (phy_idx == 0)
 616			dev_warn(&pdev->dev,
 617				"MII PHY not found -- this device may "
 618			       "not operate correctly.\n");
 619	} else {
 620		np->phys[0] = 32;
 621/* 89/6/23 add, (begin) */
 622		/* get phy type */
 623		if (ioread32(ioaddr + PHYIDENTIFIER) == MysonPHYID)
 624			np->PHYType = MysonPHY;
 625		else
 626			np->PHYType = OtherPHY;
 627	}
 628	np->mii.phy_id = np->phys[0];
 629
 630	if (dev->mem_start)
 631		option = dev->mem_start;
 632
 633	/* The lower four bits are the media type. */
 634	if (option > 0) {
 635		if (option & 0x200)
 636			np->mii.full_duplex = 1;
 637		np->default_port = option & 15;
 638	}
 639
 640	if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
 641		np->mii.full_duplex = full_duplex[card_idx];
 642
 643	if (np->mii.full_duplex) {
 644		dev_info(&pdev->dev, "Media type forced to Full Duplex.\n");
 645/* 89/6/13 add, (begin) */
 646//      if (np->PHYType==MarvellPHY)
 647		if ((np->PHYType == MarvellPHY) || (np->PHYType == LevelOnePHY)) {
 648			unsigned int data;
 649
 650			data = mdio_read(dev, np->phys[0], 9);
 651			data = (data & 0xfcff) | 0x0200;
 652			mdio_write(dev, np->phys[0], 9, data);
 653		}
 654/* 89/6/13 add, (end) */
 655		if (np->flags == HAS_MII_XCVR)
 656			mdio_write(dev, np->phys[0], MII_ADVERTISE, ADVERTISE_FULL);
 657		else
 658			iowrite32(ADVERTISE_FULL, ioaddr + ANARANLPAR);
 659		np->mii.force_media = 1;
 660	}
 661
 662	dev->netdev_ops = &netdev_ops;
 663	dev->ethtool_ops = &netdev_ethtool_ops;
 664	dev->watchdog_timeo = TX_TIMEOUT;
 665
 666	err = register_netdev(dev);
 667	if (err)
 668		goto err_out_free_tx;
 669
 670	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
 671	       dev->name, skel_netdrv_tbl[chip_id].chip_name, ioaddr,
 672	       dev->dev_addr, irq);
 673
 674	return 0;
 675
 676err_out_free_tx:
 677	pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
 678err_out_free_rx:
 679	pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
 680err_out_free_dev:
 681	free_netdev(dev);
 682err_out_unmap:
 683	pci_iounmap(pdev, ioaddr);
 684err_out_res:
 685	pci_release_regions(pdev);
 686	return err;
 687}
 688
 689
 690static void __devexit fealnx_remove_one(struct pci_dev *pdev)
 691{
 692	struct net_device *dev = pci_get_drvdata(pdev);
 693
 694	if (dev) {
 695		struct netdev_private *np = netdev_priv(dev);
 696
 697		pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring,
 698			np->tx_ring_dma);
 699		pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring,
 700			np->rx_ring_dma);
 701		unregister_netdev(dev);
 702		pci_iounmap(pdev, np->mem);
 703		free_netdev(dev);
 704		pci_release_regions(pdev);
 705		pci_set_drvdata(pdev, NULL);
 706	} else
 707		printk(KERN_ERR "fealnx: remove for unknown device\n");
 708}
 709
 710
 711static ulong m80x_send_cmd_to_phy(void __iomem *miiport, int opcode, int phyad, int regad)
 712{
 713	ulong miir;
 714	int i;
 715	unsigned int mask, data;
 716
 717	/* enable MII output */
 718	miir = (ulong) ioread32(miiport);
 719	miir &= 0xfffffff0;
 720
 721	miir |= MASK_MIIR_MII_WRITE + MASK_MIIR_MII_MDO;
 722
 723	/* send 32 1's preamble */
 724	for (i = 0; i < 32; i++) {
 725		/* low MDC; MDO is already high (miir) */
 726		miir &= ~MASK_MIIR_MII_MDC;
 727		iowrite32(miir, miiport);
 728
 729		/* high MDC */
 730		miir |= MASK_MIIR_MII_MDC;
 731		iowrite32(miir, miiport);
 732	}
 733
 734	/* calculate ST+OP+PHYAD+REGAD+TA */
 735	data = opcode | (phyad << 7) | (regad << 2);
 736
 737	/* sent out */
 738	mask = 0x8000;
 739	while (mask) {
 740		/* low MDC, prepare MDO */
 741		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
 742		if (mask & data)
 743			miir |= MASK_MIIR_MII_MDO;
 744
 745		iowrite32(miir, miiport);
 746		/* high MDC */
 747		miir |= MASK_MIIR_MII_MDC;
 748		iowrite32(miir, miiport);
 749		udelay(30);
 750
 751		/* next */
 752		mask >>= 1;
 753		if (mask == 0x2 && opcode == OP_READ)
 754			miir &= ~MASK_MIIR_MII_WRITE;
 755	}
 756	return miir;
 757}
 758
 759
 760static int mdio_read(struct net_device *dev, int phyad, int regad)
 761{
 762	struct netdev_private *np = netdev_priv(dev);
 763	void __iomem *miiport = np->mem + MANAGEMENT;
 764	ulong miir;
 765	unsigned int mask, data;
 766
 767	miir = m80x_send_cmd_to_phy(miiport, OP_READ, phyad, regad);
 768
 769	/* read data */
 770	mask = 0x8000;
 771	data = 0;
 772	while (mask) {
 773		/* low MDC */
 774		miir &= ~MASK_MIIR_MII_MDC;
 775		iowrite32(miir, miiport);
 776
 777		/* read MDI */
 778		miir = ioread32(miiport);
 779		if (miir & MASK_MIIR_MII_MDI)
 780			data |= mask;
 781
 782		/* high MDC, and wait */
 783		miir |= MASK_MIIR_MII_MDC;
 784		iowrite32(miir, miiport);
 785		udelay(30);
 786
 787		/* next */
 788		mask >>= 1;
 789	}
 790
 791	/* low MDC */
 792	miir &= ~MASK_MIIR_MII_MDC;
 793	iowrite32(miir, miiport);
 794
 795	return data & 0xffff;
 796}
 797
 798
 799static void mdio_write(struct net_device *dev, int phyad, int regad, int data)
 800{
 801	struct netdev_private *np = netdev_priv(dev);
 802	void __iomem *miiport = np->mem + MANAGEMENT;
 803	ulong miir;
 804	unsigned int mask;
 805
 806	miir = m80x_send_cmd_to_phy(miiport, OP_WRITE, phyad, regad);
 807
 808	/* write data */
 809	mask = 0x8000;
 810	while (mask) {
 811		/* low MDC, prepare MDO */
 812		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
 813		if (mask & data)
 814			miir |= MASK_MIIR_MII_MDO;
 815		iowrite32(miir, miiport);
 816
 817		/* high MDC */
 818		miir |= MASK_MIIR_MII_MDC;
 819		iowrite32(miir, miiport);
 820
 821		/* next */
 822		mask >>= 1;
 823	}
 824
 825	/* low MDC */
 826	miir &= ~MASK_MIIR_MII_MDC;
 827	iowrite32(miir, miiport);
 828}
 829
 830
 831static int netdev_open(struct net_device *dev)
 832{
 833	struct netdev_private *np = netdev_priv(dev);
 834	void __iomem *ioaddr = np->mem;
 835	int i;
 836
 837	iowrite32(0x00000001, ioaddr + BCR);	/* Reset */
 838
 839	if (request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev))
 840		return -EAGAIN;
 841
 842	for (i = 0; i < 3; i++)
 843		iowrite16(((unsigned short*)dev->dev_addr)[i],
 844				ioaddr + PAR0 + i*2);
 845
 846	init_ring(dev);
 847
 848	iowrite32(np->rx_ring_dma, ioaddr + RXLBA);
 849	iowrite32(np->tx_ring_dma, ioaddr + TXLBA);
 850
 851	/* Initialize other registers. */
 852	/* Configure the PCI bus bursts and FIFO thresholds.
 853	   486: Set 8 longword burst.
 854	   586: no burst limit.
 855	   Burst length 5:3
 856	   0 0 0   1
 857	   0 0 1   4
 858	   0 1 0   8
 859	   0 1 1   16
 860	   1 0 0   32
 861	   1 0 1   64
 862	   1 1 0   128
 863	   1 1 1   256
 864	   Wait the specified 50 PCI cycles after a reset by initializing
 865	   Tx and Rx queues and the address filter list.
 866	   FIXME (Ueimor): optimistic for alpha + posted writes ? */
 867
 868	np->bcrvalue = 0x10;	/* little-endian, 8 burst length */
 869#ifdef __BIG_ENDIAN
 870	np->bcrvalue |= 0x04;	/* big-endian */
 871#endif
 872
 873#if defined(__i386__) && !defined(MODULE)
 874	if (boot_cpu_data.x86 <= 4)
 875		np->crvalue = 0xa00;
 876	else
 877#endif
 878		np->crvalue = 0xe00;	/* rx 128 burst length */
 879
 880
 881// 89/12/29 add,
 882// 90/1/16 modify,
 883//   np->imrvalue=FBE|TUNF|CNTOVF|RBU|TI|RI;
 884	np->imrvalue = TUNF | CNTOVF | RBU | TI | RI;
 885	if (np->pci_dev->device == 0x891) {
 886		np->bcrvalue |= 0x200;	/* set PROG bit */
 887		np->crvalue |= CR_W_ENH;	/* set enhanced bit */
 888		np->imrvalue |= ETI;
 889	}
 890	iowrite32(np->bcrvalue, ioaddr + BCR);
 891
 892	if (dev->if_port == 0)
 893		dev->if_port = np->default_port;
 894
 895	iowrite32(0, ioaddr + RXPDR);
 896// 89/9/1 modify,
 897//   np->crvalue = 0x00e40001;    /* tx store and forward, tx/rx enable */
 898	np->crvalue |= 0x00e40001;	/* tx store and forward, tx/rx enable */
 899	np->mii.full_duplex = np->mii.force_media;
 900	getlinkstatus(dev);
 901	if (np->linkok)
 902		getlinktype(dev);
 903	__set_rx_mode(dev);
 904
 905	netif_start_queue(dev);
 906
 907	/* Clear and Enable interrupts by setting the interrupt mask. */
 908	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
 909	iowrite32(np->imrvalue, ioaddr + IMR);
 910
 911	if (debug)
 912		printk(KERN_DEBUG "%s: Done netdev_open().\n", dev->name);
 913
 914	/* Set the timer to check for link beat. */
 915	init_timer(&np->timer);
 916	np->timer.expires = RUN_AT(3 * HZ);
 917	np->timer.data = (unsigned long) dev;
 918	np->timer.function = netdev_timer;
 919
 920	/* timer handler */
 921	add_timer(&np->timer);
 922
 923	init_timer(&np->reset_timer);
 924	np->reset_timer.data = (unsigned long) dev;
 925	np->reset_timer.function = reset_timer;
 926	np->reset_timer_armed = 0;
 927
 928	return 0;
 929}
 930
 931
 932static void getlinkstatus(struct net_device *dev)
 933/* function: Routine will read MII Status Register to get link status.       */
 934/* input   : dev... pointer to the adapter block.                            */
 935/* output  : none.                                                           */
 936{
 937	struct netdev_private *np = netdev_priv(dev);
 938	unsigned int i, DelayTime = 0x1000;
 939
 940	np->linkok = 0;
 941
 942	if (np->PHYType == MysonPHY) {
 943		for (i = 0; i < DelayTime; ++i) {
 944			if (ioread32(np->mem + BMCRSR) & LinkIsUp2) {
 945				np->linkok = 1;
 946				return;
 947			}
 948			udelay(100);
 949		}
 950	} else {
 951		for (i = 0; i < DelayTime; ++i) {
 952			if (mdio_read(dev, np->phys[0], MII_BMSR) & BMSR_LSTATUS) {
 953				np->linkok = 1;
 954				return;
 955			}
 956			udelay(100);
 957		}
 958	}
 959}
 960
 961
 962static void getlinktype(struct net_device *dev)
 963{
 964	struct netdev_private *np = netdev_priv(dev);
 965
 966	if (np->PHYType == MysonPHY) {	/* 3-in-1 case */
 967		if (ioread32(np->mem + TCRRCR) & CR_R_FD)
 968			np->duplexmode = 2;	/* full duplex */
 969		else
 970			np->duplexmode = 1;	/* half duplex */
 971		if (ioread32(np->mem + TCRRCR) & CR_R_PS10)
 972			np->line_speed = 1;	/* 10M */
 973		else
 974			np->line_speed = 2;	/* 100M */
 975	} else {
 976		if (np->PHYType == SeeqPHY) {	/* this PHY is SEEQ 80225 */
 977			unsigned int data;
 978
 979			data = mdio_read(dev, np->phys[0], MIIRegister18);
 980			if (data & SPD_DET_100)
 981				np->line_speed = 2;	/* 100M */
 982			else
 983				np->line_speed = 1;	/* 10M */
 984			if (data & DPLX_DET_FULL)
 985				np->duplexmode = 2;	/* full duplex mode */
 986			else
 987				np->duplexmode = 1;	/* half duplex mode */
 988		} else if (np->PHYType == AhdocPHY) {
 989			unsigned int data;
 990
 991			data = mdio_read(dev, np->phys[0], DiagnosticReg);
 992			if (data & Speed_100)
 993				np->line_speed = 2;	/* 100M */
 994			else
 995				np->line_speed = 1;	/* 10M */
 996			if (data & DPLX_FULL)
 997				np->duplexmode = 2;	/* full duplex mode */
 998			else
 999				np->duplexmode = 1;	/* half duplex mode */
1000		}
1001/* 89/6/13 add, (begin) */
1002		else if (np->PHYType == MarvellPHY) {
1003			unsigned int data;
1004
1005			data = mdio_read(dev, np->phys[0], SpecificReg);
1006			if (data & Full_Duplex)
1007				np->duplexmode = 2;	/* full duplex mode */
1008			else
1009				np->duplexmode = 1;	/* half duplex mode */
1010			data &= SpeedMask;
1011			if (data == Speed_1000M)
1012				np->line_speed = 3;	/* 1000M */
1013			else if (data == Speed_100M)
1014				np->line_speed = 2;	/* 100M */
1015			else
1016				np->line_speed = 1;	/* 10M */
1017		}
1018/* 89/6/13 add, (end) */
1019/* 89/7/27 add, (begin) */
1020		else if (np->PHYType == Myson981) {
1021			unsigned int data;
1022
1023			data = mdio_read(dev, np->phys[0], StatusRegister);
1024
1025			if (data & SPEED100)
1026				np->line_speed = 2;
1027			else
1028				np->line_speed = 1;
1029
1030			if (data & FULLMODE)
1031				np->duplexmode = 2;
1032			else
1033				np->duplexmode = 1;
1034		}
1035/* 89/7/27 add, (end) */
1036/* 89/12/29 add */
1037		else if (np->PHYType == LevelOnePHY) {
1038			unsigned int data;
1039
1040			data = mdio_read(dev, np->phys[0], SpecificReg);
1041			if (data & LXT1000_Full)
1042				np->duplexmode = 2;	/* full duplex mode */
1043			else
1044				np->duplexmode = 1;	/* half duplex mode */
1045			data &= SpeedMask;
1046			if (data == LXT1000_1000M)
1047				np->line_speed = 3;	/* 1000M */
1048			else if (data == LXT1000_100M)
1049				np->line_speed = 2;	/* 100M */
1050			else
1051				np->line_speed = 1;	/* 10M */
1052		}
1053		np->crvalue &= (~CR_W_PS10) & (~CR_W_FD) & (~CR_W_PS1000);
1054		if (np->line_speed == 1)
1055			np->crvalue |= CR_W_PS10;
1056		else if (np->line_speed == 3)
1057			np->crvalue |= CR_W_PS1000;
1058		if (np->duplexmode == 2)
1059			np->crvalue |= CR_W_FD;
1060	}
1061}
1062
1063
1064/* Take lock before calling this */
1065static void allocate_rx_buffers(struct net_device *dev)
1066{
1067	struct netdev_private *np = netdev_priv(dev);
1068
1069	/*  allocate skb for rx buffers */
1070	while (np->really_rx_count != RX_RING_SIZE) {
1071		struct sk_buff *skb;
1072
1073		skb = dev_alloc_skb(np->rx_buf_sz);
1074		if (skb == NULL)
1075			break;	/* Better luck next round. */
1076
1077		while (np->lack_rxbuf->skbuff)
1078			np->lack_rxbuf = np->lack_rxbuf->next_desc_logical;
1079
1080		skb->dev = dev;	/* Mark as being used by this device. */
1081		np->lack_rxbuf->skbuff = skb;
1082		np->lack_rxbuf->buffer = pci_map_single(np->pci_dev, skb->data,
1083			np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1084		np->lack_rxbuf->status = RXOWN;
1085		++np->really_rx_count;
1086	}
1087}
1088
1089
1090static void netdev_timer(unsigned long data)
1091{
1092	struct net_device *dev = (struct net_device *) data;
1093	struct netdev_private *np = netdev_priv(dev);
1094	void __iomem *ioaddr = np->mem;
1095	int old_crvalue = np->crvalue;
1096	unsigned int old_linkok = np->linkok;
1097	unsigned long flags;
1098
1099	if (debug)
1100		printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x "
1101		       "config %8.8x.\n", dev->name, ioread32(ioaddr + ISR),
1102		       ioread32(ioaddr + TCRRCR));
1103
1104	spin_lock_irqsave(&np->lock, flags);
1105
1106	if (np->flags == HAS_MII_XCVR) {
1107		getlinkstatus(dev);
1108		if ((old_linkok == 0) && (np->linkok == 1)) {	/* we need to detect the media type again */
1109			getlinktype(dev);
1110			if (np->crvalue != old_crvalue) {
1111				stop_nic_rxtx(ioaddr, np->crvalue);
1112				iowrite32(np->crvalue, ioaddr + TCRRCR);
1113			}
1114		}
1115	}
1116
1117	allocate_rx_buffers(dev);
1118
1119	spin_unlock_irqrestore(&np->lock, flags);
1120
1121	np->timer.expires = RUN_AT(10 * HZ);
1122	add_timer(&np->timer);
1123}
1124
1125
1126/* Take lock before calling */
1127/* Reset chip and disable rx, tx and interrupts */
1128static void reset_and_disable_rxtx(struct net_device *dev)
1129{
1130	struct netdev_private *np = netdev_priv(dev);
1131	void __iomem *ioaddr = np->mem;
1132	int delay=51;
1133
1134	/* Reset the chip's Tx and Rx processes. */
1135	stop_nic_rxtx(ioaddr, 0);
1136
1137	/* Disable interrupts by clearing the interrupt mask. */
1138	iowrite32(0, ioaddr + IMR);
1139
1140	/* Reset the chip to erase previous misconfiguration. */
1141	iowrite32(0x00000001, ioaddr + BCR);
1142
1143	/* Ueimor: wait for 50 PCI cycles (and flush posted writes btw).
1144	   We surely wait too long (address+data phase). Who cares? */
1145	while (--delay) {
1146		ioread32(ioaddr + BCR);
1147		rmb();
1148	}
1149}
1150
1151
1152/* Take lock before calling */
1153/* Restore chip after reset */
1154static void enable_rxtx(struct net_device *dev)
1155{
1156	struct netdev_private *np = netdev_priv(dev);
1157	void __iomem *ioaddr = np->mem;
1158
1159	reset_rx_descriptors(dev);
1160
1161	iowrite32(np->tx_ring_dma + ((char*)np->cur_tx - (char*)np->tx_ring),
1162		ioaddr + TXLBA);
1163	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1164		ioaddr + RXLBA);
1165
1166	iowrite32(np->bcrvalue, ioaddr + BCR);
1167
1168	iowrite32(0, ioaddr + RXPDR);
1169	__set_rx_mode(dev); /* changes np->crvalue, writes it into TCRRCR */
1170
1171	/* Clear and Enable interrupts by setting the interrupt mask. */
1172	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
1173	iowrite32(np->imrvalue, ioaddr + IMR);
1174
1175	iowrite32(0, ioaddr + TXPDR);
1176}
1177
1178
1179static void reset_timer(unsigned long data)
1180{
1181	struct net_device *dev = (struct net_device *) data;
1182	struct netdev_private *np = netdev_priv(dev);
1183	unsigned long flags;
1184
1185	printk(KERN_WARNING "%s: resetting tx and rx machinery\n", dev->name);
1186
1187	spin_lock_irqsave(&np->lock, flags);
1188	np->crvalue = np->crvalue_sv;
1189	np->imrvalue = np->imrvalue_sv;
1190
1191	reset_and_disable_rxtx(dev);
1192	/* works for me without this:
1193	reset_tx_descriptors(dev); */
1194	enable_rxtx(dev);
1195	netif_start_queue(dev); /* FIXME: or netif_wake_queue(dev); ? */
1196
1197	np->reset_timer_armed = 0;
1198
1199	spin_unlock_irqrestore(&np->lock, flags);
1200}
1201
1202
1203static void fealnx_tx_timeout(struct net_device *dev)
1204{
1205	struct netdev_private *np = netdev_priv(dev);
1206	void __iomem *ioaddr = np->mem;
1207	unsigned long flags;
1208	int i;
1209
1210	printk(KERN_WARNING
1211	       "%s: Transmit timed out, status %8.8x, resetting...\n",
1212	       dev->name, ioread32(ioaddr + ISR));
1213
1214	{
1215		printk(KERN_DEBUG "  Rx ring %p: ", np->rx_ring);
1216		for (i = 0; i < RX_RING_SIZE; i++)
1217			printk(KERN_CONT " %8.8x",
1218			       (unsigned int) np->rx_ring[i].status);
1219		printk(KERN_CONT "\n");
1220		printk(KERN_DEBUG "  Tx ring %p: ", np->tx_ring);
1221		for (i = 0; i < TX_RING_SIZE; i++)
1222			printk(KERN_CONT " %4.4x", np->tx_ring[i].status);
1223		printk(KERN_CONT "\n");
1224	}
1225
1226	spin_lock_irqsave(&np->lock, flags);
1227
1228	reset_and_disable_rxtx(dev);
1229	reset_tx_descriptors(dev);
1230	enable_rxtx(dev);
1231
1232	spin_unlock_irqrestore(&np->lock, flags);
1233
1234	dev->trans_start = jiffies; /* prevent tx timeout */
1235	dev->stats.tx_errors++;
1236	netif_wake_queue(dev); /* or .._start_.. ?? */
1237}
1238
1239
1240/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1241static void init_ring(struct net_device *dev)
1242{
1243	struct netdev_private *np = netdev_priv(dev);
1244	int i;
1245
1246	/* initialize rx variables */
1247	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1248	np->cur_rx = &np->rx_ring[0];
1249	np->lack_rxbuf = np->rx_ring;
1250	np->really_rx_count = 0;
1251
1252	/* initial rx descriptors. */
1253	for (i = 0; i < RX_RING_SIZE; i++) {
1254		np->rx_ring[i].status = 0;
1255		np->rx_ring[i].control = np->rx_buf_sz << RBSShift;
1256		np->rx_ring[i].next_desc = np->rx_ring_dma +
1257			(i + 1)*sizeof(struct fealnx_desc);
1258		np->rx_ring[i].next_desc_logical = &np->rx_ring[i + 1];
1259		np->rx_ring[i].skbuff = NULL;
1260	}
1261
1262	/* for the last rx descriptor */
1263	np->rx_ring[i - 1].next_desc = np->rx_ring_dma;
1264	np->rx_ring[i - 1].next_desc_logical = np->rx_ring;
1265
1266	/* allocate skb for rx buffers */
1267	for (i = 0; i < RX_RING_SIZE; i++) {
1268		struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1269
1270		if (skb == NULL) {
1271			np->lack_rxbuf = &np->rx_ring[i];
1272			break;
1273		}
1274
1275		++np->really_rx_count;
1276		np->rx_ring[i].skbuff = skb;
1277		skb->dev = dev;	/* Mark as being used by this device. */
1278		np->rx_ring[i].buffer = pci_map_single(np->pci_dev, skb->data,
1279			np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1280		np->rx_ring[i].status = RXOWN;
1281		np->rx_ring[i].control |= RXIC;
1282	}
1283
1284	/* initialize tx variables */
1285	np->cur_tx = &np->tx_ring[0];
1286	np->cur_tx_copy = &np->tx_ring[0];
1287	np->really_tx_count = 0;
1288	np->free_tx_count = TX_RING_SIZE;
1289
1290	for (i = 0; i < TX_RING_SIZE; i++) {
1291		np->tx_ring[i].status = 0;
1292		/* do we need np->tx_ring[i].control = XXX; ?? */
1293		np->tx_ring[i].next_desc = np->tx_ring_dma +
1294			(i + 1)*sizeof(struct fealnx_desc);
1295		np->tx_ring[i].next_desc_logical = &np->tx_ring[i + 1];
1296		np->tx_ring[i].skbuff = NULL;
1297	}
1298
1299	/* for the last tx descriptor */
1300	np->tx_ring[i - 1].next_desc = np->tx_ring_dma;
1301	np->tx_ring[i - 1].next_desc_logical = &np->tx_ring[0];
1302}
1303
1304
1305static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1306{
1307	struct netdev_private *np = netdev_priv(dev);
1308	unsigned long flags;
1309
1310	spin_lock_irqsave(&np->lock, flags);
1311
1312	np->cur_tx_copy->skbuff = skb;
1313
1314#define one_buffer
1315#define BPT 1022
1316#if defined(one_buffer)
1317	np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1318		skb->len, PCI_DMA_TODEVICE);
1319	np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1320	np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1321	np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1322// 89/12/29 add,
1323	if (np->pci_dev->device == 0x891)
1324		np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1325	np->cur_tx_copy->status = TXOWN;
1326	np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1327	--np->free_tx_count;
1328#elif defined(two_buffer)
1329	if (skb->len > BPT) {
1330		struct fealnx_desc *next;
1331
1332		/* for the first descriptor */
1333		np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1334			BPT, PCI_DMA_TODEVICE);
1335		np->cur_tx_copy->control = TXIC | TXFD | CRCEnable | PADEnable;
1336		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1337		np->cur_tx_copy->control |= (BPT << TBSShift);	/* buffer size */
1338
1339		/* for the last descriptor */
1340		next = np->cur_tx_copy->next_desc_logical;
1341		next->skbuff = skb;
1342		next->control = TXIC | TXLD | CRCEnable | PADEnable;
1343		next->control |= (skb->len << PKTSShift);	/* pkt size */
1344		next->control |= ((skb->len - BPT) << TBSShift);	/* buf size */
1345// 89/12/29 add,
1346		if (np->pci_dev->device == 0x891)
1347			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1348		next->buffer = pci_map_single(ep->pci_dev, skb->data + BPT,
1349                                skb->len - BPT, PCI_DMA_TODEVICE);
1350
1351		next->status = TXOWN;
1352		np->cur_tx_copy->status = TXOWN;
1353
1354		np->cur_tx_copy = next->next_desc_logical;
1355		np->free_tx_count -= 2;
1356	} else {
1357		np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1358			skb->len, PCI_DMA_TODEVICE);
1359		np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1360		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1361		np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1362// 89/12/29 add,
1363		if (np->pci_dev->device == 0x891)
1364			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1365		np->cur_tx_copy->status = TXOWN;
1366		np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1367		--np->free_tx_count;
1368	}
1369#endif
1370
1371	if (np->free_tx_count < 2)
1372		netif_stop_queue(dev);
1373	++np->really_tx_count;
1374	iowrite32(0, np->mem + TXPDR);
1375
1376	spin_unlock_irqrestore(&np->lock, flags);
1377	return NETDEV_TX_OK;
1378}
1379
1380
1381/* Take lock before calling */
1382/* Chip probably hosed tx ring. Clean up. */
1383static void reset_tx_descriptors(struct net_device *dev)
1384{
1385	struct netdev_private *np = netdev_priv(dev);
1386	struct fealnx_desc *cur;
1387	int i;
1388
1389	/* initialize tx variables */
1390	np->cur_tx = &np->tx_ring[0];
1391	np->cur_tx_copy = &np->tx_ring[0];
1392	np->really_tx_count = 0;
1393	np->free_tx_count = TX_RING_SIZE;
1394
1395	for (i = 0; i < TX_RING_SIZE; i++) {
1396		cur = &np->tx_ring[i];
1397		if (cur->skbuff) {
1398			pci_unmap_single(np->pci_dev, cur->buffer,
1399				cur->skbuff->len, PCI_DMA_TODEVICE);
1400			dev_kfree_skb_any(cur->skbuff);
1401			cur->skbuff = NULL;
1402		}
1403		cur->status = 0;
1404		cur->control = 0;	/* needed? */
1405		/* probably not needed. We do it for purely paranoid reasons */
1406		cur->next_desc = np->tx_ring_dma +
1407			(i + 1)*sizeof(struct fealnx_desc);
1408		cur->next_desc_logical = &np->tx_ring[i + 1];
1409	}
1410	/* for the last tx descriptor */
1411	np->tx_ring[TX_RING_SIZE - 1].next_desc = np->tx_ring_dma;
1412	np->tx_ring[TX_RING_SIZE - 1].next_desc_logical = &np->tx_ring[0];
1413}
1414
1415
1416/* Take lock and stop rx before calling this */
1417static void reset_rx_descriptors(struct net_device *dev)
1418{
1419	struct netdev_private *np = netdev_priv(dev);
1420	struct fealnx_desc *cur = np->cur_rx;
1421	int i;
1422
1423	allocate_rx_buffers(dev);
1424
1425	for (i = 0; i < RX_RING_SIZE; i++) {
1426		if (cur->skbuff)
1427			cur->status = RXOWN;
1428		cur = cur->next_desc_logical;
1429	}
1430
1431	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1432		np->mem + RXLBA);
1433}
1434
1435
1436/* The interrupt handler does all of the Rx thread work and cleans up
1437   after the Tx thread. */
1438static irqreturn_t intr_handler(int irq, void *dev_instance)
1439{
1440	struct net_device *dev = (struct net_device *) dev_instance;
1441	struct netdev_private *np = netdev_priv(dev);
1442	void __iomem *ioaddr = np->mem;
1443	long boguscnt = max_interrupt_work;
1444	unsigned int num_tx = 0;
1445	int handled = 0;
1446
1447	spin_lock(&np->lock);
1448
1449	iowrite32(0, ioaddr + IMR);
1450
1451	do {
1452		u32 intr_status = ioread32(ioaddr + ISR);
1453
1454		/* Acknowledge all of the current interrupt sources ASAP. */
1455		iowrite32(intr_status, ioaddr + ISR);
1456
1457		if (debug)
1458			printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", dev->name,
1459			       intr_status);
1460
1461		if (!(intr_status & np->imrvalue))
1462			break;
1463
1464		handled = 1;
1465
1466// 90/1/16 delete,
1467//
1468//      if (intr_status & FBE)
1469//      {   /* fatal error */
1470//          stop_nic_tx(ioaddr, 0);
1471//          stop_nic_rx(ioaddr, 0);
1472//          break;
1473//      };
1474
1475		if (intr_status & TUNF)
1476			iowrite32(0, ioaddr + TXPDR);
1477
1478		if (intr_status & CNTOVF) {
1479			/* missed pkts */
1480			dev->stats.rx_missed_errors +=
1481				ioread32(ioaddr + TALLY) & 0x7fff;
1482
1483			/* crc error */
1484			dev->stats.rx_crc_errors +=
1485			    (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1486		}
1487
1488		if (intr_status & (RI | RBU)) {
1489			if (intr_status & RI)
1490				netdev_rx(dev);
1491			else {
1492				stop_nic_rx(ioaddr, np->crvalue);
1493				reset_rx_descriptors(dev);
1494				iowrite32(np->crvalue, ioaddr + TCRRCR);
1495			}
1496		}
1497
1498		while (np->really_tx_count) {
1499			long tx_status = np->cur_tx->status;
1500			long tx_control = np->cur_tx->control;
1501
1502			if (!(tx_control & TXLD)) {	/* this pkt is combined by two tx descriptors */
1503				struct fealnx_desc *next;
1504
1505				next = np->cur_tx->next_desc_logical;
1506				tx_status = next->status;
1507				tx_control = next->control;
1508			}
1509
1510			if (tx_status & TXOWN)
1511				break;
1512
1513			if (!(np->crvalue & CR_W_ENH)) {
1514				if (tx_status & (CSL | LC | EC | UDF | HF)) {
1515					dev->stats.tx_errors++;
1516					if (tx_status & EC)
1517						dev->stats.tx_aborted_errors++;
1518					if (tx_status & CSL)
1519						dev->stats.tx_carrier_errors++;
1520					if (tx_status & LC)
1521						dev->stats.tx_window_errors++;
1522					if (tx_status & UDF)
1523						dev->stats.tx_fifo_errors++;
1524					if ((tx_status & HF) && np->mii.full_duplex == 0)
1525						dev->stats.tx_heartbeat_errors++;
1526
1527				} else {
1528					dev->stats.tx_bytes +=
1529					    ((tx_control & PKTSMask) >> PKTSShift);
1530
1531					dev->stats.collisions +=
1532					    ((tx_status & NCRMask) >> NCRShift);
1533					dev->stats.tx_packets++;
1534				}
1535			} else {
1536				dev->stats.tx_bytes +=
1537				    ((tx_control & PKTSMask) >> PKTSShift);
1538				dev->stats.tx_packets++;
1539			}
1540
1541			/* Free the original skb. */
1542			pci_unmap_single(np->pci_dev, np->cur_tx->buffer,
1543				np->cur_tx->skbuff->len, PCI_DMA_TODEVICE);
1544			dev_kfree_skb_irq(np->cur_tx->skbuff);
1545			np->cur_tx->skbuff = NULL;
1546			--np->really_tx_count;
1547			if (np->cur_tx->control & TXLD) {
1548				np->cur_tx = np->cur_tx->next_desc_logical;
1549				++np->free_tx_count;
1550			} else {
1551				np->cur_tx = np->cur_tx->next_desc_logical;
1552				np->cur_tx = np->cur_tx->next_desc_logical;
1553				np->free_tx_count += 2;
1554			}
1555			num_tx++;
1556		}		/* end of for loop */
1557
1558		if (num_tx && np->free_tx_count >= 2)
1559			netif_wake_queue(dev);
1560
1561		/* read transmit status for enhanced mode only */
1562		if (np->crvalue & CR_W_ENH) {
1563			long data;
1564
1565			data = ioread32(ioaddr + TSR);
1566			dev->stats.tx_errors += (data & 0xff000000) >> 24;
1567			dev->stats.tx_aborted_errors +=
1568				(data & 0xff000000) >> 24;
1569			dev->stats.tx_window_errors +=
1570				(data & 0x00ff0000) >> 16;
1571			dev->stats.collisions += (data & 0x0000ffff);
1572		}
1573
1574		if (--boguscnt < 0) {
1575			printk(KERN_WARNING "%s: Too much work at interrupt, "
1576			       "status=0x%4.4x.\n", dev->name, intr_status);
1577			if (!np->reset_timer_armed) {
1578				np->reset_timer_armed = 1;
1579				np->reset_timer.expires = RUN_AT(HZ/2);
1580				add_timer(&np->reset_timer);
1581				stop_nic_rxtx(ioaddr, 0);
1582				netif_stop_queue(dev);
1583				/* or netif_tx_disable(dev); ?? */
1584				/* Prevent other paths from enabling tx,rx,intrs */
1585				np->crvalue_sv = np->crvalue;
1586				np->imrvalue_sv = np->imrvalue;
1587				np->crvalue &= ~(CR_W_TXEN | CR_W_RXEN); /* or simply = 0? */
1588				np->imrvalue = 0;
1589			}
1590
1591			break;
1592		}
1593	} while (1);
1594
1595	/* read the tally counters */
1596	/* missed pkts */
1597	dev->stats.rx_missed_errors += ioread32(ioaddr + TALLY) & 0x7fff;
1598
1599	/* crc error */
1600	dev->stats.rx_crc_errors +=
1601		(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1602
1603	if (debug)
1604		printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1605		       dev->name, ioread32(ioaddr + ISR));
1606
1607	iowrite32(np->imrvalue, ioaddr + IMR);
1608
1609	spin_unlock(&np->lock);
1610
1611	return IRQ_RETVAL(handled);
1612}
1613
1614
1615/* This routine is logically part of the interrupt handler, but separated
1616   for clarity and better register allocation. */
1617static int netdev_rx(struct net_device *dev)
1618{
1619	struct netdev_private *np = netdev_priv(dev);
1620	void __iomem *ioaddr = np->mem;
1621
1622	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1623	while (!(np->cur_rx->status & RXOWN) && np->cur_rx->skbuff) {
1624		s32 rx_status = np->cur_rx->status;
1625
1626		if (np->really_rx_count == 0)
1627			break;
1628
1629		if (debug)
1630			printk(KERN_DEBUG "  netdev_rx() status was %8.8x.\n", rx_status);
1631
1632		if ((!((rx_status & RXFSD) && (rx_status & RXLSD))) ||
1633		    (rx_status & ErrorSummary)) {
1634			if (rx_status & ErrorSummary) {	/* there was a fatal error */
1635				if (debug)
1636					printk(KERN_DEBUG
1637					       "%s: Receive error, Rx status %8.8x.\n",
1638					       dev->name, rx_status);
1639
1640				dev->stats.rx_errors++;	/* end of a packet. */
1641				if (rx_status & (LONG | RUNT))
1642					dev->stats.rx_length_errors++;
1643				if (rx_status & RXER)
1644					dev->stats.rx_frame_errors++;
1645				if (rx_status & CRC)
1646					dev->stats.rx_crc_errors++;
1647			} else {
1648				int need_to_reset = 0;
1649				int desno = 0;
1650
1651				if (rx_status & RXFSD) {	/* this pkt is too long, over one rx buffer */
1652					struct fealnx_desc *cur;
1653
1654					/* check this packet is received completely? */
1655					cur = np->cur_rx;
1656					while (desno <= np->really_rx_count) {
1657						++desno;
1658						if ((!(cur->status & RXOWN)) &&
1659						    (cur->status & RXLSD))
1660							break;
1661						/* goto next rx descriptor */
1662						cur = cur->next_desc_logical;
1663					}
1664					if (desno > np->really_rx_count)
1665						need_to_reset = 1;
1666				} else	/* RXLSD did not find, something error */
1667					need_to_reset = 1;
1668
1669				if (need_to_reset == 0) {
1670					int i;
1671
1672					dev->stats.rx_length_errors++;
1673
1674					/* free all rx descriptors related this long pkt */
1675					for (i = 0; i < desno; ++i) {
1676						if (!np->cur_rx->skbuff) {
1677							printk(KERN_DEBUG
1678								"%s: I'm scared\n", dev->name);
1679							break;
1680						}
1681						np->cur_rx->status = RXOWN;
1682						np->cur_rx = np->cur_rx->next_desc_logical;
1683					}
1684					continue;
1685				} else {        /* rx error, need to reset this chip */
1686					stop_nic_rx(ioaddr, np->crvalue);
1687					reset_rx_descriptors(dev);
1688					iowrite32(np->crvalue, ioaddr + TCRRCR);
1689				}
1690				break;	/* exit the while loop */
1691			}
1692		} else {	/* this received pkt is ok */
1693
1694			struct sk_buff *skb;
1695			/* Omit the four octet CRC from the length. */
1696			short pkt_len = ((rx_status & FLNGMASK) >> FLNGShift) - 4;
1697
1698#ifndef final_version
1699			if (debug)
1700				printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d"
1701				       " status %x.\n", pkt_len, rx_status);
1702#endif
1703
1704			/* Check if the packet is long enough to accept without copying
1705			   to a minimally-sized skbuff. */
1706			if (pkt_len < rx_copybreak &&
1707			    (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1708				skb_reserve(skb, 2);	/* 16 byte align the IP header */
1709				pci_dma_sync_single_for_cpu(np->pci_dev,
1710							    np->cur_rx->buffer,
1711							    np->rx_buf_sz,
1712							    PCI_DMA_FROMDEVICE);
1713				/* Call copy + cksum if available. */
1714
1715#if ! defined(__alpha__)
1716				skb_copy_to_linear_data(skb,
1717					np->cur_rx->skbuff->data, pkt_len);
1718				skb_put(skb, pkt_len);
1719#else
1720				memcpy(skb_put(skb, pkt_len),
1721					np->cur_rx->skbuff->data, pkt_len);
1722#endif
1723				pci_dma_sync_single_for_device(np->pci_dev,
1724							       np->cur_rx->buffer,
1725							       np->rx_buf_sz,
1726							       PCI_DMA_FROMDEVICE);
1727			} else {
1728				pci_unmap_single(np->pci_dev,
1729						 np->cur_rx->buffer,
1730						 np->rx_buf_sz,
1731						 PCI_DMA_FROMDEVICE);
1732				skb_put(skb = np->cur_rx->skbuff, pkt_len);
1733				np->cur_rx->skbuff = NULL;
1734				--np->really_rx_count;
1735			}
1736			skb->protocol = eth_type_trans(skb, dev);
1737			netif_rx(skb);
1738			dev->stats.rx_packets++;
1739			dev->stats.rx_bytes += pkt_len;
1740		}
1741
1742		np->cur_rx = np->cur_rx->next_desc_logical;
1743	}			/* end of while loop */
1744
1745	/*  allocate skb for rx buffers */
1746	allocate_rx_buffers(dev);
1747
1748	return 0;
1749}
1750
1751
1752static struct net_device_stats *get_stats(struct net_device *dev)
1753{
1754	struct netdev_private *np = netdev_priv(dev);
1755	void __iomem *ioaddr = np->mem;
1756
1757	/* The chip only need report frame silently dropped. */
1758	if (netif_running(dev)) {
1759		dev->stats.rx_missed_errors +=
1760			ioread32(ioaddr + TALLY) & 0x7fff;
1761		dev->stats.rx_crc_errors +=
1762			(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1763	}
1764
1765	return &dev->stats;
1766}
1767
1768
1769/* for dev->set_multicast_list */
1770static void set_rx_mode(struct net_device *dev)
1771{
1772	spinlock_t *lp = &((struct netdev_private *)netdev_priv(dev))->lock;
1773	unsigned long flags;
1774	spin_lock_irqsave(lp, flags);
1775	__set_rx_mode(dev);
1776	spin_unlock_irqrestore(lp, flags);
1777}
1778
1779
1780/* Take lock before calling */
1781static void __set_rx_mode(struct net_device *dev)
1782{
1783	struct netdev_private *np = netdev_priv(dev);
1784	void __iomem *ioaddr = np->mem;
1785	u32 mc_filter[2];	/* Multicast hash filter */
1786	u32 rx_mode;
1787
1788	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1789		memset(mc_filter, 0xff, sizeof(mc_filter));
1790		rx_mode = CR_W_PROM | CR_W_AB | CR_W_AM;
1791	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1792		   (dev->flags & IFF_ALLMULTI)) {
1793		/* Too many to match, or accept all multicasts. */
1794		memset(mc_filter, 0xff, sizeof(mc_filter));
1795		rx_mode = CR_W_AB | CR_W_AM;
1796	} else {
1797		struct netdev_hw_addr *ha;
1798
1799		memset(mc_filter, 0, sizeof(mc_filter));
1800		netdev_for_each_mc_addr(ha, dev) {
1801			unsigned int bit;
1802			bit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F;
1803			mc_filter[bit >> 5] |= (1 << bit);
1804		}
1805		rx_mode = CR_W_AB | CR_W_AM;
1806	}
1807
1808	stop_nic_rxtx(ioaddr, np->crvalue);
1809
1810	iowrite32(mc_filter[0], ioaddr + MAR0);
1811	iowrite32(mc_filter[1], ioaddr + MAR1);
1812	np->crvalue &= ~CR_W_RXMODEMASK;
1813	np->crvalue |= rx_mode;
1814	iowrite32(np->crvalue, ioaddr + TCRRCR);
1815}
1816
1817static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1818{
1819	struct netdev_private *np = netdev_priv(dev);
1820
1821	strcpy(info->driver, DRV_NAME);
1822	strcpy(info->version, DRV_VERSION);
1823	strcpy(info->bus_info, pci_name(np->pci_dev));
1824}
1825
1826static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1827{
1828	struct netdev_private *np = netdev_priv(dev);
1829	int rc;
1830
1831	spin_lock_irq(&np->lock);
1832	rc = mii_ethtool_gset(&np->mii, cmd);
1833	spin_unlock_irq(&np->lock);
1834
1835	return rc;
1836}
1837
1838static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1839{
1840	struct netdev_private *np = netdev_priv(dev);
1841	int rc;
1842
1843	spin_lock_irq(&np->lock);
1844	rc = mii_ethtool_sset(&np->mii, cmd);
1845	spin_unlock_irq(&np->lock);
1846
1847	return rc;
1848}
1849
1850static int netdev_nway_reset(struct net_device *dev)
1851{
1852	struct netdev_private *np = netdev_priv(dev);
1853	return mii_nway_restart(&np->mii);
1854}
1855
1856static u32 netdev_get_link(struct net_device *dev)
1857{
1858	struct netdev_private *np = netdev_priv(dev);
1859	return mii_link_ok(&np->mii);
1860}
1861
1862static u32 netdev_get_msglevel(struct net_device *dev)
1863{
1864	return debug;
1865}
1866
1867static void netdev_set_msglevel(struct net_device *dev, u32 value)
1868{
1869	debug = value;
1870}
1871
1872static const struct ethtool_ops netdev_ethtool_ops = {
1873	.get_drvinfo		= netdev_get_drvinfo,
1874	.get_settings		= netdev_get_settings,
1875	.set_settings		= netdev_set_settings,
1876	.nway_reset		= netdev_nway_reset,
1877	.get_link		= netdev_get_link,
1878	.get_msglevel		= netdev_get_msglevel,
1879	.set_msglevel		= netdev_set_msglevel,
1880};
1881
1882static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1883{
1884	struct netdev_private *np = netdev_priv(dev);
1885	int rc;
1886
1887	if (!netif_running(dev))
1888		return -EINVAL;
1889
1890	spin_lock_irq(&np->lock);
1891	rc = generic_mii_ioctl(&np->mii, if_mii(rq), cmd, NULL);
1892	spin_unlock_irq(&np->lock);
1893
1894	return rc;
1895}
1896
1897
1898static int netdev_close(struct net_device *dev)
1899{
1900	struct netdev_private *np = netdev_priv(dev);
1901	void __iomem *ioaddr = np->mem;
1902	int i;
1903
1904	netif_stop_queue(dev);
1905
1906	/* Disable interrupts by clearing the interrupt mask. */
1907	iowrite32(0x0000, ioaddr + IMR);
1908
1909	/* Stop the chip's Tx and Rx processes. */
1910	stop_nic_rxtx(ioaddr, 0);
1911
1912	del_timer_sync(&np->timer);
1913	del_timer_sync(&np->reset_timer);
1914
1915	free_irq(dev->irq, dev);
1916
1917	/* Free all the skbuffs in the Rx queue. */
1918	for (i = 0; i < RX_RING_SIZE; i++) {
1919		struct sk_buff *skb = np->rx_ring[i].skbuff;
1920
1921		np->rx_ring[i].status = 0;
1922		if (skb) {
1923			pci_unmap_single(np->pci_dev, np->rx_ring[i].buffer,
1924				np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1925			dev_kfree_skb(skb);
1926			np->rx_ring[i].skbuff = NULL;
1927		}
1928	}
1929
1930	for (i = 0; i < TX_RING_SIZE; i++) {
1931		struct sk_buff *skb = np->tx_ring[i].skbuff;
1932
1933		if (skb) {
1934			pci_unmap_single(np->pci_dev, np->tx_ring[i].buffer,
1935				skb->len, PCI_DMA_TODEVICE);
1936			dev_kfree_skb(skb);
1937			np->tx_ring[i].skbuff = NULL;
1938		}
1939	}
1940
1941	return 0;
1942}
1943
1944static DEFINE_PCI_DEVICE_TABLE(fealnx_pci_tbl) = {
1945	{0x1516, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1946	{0x1516, 0x0803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1},
1947	{0x1516, 0x0891, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2},
1948	{} /* terminate list */
1949};
1950MODULE_DEVICE_TABLE(pci, fealnx_pci_tbl);
1951
1952
1953static struct pci_driver fealnx_driver = {
1954	.name		= "fealnx",
1955	.id_table	= fealnx_pci_tbl,
1956	.probe		= fealnx_init_one,
1957	.remove		= __devexit_p(fealnx_remove_one),
1958};
1959
1960static int __init fealnx_init(void)
1961{
1962/* when a module, this is printed whether or not devices are found in probe */
1963#ifdef MODULE
1964	printk(version);
1965#endif
1966
1967	return pci_register_driver(&fealnx_driver);
1968}
1969
1970static void __exit fealnx_exit(void)
1971{
1972	pci_unregister_driver(&fealnx_driver);
1973}
1974
1975module_init(fealnx_init);
1976module_exit(fealnx_exit);