Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * File Name:
   4 *   skfddi.c
   5 *
   6 * Copyright Information:
   7 *   Copyright SysKonnect 1998,1999.
   8 *
   9 * The information in this file is provided "AS IS" without warranty.
  10 *
  11 * Abstract:
  12 *   A Linux device driver supporting the SysKonnect FDDI PCI controller
  13 *   familie.
  14 *
  15 * Maintainers:
  16 *   CG    Christoph Goos (cgoos@syskonnect.de)
  17 *
  18 * Contributors:
  19 *   DM    David S. Miller
  20 *
  21 * Address all question to:
  22 *   linux@syskonnect.de
  23 *
  24 * The technical manual for the adapters is available from SysKonnect's
  25 * web pages: www.syskonnect.com
  26 * Goto "Support" and search Knowledge Base for "manual".
  27 *
  28 * Driver Architecture:
  29 *   The driver architecture is based on the DEC FDDI driver by
  30 *   Lawrence V. Stefani and several ethernet drivers.
  31 *   I also used an existing Windows NT miniport driver.
  32 *   All hardware dependent functions are handled by the SysKonnect
  33 *   Hardware Module.
  34 *   The only headerfiles that are directly related to this source
  35 *   are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
  36 *   The others belong to the SysKonnect FDDI Hardware Module and
  37 *   should better not be changed.
  38 *
  39 * Modification History:
  40 *              Date            Name    Description
  41 *              02-Mar-98       CG	Created.
  42 *
  43 *		10-Mar-99	CG	Support for 2.2.x added.
  44 *		25-Mar-99	CG	Corrected IRQ routing for SMP (APIC)
  45 *		26-Oct-99	CG	Fixed compilation error on 2.2.13
  46 *		12-Nov-99	CG	Source code release
  47 *		22-Nov-99	CG	Included in kernel source.
  48 *		07-May-00	DM	64 bit fixes, new dma interface
  49 *		31-Jul-03	DB	Audit copy_*_user in skfp_ioctl
  50 *					  Daniele Bellucci <bellucda@tiscali.it>
  51 *		03-Dec-03	SH	Convert to PCI device model
  52 *
  53 * Compilation options (-Dxxx):
  54 *              DRIVERDEBUG     print lots of messages to log file
  55 *              DUMPPACKETS     print received/transmitted packets to logfile
  56 * 
  57 * Tested cpu architectures:
  58 *	- i386
  59 *	- sparc64
  60 */
  61
  62/* Version information string - should be updated prior to */
  63/* each new release!!! */
  64#define VERSION		"2.07"
  65
  66static const char * const boot_msg = 
  67	"SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
  68	"  SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
  69
  70/* Include files */
  71
  72#include <linux/capability.h>
  73#include <linux/compat.h>
  74#include <linux/module.h>
  75#include <linux/kernel.h>
  76#include <linux/errno.h>
  77#include <linux/ioport.h>
  78#include <linux/interrupt.h>
  79#include <linux/pci.h>
  80#include <linux/netdevice.h>
  81#include <linux/etherdevice.h>
  82#include <linux/fddidevice.h>
  83#include <linux/skbuff.h>
  84#include <linux/bitops.h>
  85#include <linux/gfp.h>
  86
  87#include <asm/byteorder.h>
  88#include <asm/io.h>
  89#include <linux/uaccess.h>
  90
  91#include	"h/types.h"
  92#undef ADDR			// undo Linux definition
  93#include	"h/skfbi.h"
  94#include	"h/fddi.h"
  95#include	"h/smc.h"
  96#include	"h/smtstate.h"
  97
  98
  99// Define module-wide (static) routines
 100static int skfp_driver_init(struct net_device *dev);
 101static int skfp_open(struct net_device *dev);
 102static int skfp_close(struct net_device *dev);
 103static irqreturn_t skfp_interrupt(int irq, void *dev_id);
 104static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
 105static void skfp_ctl_set_multicast_list(struct net_device *dev);
 106static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
 107static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
 108static int skfp_siocdevprivate(struct net_device *dev, struct ifreq *rq,
 109			       void __user *data, int cmd);
 110static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
 111				       struct net_device *dev);
 112static void send_queued_packets(struct s_smc *smc);
 113static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
 114static void ResetAdapter(struct s_smc *smc);
 115
 116
 117// Functions needed by the hardware module
 118void *mac_drv_get_space(struct s_smc *smc, u_int size);
 119void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
 120unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
 121unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
 122void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
 123		  int flag);
 124void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
 125void llc_restart_tx(struct s_smc *smc);
 126void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
 127			 int frag_count, int len);
 128void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
 129			 int frag_count);
 130void mac_drv_fill_rxd(struct s_smc *smc);
 131void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
 132		       int frag_count);
 133int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
 134		    int la_len);
 135void dump_data(unsigned char *Data, int length);
 136
 137// External functions from the hardware module
 138extern u_int mac_drv_check_space(void);
 139extern int mac_drv_init(struct s_smc *smc);
 140extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
 141			int len, int frame_status);
 142extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
 143		       int frame_len, int frame_status);
 144extern void fddi_isr(struct s_smc *smc);
 145extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
 146			int len, int frame_status);
 147extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
 148extern void mac_drv_clear_rx_queue(struct s_smc *smc);
 149extern void enable_tx_irq(struct s_smc *smc, u_short queue);
 150
 151static const struct pci_device_id skfddi_pci_tbl[] = {
 152	{ PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
 153	{ }			/* Terminating entry */
 154};
 155MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
 156MODULE_DESCRIPTION("SysKonnect FDDI PCI driver");
 157MODULE_LICENSE("GPL");
 158MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
 159
 160// Define module-wide (static) variables
 161
 162static int num_boards;	/* total number of adapters configured */
 163
 164static const struct net_device_ops skfp_netdev_ops = {
 165	.ndo_open		= skfp_open,
 166	.ndo_stop		= skfp_close,
 167	.ndo_start_xmit		= skfp_send_pkt,
 168	.ndo_get_stats		= skfp_ctl_get_stats,
 169	.ndo_set_rx_mode	= skfp_ctl_set_multicast_list,
 170	.ndo_set_mac_address	= skfp_ctl_set_mac_address,
 171	.ndo_siocdevprivate	= skfp_siocdevprivate,
 172};
 173
 174/*
 175 * =================
 176 * = skfp_init_one =
 177 * =================
 178 *   
 179 * Overview:
 180 *   Probes for supported FDDI PCI controllers
 181 *  
 182 * Returns:
 183 *   Condition code
 184 *       
 185 * Arguments:
 186 *   pdev - pointer to PCI device information
 187 *
 188 * Functional Description:
 189 *   This is now called by PCI driver registration process
 190 *   for each board found.
 191 *   
 192 * Return Codes:
 193 *   0           - This device (fddi0, fddi1, etc) configured successfully
 194 *   -ENODEV - No devices present, or no SysKonnect FDDI PCI device
 195 *                         present for this device name
 196 *
 197 *
 198 * Side Effects:
 199 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
 200 *   initialized and the board resources are read and stored in
 201 *   the device structure.
 202 */
 203static int skfp_init_one(struct pci_dev *pdev,
 204				const struct pci_device_id *ent)
 205{
 206	struct net_device *dev;
 207	struct s_smc *smc;	/* board pointer */
 208	void __iomem *mem;
 209	int err;
 210
 211	pr_debug("entering skfp_init_one\n");
 212
 213	if (num_boards == 0) 
 214		printk("%s\n", boot_msg);
 215
 216	err = pci_enable_device(pdev);
 217	if (err)
 218		return err;
 219
 220	err = pci_request_regions(pdev, "skfddi");
 221	if (err)
 222		goto err_out1;
 223
 224	pci_set_master(pdev);
 225
 226#ifdef MEM_MAPPED_IO
 227	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
 228		printk(KERN_ERR "skfp: region is not an MMIO resource\n");
 229		err = -EIO;
 230		goto err_out2;
 231	}
 232
 233	mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
 234#else
 235	if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
 236		printk(KERN_ERR "skfp: region is not PIO resource\n");
 237		err = -EIO;
 238		goto err_out2;
 239	}
 240
 241	mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
 242#endif
 243	if (!mem) {
 244		printk(KERN_ERR "skfp:  Unable to map register, "
 245				"FDDI adapter will be disabled.\n");
 246		err = -EIO;
 247		goto err_out2;
 248	}
 249
 250	dev = alloc_fddidev(sizeof(struct s_smc));
 251	if (!dev) {
 252		printk(KERN_ERR "skfp: Unable to allocate fddi device, "
 253				"FDDI adapter will be disabled.\n");
 254		err = -ENOMEM;
 255		goto err_out3;
 256	}
 257
 258	dev->irq = pdev->irq;
 259	dev->netdev_ops = &skfp_netdev_ops;
 260
 261	SET_NETDEV_DEV(dev, &pdev->dev);
 262
 263	/* Initialize board structure with bus-specific info */
 264	smc = netdev_priv(dev);
 265	smc->os.dev = dev;
 266	smc->os.bus_type = SK_BUS_TYPE_PCI;
 267	smc->os.pdev = *pdev;
 268	smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
 269	smc->os.MaxFrameSize = MAX_FRAME_SIZE;
 270	smc->os.dev = dev;
 271	smc->hw.slot = -1;
 272	smc->hw.iop = mem;
 273	smc->os.ResetRequested = FALSE;
 274	skb_queue_head_init(&smc->os.SendSkbQueue);
 275
 276	dev->base_addr = (unsigned long)mem;
 277
 278	err = skfp_driver_init(dev);
 279	if (err)
 280		goto err_out4;
 281
 282	err = register_netdev(dev);
 283	if (err)
 284		goto err_out5;
 285
 286	++num_boards;
 287	pci_set_drvdata(pdev, dev);
 288
 289	if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
 290	    (pdev->subsystem_device & 0xff00) == 0x5800) 
 291		printk("%s: SysKonnect FDDI PCI adapter"
 292		       " found (SK-%04X)\n", dev->name,	
 293		       pdev->subsystem_device);
 294	else
 295		printk("%s: FDDI PCI adapter found\n", dev->name);
 296
 297	return 0;
 298err_out5:
 299	if (smc->os.SharedMemAddr) 
 300		dma_free_coherent(&pdev->dev, smc->os.SharedMemSize,
 301				  smc->os.SharedMemAddr,
 302				  smc->os.SharedMemDMA);
 303	dma_free_coherent(&pdev->dev, MAX_FRAME_SIZE,
 304			  smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
 305err_out4:
 306	free_netdev(dev);
 307err_out3:
 308#ifdef MEM_MAPPED_IO
 309	iounmap(mem);
 310#else
 311	ioport_unmap(mem);
 312#endif
 313err_out2:
 314	pci_release_regions(pdev);
 315err_out1:
 316	pci_disable_device(pdev);
 317	return err;
 318}
 319
 320/*
 321 * Called for each adapter board from pci_unregister_driver
 322 */
 323static void skfp_remove_one(struct pci_dev *pdev)
 324{
 325	struct net_device *p = pci_get_drvdata(pdev);
 326	struct s_smc *lp = netdev_priv(p);
 327
 328	unregister_netdev(p);
 329
 330	if (lp->os.SharedMemAddr) {
 331		dma_free_coherent(&pdev->dev,
 332				  lp->os.SharedMemSize,
 333				  lp->os.SharedMemAddr,
 334				  lp->os.SharedMemDMA);
 335		lp->os.SharedMemAddr = NULL;
 336	}
 337	if (lp->os.LocalRxBuffer) {
 338		dma_free_coherent(&pdev->dev,
 339				  MAX_FRAME_SIZE,
 340				  lp->os.LocalRxBuffer,
 341				  lp->os.LocalRxBufferDMA);
 342		lp->os.LocalRxBuffer = NULL;
 343	}
 344#ifdef MEM_MAPPED_IO
 345	iounmap(lp->hw.iop);
 346#else
 347	ioport_unmap(lp->hw.iop);
 348#endif
 349	pci_release_regions(pdev);
 350	free_netdev(p);
 351
 352	pci_disable_device(pdev);
 353}
 354
 355/*
 356 * ====================
 357 * = skfp_driver_init =
 358 * ====================
 359 *   
 360 * Overview:
 361 *   Initializes remaining adapter board structure information
 362 *   and makes sure adapter is in a safe state prior to skfp_open().
 363 *  
 364 * Returns:
 365 *   Condition code
 366 *       
 367 * Arguments:
 368 *   dev - pointer to device information
 369 *
 370 * Functional Description:
 371 *   This function allocates additional resources such as the host memory
 372 *   blocks needed by the adapter.
 373 *   The adapter is also reset. The OS must call skfp_open() to open 
 374 *   the adapter and bring it on-line.
 375 *
 376 * Return Codes:
 377 *    0 - initialization succeeded
 378 *   -1 - initialization failed
 379 */
 380static  int skfp_driver_init(struct net_device *dev)
 381{
 382	struct s_smc *smc = netdev_priv(dev);
 383	skfddi_priv *bp = &smc->os;
 384	int err = -EIO;
 385
 386	pr_debug("entering skfp_driver_init\n");
 387
 388	// set the io address in private structures
 389	bp->base_addr = dev->base_addr;
 390
 391	// Get the interrupt level from the PCI Configuration Table
 392	smc->hw.irq = dev->irq;
 393
 394	spin_lock_init(&bp->DriverLock);
 395	
 396	// Allocate invalid frame
 397	bp->LocalRxBuffer = dma_alloc_coherent(&bp->pdev.dev, MAX_FRAME_SIZE,
 398					       &bp->LocalRxBufferDMA,
 399					       GFP_ATOMIC);
 400	if (!bp->LocalRxBuffer) {
 401		printk("could not allocate mem for ");
 402		printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
 403		goto fail;
 404	}
 405
 406	// Determine the required size of the 'shared' memory area.
 407	bp->SharedMemSize = mac_drv_check_space();
 408	pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize);
 409	if (bp->SharedMemSize > 0) {
 410		bp->SharedMemSize += 16;	// for descriptor alignment
 411
 412		bp->SharedMemAddr = dma_alloc_coherent(&bp->pdev.dev,
 413						       bp->SharedMemSize,
 414						       &bp->SharedMemDMA,
 415						       GFP_ATOMIC);
 416		if (!bp->SharedMemAddr) {
 417			printk("could not allocate mem for ");
 418			printk("hardware module: %ld byte\n",
 419			       bp->SharedMemSize);
 420			goto fail;
 421		}
 422
 423	} else {
 424		bp->SharedMemAddr = NULL;
 425	}
 426
 427	bp->SharedMemHeap = 0;
 428
 429	card_stop(smc);		// Reset adapter.
 430
 431	pr_debug("mac_drv_init()..\n");
 432	if (mac_drv_init(smc) != 0) {
 433		pr_debug("mac_drv_init() failed\n");
 434		goto fail;
 435	}
 436	read_address(smc, NULL);
 437	pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a);
 438	eth_hw_addr_set(dev, smc->hw.fddi_canon_addr.a);
 439
 440	smt_reset_defaults(smc, 0);
 441
 442	return 0;
 443
 444fail:
 445	if (bp->SharedMemAddr) {
 446		dma_free_coherent(&bp->pdev.dev,
 447				  bp->SharedMemSize,
 448				  bp->SharedMemAddr,
 449				  bp->SharedMemDMA);
 450		bp->SharedMemAddr = NULL;
 451	}
 452	if (bp->LocalRxBuffer) {
 453		dma_free_coherent(&bp->pdev.dev, MAX_FRAME_SIZE,
 454				  bp->LocalRxBuffer, bp->LocalRxBufferDMA);
 455		bp->LocalRxBuffer = NULL;
 456	}
 457	return err;
 458}				// skfp_driver_init
 459
 460
 461/*
 462 * =============
 463 * = skfp_open =
 464 * =============
 465 *   
 466 * Overview:
 467 *   Opens the adapter
 468 *  
 469 * Returns:
 470 *   Condition code
 471 *       
 472 * Arguments:
 473 *   dev - pointer to device information
 474 *
 475 * Functional Description:
 476 *   This function brings the adapter to an operational state.
 477 *
 478 * Return Codes:
 479 *   0           - Adapter was successfully opened
 480 *   -EAGAIN - Could not register IRQ
 481 */
 482static int skfp_open(struct net_device *dev)
 483{
 484	struct s_smc *smc = netdev_priv(dev);
 485	int err;
 486
 487	pr_debug("entering skfp_open\n");
 488	/* Register IRQ - support shared interrupts by passing device ptr */
 489	err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED,
 490			  dev->name, dev);
 491	if (err)
 492		return err;
 493
 494	/*
 495	 * Set current address to factory MAC address
 496	 *
 497	 * Note: We've already done this step in skfp_driver_init.
 498	 *       However, it's possible that a user has set a node
 499	 *               address override, then closed and reopened the
 500	 *               adapter.  Unless we reset the device address field
 501	 *               now, we'll continue to use the existing modified
 502	 *               address.
 503	 */
 504	read_address(smc, NULL);
 505	eth_hw_addr_set(dev, smc->hw.fddi_canon_addr.a);
 506
 507	init_smt(smc, NULL);
 508	smt_online(smc, 1);
 509	STI_FBI();
 510
 511	/* Clear local multicast address tables */
 512	mac_clear_multicast(smc);
 513
 514	/* Disable promiscuous filter settings */
 515	mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
 516
 517	netif_start_queue(dev);
 518	return 0;
 519}				// skfp_open
 520
 521
 522/*
 523 * ==============
 524 * = skfp_close =
 525 * ==============
 526 *   
 527 * Overview:
 528 *   Closes the device/module.
 529 *  
 530 * Returns:
 531 *   Condition code
 532 *       
 533 * Arguments:
 534 *   dev - pointer to device information
 535 *
 536 * Functional Description:
 537 *   This routine closes the adapter and brings it to a safe state.
 538 *   The interrupt service routine is deregistered with the OS.
 539 *   The adapter can be opened again with another call to skfp_open().
 540 *
 541 * Return Codes:
 542 *   Always return 0.
 543 *
 544 * Assumptions:
 545 *   No further requests for this adapter are made after this routine is
 546 *   called.  skfp_open() can be called to reset and reinitialize the
 547 *   adapter.
 548 */
 549static int skfp_close(struct net_device *dev)
 550{
 551	struct s_smc *smc = netdev_priv(dev);
 552	skfddi_priv *bp = &smc->os;
 553
 554	CLI_FBI();
 555	smt_reset_defaults(smc, 1);
 556	card_stop(smc);
 557	mac_drv_clear_tx_queue(smc);
 558	mac_drv_clear_rx_queue(smc);
 559
 560	netif_stop_queue(dev);
 561	/* Deregister (free) IRQ */
 562	free_irq(dev->irq, dev);
 563
 564	skb_queue_purge(&bp->SendSkbQueue);
 565	bp->QueueSkb = MAX_TX_QUEUE_LEN;
 566
 567	return 0;
 568}				// skfp_close
 569
 570
 571/*
 572 * ==================
 573 * = skfp_interrupt =
 574 * ==================
 575 *   
 576 * Overview:
 577 *   Interrupt processing routine
 578 *  
 579 * Returns:
 580 *   None
 581 *       
 582 * Arguments:
 583 *   irq        - interrupt vector
 584 *   dev_id     - pointer to device information
 585 *
 586 * Functional Description:
 587 *   This routine calls the interrupt processing routine for this adapter.  It
 588 *   disables and reenables adapter interrupts, as appropriate.  We can support
 589 *   shared interrupts since the incoming dev_id pointer provides our device
 590 *   structure context. All the real work is done in the hardware module.
 591 *
 592 * Return Codes:
 593 *   None
 594 *
 595 * Assumptions:
 596 *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
 597 *   on Intel-based systems) is done by the operating system outside this
 598 *   routine.
 599 *
 600 *       System interrupts are enabled through this call.
 601 *
 602 * Side Effects:
 603 *   Interrupts are disabled, then reenabled at the adapter.
 604 */
 605
 606static irqreturn_t skfp_interrupt(int irq, void *dev_id)
 607{
 608	struct net_device *dev = dev_id;
 609	struct s_smc *smc;	/* private board structure pointer */
 610	skfddi_priv *bp;
 611
 612	smc = netdev_priv(dev);
 613	bp = &smc->os;
 614
 615	// IRQs enabled or disabled ?
 616	if (inpd(ADDR(B0_IMSK)) == 0) {
 617		// IRQs are disabled: must be shared interrupt
 618		return IRQ_NONE;
 619	}
 620	// Note: At this point, IRQs are enabled.
 621	if ((inpd(ISR_A) & smc->hw.is_imask) == 0) {	// IRQ?
 622		// Adapter did not issue an IRQ: must be shared interrupt
 623		return IRQ_NONE;
 624	}
 625	CLI_FBI();		// Disable IRQs from our adapter.
 626	spin_lock(&bp->DriverLock);
 627
 628	// Call interrupt handler in hardware module (HWM).
 629	fddi_isr(smc);
 630
 631	if (smc->os.ResetRequested) {
 632		ResetAdapter(smc);
 633		smc->os.ResetRequested = FALSE;
 634	}
 635	spin_unlock(&bp->DriverLock);
 636	STI_FBI();		// Enable IRQs from our adapter.
 637
 638	return IRQ_HANDLED;
 639}				// skfp_interrupt
 640
 641
 642/*
 643 * ======================
 644 * = skfp_ctl_get_stats =
 645 * ======================
 646 *   
 647 * Overview:
 648 *   Get statistics for FDDI adapter
 649 *  
 650 * Returns:
 651 *   Pointer to FDDI statistics structure
 652 *       
 653 * Arguments:
 654 *   dev - pointer to device information
 655 *
 656 * Functional Description:
 657 *   Gets current MIB objects from adapter, then
 658 *   returns FDDI statistics structure as defined
 659 *   in if_fddi.h.
 660 *
 661 *   Note: Since the FDDI statistics structure is
 662 *   still new and the device structure doesn't
 663 *   have an FDDI-specific get statistics handler,
 664 *   we'll return the FDDI statistics structure as
 665 *   a pointer to an Ethernet statistics structure.
 666 *   That way, at least the first part of the statistics
 667 *   structure can be decoded properly.
 668 *   We'll have to pay attention to this routine as the
 669 *   device structure becomes more mature and LAN media
 670 *   independent.
 671 *
 672 */
 673static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
 674{
 675	struct s_smc *bp = netdev_priv(dev);
 676
 677	/* Fill the bp->stats structure with driver-maintained counters */
 678
 679	bp->os.MacStat.port_bs_flag[0] = 0x1234;
 680	bp->os.MacStat.port_bs_flag[1] = 0x5678;
 681// goos: need to fill out fddi statistic
 682#if 0
 683	/* Get FDDI SMT MIB objects */
 684
 685/* Fill the bp->stats structure with the SMT MIB object values */
 686
 687	memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
 688	bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
 689	bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
 690	bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
 691	memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
 692	bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
 693	bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
 694	bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
 695	bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
 696	bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
 697	bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
 698	bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
 699	bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
 700	bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
 701	bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
 702	bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
 703	bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
 704	bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
 705	bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
 706	bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
 707	bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
 708	bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
 709	bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
 710	bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
 711	bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
 712	bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
 713	bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
 714	bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
 715	bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
 716	memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
 717	memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
 718	memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
 719	memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
 720	bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
 721	bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
 722	bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
 723	memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
 724	bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
 725	bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
 726	bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
 727	bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
 728	bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
 729	bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
 730	bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
 731	bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
 732	bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
 733	bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
 734	bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
 735	bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
 736	bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
 737	bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
 738	bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
 739	bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
 740	memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
 741	bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
 742	bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
 743	bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
 744	bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
 745	bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
 746	bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
 747	bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
 748	bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
 749	bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
 750	bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
 751	memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
 752	memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
 753	bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
 754	bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
 755	bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
 756	bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
 757	bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
 758	bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
 759	bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
 760	bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
 761	bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
 762	bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
 763	bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
 764	bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
 765	bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
 766	bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
 767	bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
 768	bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
 769	bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
 770	bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
 771	bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
 772	bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
 773	bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
 774	bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
 775	bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
 776	bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
 777	bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
 778	bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
 779
 780
 781	/* Fill the bp->stats structure with the FDDI counter values */
 782
 783	bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
 784	bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
 785	bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
 786	bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
 787	bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
 788	bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
 789	bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
 790	bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
 791	bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
 792	bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
 793	bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
 794
 795#endif
 796	return (struct net_device_stats *)&bp->os.MacStat;
 797}				// ctl_get_stat
 798
 799
 800/*
 801 * ==============================
 802 * = skfp_ctl_set_multicast_list =
 803 * ==============================
 804 *   
 805 * Overview:
 806 *   Enable/Disable LLC frame promiscuous mode reception
 807 *   on the adapter and/or update multicast address table.
 808 *  
 809 * Returns:
 810 *   None
 811 *       
 812 * Arguments:
 813 *   dev - pointer to device information
 814 *
 815 * Functional Description:
 816 *   This function acquires the driver lock and only calls
 817 *   skfp_ctl_set_multicast_list_wo_lock then.
 818 *   This routine follows a fairly simple algorithm for setting the
 819 *   adapter filters and CAM:
 820 *
 821 *      if IFF_PROMISC flag is set
 822 *              enable promiscuous mode
 823 *      else
 824 *              disable promiscuous mode
 825 *              if number of multicast addresses <= max. multicast number
 826 *                      add mc addresses to adapter table
 827 *              else
 828 *                      enable promiscuous mode
 829 *              update adapter filters
 830 *
 831 * Assumptions:
 832 *   Multicast addresses are presented in canonical (LSB) format.
 833 *
 834 * Side Effects:
 835 *   On-board adapter filters are updated.
 836 */
 837static void skfp_ctl_set_multicast_list(struct net_device *dev)
 838{
 839	struct s_smc *smc = netdev_priv(dev);
 840	skfddi_priv *bp = &smc->os;
 841	unsigned long Flags;
 842
 843	spin_lock_irqsave(&bp->DriverLock, Flags);
 844	skfp_ctl_set_multicast_list_wo_lock(dev);
 845	spin_unlock_irqrestore(&bp->DriverLock, Flags);
 846}				// skfp_ctl_set_multicast_list
 847
 848
 849
 850static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
 851{
 852	struct s_smc *smc = netdev_priv(dev);
 853	struct netdev_hw_addr *ha;
 854
 855	/* Enable promiscuous mode, if necessary */
 856	if (dev->flags & IFF_PROMISC) {
 857		mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
 858		pr_debug("PROMISCUOUS MODE ENABLED\n");
 859	}
 860	/* Else, update multicast address table */
 861	else {
 862		mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
 863		pr_debug("PROMISCUOUS MODE DISABLED\n");
 864
 865		// Reset all MC addresses
 866		mac_clear_multicast(smc);
 867		mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
 868
 869		if (dev->flags & IFF_ALLMULTI) {
 870			mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
 871			pr_debug("ENABLE ALL MC ADDRESSES\n");
 872		} else if (!netdev_mc_empty(dev)) {
 873			if (netdev_mc_count(dev) <= FPMAX_MULTICAST) {
 874				/* use exact filtering */
 875
 876				// point to first multicast addr
 877				netdev_for_each_mc_addr(ha, dev) {
 878					mac_add_multicast(smc,
 879						(struct fddi_addr *)ha->addr,
 880						1);
 881
 882					pr_debug("ENABLE MC ADDRESS: %pMF\n",
 883						 ha->addr);
 884				}
 885
 886			} else {	// more MC addresses than HW supports
 887
 888				mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
 889				pr_debug("ENABLE ALL MC ADDRESSES\n");
 890			}
 891		} else {	// no MC addresses
 892
 893			pr_debug("DISABLE ALL MC ADDRESSES\n");
 894		}
 895
 896		/* Update adapter filters */
 897		mac_update_multicast(smc);
 898	}
 899}				// skfp_ctl_set_multicast_list_wo_lock
 900
 901
 902/*
 903 * ===========================
 904 * = skfp_ctl_set_mac_address =
 905 * ===========================
 906 *   
 907 * Overview:
 908 *   set new mac address on adapter and update dev_addr field in device table.
 909 *  
 910 * Returns:
 911 *   None
 912 *       
 913 * Arguments:
 914 *   dev  - pointer to device information
 915 *   addr - pointer to sockaddr structure containing unicast address to set
 916 *
 917 * Assumptions:
 918 *   The address pointed to by addr->sa_data is a valid unicast
 919 *   address and is presented in canonical (LSB) format.
 920 */
 921static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
 922{
 923	struct s_smc *smc = netdev_priv(dev);
 924	struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
 925	skfddi_priv *bp = &smc->os;
 926	unsigned long Flags;
 927
 928
 929	dev_addr_set(dev, p_sockaddr->sa_data);
 930	spin_lock_irqsave(&bp->DriverLock, Flags);
 931	ResetAdapter(smc);
 932	spin_unlock_irqrestore(&bp->DriverLock, Flags);
 933
 934	return 0;		/* always return zero */
 935}				// skfp_ctl_set_mac_address
 936
 937
 938/*
 939 * =======================
 940 * = skfp_siocdevprivate =
 941 * =======================
 942 *   
 943 * Overview:
 944 *
 945 * Perform IOCTL call functions here. Some are privileged operations and the
 946 * effective uid is checked in those cases.
 947 *  
 948 * Returns:
 949 *   status value
 950 *   0 - success
 951 *   other - failure
 952 *       
 953 * Arguments:
 954 *   dev  - pointer to device information
 955 *   rq - pointer to ioctl request structure
 956 *   cmd - ?
 957 *
 958 */
 959
 960
 961static int skfp_siocdevprivate(struct net_device *dev, struct ifreq *rq, void __user *data, int cmd)
 962{
 963	struct s_smc *smc = netdev_priv(dev);
 964	skfddi_priv *lp = &smc->os;
 965	struct s_skfp_ioctl ioc;
 966	int status = 0;
 967
 968	if (copy_from_user(&ioc, data, sizeof(struct s_skfp_ioctl)))
 969		return -EFAULT;
 970
 971	if (in_compat_syscall())
 972		return -EOPNOTSUPP;
 973
 974	switch (ioc.cmd) {
 975	case SKFP_GET_STATS:	/* Get the driver statistics */
 976		ioc.len = sizeof(lp->MacStat);
 977		status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
 978				? -EFAULT : 0;
 979		break;
 980	case SKFP_CLR_STATS:	/* Zero out the driver statistics */
 981		if (!capable(CAP_NET_ADMIN)) {
 982			status = -EPERM;
 983		} else {
 984			memset(&lp->MacStat, 0, sizeof(lp->MacStat));
 985		}
 986		break;
 987	default:
 988		printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd);
 989		status = -EOPNOTSUPP;
 990
 991	}			// switch
 992
 993	return status;
 994}				// skfp_ioctl
 995
 996
 997/*
 998 * =====================
 999 * = skfp_send_pkt     =
1000 * =====================
1001 *   
1002 * Overview:
1003 *   Queues a packet for transmission and try to transmit it.
1004 *  
1005 * Returns:
1006 *   Condition code
1007 *       
1008 * Arguments:
1009 *   skb - pointer to sk_buff to queue for transmission
1010 *   dev - pointer to device information
1011 *
1012 * Functional Description:
1013 *   Here we assume that an incoming skb transmit request
1014 *   is contained in a single physically contiguous buffer
1015 *   in which the virtual address of the start of packet
1016 *   (skb->data) can be converted to a physical address
1017 *   by using dma_map_single().
1018 *
1019 *   We have an internal queue for packets we can not send 
1020 *   immediately. Packets in this queue can be given to the 
1021 *   adapter if transmit buffers are freed.
1022 *
1023 *   We can't free the skb until after it's been DMA'd
1024 *   out by the adapter, so we'll keep it in the driver and
1025 *   return it in mac_drv_tx_complete.
1026 *
1027 * Return Codes:
1028 *   0 - driver has queued and/or sent packet
1029 *       1 - caller should requeue the sk_buff for later transmission
1030 *
1031 * Assumptions:
1032 *   The entire packet is stored in one physically
1033 *   contiguous buffer which is not cached and whose
1034 *   32-bit physical address can be determined.
1035 *
1036 *   It's vital that this routine is NOT reentered for the
1037 *   same board and that the OS is not in another section of
1038 *   code (eg. skfp_interrupt) for the same board on a
1039 *   different thread.
1040 *
1041 * Side Effects:
1042 *   None
1043 */
1044static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
1045				       struct net_device *dev)
1046{
1047	struct s_smc *smc = netdev_priv(dev);
1048	skfddi_priv *bp = &smc->os;
1049
1050	pr_debug("skfp_send_pkt\n");
1051
1052	/*
1053	 * Verify that incoming transmit request is OK
1054	 *
1055	 * Note: The packet size check is consistent with other
1056	 *               Linux device drivers, although the correct packet
1057	 *               size should be verified before calling the
1058	 *               transmit routine.
1059	 */
1060
1061	if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1062		bp->MacStat.gen.tx_errors++;	/* bump error counter */
1063		// dequeue packets from xmt queue and send them
1064		netif_start_queue(dev);
1065		dev_kfree_skb(skb);
1066		return NETDEV_TX_OK;	/* return "success" */
1067	}
1068	if (bp->QueueSkb == 0) {	// return with tbusy set: queue full
1069
1070		netif_stop_queue(dev);
1071		return NETDEV_TX_BUSY;
1072	}
1073	bp->QueueSkb--;
1074	skb_queue_tail(&bp->SendSkbQueue, skb);
1075	send_queued_packets(netdev_priv(dev));
1076	if (bp->QueueSkb == 0) {
1077		netif_stop_queue(dev);
1078	}
1079	return NETDEV_TX_OK;
1080
1081}				// skfp_send_pkt
1082
1083
1084/*
1085 * =======================
1086 * = send_queued_packets =
1087 * =======================
1088 *   
1089 * Overview:
1090 *   Send packets from the driver queue as long as there are some and
1091 *   transmit resources are available.
1092 *  
1093 * Returns:
1094 *   None
1095 *       
1096 * Arguments:
1097 *   smc - pointer to smc (adapter) structure
1098 *
1099 * Functional Description:
1100 *   Take a packet from queue if there is any. If not, then we are done.
1101 *   Check if there are resources to send the packet. If not, requeue it
1102 *   and exit. 
1103 *   Set packet descriptor flags and give packet to adapter.
1104 *   Check if any send resources can be freed (we do not use the
1105 *   transmit complete interrupt).
1106 */
1107static void send_queued_packets(struct s_smc *smc)
1108{
1109	skfddi_priv *bp = &smc->os;
1110	struct sk_buff *skb;
1111	unsigned char fc;
1112	int queue;
1113	struct s_smt_fp_txd *txd;	// Current TxD.
1114	dma_addr_t dma_address;
1115	unsigned long Flags;
1116
1117	int frame_status;	// HWM tx frame status.
1118
1119	pr_debug("send queued packets\n");
1120	for (;;) {
1121		// send first buffer from queue
1122		skb = skb_dequeue(&bp->SendSkbQueue);
1123
1124		if (!skb) {
1125			pr_debug("queue empty\n");
1126			return;
1127		}		// queue empty !
1128
1129		spin_lock_irqsave(&bp->DriverLock, Flags);
1130		fc = skb->data[0];
1131		queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1132#ifdef ESS
1133		// Check if the frame may/must be sent as a synchronous frame.
1134
1135		if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1136			// It's an LLC frame.
1137			if (!smc->ess.sync_bw_available)
1138				fc &= ~FC_SYNC_BIT; // No bandwidth available.
1139
1140			else {	// Bandwidth is available.
1141
1142				if (smc->mib.fddiESSSynchTxMode) {
1143					// Send as sync. frame.
1144					fc |= FC_SYNC_BIT;
1145				}
1146			}
1147		}
1148#endif				// ESS
1149		frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1150
1151		if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1152			// Unable to send the frame.
1153
1154			if ((frame_status & RING_DOWN) != 0) {
1155				// Ring is down.
1156				pr_debug("Tx attempt while ring down.\n");
1157			} else if ((frame_status & OUT_OF_TXD) != 0) {
1158				pr_debug("%s: out of TXDs.\n", bp->dev->name);
1159			} else {
1160				pr_debug("%s: out of transmit resources",
1161					bp->dev->name);
1162			}
1163
1164			// Note: We will retry the operation as soon as
1165			// transmit resources become available.
1166			skb_queue_head(&bp->SendSkbQueue, skb);
1167			spin_unlock_irqrestore(&bp->DriverLock, Flags);
1168			return;	// Packet has been queued.
1169
1170		}		// if (unable to send frame)
1171
1172		bp->QueueSkb++;	// one packet less in local queue
1173
1174		// source address in packet ?
1175		CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1176
1177		txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1178
1179		dma_address = dma_map_single(&(&bp->pdev)->dev, skb->data,
1180					     skb->len, DMA_TO_DEVICE);
1181		if (frame_status & LAN_TX) {
1182			txd->txd_os.skb = skb;			// save skb
1183			txd->txd_os.dma_addr = dma_address;	// save dma mapping
1184		}
1185		hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1186                      frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1187
1188		if (!(frame_status & LAN_TX)) {		// local only frame
1189			dma_unmap_single(&(&bp->pdev)->dev, dma_address,
1190					 skb->len, DMA_TO_DEVICE);
1191			dev_kfree_skb_irq(skb);
1192		}
1193		spin_unlock_irqrestore(&bp->DriverLock, Flags);
1194	}			// for
1195
1196	return;			// never reached
1197
1198}				// send_queued_packets
1199
1200
1201/************************
1202 * 
1203 * CheckSourceAddress
1204 *
1205 * Verify if the source address is set. Insert it if necessary.
1206 *
1207 ************************/
1208static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1209{
1210	unsigned char SRBit;
1211
1212	if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1213
1214		return;
1215	if ((unsigned short) frame[1 + 10] != 0)
1216		return;
1217	SRBit = frame[1 + 6] & 0x01;
1218	memcpy(&frame[1 + 6], hw_addr, ETH_ALEN);
1219	frame[8] |= SRBit;
1220}				// CheckSourceAddress
1221
1222
1223/************************
1224 *
1225 *	ResetAdapter
1226 *
1227 *	Reset the adapter and bring it back to operational mode.
1228 * Args
1229 *	smc - A pointer to the SMT context struct.
1230 * Out
1231 *	Nothing.
1232 *
1233 ************************/
1234static void ResetAdapter(struct s_smc *smc)
1235{
1236
1237	pr_debug("[fddi: ResetAdapter]\n");
1238
1239	// Stop the adapter.
1240
1241	card_stop(smc);		// Stop all activity.
1242
1243	// Clear the transmit and receive descriptor queues.
1244	mac_drv_clear_tx_queue(smc);
1245	mac_drv_clear_rx_queue(smc);
1246
1247	// Restart the adapter.
1248
1249	smt_reset_defaults(smc, 1);	// Initialize the SMT module.
1250
1251	init_smt(smc, (smc->os.dev)->dev_addr);	// Initialize the hardware.
1252
1253	smt_online(smc, 1);	// Insert into the ring again.
1254	STI_FBI();
1255
1256	// Restore original receive mode (multicasts, promiscuous, etc.).
1257	skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1258}				// ResetAdapter
1259
1260
1261//--------------- functions called by hardware module ----------------
1262
1263/************************
1264 *
1265 *	llc_restart_tx
1266 *
1267 *	The hardware driver calls this routine when the transmit complete
1268 *	interrupt bits (end of frame) for the synchronous or asynchronous
1269 *	queue is set.
1270 *
1271 * NOTE The hardware driver calls this function also if no packets are queued.
1272 *	The routine must be able to handle this case.
1273 * Args
1274 *	smc - A pointer to the SMT context struct.
1275 * Out
1276 *	Nothing.
1277 *
1278 ************************/
1279void llc_restart_tx(struct s_smc *smc)
1280{
1281	skfddi_priv *bp = &smc->os;
1282
1283	pr_debug("[llc_restart_tx]\n");
1284
1285	// Try to send queued packets
1286	spin_unlock(&bp->DriverLock);
1287	send_queued_packets(smc);
1288	spin_lock(&bp->DriverLock);
1289	netif_start_queue(bp->dev);// system may send again if it was blocked
1290
1291}				// llc_restart_tx
1292
1293
1294/************************
1295 *
1296 *	mac_drv_get_space
1297 *
1298 *	The hardware module calls this function to allocate the memory
1299 *	for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1300 * Args
1301 *	smc - A pointer to the SMT context struct.
1302 *
1303 *	size - Size of memory in bytes to allocate.
1304 * Out
1305 *	!= 0	A pointer to the virtual address of the allocated memory.
1306 *	== 0	Allocation error.
1307 *
1308 ************************/
1309void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1310{
1311	void *virt;
1312
1313	pr_debug("mac_drv_get_space (%d bytes), ", size);
1314	virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1315
1316	if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1317		printk("Unexpected SMT memory size requested: %d\n", size);
1318		return NULL;
1319	}
1320	smc->os.SharedMemHeap += size;	// Move heap pointer.
1321
1322	pr_debug("mac_drv_get_space end\n");
1323	pr_debug("virt addr: %lx\n", (ulong) virt);
1324	pr_debug("bus  addr: %lx\n", (ulong)
1325	       (smc->os.SharedMemDMA +
1326		((char *) virt - (char *)smc->os.SharedMemAddr)));
1327	return virt;
1328}				// mac_drv_get_space
1329
1330
1331/************************
1332 *
1333 *	mac_drv_get_desc_mem
1334 *
1335 *	This function is called by the hardware dependent module.
1336 *	It allocates the memory for the RxD and TxD descriptors.
1337 *
1338 *	This memory must be non-cached, non-movable and non-swappable.
1339 *	This memory should start at a physical page boundary.
1340 * Args
1341 *	smc - A pointer to the SMT context struct.
1342 *
1343 *	size - Size of memory in bytes to allocate.
1344 * Out
1345 *	!= 0	A pointer to the virtual address of the allocated memory.
1346 *	== 0	Allocation error.
1347 *
1348 ************************/
1349void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1350{
1351
1352	char *virt;
1353
1354	pr_debug("mac_drv_get_desc_mem\n");
1355
1356	// Descriptor memory must be aligned on 16-byte boundary.
1357
1358	virt = mac_drv_get_space(smc, size);
1359
1360	size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1361	size = size % 16;
1362
1363	pr_debug("Allocate %u bytes alignment gap ", size);
1364	pr_debug("for descriptor memory.\n");
1365
1366	if (!mac_drv_get_space(smc, size)) {
1367		printk("fddi: Unable to align descriptor memory.\n");
1368		return NULL;
1369	}
1370	return virt + size;
1371}				// mac_drv_get_desc_mem
1372
1373
1374/************************
1375 *
1376 *	mac_drv_virt2phys
1377 *
1378 *	Get the physical address of a given virtual address.
1379 * Args
1380 *	smc - A pointer to the SMT context struct.
1381 *
1382 *	virt - A (virtual) pointer into our 'shared' memory area.
1383 * Out
1384 *	Physical address of the given virtual address.
1385 *
1386 ************************/
1387unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1388{
1389	return smc->os.SharedMemDMA +
1390		((char *) virt - (char *)smc->os.SharedMemAddr);
1391}				// mac_drv_virt2phys
1392
1393
1394/************************
1395 *
1396 *	dma_master
1397 *
1398 *	The HWM calls this function, when the driver leads through a DMA
1399 *	transfer. If the OS-specific module must prepare the system hardware
1400 *	for the DMA transfer, it should do it in this function.
1401 *
1402 *	The hardware module calls this dma_master if it wants to send an SMT
1403 *	frame.  This means that the virt address passed in here is part of
1404 *      the 'shared' memory area.
1405 * Args
1406 *	smc - A pointer to the SMT context struct.
1407 *
1408 *	virt - The virtual address of the data.
1409 *
1410 *	len - The length in bytes of the data.
1411 *
1412 *	flag - Indicates the transmit direction and the buffer type:
1413 *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
1414 *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
1415 *		SMT_BUF (0x80)	SMT buffer
1416 *
1417 *	>> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1418 * Out
1419 *	Returns the pyhsical address for the DMA transfer.
1420 *
1421 ************************/
1422u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1423{
1424	return smc->os.SharedMemDMA +
1425		((char *) virt - (char *)smc->os.SharedMemAddr);
1426}				// dma_master
1427
1428
1429/************************
1430 *
1431 *	dma_complete
1432 *
1433 *	The hardware module calls this routine when it has completed a DMA
1434 *	transfer. If the operating system dependent module has set up the DMA
1435 *	channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1436 *	the DMA channel.
1437 * Args
1438 *	smc - A pointer to the SMT context struct.
1439 *
1440 *	descr - A pointer to a TxD or RxD, respectively.
1441 *
1442 *	flag - Indicates the DMA transfer direction / SMT buffer:
1443 *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
1444 *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
1445 *		SMT_BUF (0x80)	SMT buffer (managed by HWM)
1446 * Out
1447 *	Nothing.
1448 *
1449 ************************/
1450void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1451{
1452	/* For TX buffers, there are two cases.  If it is an SMT transmit
1453	 * buffer, there is nothing to do since we use consistent memory
1454	 * for the 'shared' memory area.  The other case is for normal
1455	 * transmit packets given to us by the networking stack, and in
1456	 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1457	 * below.
1458	 *
1459	 * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1460	 * because the hardware module is about to potentially look at
1461	 * the contents of the buffer.  If we did not call the PCI DMA
1462	 * unmap first, the hardware module could read inconsistent data.
1463	 */
1464	if (flag & DMA_WR) {
1465		skfddi_priv *bp = &smc->os;
1466		volatile struct s_smt_fp_rxd *r = &descr->r;
1467
1468		/* If SKB is NULL, we used the local buffer. */
1469		if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1470			int MaxFrameSize = bp->MaxFrameSize;
1471
1472			dma_unmap_single(&(&bp->pdev)->dev,
1473					 r->rxd_os.dma_addr, MaxFrameSize,
1474					 DMA_FROM_DEVICE);
1475			r->rxd_os.dma_addr = 0;
1476		}
1477	}
1478}				// dma_complete
1479
1480
1481/************************
1482 *
1483 *	mac_drv_tx_complete
1484 *
1485 *	Transmit of a packet is complete. Release the tx staging buffer.
1486 *
1487 * Args
1488 *	smc - A pointer to the SMT context struct.
1489 *
1490 *	txd - A pointer to the last TxD which is used by the frame.
1491 * Out
1492 *	Returns nothing.
1493 *
1494 ************************/
1495void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1496{
1497	struct sk_buff *skb;
1498
1499	pr_debug("entering mac_drv_tx_complete\n");
1500	// Check if this TxD points to a skb
1501
1502	if (!(skb = txd->txd_os.skb)) {
1503		pr_debug("TXD with no skb assigned.\n");
1504		return;
1505	}
1506	txd->txd_os.skb = NULL;
1507
1508	// release the DMA mapping
1509	dma_unmap_single(&(&smc->os.pdev)->dev, txd->txd_os.dma_addr,
1510			 skb->len, DMA_TO_DEVICE);
1511	txd->txd_os.dma_addr = 0;
1512
1513	smc->os.MacStat.gen.tx_packets++;	// Count transmitted packets.
1514	smc->os.MacStat.gen.tx_bytes+=skb->len;	// Count bytes
1515
1516	// free the skb
1517	dev_kfree_skb_irq(skb);
1518
1519	pr_debug("leaving mac_drv_tx_complete\n");
1520}				// mac_drv_tx_complete
1521
1522
1523/************************
1524 *
1525 * dump packets to logfile
1526 *
1527 ************************/
1528#ifdef DUMPPACKETS
1529void dump_data(unsigned char *Data, int length)
1530{
1531	printk(KERN_INFO "---Packet start---\n");
1532	print_hex_dump(KERN_INFO, "", DUMP_PREFIX_NONE, 16, 1, Data, min_t(size_t, length, 64), false);
1533	printk(KERN_INFO "------------------\n");
1534}				// dump_data
1535#else
1536#define dump_data(data,len)
1537#endif				// DUMPPACKETS
1538
1539/************************
1540 *
1541 *	mac_drv_rx_complete
1542 *
1543 *	The hardware module calls this function if an LLC frame is received
1544 *	in a receive buffer. Also the SMT, NSA, and directed beacon frames
1545 *	from the network will be passed to the LLC layer by this function
1546 *	if passing is enabled.
1547 *
1548 *	mac_drv_rx_complete forwards the frame to the LLC layer if it should
1549 *	be received. It also fills the RxD ring with new receive buffers if
1550 *	some can be queued.
1551 * Args
1552 *	smc - A pointer to the SMT context struct.
1553 *
1554 *	rxd - A pointer to the first RxD which is used by the receive frame.
1555 *
1556 *	frag_count - Count of RxDs used by the received frame.
1557 *
1558 *	len - Frame length.
1559 * Out
1560 *	Nothing.
1561 *
1562 ************************/
1563void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1564			 int frag_count, int len)
1565{
1566	skfddi_priv *bp = &smc->os;
1567	struct sk_buff *skb;
1568	unsigned char *virt, *cp;
1569	unsigned short ri;
1570	u_int RifLength;
1571
1572	pr_debug("entering mac_drv_rx_complete (len=%d)\n", len);
1573	if (frag_count != 1) {	// This is not allowed to happen.
1574
1575		printk("fddi: Multi-fragment receive!\n");
1576		goto RequeueRxd;	// Re-use the given RXD(s).
1577
1578	}
1579	skb = rxd->rxd_os.skb;
1580	if (!skb) {
1581		pr_debug("No skb in rxd\n");
1582		smc->os.MacStat.gen.rx_errors++;
1583		goto RequeueRxd;
1584	}
1585	virt = skb->data;
1586
1587	// The DMA mapping was released in dma_complete above.
1588
1589	dump_data(skb->data, len);
1590
1591	/*
1592	 * FDDI Frame format:
1593	 * +-------+-------+-------+------------+--------+------------+
1594	 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1595	 * +-------+-------+-------+------------+--------+------------+
1596	 *
1597	 * FC = Frame Control
1598	 * DA = Destination Address
1599	 * SA = Source Address
1600	 * RIF = Routing Information Field
1601	 * LLC = Logical Link Control
1602	 */
1603
1604	// Remove Routing Information Field (RIF), if present.
1605
1606	if ((virt[1 + 6] & FDDI_RII) == 0)
1607		RifLength = 0;
1608	else {
1609		int n;
1610// goos: RIF removal has still to be tested
1611		pr_debug("RIF found\n");
1612		// Get RIF length from Routing Control (RC) field.
1613		cp = virt + FDDI_MAC_HDR_LEN;	// Point behind MAC header.
1614
1615		ri = ntohs(*((__be16 *) cp));
1616		RifLength = ri & FDDI_RCF_LEN_MASK;
1617		if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1618			printk("fddi: Invalid RIF.\n");
1619			goto RequeueRxd;	// Discard the frame.
1620
1621		}
1622		virt[1 + 6] &= ~FDDI_RII;	// Clear RII bit.
1623		// regions overlap
1624
1625		virt = cp + RifLength;
1626		for (n = FDDI_MAC_HDR_LEN; n; n--)
1627			*--virt = *--cp;
1628		// adjust sbd->data pointer
1629		skb_pull(skb, RifLength);
1630		len -= RifLength;
1631		RifLength = 0;
1632	}
1633
1634	// Count statistics.
1635	smc->os.MacStat.gen.rx_packets++;	// Count indicated receive
1636						// packets.
1637	smc->os.MacStat.gen.rx_bytes+=len;	// Count bytes.
1638
1639	// virt points to header again
1640	if (virt[1] & 0x01) {	// Check group (multicast) bit.
1641
1642		smc->os.MacStat.gen.multicast++;
1643	}
1644
1645	// deliver frame to system
1646	rxd->rxd_os.skb = NULL;
1647	skb_trim(skb, len);
1648	skb->protocol = fddi_type_trans(skb, bp->dev);
1649
1650	netif_rx(skb);
1651
1652	HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1653	return;
1654
1655      RequeueRxd:
1656	pr_debug("Rx: re-queue RXD.\n");
1657	mac_drv_requeue_rxd(smc, rxd, frag_count);
1658	smc->os.MacStat.gen.rx_errors++;	// Count receive packets
1659						// not indicated.
1660
1661}				// mac_drv_rx_complete
1662
1663
1664/************************
1665 *
1666 *	mac_drv_requeue_rxd
1667 *
1668 *	The hardware module calls this function to request the OS-specific
1669 *	module to queue the receive buffer(s) represented by the pointer
1670 *	to the RxD and the frag_count into the receive queue again. This
1671 *	buffer was filled with an invalid frame or an SMT frame.
1672 * Args
1673 *	smc - A pointer to the SMT context struct.
1674 *
1675 *	rxd - A pointer to the first RxD which is used by the receive frame.
1676 *
1677 *	frag_count - Count of RxDs used by the received frame.
1678 * Out
1679 *	Nothing.
1680 *
1681 ************************/
1682void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1683			 int frag_count)
1684{
1685	volatile struct s_smt_fp_rxd *next_rxd;
1686	volatile struct s_smt_fp_rxd *src_rxd;
1687	struct sk_buff *skb;
1688	int MaxFrameSize;
1689	unsigned char *v_addr;
1690	dma_addr_t b_addr;
1691
1692	if (frag_count != 1)	// This is not allowed to happen.
1693
1694		printk("fddi: Multi-fragment requeue!\n");
1695
1696	MaxFrameSize = smc->os.MaxFrameSize;
1697	src_rxd = rxd;
1698	for (; frag_count > 0; frag_count--) {
1699		next_rxd = src_rxd->rxd_next;
1700		rxd = HWM_GET_CURR_RXD(smc);
1701
1702		skb = src_rxd->rxd_os.skb;
1703		if (skb == NULL) {	// this should not happen
1704
1705			pr_debug("Requeue with no skb in rxd!\n");
1706			skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1707			if (skb) {
1708				// we got a skb
1709				rxd->rxd_os.skb = skb;
1710				skb_reserve(skb, 3);
1711				skb_put(skb, MaxFrameSize);
1712				v_addr = skb->data;
1713				b_addr = dma_map_single(&(&smc->os.pdev)->dev,
1714							v_addr, MaxFrameSize,
1715							DMA_FROM_DEVICE);
1716				rxd->rxd_os.dma_addr = b_addr;
1717			} else {
1718				// no skb available, use local buffer
1719				pr_debug("Queueing invalid buffer!\n");
1720				rxd->rxd_os.skb = NULL;
1721				v_addr = smc->os.LocalRxBuffer;
1722				b_addr = smc->os.LocalRxBufferDMA;
1723			}
1724		} else {
1725			// we use skb from old rxd
1726			rxd->rxd_os.skb = skb;
1727			v_addr = skb->data;
1728			b_addr = dma_map_single(&(&smc->os.pdev)->dev, v_addr,
1729						MaxFrameSize, DMA_FROM_DEVICE);
1730			rxd->rxd_os.dma_addr = b_addr;
1731		}
1732		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1733			    FIRST_FRAG | LAST_FRAG);
1734
1735		src_rxd = next_rxd;
1736	}
1737}				// mac_drv_requeue_rxd
1738
1739
1740/************************
1741 *
1742 *	mac_drv_fill_rxd
1743 *
1744 *	The hardware module calls this function at initialization time
1745 *	to fill the RxD ring with receive buffers. It is also called by
1746 *	mac_drv_rx_complete if rx_free is large enough to queue some new
1747 *	receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1748 *	receive buffers as long as enough RxDs and receive buffers are
1749 *	available.
1750 * Args
1751 *	smc - A pointer to the SMT context struct.
1752 * Out
1753 *	Nothing.
1754 *
1755 ************************/
1756void mac_drv_fill_rxd(struct s_smc *smc)
1757{
1758	int MaxFrameSize;
1759	unsigned char *v_addr;
1760	unsigned long b_addr;
1761	struct sk_buff *skb;
1762	volatile struct s_smt_fp_rxd *rxd;
1763
1764	pr_debug("entering mac_drv_fill_rxd\n");
1765
1766	// Walk through the list of free receive buffers, passing receive
1767	// buffers to the HWM as long as RXDs are available.
1768
1769	MaxFrameSize = smc->os.MaxFrameSize;
1770	// Check if there is any RXD left.
1771	while (HWM_GET_RX_FREE(smc) > 0) {
1772		pr_debug(".\n");
1773
1774		rxd = HWM_GET_CURR_RXD(smc);
1775		skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1776		if (skb) {
1777			// we got a skb
1778			skb_reserve(skb, 3);
1779			skb_put(skb, MaxFrameSize);
1780			v_addr = skb->data;
1781			b_addr = dma_map_single(&(&smc->os.pdev)->dev, v_addr,
1782						MaxFrameSize, DMA_FROM_DEVICE);
1783			rxd->rxd_os.dma_addr = b_addr;
1784		} else {
1785			// no skb available, use local buffer
1786			// System has run out of buffer memory, but we want to
1787			// keep the receiver running in hope of better times.
1788			// Multiple descriptors may point to this local buffer,
1789			// so data in it must be considered invalid.
1790			pr_debug("Queueing invalid buffer!\n");
1791			v_addr = smc->os.LocalRxBuffer;
1792			b_addr = smc->os.LocalRxBufferDMA;
1793		}
1794
1795		rxd->rxd_os.skb = skb;
1796
1797		// Pass receive buffer to HWM.
1798		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1799			    FIRST_FRAG | LAST_FRAG);
1800	}
1801	pr_debug("leaving mac_drv_fill_rxd\n");
1802}				// mac_drv_fill_rxd
1803
1804
1805/************************
1806 *
1807 *	mac_drv_clear_rxd
1808 *
1809 *	The hardware module calls this function to release unused
1810 *	receive buffers.
1811 * Args
1812 *	smc - A pointer to the SMT context struct.
1813 *
1814 *	rxd - A pointer to the first RxD which is used by the receive buffer.
1815 *
1816 *	frag_count - Count of RxDs used by the receive buffer.
1817 * Out
1818 *	Nothing.
1819 *
1820 ************************/
1821void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1822		       int frag_count)
1823{
1824
1825	struct sk_buff *skb;
1826
1827	pr_debug("entering mac_drv_clear_rxd\n");
1828
1829	if (frag_count != 1)	// This is not allowed to happen.
1830
1831		printk("fddi: Multi-fragment clear!\n");
1832
1833	for (; frag_count > 0; frag_count--) {
1834		skb = rxd->rxd_os.skb;
1835		if (skb != NULL) {
1836			skfddi_priv *bp = &smc->os;
1837			int MaxFrameSize = bp->MaxFrameSize;
1838
1839			dma_unmap_single(&(&bp->pdev)->dev,
1840					 rxd->rxd_os.dma_addr, MaxFrameSize,
1841					 DMA_FROM_DEVICE);
1842
1843			dev_kfree_skb(skb);
1844			rxd->rxd_os.skb = NULL;
1845		}
1846		rxd = rxd->rxd_next;	// Next RXD.
1847
1848	}
1849}				// mac_drv_clear_rxd
1850
1851
1852/************************
1853 *
1854 *	mac_drv_rx_init
1855 *
1856 *	The hardware module calls this routine when an SMT or NSA frame of the
1857 *	local SMT should be delivered to the LLC layer.
1858 *
1859 *	It is necessary to have this function, because there is no other way to
1860 *	copy the contents of SMT MBufs into receive buffers.
1861 *
1862 *	mac_drv_rx_init allocates the required target memory for this frame,
1863 *	and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1864 * Args
1865 *	smc - A pointer to the SMT context struct.
1866 *
1867 *	len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1868 *
1869 *	fc - The Frame Control field of the received frame.
1870 *
1871 *	look_ahead - A pointer to the lookahead data buffer (may be NULL).
1872 *
1873 *	la_len - The length of the lookahead data stored in the lookahead
1874 *	buffer (may be zero).
1875 * Out
1876 *	Always returns zero (0).
1877 *
1878 ************************/
1879int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1880		    char *look_ahead, int la_len)
1881{
1882	struct sk_buff *skb;
1883
1884	pr_debug("entering mac_drv_rx_init(len=%d)\n", len);
1885
1886	// "Received" a SMT or NSA frame of the local SMT.
1887
1888	if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1889		pr_debug("fddi: Discard invalid local SMT frame\n");
1890		pr_debug("  len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1891		       len, la_len, (unsigned long) look_ahead);
1892		return 0;
1893	}
1894	skb = alloc_skb(len + 3, GFP_ATOMIC);
1895	if (!skb) {
1896		pr_debug("fddi: Local SMT: skb memory exhausted.\n");
1897		return 0;
1898	}
1899	skb_reserve(skb, 3);
1900	skb_put(skb, len);
1901	skb_copy_to_linear_data(skb, look_ahead, len);
1902
1903	// deliver frame to system
1904	skb->protocol = fddi_type_trans(skb, smc->os.dev);
1905	netif_rx(skb);
1906
1907	return 0;
1908}				// mac_drv_rx_init
1909
1910
1911/************************
1912 *
1913 *	smt_timer_poll
1914 *
1915 *	This routine is called periodically by the SMT module to clean up the
1916 *	driver.
1917 *
1918 *	Return any queued frames back to the upper protocol layers if the ring
1919 *	is down.
1920 * Args
1921 *	smc - A pointer to the SMT context struct.
1922 * Out
1923 *	Nothing.
1924 *
1925 ************************/
1926void smt_timer_poll(struct s_smc *smc)
1927{
1928}				// smt_timer_poll
1929
1930
1931/************************
1932 *
1933 *	ring_status_indication
1934 *
1935 *	This function indicates a change of the ring state.
1936 * Args
1937 *	smc - A pointer to the SMT context struct.
1938 *
1939 *	status - The current ring status.
1940 * Out
1941 *	Nothing.
1942 *
1943 ************************/
1944void ring_status_indication(struct s_smc *smc, u_long status)
1945{
1946	pr_debug("ring_status_indication( ");
1947	if (status & RS_RES15)
1948		pr_debug("RS_RES15 ");
1949	if (status & RS_HARDERROR)
1950		pr_debug("RS_HARDERROR ");
1951	if (status & RS_SOFTERROR)
1952		pr_debug("RS_SOFTERROR ");
1953	if (status & RS_BEACON)
1954		pr_debug("RS_BEACON ");
1955	if (status & RS_PATHTEST)
1956		pr_debug("RS_PATHTEST ");
1957	if (status & RS_SELFTEST)
1958		pr_debug("RS_SELFTEST ");
1959	if (status & RS_RES9)
1960		pr_debug("RS_RES9 ");
1961	if (status & RS_DISCONNECT)
1962		pr_debug("RS_DISCONNECT ");
1963	if (status & RS_RES7)
1964		pr_debug("RS_RES7 ");
1965	if (status & RS_DUPADDR)
1966		pr_debug("RS_DUPADDR ");
1967	if (status & RS_NORINGOP)
1968		pr_debug("RS_NORINGOP ");
1969	if (status & RS_VERSION)
1970		pr_debug("RS_VERSION ");
1971	if (status & RS_STUCKBYPASSS)
1972		pr_debug("RS_STUCKBYPASSS ");
1973	if (status & RS_EVENT)
1974		pr_debug("RS_EVENT ");
1975	if (status & RS_RINGOPCHANGE)
1976		pr_debug("RS_RINGOPCHANGE ");
1977	if (status & RS_RES0)
1978		pr_debug("RS_RES0 ");
1979	pr_debug("]\n");
1980}				// ring_status_indication
1981
1982
1983/************************
1984 *
1985 *	smt_get_time
1986 *
1987 *	Gets the current time from the system.
1988 * Args
1989 *	None.
1990 * Out
1991 *	The current time in TICKS_PER_SECOND.
1992 *
1993 *	TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
1994 *	defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
1995 *	to the time returned by smt_get_time().
1996 *
1997 ************************/
1998unsigned long smt_get_time(void)
1999{
2000	return jiffies;
2001}				// smt_get_time
2002
2003
2004/************************
2005 *
2006 *	smt_stat_counter
2007 *
2008 *	Status counter update (ring_op, fifo full).
2009 * Args
2010 *	smc - A pointer to the SMT context struct.
2011 *
2012 *	stat -	= 0: A ring operational change occurred.
2013 *		= 1: The FORMAC FIFO buffer is full / FIFO overflow.
2014 * Out
2015 *	Nothing.
2016 *
2017 ************************/
2018void smt_stat_counter(struct s_smc *smc, int stat)
2019{
2020//      BOOLEAN RingIsUp ;
2021
2022	pr_debug("smt_stat_counter\n");
2023	switch (stat) {
2024	case 0:
2025		pr_debug("Ring operational change.\n");
2026		break;
2027	case 1:
2028		pr_debug("Receive fifo overflow.\n");
2029		smc->os.MacStat.gen.rx_errors++;
2030		break;
2031	default:
2032		pr_debug("Unknown status (%d).\n", stat);
2033		break;
2034	}
2035}				// smt_stat_counter
2036
2037
2038/************************
2039 *
2040 *	cfm_state_change
2041 *
2042 *	Sets CFM state in custom statistics.
2043 * Args
2044 *	smc - A pointer to the SMT context struct.
2045 *
2046 *	c_state - Possible values are:
2047 *
2048 *		EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2049 *		EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2050 * Out
2051 *	Nothing.
2052 *
2053 ************************/
2054void cfm_state_change(struct s_smc *smc, int c_state)
2055{
2056#ifdef DRIVERDEBUG
2057	char *s;
2058
2059	switch (c_state) {
2060	case SC0_ISOLATED:
2061		s = "SC0_ISOLATED";
2062		break;
2063	case SC1_WRAP_A:
2064		s = "SC1_WRAP_A";
2065		break;
2066	case SC2_WRAP_B:
2067		s = "SC2_WRAP_B";
2068		break;
2069	case SC4_THRU_A:
2070		s = "SC4_THRU_A";
2071		break;
2072	case SC5_THRU_B:
2073		s = "SC5_THRU_B";
2074		break;
2075	case SC7_WRAP_S:
2076		s = "SC7_WRAP_S";
2077		break;
2078	case SC9_C_WRAP_A:
2079		s = "SC9_C_WRAP_A";
2080		break;
2081	case SC10_C_WRAP_B:
2082		s = "SC10_C_WRAP_B";
2083		break;
2084	case SC11_C_WRAP_S:
2085		s = "SC11_C_WRAP_S";
2086		break;
2087	default:
2088		pr_debug("cfm_state_change: unknown %d\n", c_state);
2089		return;
2090	}
2091	pr_debug("cfm_state_change: %s\n", s);
2092#endif				// DRIVERDEBUG
2093}				// cfm_state_change
2094
2095
2096/************************
2097 *
2098 *	ecm_state_change
2099 *
2100 *	Sets ECM state in custom statistics.
2101 * Args
2102 *	smc - A pointer to the SMT context struct.
2103 *
2104 *	e_state - Possible values are:
2105 *
2106 *		SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2107 *		SC5_THRU_B (7), SC7_WRAP_S (8)
2108 * Out
2109 *	Nothing.
2110 *
2111 ************************/
2112void ecm_state_change(struct s_smc *smc, int e_state)
2113{
2114#ifdef DRIVERDEBUG
2115	char *s;
2116
2117	switch (e_state) {
2118	case EC0_OUT:
2119		s = "EC0_OUT";
2120		break;
2121	case EC1_IN:
2122		s = "EC1_IN";
2123		break;
2124	case EC2_TRACE:
2125		s = "EC2_TRACE";
2126		break;
2127	case EC3_LEAVE:
2128		s = "EC3_LEAVE";
2129		break;
2130	case EC4_PATH_TEST:
2131		s = "EC4_PATH_TEST";
2132		break;
2133	case EC5_INSERT:
2134		s = "EC5_INSERT";
2135		break;
2136	case EC6_CHECK:
2137		s = "EC6_CHECK";
2138		break;
2139	case EC7_DEINSERT:
2140		s = "EC7_DEINSERT";
2141		break;
2142	default:
2143		s = "unknown";
2144		break;
2145	}
2146	pr_debug("ecm_state_change: %s\n", s);
2147#endif				//DRIVERDEBUG
2148}				// ecm_state_change
2149
2150
2151/************************
2152 *
2153 *	rmt_state_change
2154 *
2155 *	Sets RMT state in custom statistics.
2156 * Args
2157 *	smc - A pointer to the SMT context struct.
2158 *
2159 *	r_state - Possible values are:
2160 *
2161 *		RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2162 *		RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2163 * Out
2164 *	Nothing.
2165 *
2166 ************************/
2167void rmt_state_change(struct s_smc *smc, int r_state)
2168{
2169#ifdef DRIVERDEBUG
2170	char *s;
2171
2172	switch (r_state) {
2173	case RM0_ISOLATED:
2174		s = "RM0_ISOLATED";
2175		break;
2176	case RM1_NON_OP:
2177		s = "RM1_NON_OP - not operational";
2178		break;
2179	case RM2_RING_OP:
2180		s = "RM2_RING_OP - ring operational";
2181		break;
2182	case RM3_DETECT:
2183		s = "RM3_DETECT - detect dupl addresses";
2184		break;
2185	case RM4_NON_OP_DUP:
2186		s = "RM4_NON_OP_DUP - dupl. addr detected";
2187		break;
2188	case RM5_RING_OP_DUP:
2189		s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2190		break;
2191	case RM6_DIRECTED:
2192		s = "RM6_DIRECTED - sending directed beacons";
2193		break;
2194	case RM7_TRACE:
2195		s = "RM7_TRACE - trace initiated";
2196		break;
2197	default:
2198		s = "unknown";
2199		break;
2200	}
2201	pr_debug("[rmt_state_change: %s]\n", s);
2202#endif				// DRIVERDEBUG
2203}				// rmt_state_change
2204
2205
2206/************************
2207 *
2208 *	drv_reset_indication
2209 *
2210 *	This function is called by the SMT when it has detected a severe
2211 *	hardware problem. The driver should perform a reset on the adapter
2212 *	as soon as possible, but not from within this function.
2213 * Args
2214 *	smc - A pointer to the SMT context struct.
2215 * Out
2216 *	Nothing.
2217 *
2218 ************************/
2219void drv_reset_indication(struct s_smc *smc)
2220{
2221	pr_debug("entering drv_reset_indication\n");
2222
2223	smc->os.ResetRequested = TRUE;	// Set flag.
2224
2225}				// drv_reset_indication
2226
2227static struct pci_driver skfddi_pci_driver = {
2228	.name		= "skfddi",
2229	.id_table	= skfddi_pci_tbl,
2230	.probe		= skfp_init_one,
2231	.remove		= skfp_remove_one,
2232};
2233
2234module_pci_driver(skfddi_pci_driver);