Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0
2/* Renesas Ethernet AVB device driver
3 *
4 * Copyright (C) 2014-2019 Renesas Electronics Corporation
5 * Copyright (C) 2015 Renesas Solutions Corp.
6 * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7 *
8 * Based on the SuperH Ethernet driver
9 */
10
11#include <linux/cache.h>
12#include <linux/clk.h>
13#include <linux/delay.h>
14#include <linux/dma-mapping.h>
15#include <linux/err.h>
16#include <linux/etherdevice.h>
17#include <linux/ethtool.h>
18#include <linux/if_vlan.h>
19#include <linux/kernel.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/net_tstamp.h>
23#include <linux/of.h>
24#include <linux/of_mdio.h>
25#include <linux/of_net.h>
26#include <linux/platform_device.h>
27#include <linux/pm_runtime.h>
28#include <linux/slab.h>
29#include <linux/spinlock.h>
30#include <linux/reset.h>
31#include <linux/math64.h>
32
33#include "ravb.h"
34
35#define RAVB_DEF_MSG_ENABLE \
36 (NETIF_MSG_LINK | \
37 NETIF_MSG_TIMER | \
38 NETIF_MSG_RX_ERR | \
39 NETIF_MSG_TX_ERR)
40
41static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
42 "ch0", /* RAVB_BE */
43 "ch1", /* RAVB_NC */
44};
45
46static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
47 "ch18", /* RAVB_BE */
48 "ch19", /* RAVB_NC */
49};
50
51void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
52 u32 set)
53{
54 ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
55}
56
57int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
58{
59 int i;
60
61 for (i = 0; i < 10000; i++) {
62 if ((ravb_read(ndev, reg) & mask) == value)
63 return 0;
64 udelay(10);
65 }
66 return -ETIMEDOUT;
67}
68
69static int ravb_set_opmode(struct net_device *ndev, u32 opmode)
70{
71 u32 csr_ops = 1U << (opmode & CCC_OPC);
72 u32 ccc_mask = CCC_OPC;
73 int error;
74
75 /* If gPTP active in config mode is supported it needs to be configured
76 * along with CSEL and operating mode in the same access. This is a
77 * hardware limitation.
78 */
79 if (opmode & CCC_GAC)
80 ccc_mask |= CCC_GAC | CCC_CSEL;
81
82 /* Set operating mode */
83 ravb_modify(ndev, CCC, ccc_mask, opmode);
84 /* Check if the operating mode is changed to the requested one */
85 error = ravb_wait(ndev, CSR, CSR_OPS, csr_ops);
86 if (error) {
87 netdev_err(ndev, "failed to switch device to requested mode (%u)\n",
88 opmode & CCC_OPC);
89 }
90
91 return error;
92}
93
94static void ravb_set_rate_gbeth(struct net_device *ndev)
95{
96 struct ravb_private *priv = netdev_priv(ndev);
97
98 switch (priv->speed) {
99 case 10: /* 10BASE */
100 ravb_write(ndev, GBETH_GECMR_SPEED_10, GECMR);
101 break;
102 case 100: /* 100BASE */
103 ravb_write(ndev, GBETH_GECMR_SPEED_100, GECMR);
104 break;
105 case 1000: /* 1000BASE */
106 ravb_write(ndev, GBETH_GECMR_SPEED_1000, GECMR);
107 break;
108 }
109}
110
111static void ravb_set_rate_rcar(struct net_device *ndev)
112{
113 struct ravb_private *priv = netdev_priv(ndev);
114
115 switch (priv->speed) {
116 case 100: /* 100BASE */
117 ravb_write(ndev, GECMR_SPEED_100, GECMR);
118 break;
119 case 1000: /* 1000BASE */
120 ravb_write(ndev, GECMR_SPEED_1000, GECMR);
121 break;
122 }
123}
124
125static void ravb_set_buffer_align(struct sk_buff *skb)
126{
127 u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
128
129 if (reserve)
130 skb_reserve(skb, RAVB_ALIGN - reserve);
131}
132
133/* Get MAC address from the MAC address registers
134 *
135 * Ethernet AVB device doesn't have ROM for MAC address.
136 * This function gets the MAC address that was used by a bootloader.
137 */
138static void ravb_read_mac_address(struct device_node *np,
139 struct net_device *ndev)
140{
141 int ret;
142
143 ret = of_get_ethdev_address(np, ndev);
144 if (ret) {
145 u32 mahr = ravb_read(ndev, MAHR);
146 u32 malr = ravb_read(ndev, MALR);
147 u8 addr[ETH_ALEN];
148
149 addr[0] = (mahr >> 24) & 0xFF;
150 addr[1] = (mahr >> 16) & 0xFF;
151 addr[2] = (mahr >> 8) & 0xFF;
152 addr[3] = (mahr >> 0) & 0xFF;
153 addr[4] = (malr >> 8) & 0xFF;
154 addr[5] = (malr >> 0) & 0xFF;
155 eth_hw_addr_set(ndev, addr);
156 }
157}
158
159static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
160{
161 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
162 mdiobb);
163
164 ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
165}
166
167/* MDC pin control */
168static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
169{
170 ravb_mdio_ctrl(ctrl, PIR_MDC, level);
171}
172
173/* Data I/O pin control */
174static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
175{
176 ravb_mdio_ctrl(ctrl, PIR_MMD, output);
177}
178
179/* Set data bit */
180static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
181{
182 ravb_mdio_ctrl(ctrl, PIR_MDO, value);
183}
184
185/* Get data bit */
186static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
187{
188 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
189 mdiobb);
190
191 return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
192}
193
194/* MDIO bus control struct */
195static const struct mdiobb_ops bb_ops = {
196 .owner = THIS_MODULE,
197 .set_mdc = ravb_set_mdc,
198 .set_mdio_dir = ravb_set_mdio_dir,
199 .set_mdio_data = ravb_set_mdio_data,
200 .get_mdio_data = ravb_get_mdio_data,
201};
202
203/* Free TX skb function for AVB-IP */
204static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
205{
206 struct ravb_private *priv = netdev_priv(ndev);
207 struct net_device_stats *stats = &priv->stats[q];
208 unsigned int num_tx_desc = priv->num_tx_desc;
209 struct ravb_tx_desc *desc;
210 unsigned int entry;
211 int free_num = 0;
212 u32 size;
213
214 for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
215 bool txed;
216
217 entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
218 num_tx_desc);
219 desc = &priv->tx_ring[q][entry];
220 txed = desc->die_dt == DT_FEMPTY;
221 if (free_txed_only && !txed)
222 break;
223 /* Descriptor type must be checked before all other reads */
224 dma_rmb();
225 size = le16_to_cpu(desc->ds_tagl) & TX_DS;
226 /* Free the original skb. */
227 if (priv->tx_skb[q][entry / num_tx_desc]) {
228 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
229 size, DMA_TO_DEVICE);
230 /* Last packet descriptor? */
231 if (entry % num_tx_desc == num_tx_desc - 1) {
232 entry /= num_tx_desc;
233 dev_kfree_skb_any(priv->tx_skb[q][entry]);
234 priv->tx_skb[q][entry] = NULL;
235 if (txed)
236 stats->tx_packets++;
237 }
238 free_num++;
239 }
240 if (txed)
241 stats->tx_bytes += size;
242 desc->die_dt = DT_EEMPTY;
243 }
244 return free_num;
245}
246
247static void ravb_rx_ring_free_gbeth(struct net_device *ndev, int q)
248{
249 struct ravb_private *priv = netdev_priv(ndev);
250 unsigned int ring_size;
251 unsigned int i;
252
253 if (!priv->gbeth_rx_ring)
254 return;
255
256 for (i = 0; i < priv->num_rx_ring[q]; i++) {
257 struct ravb_rx_desc *desc = &priv->gbeth_rx_ring[i];
258
259 if (!dma_mapping_error(ndev->dev.parent,
260 le32_to_cpu(desc->dptr)))
261 dma_unmap_single(ndev->dev.parent,
262 le32_to_cpu(desc->dptr),
263 GBETH_RX_BUFF_MAX,
264 DMA_FROM_DEVICE);
265 }
266 ring_size = sizeof(struct ravb_rx_desc) * (priv->num_rx_ring[q] + 1);
267 dma_free_coherent(ndev->dev.parent, ring_size, priv->gbeth_rx_ring,
268 priv->rx_desc_dma[q]);
269 priv->gbeth_rx_ring = NULL;
270}
271
272static void ravb_rx_ring_free_rcar(struct net_device *ndev, int q)
273{
274 struct ravb_private *priv = netdev_priv(ndev);
275 unsigned int ring_size;
276 unsigned int i;
277
278 if (!priv->rx_ring[q])
279 return;
280
281 for (i = 0; i < priv->num_rx_ring[q]; i++) {
282 struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
283
284 if (!dma_mapping_error(ndev->dev.parent,
285 le32_to_cpu(desc->dptr)))
286 dma_unmap_single(ndev->dev.parent,
287 le32_to_cpu(desc->dptr),
288 RX_BUF_SZ,
289 DMA_FROM_DEVICE);
290 }
291 ring_size = sizeof(struct ravb_ex_rx_desc) *
292 (priv->num_rx_ring[q] + 1);
293 dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
294 priv->rx_desc_dma[q]);
295 priv->rx_ring[q] = NULL;
296}
297
298/* Free skb's and DMA buffers for Ethernet AVB */
299static void ravb_ring_free(struct net_device *ndev, int q)
300{
301 struct ravb_private *priv = netdev_priv(ndev);
302 const struct ravb_hw_info *info = priv->info;
303 unsigned int num_tx_desc = priv->num_tx_desc;
304 unsigned int ring_size;
305 unsigned int i;
306
307 info->rx_ring_free(ndev, q);
308
309 if (priv->tx_ring[q]) {
310 ravb_tx_free(ndev, q, false);
311
312 ring_size = sizeof(struct ravb_tx_desc) *
313 (priv->num_tx_ring[q] * num_tx_desc + 1);
314 dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
315 priv->tx_desc_dma[q]);
316 priv->tx_ring[q] = NULL;
317 }
318
319 /* Free RX skb ringbuffer */
320 if (priv->rx_skb[q]) {
321 for (i = 0; i < priv->num_rx_ring[q]; i++)
322 dev_kfree_skb(priv->rx_skb[q][i]);
323 }
324 kfree(priv->rx_skb[q]);
325 priv->rx_skb[q] = NULL;
326
327 /* Free aligned TX buffers */
328 kfree(priv->tx_align[q]);
329 priv->tx_align[q] = NULL;
330
331 /* Free TX skb ringbuffer.
332 * SKBs are freed by ravb_tx_free() call above.
333 */
334 kfree(priv->tx_skb[q]);
335 priv->tx_skb[q] = NULL;
336}
337
338static void ravb_rx_ring_format_gbeth(struct net_device *ndev, int q)
339{
340 struct ravb_private *priv = netdev_priv(ndev);
341 struct ravb_rx_desc *rx_desc;
342 unsigned int rx_ring_size;
343 dma_addr_t dma_addr;
344 unsigned int i;
345
346 rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
347 memset(priv->gbeth_rx_ring, 0, rx_ring_size);
348 /* Build RX ring buffer */
349 for (i = 0; i < priv->num_rx_ring[q]; i++) {
350 /* RX descriptor */
351 rx_desc = &priv->gbeth_rx_ring[i];
352 rx_desc->ds_cc = cpu_to_le16(GBETH_RX_DESC_DATA_SIZE);
353 dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
354 GBETH_RX_BUFF_MAX,
355 DMA_FROM_DEVICE);
356 /* We just set the data size to 0 for a failed mapping which
357 * should prevent DMA from happening...
358 */
359 if (dma_mapping_error(ndev->dev.parent, dma_addr))
360 rx_desc->ds_cc = cpu_to_le16(0);
361 rx_desc->dptr = cpu_to_le32(dma_addr);
362 rx_desc->die_dt = DT_FEMPTY;
363 }
364 rx_desc = &priv->gbeth_rx_ring[i];
365 rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
366 rx_desc->die_dt = DT_LINKFIX; /* type */
367}
368
369static void ravb_rx_ring_format_rcar(struct net_device *ndev, int q)
370{
371 struct ravb_private *priv = netdev_priv(ndev);
372 struct ravb_ex_rx_desc *rx_desc;
373 unsigned int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
374 dma_addr_t dma_addr;
375 unsigned int i;
376
377 memset(priv->rx_ring[q], 0, rx_ring_size);
378 /* Build RX ring buffer */
379 for (i = 0; i < priv->num_rx_ring[q]; i++) {
380 /* RX descriptor */
381 rx_desc = &priv->rx_ring[q][i];
382 rx_desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
383 dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
384 RX_BUF_SZ,
385 DMA_FROM_DEVICE);
386 /* We just set the data size to 0 for a failed mapping which
387 * should prevent DMA from happening...
388 */
389 if (dma_mapping_error(ndev->dev.parent, dma_addr))
390 rx_desc->ds_cc = cpu_to_le16(0);
391 rx_desc->dptr = cpu_to_le32(dma_addr);
392 rx_desc->die_dt = DT_FEMPTY;
393 }
394 rx_desc = &priv->rx_ring[q][i];
395 rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
396 rx_desc->die_dt = DT_LINKFIX; /* type */
397}
398
399/* Format skb and descriptor buffer for Ethernet AVB */
400static void ravb_ring_format(struct net_device *ndev, int q)
401{
402 struct ravb_private *priv = netdev_priv(ndev);
403 const struct ravb_hw_info *info = priv->info;
404 unsigned int num_tx_desc = priv->num_tx_desc;
405 struct ravb_tx_desc *tx_desc;
406 struct ravb_desc *desc;
407 unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
408 num_tx_desc;
409 unsigned int i;
410
411 priv->cur_rx[q] = 0;
412 priv->cur_tx[q] = 0;
413 priv->dirty_rx[q] = 0;
414 priv->dirty_tx[q] = 0;
415
416 info->rx_ring_format(ndev, q);
417
418 memset(priv->tx_ring[q], 0, tx_ring_size);
419 /* Build TX ring buffer */
420 for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
421 i++, tx_desc++) {
422 tx_desc->die_dt = DT_EEMPTY;
423 if (num_tx_desc > 1) {
424 tx_desc++;
425 tx_desc->die_dt = DT_EEMPTY;
426 }
427 }
428 tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
429 tx_desc->die_dt = DT_LINKFIX; /* type */
430
431 /* RX descriptor base address for best effort */
432 desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
433 desc->die_dt = DT_LINKFIX; /* type */
434 desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
435
436 /* TX descriptor base address for best effort */
437 desc = &priv->desc_bat[q];
438 desc->die_dt = DT_LINKFIX; /* type */
439 desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
440}
441
442static void *ravb_alloc_rx_desc_gbeth(struct net_device *ndev, int q)
443{
444 struct ravb_private *priv = netdev_priv(ndev);
445 unsigned int ring_size;
446
447 ring_size = sizeof(struct ravb_rx_desc) * (priv->num_rx_ring[q] + 1);
448
449 priv->gbeth_rx_ring = dma_alloc_coherent(ndev->dev.parent, ring_size,
450 &priv->rx_desc_dma[q],
451 GFP_KERNEL);
452 return priv->gbeth_rx_ring;
453}
454
455static void *ravb_alloc_rx_desc_rcar(struct net_device *ndev, int q)
456{
457 struct ravb_private *priv = netdev_priv(ndev);
458 unsigned int ring_size;
459
460 ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
461
462 priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
463 &priv->rx_desc_dma[q],
464 GFP_KERNEL);
465 return priv->rx_ring[q];
466}
467
468/* Init skb and descriptor buffer for Ethernet AVB */
469static int ravb_ring_init(struct net_device *ndev, int q)
470{
471 struct ravb_private *priv = netdev_priv(ndev);
472 const struct ravb_hw_info *info = priv->info;
473 unsigned int num_tx_desc = priv->num_tx_desc;
474 unsigned int ring_size;
475 struct sk_buff *skb;
476 unsigned int i;
477
478 /* Allocate RX and TX skb rings */
479 priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
480 sizeof(*priv->rx_skb[q]), GFP_KERNEL);
481 priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
482 sizeof(*priv->tx_skb[q]), GFP_KERNEL);
483 if (!priv->rx_skb[q] || !priv->tx_skb[q])
484 goto error;
485
486 for (i = 0; i < priv->num_rx_ring[q]; i++) {
487 skb = __netdev_alloc_skb(ndev, info->max_rx_len, GFP_KERNEL);
488 if (!skb)
489 goto error;
490 ravb_set_buffer_align(skb);
491 priv->rx_skb[q][i] = skb;
492 }
493
494 if (num_tx_desc > 1) {
495 /* Allocate rings for the aligned buffers */
496 priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
497 DPTR_ALIGN - 1, GFP_KERNEL);
498 if (!priv->tx_align[q])
499 goto error;
500 }
501
502 /* Allocate all RX descriptors. */
503 if (!info->alloc_rx_desc(ndev, q))
504 goto error;
505
506 priv->dirty_rx[q] = 0;
507
508 /* Allocate all TX descriptors. */
509 ring_size = sizeof(struct ravb_tx_desc) *
510 (priv->num_tx_ring[q] * num_tx_desc + 1);
511 priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
512 &priv->tx_desc_dma[q],
513 GFP_KERNEL);
514 if (!priv->tx_ring[q])
515 goto error;
516
517 return 0;
518
519error:
520 ravb_ring_free(ndev, q);
521
522 return -ENOMEM;
523}
524
525static void ravb_emac_init_gbeth(struct net_device *ndev)
526{
527 struct ravb_private *priv = netdev_priv(ndev);
528
529 if (priv->phy_interface == PHY_INTERFACE_MODE_MII) {
530 ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_MII, CXR35);
531 ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, 0);
532 } else {
533 ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_RGMII, CXR35);
534 ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1,
535 CXR31_SEL_LINK0);
536 }
537
538 /* Receive frame limit set register */
539 ravb_write(ndev, GBETH_RX_BUFF_MAX + ETH_FCS_LEN, RFLR);
540
541 /* EMAC Mode: PAUSE prohibition; Duplex; TX; RX; CRC Pass Through */
542 ravb_write(ndev, ECMR_ZPF | ((priv->duplex > 0) ? ECMR_DM : 0) |
543 ECMR_TE | ECMR_RE | ECMR_RCPT |
544 ECMR_TXF | ECMR_RXF, ECMR);
545
546 ravb_set_rate_gbeth(ndev);
547
548 /* Set MAC address */
549 ravb_write(ndev,
550 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
551 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
552 ravb_write(ndev, (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
553
554 /* E-MAC status register clear */
555 ravb_write(ndev, ECSR_ICD | ECSR_LCHNG | ECSR_PFRI, ECSR);
556 ravb_write(ndev, CSR0_TPE | CSR0_RPE, CSR0);
557
558 /* E-MAC interrupt enable register */
559 ravb_write(ndev, ECSIPR_ICDIP, ECSIPR);
560}
561
562static void ravb_emac_init_rcar(struct net_device *ndev)
563{
564 /* Receive frame limit set register */
565 ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
566
567 /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
568 ravb_write(ndev, ECMR_ZPF | ECMR_DM |
569 (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
570 ECMR_TE | ECMR_RE, ECMR);
571
572 ravb_set_rate_rcar(ndev);
573
574 /* Set MAC address */
575 ravb_write(ndev,
576 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
577 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
578 ravb_write(ndev,
579 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
580
581 /* E-MAC status register clear */
582 ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
583
584 /* E-MAC interrupt enable register */
585 ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
586}
587
588/* E-MAC init function */
589static void ravb_emac_init(struct net_device *ndev)
590{
591 struct ravb_private *priv = netdev_priv(ndev);
592 const struct ravb_hw_info *info = priv->info;
593
594 info->emac_init(ndev);
595}
596
597static int ravb_dmac_init_gbeth(struct net_device *ndev)
598{
599 int error;
600
601 error = ravb_ring_init(ndev, RAVB_BE);
602 if (error)
603 return error;
604
605 /* Descriptor format */
606 ravb_ring_format(ndev, RAVB_BE);
607
608 /* Set DMAC RX */
609 ravb_write(ndev, 0x60000000, RCR);
610
611 /* Set Max Frame Length (RTC) */
612 ravb_write(ndev, 0x7ffc0000 | GBETH_RX_BUFF_MAX, RTC);
613
614 /* Set FIFO size */
615 ravb_write(ndev, 0x00222200, TGC);
616
617 ravb_write(ndev, 0, TCCR);
618
619 /* Frame receive */
620 ravb_write(ndev, RIC0_FRE0, RIC0);
621 /* Disable FIFO full warning */
622 ravb_write(ndev, 0x0, RIC1);
623 /* Receive FIFO full error, descriptor empty */
624 ravb_write(ndev, RIC2_QFE0 | RIC2_RFFE, RIC2);
625
626 ravb_write(ndev, TIC_FTE0, TIC);
627
628 return 0;
629}
630
631static int ravb_dmac_init_rcar(struct net_device *ndev)
632{
633 struct ravb_private *priv = netdev_priv(ndev);
634 const struct ravb_hw_info *info = priv->info;
635 int error;
636
637 error = ravb_ring_init(ndev, RAVB_BE);
638 if (error)
639 return error;
640 error = ravb_ring_init(ndev, RAVB_NC);
641 if (error) {
642 ravb_ring_free(ndev, RAVB_BE);
643 return error;
644 }
645
646 /* Descriptor format */
647 ravb_ring_format(ndev, RAVB_BE);
648 ravb_ring_format(ndev, RAVB_NC);
649
650 /* Set AVB RX */
651 ravb_write(ndev,
652 RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
653
654 /* Set FIFO size */
655 ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
656
657 /* Timestamp enable */
658 ravb_write(ndev, TCCR_TFEN, TCCR);
659
660 /* Interrupt init: */
661 if (info->multi_irqs) {
662 /* Clear DIL.DPLx */
663 ravb_write(ndev, 0, DIL);
664 /* Set queue specific interrupt */
665 ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
666 }
667 /* Frame receive */
668 ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
669 /* Disable FIFO full warning */
670 ravb_write(ndev, 0, RIC1);
671 /* Receive FIFO full error, descriptor empty */
672 ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
673 /* Frame transmitted, timestamp FIFO updated */
674 ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
675
676 return 0;
677}
678
679/* Device init function for Ethernet AVB */
680static int ravb_dmac_init(struct net_device *ndev)
681{
682 struct ravb_private *priv = netdev_priv(ndev);
683 const struct ravb_hw_info *info = priv->info;
684 int error;
685
686 /* Set CONFIG mode */
687 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
688 if (error)
689 return error;
690
691 error = info->dmac_init(ndev);
692 if (error)
693 return error;
694
695 /* Setting the control will start the AVB-DMAC process. */
696 return ravb_set_opmode(ndev, CCC_OPC_OPERATION);
697}
698
699static void ravb_get_tx_tstamp(struct net_device *ndev)
700{
701 struct ravb_private *priv = netdev_priv(ndev);
702 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
703 struct skb_shared_hwtstamps shhwtstamps;
704 struct sk_buff *skb;
705 struct timespec64 ts;
706 u16 tag, tfa_tag;
707 int count;
708 u32 tfa2;
709
710 count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
711 while (count--) {
712 tfa2 = ravb_read(ndev, TFA2);
713 tfa_tag = (tfa2 & TFA2_TST) >> 16;
714 ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
715 ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
716 ravb_read(ndev, TFA1);
717 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
718 shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
719 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
720 list) {
721 skb = ts_skb->skb;
722 tag = ts_skb->tag;
723 list_del(&ts_skb->list);
724 kfree(ts_skb);
725 if (tag == tfa_tag) {
726 skb_tstamp_tx(skb, &shhwtstamps);
727 dev_consume_skb_any(skb);
728 break;
729 } else {
730 dev_kfree_skb_any(skb);
731 }
732 }
733 ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
734 }
735}
736
737static void ravb_rx_csum(struct sk_buff *skb)
738{
739 u8 *hw_csum;
740
741 /* The hardware checksum is contained in sizeof(__sum16) (2) bytes
742 * appended to packet data
743 */
744 if (unlikely(skb->len < sizeof(__sum16)))
745 return;
746 hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
747 skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
748 skb->ip_summed = CHECKSUM_COMPLETE;
749 skb_trim(skb, skb->len - sizeof(__sum16));
750}
751
752static struct sk_buff *ravb_get_skb_gbeth(struct net_device *ndev, int entry,
753 struct ravb_rx_desc *desc)
754{
755 struct ravb_private *priv = netdev_priv(ndev);
756 struct sk_buff *skb;
757
758 skb = priv->rx_skb[RAVB_BE][entry];
759 priv->rx_skb[RAVB_BE][entry] = NULL;
760 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
761 ALIGN(GBETH_RX_BUFF_MAX, 16), DMA_FROM_DEVICE);
762
763 return skb;
764}
765
766/* Packet receive function for Gigabit Ethernet */
767static bool ravb_rx_gbeth(struct net_device *ndev, int *quota, int q)
768{
769 struct ravb_private *priv = netdev_priv(ndev);
770 const struct ravb_hw_info *info = priv->info;
771 struct net_device_stats *stats;
772 struct ravb_rx_desc *desc;
773 struct sk_buff *skb;
774 dma_addr_t dma_addr;
775 int rx_packets = 0;
776 u8 desc_status;
777 u16 pkt_len;
778 u8 die_dt;
779 int entry;
780 int limit;
781 int i;
782
783 entry = priv->cur_rx[q] % priv->num_rx_ring[q];
784 limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
785 stats = &priv->stats[q];
786
787 desc = &priv->gbeth_rx_ring[entry];
788 for (i = 0; i < limit && rx_packets < *quota && desc->die_dt != DT_FEMPTY; i++) {
789 /* Descriptor type must be checked before all other reads */
790 dma_rmb();
791 desc_status = desc->msc;
792 pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
793
794 /* We use 0-byte descriptors to mark the DMA mapping errors */
795 if (!pkt_len)
796 continue;
797
798 if (desc_status & MSC_MC)
799 stats->multicast++;
800
801 if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) {
802 stats->rx_errors++;
803 if (desc_status & MSC_CRC)
804 stats->rx_crc_errors++;
805 if (desc_status & MSC_RFE)
806 stats->rx_frame_errors++;
807 if (desc_status & (MSC_RTLF | MSC_RTSF))
808 stats->rx_length_errors++;
809 if (desc_status & MSC_CEEF)
810 stats->rx_missed_errors++;
811 } else {
812 die_dt = desc->die_dt & 0xF0;
813 switch (die_dt) {
814 case DT_FSINGLE:
815 skb = ravb_get_skb_gbeth(ndev, entry, desc);
816 skb_put(skb, pkt_len);
817 skb->protocol = eth_type_trans(skb, ndev);
818 napi_gro_receive(&priv->napi[q], skb);
819 rx_packets++;
820 stats->rx_bytes += pkt_len;
821 break;
822 case DT_FSTART:
823 priv->rx_1st_skb = ravb_get_skb_gbeth(ndev, entry, desc);
824 skb_put(priv->rx_1st_skb, pkt_len);
825 break;
826 case DT_FMID:
827 skb = ravb_get_skb_gbeth(ndev, entry, desc);
828 skb_copy_to_linear_data_offset(priv->rx_1st_skb,
829 priv->rx_1st_skb->len,
830 skb->data,
831 pkt_len);
832 skb_put(priv->rx_1st_skb, pkt_len);
833 dev_kfree_skb(skb);
834 break;
835 case DT_FEND:
836 skb = ravb_get_skb_gbeth(ndev, entry, desc);
837 skb_copy_to_linear_data_offset(priv->rx_1st_skb,
838 priv->rx_1st_skb->len,
839 skb->data,
840 pkt_len);
841 skb_put(priv->rx_1st_skb, pkt_len);
842 dev_kfree_skb(skb);
843 priv->rx_1st_skb->protocol =
844 eth_type_trans(priv->rx_1st_skb, ndev);
845 napi_gro_receive(&priv->napi[q],
846 priv->rx_1st_skb);
847 rx_packets++;
848 stats->rx_bytes += pkt_len;
849 break;
850 }
851 }
852
853 entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
854 desc = &priv->gbeth_rx_ring[entry];
855 }
856
857 /* Refill the RX ring buffers. */
858 for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
859 entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
860 desc = &priv->gbeth_rx_ring[entry];
861 desc->ds_cc = cpu_to_le16(GBETH_RX_DESC_DATA_SIZE);
862
863 if (!priv->rx_skb[q][entry]) {
864 skb = netdev_alloc_skb(ndev, info->max_rx_len);
865 if (!skb)
866 break;
867 ravb_set_buffer_align(skb);
868 dma_addr = dma_map_single(ndev->dev.parent,
869 skb->data,
870 GBETH_RX_BUFF_MAX,
871 DMA_FROM_DEVICE);
872 skb_checksum_none_assert(skb);
873 /* We just set the data size to 0 for a failed mapping
874 * which should prevent DMA from happening...
875 */
876 if (dma_mapping_error(ndev->dev.parent, dma_addr))
877 desc->ds_cc = cpu_to_le16(0);
878 desc->dptr = cpu_to_le32(dma_addr);
879 priv->rx_skb[q][entry] = skb;
880 }
881 /* Descriptor type must be set after all the above writes */
882 dma_wmb();
883 desc->die_dt = DT_FEMPTY;
884 }
885
886 stats->rx_packets += rx_packets;
887 *quota -= rx_packets;
888 return *quota == 0;
889}
890
891/* Packet receive function for Ethernet AVB */
892static bool ravb_rx_rcar(struct net_device *ndev, int *quota, int q)
893{
894 struct ravb_private *priv = netdev_priv(ndev);
895 const struct ravb_hw_info *info = priv->info;
896 int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
897 int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
898 priv->cur_rx[q];
899 struct net_device_stats *stats = &priv->stats[q];
900 struct ravb_ex_rx_desc *desc;
901 struct sk_buff *skb;
902 dma_addr_t dma_addr;
903 struct timespec64 ts;
904 u8 desc_status;
905 u16 pkt_len;
906 int limit;
907
908 boguscnt = min(boguscnt, *quota);
909 limit = boguscnt;
910 desc = &priv->rx_ring[q][entry];
911 while (desc->die_dt != DT_FEMPTY) {
912 /* Descriptor type must be checked before all other reads */
913 dma_rmb();
914 desc_status = desc->msc;
915 pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
916
917 if (--boguscnt < 0)
918 break;
919
920 /* We use 0-byte descriptors to mark the DMA mapping errors */
921 if (!pkt_len)
922 continue;
923
924 if (desc_status & MSC_MC)
925 stats->multicast++;
926
927 if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
928 MSC_CEEF)) {
929 stats->rx_errors++;
930 if (desc_status & MSC_CRC)
931 stats->rx_crc_errors++;
932 if (desc_status & MSC_RFE)
933 stats->rx_frame_errors++;
934 if (desc_status & (MSC_RTLF | MSC_RTSF))
935 stats->rx_length_errors++;
936 if (desc_status & MSC_CEEF)
937 stats->rx_missed_errors++;
938 } else {
939 u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
940
941 skb = priv->rx_skb[q][entry];
942 priv->rx_skb[q][entry] = NULL;
943 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
944 RX_BUF_SZ,
945 DMA_FROM_DEVICE);
946 get_ts &= (q == RAVB_NC) ?
947 RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
948 ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
949 if (get_ts) {
950 struct skb_shared_hwtstamps *shhwtstamps;
951
952 shhwtstamps = skb_hwtstamps(skb);
953 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
954 ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
955 32) | le32_to_cpu(desc->ts_sl);
956 ts.tv_nsec = le32_to_cpu(desc->ts_n);
957 shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
958 }
959
960 skb_put(skb, pkt_len);
961 skb->protocol = eth_type_trans(skb, ndev);
962 if (ndev->features & NETIF_F_RXCSUM)
963 ravb_rx_csum(skb);
964 napi_gro_receive(&priv->napi[q], skb);
965 stats->rx_packets++;
966 stats->rx_bytes += pkt_len;
967 }
968
969 entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
970 desc = &priv->rx_ring[q][entry];
971 }
972
973 /* Refill the RX ring buffers. */
974 for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
975 entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
976 desc = &priv->rx_ring[q][entry];
977 desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
978
979 if (!priv->rx_skb[q][entry]) {
980 skb = netdev_alloc_skb(ndev, info->max_rx_len);
981 if (!skb)
982 break; /* Better luck next round. */
983 ravb_set_buffer_align(skb);
984 dma_addr = dma_map_single(ndev->dev.parent, skb->data,
985 le16_to_cpu(desc->ds_cc),
986 DMA_FROM_DEVICE);
987 skb_checksum_none_assert(skb);
988 /* We just set the data size to 0 for a failed mapping
989 * which should prevent DMA from happening...
990 */
991 if (dma_mapping_error(ndev->dev.parent, dma_addr))
992 desc->ds_cc = cpu_to_le16(0);
993 desc->dptr = cpu_to_le32(dma_addr);
994 priv->rx_skb[q][entry] = skb;
995 }
996 /* Descriptor type must be set after all the above writes */
997 dma_wmb();
998 desc->die_dt = DT_FEMPTY;
999 }
1000
1001 *quota -= limit - (++boguscnt);
1002
1003 return boguscnt <= 0;
1004}
1005
1006/* Packet receive function for Ethernet AVB */
1007static bool ravb_rx(struct net_device *ndev, int *quota, int q)
1008{
1009 struct ravb_private *priv = netdev_priv(ndev);
1010 const struct ravb_hw_info *info = priv->info;
1011
1012 return info->receive(ndev, quota, q);
1013}
1014
1015static void ravb_rcv_snd_disable(struct net_device *ndev)
1016{
1017 /* Disable TX and RX */
1018 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1019}
1020
1021static void ravb_rcv_snd_enable(struct net_device *ndev)
1022{
1023 /* Enable TX and RX */
1024 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1025}
1026
1027/* function for waiting dma process finished */
1028static int ravb_stop_dma(struct net_device *ndev)
1029{
1030 struct ravb_private *priv = netdev_priv(ndev);
1031 const struct ravb_hw_info *info = priv->info;
1032 int error;
1033
1034 /* Wait for stopping the hardware TX process */
1035 error = ravb_wait(ndev, TCCR, info->tccr_mask, 0);
1036
1037 if (error)
1038 return error;
1039
1040 error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
1041 0);
1042 if (error)
1043 return error;
1044
1045 /* Stop the E-MAC's RX/TX processes. */
1046 ravb_rcv_snd_disable(ndev);
1047
1048 /* Wait for stopping the RX DMA process */
1049 error = ravb_wait(ndev, CSR, CSR_RPO, 0);
1050 if (error)
1051 return error;
1052
1053 /* Stop AVB-DMAC process */
1054 return ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1055}
1056
1057/* E-MAC interrupt handler */
1058static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
1059{
1060 struct ravb_private *priv = netdev_priv(ndev);
1061 u32 ecsr, psr;
1062
1063 ecsr = ravb_read(ndev, ECSR);
1064 ravb_write(ndev, ecsr, ECSR); /* clear interrupt */
1065
1066 if (ecsr & ECSR_MPD)
1067 pm_wakeup_event(&priv->pdev->dev, 0);
1068 if (ecsr & ECSR_ICD)
1069 ndev->stats.tx_carrier_errors++;
1070 if (ecsr & ECSR_LCHNG) {
1071 /* Link changed */
1072 if (priv->no_avb_link)
1073 return;
1074 psr = ravb_read(ndev, PSR);
1075 if (priv->avb_link_active_low)
1076 psr ^= PSR_LMON;
1077 if (!(psr & PSR_LMON)) {
1078 /* DIsable RX and TX */
1079 ravb_rcv_snd_disable(ndev);
1080 } else {
1081 /* Enable RX and TX */
1082 ravb_rcv_snd_enable(ndev);
1083 }
1084 }
1085}
1086
1087static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
1088{
1089 struct net_device *ndev = dev_id;
1090 struct ravb_private *priv = netdev_priv(ndev);
1091
1092 spin_lock(&priv->lock);
1093 ravb_emac_interrupt_unlocked(ndev);
1094 spin_unlock(&priv->lock);
1095 return IRQ_HANDLED;
1096}
1097
1098/* Error interrupt handler */
1099static void ravb_error_interrupt(struct net_device *ndev)
1100{
1101 struct ravb_private *priv = netdev_priv(ndev);
1102 u32 eis, ris2;
1103
1104 eis = ravb_read(ndev, EIS);
1105 ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
1106 if (eis & EIS_QFS) {
1107 ris2 = ravb_read(ndev, RIS2);
1108 ravb_write(ndev, ~(RIS2_QFF0 | RIS2_QFF1 | RIS2_RFFF | RIS2_RESERVED),
1109 RIS2);
1110
1111 /* Receive Descriptor Empty int */
1112 if (ris2 & RIS2_QFF0)
1113 priv->stats[RAVB_BE].rx_over_errors++;
1114
1115 /* Receive Descriptor Empty int */
1116 if (ris2 & RIS2_QFF1)
1117 priv->stats[RAVB_NC].rx_over_errors++;
1118
1119 /* Receive FIFO Overflow int */
1120 if (ris2 & RIS2_RFFF)
1121 priv->rx_fifo_errors++;
1122 }
1123}
1124
1125static bool ravb_queue_interrupt(struct net_device *ndev, int q)
1126{
1127 struct ravb_private *priv = netdev_priv(ndev);
1128 const struct ravb_hw_info *info = priv->info;
1129 u32 ris0 = ravb_read(ndev, RIS0);
1130 u32 ric0 = ravb_read(ndev, RIC0);
1131 u32 tis = ravb_read(ndev, TIS);
1132 u32 tic = ravb_read(ndev, TIC);
1133
1134 if (((ris0 & ric0) & BIT(q)) || ((tis & tic) & BIT(q))) {
1135 if (napi_schedule_prep(&priv->napi[q])) {
1136 /* Mask RX and TX interrupts */
1137 if (!info->irq_en_dis) {
1138 ravb_write(ndev, ric0 & ~BIT(q), RIC0);
1139 ravb_write(ndev, tic & ~BIT(q), TIC);
1140 } else {
1141 ravb_write(ndev, BIT(q), RID0);
1142 ravb_write(ndev, BIT(q), TID);
1143 }
1144 __napi_schedule(&priv->napi[q]);
1145 } else {
1146 netdev_warn(ndev,
1147 "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
1148 ris0, ric0);
1149 netdev_warn(ndev,
1150 " tx status 0x%08x, tx mask 0x%08x.\n",
1151 tis, tic);
1152 }
1153 return true;
1154 }
1155 return false;
1156}
1157
1158static bool ravb_timestamp_interrupt(struct net_device *ndev)
1159{
1160 u32 tis = ravb_read(ndev, TIS);
1161
1162 if (tis & TIS_TFUF) {
1163 ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
1164 ravb_get_tx_tstamp(ndev);
1165 return true;
1166 }
1167 return false;
1168}
1169
1170static irqreturn_t ravb_interrupt(int irq, void *dev_id)
1171{
1172 struct net_device *ndev = dev_id;
1173 struct ravb_private *priv = netdev_priv(ndev);
1174 const struct ravb_hw_info *info = priv->info;
1175 irqreturn_t result = IRQ_NONE;
1176 u32 iss;
1177
1178 spin_lock(&priv->lock);
1179 /* Get interrupt status */
1180 iss = ravb_read(ndev, ISS);
1181
1182 /* Received and transmitted interrupts */
1183 if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
1184 int q;
1185
1186 /* Timestamp updated */
1187 if (ravb_timestamp_interrupt(ndev))
1188 result = IRQ_HANDLED;
1189
1190 /* Network control and best effort queue RX/TX */
1191 if (info->nc_queues) {
1192 for (q = RAVB_NC; q >= RAVB_BE; q--) {
1193 if (ravb_queue_interrupt(ndev, q))
1194 result = IRQ_HANDLED;
1195 }
1196 } else {
1197 if (ravb_queue_interrupt(ndev, RAVB_BE))
1198 result = IRQ_HANDLED;
1199 }
1200 }
1201
1202 /* E-MAC status summary */
1203 if (iss & ISS_MS) {
1204 ravb_emac_interrupt_unlocked(ndev);
1205 result = IRQ_HANDLED;
1206 }
1207
1208 /* Error status summary */
1209 if (iss & ISS_ES) {
1210 ravb_error_interrupt(ndev);
1211 result = IRQ_HANDLED;
1212 }
1213
1214 /* gPTP interrupt status summary */
1215 if (iss & ISS_CGIS) {
1216 ravb_ptp_interrupt(ndev);
1217 result = IRQ_HANDLED;
1218 }
1219
1220 spin_unlock(&priv->lock);
1221 return result;
1222}
1223
1224/* Timestamp/Error/gPTP interrupt handler */
1225static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
1226{
1227 struct net_device *ndev = dev_id;
1228 struct ravb_private *priv = netdev_priv(ndev);
1229 irqreturn_t result = IRQ_NONE;
1230 u32 iss;
1231
1232 spin_lock(&priv->lock);
1233 /* Get interrupt status */
1234 iss = ravb_read(ndev, ISS);
1235
1236 /* Timestamp updated */
1237 if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
1238 result = IRQ_HANDLED;
1239
1240 /* Error status summary */
1241 if (iss & ISS_ES) {
1242 ravb_error_interrupt(ndev);
1243 result = IRQ_HANDLED;
1244 }
1245
1246 /* gPTP interrupt status summary */
1247 if (iss & ISS_CGIS) {
1248 ravb_ptp_interrupt(ndev);
1249 result = IRQ_HANDLED;
1250 }
1251
1252 spin_unlock(&priv->lock);
1253 return result;
1254}
1255
1256static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
1257{
1258 struct net_device *ndev = dev_id;
1259 struct ravb_private *priv = netdev_priv(ndev);
1260 irqreturn_t result = IRQ_NONE;
1261
1262 spin_lock(&priv->lock);
1263
1264 /* Network control/Best effort queue RX/TX */
1265 if (ravb_queue_interrupt(ndev, q))
1266 result = IRQ_HANDLED;
1267
1268 spin_unlock(&priv->lock);
1269 return result;
1270}
1271
1272static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
1273{
1274 return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
1275}
1276
1277static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
1278{
1279 return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
1280}
1281
1282static int ravb_poll(struct napi_struct *napi, int budget)
1283{
1284 struct net_device *ndev = napi->dev;
1285 struct ravb_private *priv = netdev_priv(ndev);
1286 const struct ravb_hw_info *info = priv->info;
1287 bool gptp = info->gptp || info->ccc_gac;
1288 struct ravb_rx_desc *desc;
1289 unsigned long flags;
1290 int q = napi - priv->napi;
1291 int mask = BIT(q);
1292 int quota = budget;
1293 unsigned int entry;
1294
1295 if (!gptp) {
1296 entry = priv->cur_rx[q] % priv->num_rx_ring[q];
1297 desc = &priv->gbeth_rx_ring[entry];
1298 }
1299 /* Processing RX Descriptor Ring */
1300 /* Clear RX interrupt */
1301 ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
1302 if (gptp || desc->die_dt != DT_FEMPTY) {
1303 if (ravb_rx(ndev, "a, q))
1304 goto out;
1305 }
1306
1307 /* Processing TX Descriptor Ring */
1308 spin_lock_irqsave(&priv->lock, flags);
1309 /* Clear TX interrupt */
1310 ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
1311 ravb_tx_free(ndev, q, true);
1312 netif_wake_subqueue(ndev, q);
1313 spin_unlock_irqrestore(&priv->lock, flags);
1314
1315 napi_complete(napi);
1316
1317 /* Re-enable RX/TX interrupts */
1318 spin_lock_irqsave(&priv->lock, flags);
1319 if (!info->irq_en_dis) {
1320 ravb_modify(ndev, RIC0, mask, mask);
1321 ravb_modify(ndev, TIC, mask, mask);
1322 } else {
1323 ravb_write(ndev, mask, RIE0);
1324 ravb_write(ndev, mask, TIE);
1325 }
1326 spin_unlock_irqrestore(&priv->lock, flags);
1327
1328 /* Receive error message handling */
1329 priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
1330 if (info->nc_queues)
1331 priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
1332 if (priv->rx_over_errors != ndev->stats.rx_over_errors)
1333 ndev->stats.rx_over_errors = priv->rx_over_errors;
1334 if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
1335 ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
1336out:
1337 return budget - quota;
1338}
1339
1340static void ravb_set_duplex_gbeth(struct net_device *ndev)
1341{
1342 struct ravb_private *priv = netdev_priv(ndev);
1343
1344 ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex > 0 ? ECMR_DM : 0);
1345}
1346
1347/* PHY state control function */
1348static void ravb_adjust_link(struct net_device *ndev)
1349{
1350 struct ravb_private *priv = netdev_priv(ndev);
1351 const struct ravb_hw_info *info = priv->info;
1352 struct phy_device *phydev = ndev->phydev;
1353 bool new_state = false;
1354 unsigned long flags;
1355
1356 spin_lock_irqsave(&priv->lock, flags);
1357
1358 /* Disable TX and RX right over here, if E-MAC change is ignored */
1359 if (priv->no_avb_link)
1360 ravb_rcv_snd_disable(ndev);
1361
1362 if (phydev->link) {
1363 if (info->half_duplex && phydev->duplex != priv->duplex) {
1364 new_state = true;
1365 priv->duplex = phydev->duplex;
1366 ravb_set_duplex_gbeth(ndev);
1367 }
1368
1369 if (phydev->speed != priv->speed) {
1370 new_state = true;
1371 priv->speed = phydev->speed;
1372 info->set_rate(ndev);
1373 }
1374 if (!priv->link) {
1375 ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1376 new_state = true;
1377 priv->link = phydev->link;
1378 }
1379 } else if (priv->link) {
1380 new_state = true;
1381 priv->link = 0;
1382 priv->speed = 0;
1383 if (info->half_duplex)
1384 priv->duplex = -1;
1385 }
1386
1387 /* Enable TX and RX right over here, if E-MAC change is ignored */
1388 if (priv->no_avb_link && phydev->link)
1389 ravb_rcv_snd_enable(ndev);
1390
1391 spin_unlock_irqrestore(&priv->lock, flags);
1392
1393 if (new_state && netif_msg_link(priv))
1394 phy_print_status(phydev);
1395}
1396
1397/* PHY init function */
1398static int ravb_phy_init(struct net_device *ndev)
1399{
1400 struct device_node *np = ndev->dev.parent->of_node;
1401 struct ravb_private *priv = netdev_priv(ndev);
1402 const struct ravb_hw_info *info = priv->info;
1403 struct phy_device *phydev;
1404 struct device_node *pn;
1405 phy_interface_t iface;
1406 int err;
1407
1408 priv->link = 0;
1409 priv->speed = 0;
1410 priv->duplex = -1;
1411
1412 /* Try connecting to PHY */
1413 pn = of_parse_phandle(np, "phy-handle", 0);
1414 if (!pn) {
1415 /* In the case of a fixed PHY, the DT node associated
1416 * to the PHY is the Ethernet MAC DT node.
1417 */
1418 if (of_phy_is_fixed_link(np)) {
1419 err = of_phy_register_fixed_link(np);
1420 if (err)
1421 return err;
1422 }
1423 pn = of_node_get(np);
1424 }
1425
1426 iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1427 : priv->phy_interface;
1428 phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1429 of_node_put(pn);
1430 if (!phydev) {
1431 netdev_err(ndev, "failed to connect PHY\n");
1432 err = -ENOENT;
1433 goto err_deregister_fixed_link;
1434 }
1435
1436 if (!info->half_duplex) {
1437 /* 10BASE, Pause and Asym Pause is not supported */
1438 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1439 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1440 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1441 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1442
1443 /* Half Duplex is not supported */
1444 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1445 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1446 }
1447
1448 phy_attached_info(phydev);
1449
1450 return 0;
1451
1452err_deregister_fixed_link:
1453 if (of_phy_is_fixed_link(np))
1454 of_phy_deregister_fixed_link(np);
1455
1456 return err;
1457}
1458
1459/* PHY control start function */
1460static int ravb_phy_start(struct net_device *ndev)
1461{
1462 int error;
1463
1464 error = ravb_phy_init(ndev);
1465 if (error)
1466 return error;
1467
1468 phy_start(ndev->phydev);
1469
1470 return 0;
1471}
1472
1473static u32 ravb_get_msglevel(struct net_device *ndev)
1474{
1475 struct ravb_private *priv = netdev_priv(ndev);
1476
1477 return priv->msg_enable;
1478}
1479
1480static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1481{
1482 struct ravb_private *priv = netdev_priv(ndev);
1483
1484 priv->msg_enable = value;
1485}
1486
1487static const char ravb_gstrings_stats_gbeth[][ETH_GSTRING_LEN] = {
1488 "rx_queue_0_current",
1489 "tx_queue_0_current",
1490 "rx_queue_0_dirty",
1491 "tx_queue_0_dirty",
1492 "rx_queue_0_packets",
1493 "tx_queue_0_packets",
1494 "rx_queue_0_bytes",
1495 "tx_queue_0_bytes",
1496 "rx_queue_0_mcast_packets",
1497 "rx_queue_0_errors",
1498 "rx_queue_0_crc_errors",
1499 "rx_queue_0_frame_errors",
1500 "rx_queue_0_length_errors",
1501 "rx_queue_0_csum_offload_errors",
1502 "rx_queue_0_over_errors",
1503};
1504
1505static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1506 "rx_queue_0_current",
1507 "tx_queue_0_current",
1508 "rx_queue_0_dirty",
1509 "tx_queue_0_dirty",
1510 "rx_queue_0_packets",
1511 "tx_queue_0_packets",
1512 "rx_queue_0_bytes",
1513 "tx_queue_0_bytes",
1514 "rx_queue_0_mcast_packets",
1515 "rx_queue_0_errors",
1516 "rx_queue_0_crc_errors",
1517 "rx_queue_0_frame_errors",
1518 "rx_queue_0_length_errors",
1519 "rx_queue_0_missed_errors",
1520 "rx_queue_0_over_errors",
1521
1522 "rx_queue_1_current",
1523 "tx_queue_1_current",
1524 "rx_queue_1_dirty",
1525 "tx_queue_1_dirty",
1526 "rx_queue_1_packets",
1527 "tx_queue_1_packets",
1528 "rx_queue_1_bytes",
1529 "tx_queue_1_bytes",
1530 "rx_queue_1_mcast_packets",
1531 "rx_queue_1_errors",
1532 "rx_queue_1_crc_errors",
1533 "rx_queue_1_frame_errors",
1534 "rx_queue_1_length_errors",
1535 "rx_queue_1_missed_errors",
1536 "rx_queue_1_over_errors",
1537};
1538
1539static int ravb_get_sset_count(struct net_device *netdev, int sset)
1540{
1541 struct ravb_private *priv = netdev_priv(netdev);
1542 const struct ravb_hw_info *info = priv->info;
1543
1544 switch (sset) {
1545 case ETH_SS_STATS:
1546 return info->stats_len;
1547 default:
1548 return -EOPNOTSUPP;
1549 }
1550}
1551
1552static void ravb_get_ethtool_stats(struct net_device *ndev,
1553 struct ethtool_stats *estats, u64 *data)
1554{
1555 struct ravb_private *priv = netdev_priv(ndev);
1556 const struct ravb_hw_info *info = priv->info;
1557 int num_rx_q;
1558 int i = 0;
1559 int q;
1560
1561 num_rx_q = info->nc_queues ? NUM_RX_QUEUE : 1;
1562 /* Device-specific stats */
1563 for (q = RAVB_BE; q < num_rx_q; q++) {
1564 struct net_device_stats *stats = &priv->stats[q];
1565
1566 data[i++] = priv->cur_rx[q];
1567 data[i++] = priv->cur_tx[q];
1568 data[i++] = priv->dirty_rx[q];
1569 data[i++] = priv->dirty_tx[q];
1570 data[i++] = stats->rx_packets;
1571 data[i++] = stats->tx_packets;
1572 data[i++] = stats->rx_bytes;
1573 data[i++] = stats->tx_bytes;
1574 data[i++] = stats->multicast;
1575 data[i++] = stats->rx_errors;
1576 data[i++] = stats->rx_crc_errors;
1577 data[i++] = stats->rx_frame_errors;
1578 data[i++] = stats->rx_length_errors;
1579 data[i++] = stats->rx_missed_errors;
1580 data[i++] = stats->rx_over_errors;
1581 }
1582}
1583
1584static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1585{
1586 struct ravb_private *priv = netdev_priv(ndev);
1587 const struct ravb_hw_info *info = priv->info;
1588
1589 switch (stringset) {
1590 case ETH_SS_STATS:
1591 memcpy(data, info->gstrings_stats, info->gstrings_size);
1592 break;
1593 }
1594}
1595
1596static void ravb_get_ringparam(struct net_device *ndev,
1597 struct ethtool_ringparam *ring,
1598 struct kernel_ethtool_ringparam *kernel_ring,
1599 struct netlink_ext_ack *extack)
1600{
1601 struct ravb_private *priv = netdev_priv(ndev);
1602
1603 ring->rx_max_pending = BE_RX_RING_MAX;
1604 ring->tx_max_pending = BE_TX_RING_MAX;
1605 ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1606 ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1607}
1608
1609static int ravb_set_ringparam(struct net_device *ndev,
1610 struct ethtool_ringparam *ring,
1611 struct kernel_ethtool_ringparam *kernel_ring,
1612 struct netlink_ext_ack *extack)
1613{
1614 struct ravb_private *priv = netdev_priv(ndev);
1615 const struct ravb_hw_info *info = priv->info;
1616 int error;
1617
1618 if (ring->tx_pending > BE_TX_RING_MAX ||
1619 ring->rx_pending > BE_RX_RING_MAX ||
1620 ring->tx_pending < BE_TX_RING_MIN ||
1621 ring->rx_pending < BE_RX_RING_MIN)
1622 return -EINVAL;
1623 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1624 return -EINVAL;
1625
1626 if (netif_running(ndev)) {
1627 netif_device_detach(ndev);
1628 /* Stop PTP Clock driver */
1629 if (info->gptp)
1630 ravb_ptp_stop(ndev);
1631 /* Wait for DMA stopping */
1632 error = ravb_stop_dma(ndev);
1633 if (error) {
1634 netdev_err(ndev,
1635 "cannot set ringparam! Any AVB processes are still running?\n");
1636 return error;
1637 }
1638 synchronize_irq(ndev->irq);
1639
1640 /* Free all the skb's in the RX queue and the DMA buffers. */
1641 ravb_ring_free(ndev, RAVB_BE);
1642 if (info->nc_queues)
1643 ravb_ring_free(ndev, RAVB_NC);
1644 }
1645
1646 /* Set new parameters */
1647 priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1648 priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1649
1650 if (netif_running(ndev)) {
1651 error = ravb_dmac_init(ndev);
1652 if (error) {
1653 netdev_err(ndev,
1654 "%s: ravb_dmac_init() failed, error %d\n",
1655 __func__, error);
1656 return error;
1657 }
1658
1659 ravb_emac_init(ndev);
1660
1661 /* Initialise PTP Clock driver */
1662 if (info->gptp)
1663 ravb_ptp_init(ndev, priv->pdev);
1664
1665 netif_device_attach(ndev);
1666 }
1667
1668 return 0;
1669}
1670
1671static int ravb_get_ts_info(struct net_device *ndev,
1672 struct ethtool_ts_info *info)
1673{
1674 struct ravb_private *priv = netdev_priv(ndev);
1675 const struct ravb_hw_info *hw_info = priv->info;
1676
1677 info->so_timestamping =
1678 SOF_TIMESTAMPING_TX_SOFTWARE |
1679 SOF_TIMESTAMPING_RX_SOFTWARE |
1680 SOF_TIMESTAMPING_SOFTWARE |
1681 SOF_TIMESTAMPING_TX_HARDWARE |
1682 SOF_TIMESTAMPING_RX_HARDWARE |
1683 SOF_TIMESTAMPING_RAW_HARDWARE;
1684 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1685 info->rx_filters =
1686 (1 << HWTSTAMP_FILTER_NONE) |
1687 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1688 (1 << HWTSTAMP_FILTER_ALL);
1689 if (hw_info->gptp || hw_info->ccc_gac)
1690 info->phc_index = ptp_clock_index(priv->ptp.clock);
1691
1692 return 0;
1693}
1694
1695static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1696{
1697 struct ravb_private *priv = netdev_priv(ndev);
1698
1699 wol->supported = WAKE_MAGIC;
1700 wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1701}
1702
1703static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1704{
1705 struct ravb_private *priv = netdev_priv(ndev);
1706 const struct ravb_hw_info *info = priv->info;
1707
1708 if (!info->magic_pkt || (wol->wolopts & ~WAKE_MAGIC))
1709 return -EOPNOTSUPP;
1710
1711 priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1712
1713 device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1714
1715 return 0;
1716}
1717
1718static const struct ethtool_ops ravb_ethtool_ops = {
1719 .nway_reset = phy_ethtool_nway_reset,
1720 .get_msglevel = ravb_get_msglevel,
1721 .set_msglevel = ravb_set_msglevel,
1722 .get_link = ethtool_op_get_link,
1723 .get_strings = ravb_get_strings,
1724 .get_ethtool_stats = ravb_get_ethtool_stats,
1725 .get_sset_count = ravb_get_sset_count,
1726 .get_ringparam = ravb_get_ringparam,
1727 .set_ringparam = ravb_set_ringparam,
1728 .get_ts_info = ravb_get_ts_info,
1729 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1730 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1731 .get_wol = ravb_get_wol,
1732 .set_wol = ravb_set_wol,
1733};
1734
1735static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1736 struct net_device *ndev, struct device *dev,
1737 const char *ch)
1738{
1739 char *name;
1740 int error;
1741
1742 name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1743 if (!name)
1744 return -ENOMEM;
1745 error = request_irq(irq, handler, 0, name, ndev);
1746 if (error)
1747 netdev_err(ndev, "cannot request IRQ %s\n", name);
1748
1749 return error;
1750}
1751
1752/* Network device open function for Ethernet AVB */
1753static int ravb_open(struct net_device *ndev)
1754{
1755 struct ravb_private *priv = netdev_priv(ndev);
1756 const struct ravb_hw_info *info = priv->info;
1757 struct platform_device *pdev = priv->pdev;
1758 struct device *dev = &pdev->dev;
1759 int error;
1760
1761 napi_enable(&priv->napi[RAVB_BE]);
1762 if (info->nc_queues)
1763 napi_enable(&priv->napi[RAVB_NC]);
1764
1765 if (!info->multi_irqs) {
1766 error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1767 ndev->name, ndev);
1768 if (error) {
1769 netdev_err(ndev, "cannot request IRQ\n");
1770 goto out_napi_off;
1771 }
1772 } else {
1773 error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1774 dev, "ch22:multi");
1775 if (error)
1776 goto out_napi_off;
1777 error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1778 dev, "ch24:emac");
1779 if (error)
1780 goto out_free_irq;
1781 error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1782 ndev, dev, "ch0:rx_be");
1783 if (error)
1784 goto out_free_irq_emac;
1785 error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1786 ndev, dev, "ch18:tx_be");
1787 if (error)
1788 goto out_free_irq_be_rx;
1789 error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1790 ndev, dev, "ch1:rx_nc");
1791 if (error)
1792 goto out_free_irq_be_tx;
1793 error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1794 ndev, dev, "ch19:tx_nc");
1795 if (error)
1796 goto out_free_irq_nc_rx;
1797
1798 if (info->err_mgmt_irqs) {
1799 error = ravb_hook_irq(priv->erra_irq, ravb_multi_interrupt,
1800 ndev, dev, "err_a");
1801 if (error)
1802 goto out_free_irq_nc_tx;
1803 error = ravb_hook_irq(priv->mgmta_irq, ravb_multi_interrupt,
1804 ndev, dev, "mgmt_a");
1805 if (error)
1806 goto out_free_irq_erra;
1807 }
1808 }
1809
1810 /* Device init */
1811 error = ravb_dmac_init(ndev);
1812 if (error)
1813 goto out_free_irq_mgmta;
1814 ravb_emac_init(ndev);
1815
1816 /* Initialise PTP Clock driver */
1817 if (info->gptp)
1818 ravb_ptp_init(ndev, priv->pdev);
1819
1820 /* PHY control start */
1821 error = ravb_phy_start(ndev);
1822 if (error)
1823 goto out_ptp_stop;
1824
1825 netif_tx_start_all_queues(ndev);
1826
1827 return 0;
1828
1829out_ptp_stop:
1830 /* Stop PTP Clock driver */
1831 if (info->gptp)
1832 ravb_ptp_stop(ndev);
1833 ravb_stop_dma(ndev);
1834out_free_irq_mgmta:
1835 if (!info->multi_irqs)
1836 goto out_free_irq;
1837 if (info->err_mgmt_irqs)
1838 free_irq(priv->mgmta_irq, ndev);
1839out_free_irq_erra:
1840 if (info->err_mgmt_irqs)
1841 free_irq(priv->erra_irq, ndev);
1842out_free_irq_nc_tx:
1843 free_irq(priv->tx_irqs[RAVB_NC], ndev);
1844out_free_irq_nc_rx:
1845 free_irq(priv->rx_irqs[RAVB_NC], ndev);
1846out_free_irq_be_tx:
1847 free_irq(priv->tx_irqs[RAVB_BE], ndev);
1848out_free_irq_be_rx:
1849 free_irq(priv->rx_irqs[RAVB_BE], ndev);
1850out_free_irq_emac:
1851 free_irq(priv->emac_irq, ndev);
1852out_free_irq:
1853 free_irq(ndev->irq, ndev);
1854out_napi_off:
1855 if (info->nc_queues)
1856 napi_disable(&priv->napi[RAVB_NC]);
1857 napi_disable(&priv->napi[RAVB_BE]);
1858 return error;
1859}
1860
1861/* Timeout function for Ethernet AVB */
1862static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1863{
1864 struct ravb_private *priv = netdev_priv(ndev);
1865
1866 netif_err(priv, tx_err, ndev,
1867 "transmit timed out, status %08x, resetting...\n",
1868 ravb_read(ndev, ISS));
1869
1870 /* tx_errors count up */
1871 ndev->stats.tx_errors++;
1872
1873 schedule_work(&priv->work);
1874}
1875
1876static void ravb_tx_timeout_work(struct work_struct *work)
1877{
1878 struct ravb_private *priv = container_of(work, struct ravb_private,
1879 work);
1880 const struct ravb_hw_info *info = priv->info;
1881 struct net_device *ndev = priv->ndev;
1882 int error;
1883
1884 if (!rtnl_trylock()) {
1885 usleep_range(1000, 2000);
1886 schedule_work(&priv->work);
1887 return;
1888 }
1889
1890 netif_tx_stop_all_queues(ndev);
1891
1892 /* Stop PTP Clock driver */
1893 if (info->gptp)
1894 ravb_ptp_stop(ndev);
1895
1896 /* Wait for DMA stopping */
1897 if (ravb_stop_dma(ndev)) {
1898 /* If ravb_stop_dma() fails, the hardware is still operating
1899 * for TX and/or RX. So, this should not call the following
1900 * functions because ravb_dmac_init() is possible to fail too.
1901 * Also, this should not retry ravb_stop_dma() again and again
1902 * here because it's possible to wait forever. So, this just
1903 * re-enables the TX and RX and skip the following
1904 * re-initialization procedure.
1905 */
1906 ravb_rcv_snd_enable(ndev);
1907 goto out;
1908 }
1909
1910 ravb_ring_free(ndev, RAVB_BE);
1911 if (info->nc_queues)
1912 ravb_ring_free(ndev, RAVB_NC);
1913
1914 /* Device init */
1915 error = ravb_dmac_init(ndev);
1916 if (error) {
1917 /* If ravb_dmac_init() fails, descriptors are freed. So, this
1918 * should return here to avoid re-enabling the TX and RX in
1919 * ravb_emac_init().
1920 */
1921 netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
1922 __func__, error);
1923 goto out_unlock;
1924 }
1925 ravb_emac_init(ndev);
1926
1927out:
1928 /* Initialise PTP Clock driver */
1929 if (info->gptp)
1930 ravb_ptp_init(ndev, priv->pdev);
1931
1932 netif_tx_start_all_queues(ndev);
1933
1934out_unlock:
1935 rtnl_unlock();
1936}
1937
1938/* Packet transmit function for Ethernet AVB */
1939static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1940{
1941 struct ravb_private *priv = netdev_priv(ndev);
1942 const struct ravb_hw_info *info = priv->info;
1943 unsigned int num_tx_desc = priv->num_tx_desc;
1944 u16 q = skb_get_queue_mapping(skb);
1945 struct ravb_tstamp_skb *ts_skb;
1946 struct ravb_tx_desc *desc;
1947 unsigned long flags;
1948 dma_addr_t dma_addr;
1949 void *buffer;
1950 u32 entry;
1951 u32 len;
1952
1953 spin_lock_irqsave(&priv->lock, flags);
1954 if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1955 num_tx_desc) {
1956 netif_err(priv, tx_queued, ndev,
1957 "still transmitting with the full ring!\n");
1958 netif_stop_subqueue(ndev, q);
1959 spin_unlock_irqrestore(&priv->lock, flags);
1960 return NETDEV_TX_BUSY;
1961 }
1962
1963 if (skb_put_padto(skb, ETH_ZLEN))
1964 goto exit;
1965
1966 entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
1967 priv->tx_skb[q][entry / num_tx_desc] = skb;
1968
1969 if (num_tx_desc > 1) {
1970 buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1971 entry / num_tx_desc * DPTR_ALIGN;
1972 len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1973
1974 /* Zero length DMA descriptors are problematic as they seem
1975 * to terminate DMA transfers. Avoid them by simply using a
1976 * length of DPTR_ALIGN (4) when skb data is aligned to
1977 * DPTR_ALIGN.
1978 *
1979 * As skb is guaranteed to have at least ETH_ZLEN (60)
1980 * bytes of data by the call to skb_put_padto() above this
1981 * is safe with respect to both the length of the first DMA
1982 * descriptor (len) overflowing the available data and the
1983 * length of the second DMA descriptor (skb->len - len)
1984 * being negative.
1985 */
1986 if (len == 0)
1987 len = DPTR_ALIGN;
1988
1989 memcpy(buffer, skb->data, len);
1990 dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1991 DMA_TO_DEVICE);
1992 if (dma_mapping_error(ndev->dev.parent, dma_addr))
1993 goto drop;
1994
1995 desc = &priv->tx_ring[q][entry];
1996 desc->ds_tagl = cpu_to_le16(len);
1997 desc->dptr = cpu_to_le32(dma_addr);
1998
1999 buffer = skb->data + len;
2000 len = skb->len - len;
2001 dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2002 DMA_TO_DEVICE);
2003 if (dma_mapping_error(ndev->dev.parent, dma_addr))
2004 goto unmap;
2005
2006 desc++;
2007 } else {
2008 desc = &priv->tx_ring[q][entry];
2009 len = skb->len;
2010 dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
2011 DMA_TO_DEVICE);
2012 if (dma_mapping_error(ndev->dev.parent, dma_addr))
2013 goto drop;
2014 }
2015 desc->ds_tagl = cpu_to_le16(len);
2016 desc->dptr = cpu_to_le32(dma_addr);
2017
2018 /* TX timestamp required */
2019 if (info->gptp || info->ccc_gac) {
2020 if (q == RAVB_NC) {
2021 ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
2022 if (!ts_skb) {
2023 if (num_tx_desc > 1) {
2024 desc--;
2025 dma_unmap_single(ndev->dev.parent, dma_addr,
2026 len, DMA_TO_DEVICE);
2027 }
2028 goto unmap;
2029 }
2030 ts_skb->skb = skb_get(skb);
2031 ts_skb->tag = priv->ts_skb_tag++;
2032 priv->ts_skb_tag &= 0x3ff;
2033 list_add_tail(&ts_skb->list, &priv->ts_skb_list);
2034
2035 /* TAG and timestamp required flag */
2036 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2037 desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
2038 desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
2039 }
2040
2041 skb_tx_timestamp(skb);
2042 }
2043 /* Descriptor type must be set after all the above writes */
2044 dma_wmb();
2045 if (num_tx_desc > 1) {
2046 desc->die_dt = DT_FEND;
2047 desc--;
2048 desc->die_dt = DT_FSTART;
2049 } else {
2050 desc->die_dt = DT_FSINGLE;
2051 }
2052 ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
2053
2054 priv->cur_tx[q] += num_tx_desc;
2055 if (priv->cur_tx[q] - priv->dirty_tx[q] >
2056 (priv->num_tx_ring[q] - 1) * num_tx_desc &&
2057 !ravb_tx_free(ndev, q, true))
2058 netif_stop_subqueue(ndev, q);
2059
2060exit:
2061 spin_unlock_irqrestore(&priv->lock, flags);
2062 return NETDEV_TX_OK;
2063
2064unmap:
2065 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
2066 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
2067drop:
2068 dev_kfree_skb_any(skb);
2069 priv->tx_skb[q][entry / num_tx_desc] = NULL;
2070 goto exit;
2071}
2072
2073static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
2074 struct net_device *sb_dev)
2075{
2076 /* If skb needs TX timestamp, it is handled in network control queue */
2077 return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
2078 RAVB_BE;
2079
2080}
2081
2082static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
2083{
2084 struct ravb_private *priv = netdev_priv(ndev);
2085 const struct ravb_hw_info *info = priv->info;
2086 struct net_device_stats *nstats, *stats0, *stats1;
2087
2088 nstats = &ndev->stats;
2089 stats0 = &priv->stats[RAVB_BE];
2090
2091 if (info->tx_counters) {
2092 nstats->tx_dropped += ravb_read(ndev, TROCR);
2093 ravb_write(ndev, 0, TROCR); /* (write clear) */
2094 }
2095
2096 if (info->carrier_counters) {
2097 nstats->collisions += ravb_read(ndev, CXR41);
2098 ravb_write(ndev, 0, CXR41); /* (write clear) */
2099 nstats->tx_carrier_errors += ravb_read(ndev, CXR42);
2100 ravb_write(ndev, 0, CXR42); /* (write clear) */
2101 }
2102
2103 nstats->rx_packets = stats0->rx_packets;
2104 nstats->tx_packets = stats0->tx_packets;
2105 nstats->rx_bytes = stats0->rx_bytes;
2106 nstats->tx_bytes = stats0->tx_bytes;
2107 nstats->multicast = stats0->multicast;
2108 nstats->rx_errors = stats0->rx_errors;
2109 nstats->rx_crc_errors = stats0->rx_crc_errors;
2110 nstats->rx_frame_errors = stats0->rx_frame_errors;
2111 nstats->rx_length_errors = stats0->rx_length_errors;
2112 nstats->rx_missed_errors = stats0->rx_missed_errors;
2113 nstats->rx_over_errors = stats0->rx_over_errors;
2114 if (info->nc_queues) {
2115 stats1 = &priv->stats[RAVB_NC];
2116
2117 nstats->rx_packets += stats1->rx_packets;
2118 nstats->tx_packets += stats1->tx_packets;
2119 nstats->rx_bytes += stats1->rx_bytes;
2120 nstats->tx_bytes += stats1->tx_bytes;
2121 nstats->multicast += stats1->multicast;
2122 nstats->rx_errors += stats1->rx_errors;
2123 nstats->rx_crc_errors += stats1->rx_crc_errors;
2124 nstats->rx_frame_errors += stats1->rx_frame_errors;
2125 nstats->rx_length_errors += stats1->rx_length_errors;
2126 nstats->rx_missed_errors += stats1->rx_missed_errors;
2127 nstats->rx_over_errors += stats1->rx_over_errors;
2128 }
2129
2130 return nstats;
2131}
2132
2133/* Update promiscuous bit */
2134static void ravb_set_rx_mode(struct net_device *ndev)
2135{
2136 struct ravb_private *priv = netdev_priv(ndev);
2137 unsigned long flags;
2138
2139 spin_lock_irqsave(&priv->lock, flags);
2140 ravb_modify(ndev, ECMR, ECMR_PRM,
2141 ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
2142 spin_unlock_irqrestore(&priv->lock, flags);
2143}
2144
2145/* Device close function for Ethernet AVB */
2146static int ravb_close(struct net_device *ndev)
2147{
2148 struct device_node *np = ndev->dev.parent->of_node;
2149 struct ravb_private *priv = netdev_priv(ndev);
2150 const struct ravb_hw_info *info = priv->info;
2151 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
2152
2153 netif_tx_stop_all_queues(ndev);
2154
2155 /* Disable interrupts by clearing the interrupt masks. */
2156 ravb_write(ndev, 0, RIC0);
2157 ravb_write(ndev, 0, RIC2);
2158 ravb_write(ndev, 0, TIC);
2159
2160 /* Stop PTP Clock driver */
2161 if (info->gptp)
2162 ravb_ptp_stop(ndev);
2163
2164 /* Set the config mode to stop the AVB-DMAC's processes */
2165 if (ravb_stop_dma(ndev) < 0)
2166 netdev_err(ndev,
2167 "device will be stopped after h/w processes are done.\n");
2168
2169 /* Clear the timestamp list */
2170 if (info->gptp || info->ccc_gac) {
2171 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
2172 list_del(&ts_skb->list);
2173 kfree_skb(ts_skb->skb);
2174 kfree(ts_skb);
2175 }
2176 }
2177
2178 /* PHY disconnect */
2179 if (ndev->phydev) {
2180 phy_stop(ndev->phydev);
2181 phy_disconnect(ndev->phydev);
2182 if (of_phy_is_fixed_link(np))
2183 of_phy_deregister_fixed_link(np);
2184 }
2185
2186 cancel_work_sync(&priv->work);
2187
2188 if (info->multi_irqs) {
2189 free_irq(priv->tx_irqs[RAVB_NC], ndev);
2190 free_irq(priv->rx_irqs[RAVB_NC], ndev);
2191 free_irq(priv->tx_irqs[RAVB_BE], ndev);
2192 free_irq(priv->rx_irqs[RAVB_BE], ndev);
2193 free_irq(priv->emac_irq, ndev);
2194 if (info->err_mgmt_irqs) {
2195 free_irq(priv->erra_irq, ndev);
2196 free_irq(priv->mgmta_irq, ndev);
2197 }
2198 }
2199 free_irq(ndev->irq, ndev);
2200
2201 if (info->nc_queues)
2202 napi_disable(&priv->napi[RAVB_NC]);
2203 napi_disable(&priv->napi[RAVB_BE]);
2204
2205 /* Free all the skb's in the RX queue and the DMA buffers. */
2206 ravb_ring_free(ndev, RAVB_BE);
2207 if (info->nc_queues)
2208 ravb_ring_free(ndev, RAVB_NC);
2209
2210 return 0;
2211}
2212
2213static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
2214{
2215 struct ravb_private *priv = netdev_priv(ndev);
2216 struct hwtstamp_config config;
2217
2218 config.flags = 0;
2219 config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
2220 HWTSTAMP_TX_OFF;
2221 switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
2222 case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
2223 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
2224 break;
2225 case RAVB_RXTSTAMP_TYPE_ALL:
2226 config.rx_filter = HWTSTAMP_FILTER_ALL;
2227 break;
2228 default:
2229 config.rx_filter = HWTSTAMP_FILTER_NONE;
2230 }
2231
2232 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2233 -EFAULT : 0;
2234}
2235
2236/* Control hardware time stamping */
2237static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
2238{
2239 struct ravb_private *priv = netdev_priv(ndev);
2240 struct hwtstamp_config config;
2241 u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
2242 u32 tstamp_tx_ctrl;
2243
2244 if (copy_from_user(&config, req->ifr_data, sizeof(config)))
2245 return -EFAULT;
2246
2247 switch (config.tx_type) {
2248 case HWTSTAMP_TX_OFF:
2249 tstamp_tx_ctrl = 0;
2250 break;
2251 case HWTSTAMP_TX_ON:
2252 tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
2253 break;
2254 default:
2255 return -ERANGE;
2256 }
2257
2258 switch (config.rx_filter) {
2259 case HWTSTAMP_FILTER_NONE:
2260 tstamp_rx_ctrl = 0;
2261 break;
2262 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2263 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
2264 break;
2265 default:
2266 config.rx_filter = HWTSTAMP_FILTER_ALL;
2267 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
2268 }
2269
2270 priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
2271 priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
2272
2273 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2274 -EFAULT : 0;
2275}
2276
2277/* ioctl to device function */
2278static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
2279{
2280 struct phy_device *phydev = ndev->phydev;
2281
2282 if (!netif_running(ndev))
2283 return -EINVAL;
2284
2285 if (!phydev)
2286 return -ENODEV;
2287
2288 switch (cmd) {
2289 case SIOCGHWTSTAMP:
2290 return ravb_hwtstamp_get(ndev, req);
2291 case SIOCSHWTSTAMP:
2292 return ravb_hwtstamp_set(ndev, req);
2293 }
2294
2295 return phy_mii_ioctl(phydev, req, cmd);
2296}
2297
2298static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
2299{
2300 struct ravb_private *priv = netdev_priv(ndev);
2301
2302 ndev->mtu = new_mtu;
2303
2304 if (netif_running(ndev)) {
2305 synchronize_irq(priv->emac_irq);
2306 ravb_emac_init(ndev);
2307 }
2308
2309 netdev_update_features(ndev);
2310
2311 return 0;
2312}
2313
2314static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
2315{
2316 struct ravb_private *priv = netdev_priv(ndev);
2317 unsigned long flags;
2318
2319 spin_lock_irqsave(&priv->lock, flags);
2320
2321 /* Disable TX and RX */
2322 ravb_rcv_snd_disable(ndev);
2323
2324 /* Modify RX Checksum setting */
2325 ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2326
2327 /* Enable TX and RX */
2328 ravb_rcv_snd_enable(ndev);
2329
2330 spin_unlock_irqrestore(&priv->lock, flags);
2331}
2332
2333static int ravb_set_features_gbeth(struct net_device *ndev,
2334 netdev_features_t features)
2335{
2336 /* Place holder */
2337 return 0;
2338}
2339
2340static int ravb_set_features_rcar(struct net_device *ndev,
2341 netdev_features_t features)
2342{
2343 netdev_features_t changed = ndev->features ^ features;
2344
2345 if (changed & NETIF_F_RXCSUM)
2346 ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2347
2348 ndev->features = features;
2349
2350 return 0;
2351}
2352
2353static int ravb_set_features(struct net_device *ndev,
2354 netdev_features_t features)
2355{
2356 struct ravb_private *priv = netdev_priv(ndev);
2357 const struct ravb_hw_info *info = priv->info;
2358
2359 return info->set_feature(ndev, features);
2360}
2361
2362static const struct net_device_ops ravb_netdev_ops = {
2363 .ndo_open = ravb_open,
2364 .ndo_stop = ravb_close,
2365 .ndo_start_xmit = ravb_start_xmit,
2366 .ndo_select_queue = ravb_select_queue,
2367 .ndo_get_stats = ravb_get_stats,
2368 .ndo_set_rx_mode = ravb_set_rx_mode,
2369 .ndo_tx_timeout = ravb_tx_timeout,
2370 .ndo_eth_ioctl = ravb_do_ioctl,
2371 .ndo_change_mtu = ravb_change_mtu,
2372 .ndo_validate_addr = eth_validate_addr,
2373 .ndo_set_mac_address = eth_mac_addr,
2374 .ndo_set_features = ravb_set_features,
2375};
2376
2377/* MDIO bus init function */
2378static int ravb_mdio_init(struct ravb_private *priv)
2379{
2380 struct platform_device *pdev = priv->pdev;
2381 struct device *dev = &pdev->dev;
2382 struct phy_device *phydev;
2383 struct device_node *pn;
2384 int error;
2385
2386 /* Bitbang init */
2387 priv->mdiobb.ops = &bb_ops;
2388
2389 /* MII controller setting */
2390 priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
2391 if (!priv->mii_bus)
2392 return -ENOMEM;
2393
2394 /* Hook up MII support for ethtool */
2395 priv->mii_bus->name = "ravb_mii";
2396 priv->mii_bus->parent = dev;
2397 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2398 pdev->name, pdev->id);
2399
2400 /* Register MDIO bus */
2401 error = of_mdiobus_register(priv->mii_bus, dev->of_node);
2402 if (error)
2403 goto out_free_bus;
2404
2405 pn = of_parse_phandle(dev->of_node, "phy-handle", 0);
2406 phydev = of_phy_find_device(pn);
2407 if (phydev) {
2408 phydev->mac_managed_pm = true;
2409 put_device(&phydev->mdio.dev);
2410 }
2411 of_node_put(pn);
2412
2413 return 0;
2414
2415out_free_bus:
2416 free_mdio_bitbang(priv->mii_bus);
2417 return error;
2418}
2419
2420/* MDIO bus release function */
2421static int ravb_mdio_release(struct ravb_private *priv)
2422{
2423 /* Unregister mdio bus */
2424 mdiobus_unregister(priv->mii_bus);
2425
2426 /* Free bitbang info */
2427 free_mdio_bitbang(priv->mii_bus);
2428
2429 return 0;
2430}
2431
2432static const struct ravb_hw_info ravb_gen3_hw_info = {
2433 .rx_ring_free = ravb_rx_ring_free_rcar,
2434 .rx_ring_format = ravb_rx_ring_format_rcar,
2435 .alloc_rx_desc = ravb_alloc_rx_desc_rcar,
2436 .receive = ravb_rx_rcar,
2437 .set_rate = ravb_set_rate_rcar,
2438 .set_feature = ravb_set_features_rcar,
2439 .dmac_init = ravb_dmac_init_rcar,
2440 .emac_init = ravb_emac_init_rcar,
2441 .gstrings_stats = ravb_gstrings_stats,
2442 .gstrings_size = sizeof(ravb_gstrings_stats),
2443 .net_hw_features = NETIF_F_RXCSUM,
2444 .net_features = NETIF_F_RXCSUM,
2445 .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2446 .max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
2447 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2448 .rx_max_buf_size = SZ_2K,
2449 .internal_delay = 1,
2450 .tx_counters = 1,
2451 .multi_irqs = 1,
2452 .irq_en_dis = 1,
2453 .ccc_gac = 1,
2454 .nc_queues = 1,
2455 .magic_pkt = 1,
2456};
2457
2458static const struct ravb_hw_info ravb_gen2_hw_info = {
2459 .rx_ring_free = ravb_rx_ring_free_rcar,
2460 .rx_ring_format = ravb_rx_ring_format_rcar,
2461 .alloc_rx_desc = ravb_alloc_rx_desc_rcar,
2462 .receive = ravb_rx_rcar,
2463 .set_rate = ravb_set_rate_rcar,
2464 .set_feature = ravb_set_features_rcar,
2465 .dmac_init = ravb_dmac_init_rcar,
2466 .emac_init = ravb_emac_init_rcar,
2467 .gstrings_stats = ravb_gstrings_stats,
2468 .gstrings_size = sizeof(ravb_gstrings_stats),
2469 .net_hw_features = NETIF_F_RXCSUM,
2470 .net_features = NETIF_F_RXCSUM,
2471 .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2472 .max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
2473 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2474 .rx_max_buf_size = SZ_2K,
2475 .aligned_tx = 1,
2476 .gptp = 1,
2477 .nc_queues = 1,
2478 .magic_pkt = 1,
2479};
2480
2481static const struct ravb_hw_info ravb_rzv2m_hw_info = {
2482 .rx_ring_free = ravb_rx_ring_free_rcar,
2483 .rx_ring_format = ravb_rx_ring_format_rcar,
2484 .alloc_rx_desc = ravb_alloc_rx_desc_rcar,
2485 .receive = ravb_rx_rcar,
2486 .set_rate = ravb_set_rate_rcar,
2487 .set_feature = ravb_set_features_rcar,
2488 .dmac_init = ravb_dmac_init_rcar,
2489 .emac_init = ravb_emac_init_rcar,
2490 .gstrings_stats = ravb_gstrings_stats,
2491 .gstrings_size = sizeof(ravb_gstrings_stats),
2492 .net_hw_features = NETIF_F_RXCSUM,
2493 .net_features = NETIF_F_RXCSUM,
2494 .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2495 .max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
2496 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2497 .rx_max_buf_size = SZ_2K,
2498 .multi_irqs = 1,
2499 .err_mgmt_irqs = 1,
2500 .gptp = 1,
2501 .gptp_ref_clk = 1,
2502 .nc_queues = 1,
2503 .magic_pkt = 1,
2504};
2505
2506static const struct ravb_hw_info gbeth_hw_info = {
2507 .rx_ring_free = ravb_rx_ring_free_gbeth,
2508 .rx_ring_format = ravb_rx_ring_format_gbeth,
2509 .alloc_rx_desc = ravb_alloc_rx_desc_gbeth,
2510 .receive = ravb_rx_gbeth,
2511 .set_rate = ravb_set_rate_gbeth,
2512 .set_feature = ravb_set_features_gbeth,
2513 .dmac_init = ravb_dmac_init_gbeth,
2514 .emac_init = ravb_emac_init_gbeth,
2515 .gstrings_stats = ravb_gstrings_stats_gbeth,
2516 .gstrings_size = sizeof(ravb_gstrings_stats_gbeth),
2517 .stats_len = ARRAY_SIZE(ravb_gstrings_stats_gbeth),
2518 .max_rx_len = ALIGN(GBETH_RX_BUFF_MAX, RAVB_ALIGN),
2519 .tccr_mask = TCCR_TSRQ0,
2520 .rx_max_buf_size = SZ_8K,
2521 .aligned_tx = 1,
2522 .tx_counters = 1,
2523 .carrier_counters = 1,
2524 .half_duplex = 1,
2525};
2526
2527static const struct of_device_id ravb_match_table[] = {
2528 { .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info },
2529 { .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info },
2530 { .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info },
2531 { .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info },
2532 { .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info },
2533 { .compatible = "renesas,etheravb-rcar-gen4", .data = &ravb_gen3_hw_info },
2534 { .compatible = "renesas,etheravb-rzv2m", .data = &ravb_rzv2m_hw_info },
2535 { .compatible = "renesas,rzg2l-gbeth", .data = &gbeth_hw_info },
2536 { }
2537};
2538MODULE_DEVICE_TABLE(of, ravb_match_table);
2539
2540static int ravb_set_gti(struct net_device *ndev)
2541{
2542 struct ravb_private *priv = netdev_priv(ndev);
2543 const struct ravb_hw_info *info = priv->info;
2544 struct device *dev = ndev->dev.parent;
2545 unsigned long rate;
2546 uint64_t inc;
2547
2548 if (info->gptp_ref_clk)
2549 rate = clk_get_rate(priv->gptp_clk);
2550 else
2551 rate = clk_get_rate(priv->clk);
2552 if (!rate)
2553 return -EINVAL;
2554
2555 inc = div64_ul(1000000000ULL << 20, rate);
2556
2557 if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
2558 dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
2559 inc, GTI_TIV_MIN, GTI_TIV_MAX);
2560 return -EINVAL;
2561 }
2562
2563 ravb_write(ndev, inc, GTI);
2564
2565 return 0;
2566}
2567
2568static int ravb_set_config_mode(struct net_device *ndev)
2569{
2570 struct ravb_private *priv = netdev_priv(ndev);
2571 const struct ravb_hw_info *info = priv->info;
2572 int error;
2573
2574 if (info->gptp) {
2575 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
2576 if (error)
2577 return error;
2578 /* Set CSEL value */
2579 ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
2580 } else if (info->ccc_gac) {
2581 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG | CCC_GAC | CCC_CSEL_HPB);
2582 } else {
2583 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
2584 }
2585
2586 return error;
2587}
2588
2589/* Set tx and rx clock internal delay modes */
2590static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
2591{
2592 struct ravb_private *priv = netdev_priv(ndev);
2593 bool explicit_delay = false;
2594 u32 delay;
2595
2596 if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
2597 /* Valid values are 0 and 1800, according to DT bindings */
2598 priv->rxcidm = !!delay;
2599 explicit_delay = true;
2600 }
2601 if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
2602 /* Valid values are 0 and 2000, according to DT bindings */
2603 priv->txcidm = !!delay;
2604 explicit_delay = true;
2605 }
2606
2607 if (explicit_delay)
2608 return;
2609
2610 /* Fall back to legacy rgmii-*id behavior */
2611 if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2612 priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
2613 priv->rxcidm = 1;
2614 priv->rgmii_override = 1;
2615 }
2616
2617 if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2618 priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
2619 priv->txcidm = 1;
2620 priv->rgmii_override = 1;
2621 }
2622}
2623
2624static void ravb_set_delay_mode(struct net_device *ndev)
2625{
2626 struct ravb_private *priv = netdev_priv(ndev);
2627 u32 set = 0;
2628
2629 if (priv->rxcidm)
2630 set |= APSR_RDM;
2631 if (priv->txcidm)
2632 set |= APSR_TDM;
2633 ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
2634}
2635
2636static int ravb_probe(struct platform_device *pdev)
2637{
2638 struct device_node *np = pdev->dev.of_node;
2639 const struct ravb_hw_info *info;
2640 struct reset_control *rstc;
2641 struct ravb_private *priv;
2642 struct net_device *ndev;
2643 int error, irq, q;
2644 struct resource *res;
2645 int i;
2646
2647 if (!np) {
2648 dev_err(&pdev->dev,
2649 "this driver is required to be instantiated from device tree\n");
2650 return -EINVAL;
2651 }
2652
2653 rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
2654 if (IS_ERR(rstc))
2655 return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
2656 "failed to get cpg reset\n");
2657
2658 ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2659 NUM_TX_QUEUE, NUM_RX_QUEUE);
2660 if (!ndev)
2661 return -ENOMEM;
2662
2663 info = of_device_get_match_data(&pdev->dev);
2664
2665 ndev->features = info->net_features;
2666 ndev->hw_features = info->net_hw_features;
2667
2668 error = reset_control_deassert(rstc);
2669 if (error)
2670 goto out_free_netdev;
2671
2672 pm_runtime_enable(&pdev->dev);
2673 error = pm_runtime_resume_and_get(&pdev->dev);
2674 if (error < 0)
2675 goto out_rpm_disable;
2676
2677 if (info->multi_irqs) {
2678 if (info->err_mgmt_irqs)
2679 irq = platform_get_irq_byname(pdev, "dia");
2680 else
2681 irq = platform_get_irq_byname(pdev, "ch22");
2682 } else {
2683 irq = platform_get_irq(pdev, 0);
2684 }
2685 if (irq < 0) {
2686 error = irq;
2687 goto out_release;
2688 }
2689 ndev->irq = irq;
2690
2691 SET_NETDEV_DEV(ndev, &pdev->dev);
2692
2693 priv = netdev_priv(ndev);
2694 priv->info = info;
2695 priv->rstc = rstc;
2696 priv->ndev = ndev;
2697 priv->pdev = pdev;
2698 priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2699 priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2700 if (info->nc_queues) {
2701 priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2702 priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2703 }
2704
2705 priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2706 if (IS_ERR(priv->addr)) {
2707 error = PTR_ERR(priv->addr);
2708 goto out_release;
2709 }
2710
2711 /* The Ether-specific entries in the device structure. */
2712 ndev->base_addr = res->start;
2713
2714 spin_lock_init(&priv->lock);
2715 INIT_WORK(&priv->work, ravb_tx_timeout_work);
2716
2717 error = of_get_phy_mode(np, &priv->phy_interface);
2718 if (error && error != -ENODEV)
2719 goto out_release;
2720
2721 priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2722 priv->avb_link_active_low =
2723 of_property_read_bool(np, "renesas,ether-link-active-low");
2724
2725 if (info->multi_irqs) {
2726 if (info->err_mgmt_irqs)
2727 irq = platform_get_irq_byname(pdev, "line3");
2728 else
2729 irq = platform_get_irq_byname(pdev, "ch24");
2730 if (irq < 0) {
2731 error = irq;
2732 goto out_release;
2733 }
2734 priv->emac_irq = irq;
2735 for (i = 0; i < NUM_RX_QUEUE; i++) {
2736 irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2737 if (irq < 0) {
2738 error = irq;
2739 goto out_release;
2740 }
2741 priv->rx_irqs[i] = irq;
2742 }
2743 for (i = 0; i < NUM_TX_QUEUE; i++) {
2744 irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2745 if (irq < 0) {
2746 error = irq;
2747 goto out_release;
2748 }
2749 priv->tx_irqs[i] = irq;
2750 }
2751
2752 if (info->err_mgmt_irqs) {
2753 irq = platform_get_irq_byname(pdev, "err_a");
2754 if (irq < 0) {
2755 error = irq;
2756 goto out_release;
2757 }
2758 priv->erra_irq = irq;
2759
2760 irq = platform_get_irq_byname(pdev, "mgmt_a");
2761 if (irq < 0) {
2762 error = irq;
2763 goto out_release;
2764 }
2765 priv->mgmta_irq = irq;
2766 }
2767 }
2768
2769 priv->clk = devm_clk_get(&pdev->dev, NULL);
2770 if (IS_ERR(priv->clk)) {
2771 error = PTR_ERR(priv->clk);
2772 goto out_release;
2773 }
2774
2775 priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk");
2776 if (IS_ERR(priv->refclk)) {
2777 error = PTR_ERR(priv->refclk);
2778 goto out_release;
2779 }
2780 clk_prepare_enable(priv->refclk);
2781
2782 if (info->gptp_ref_clk) {
2783 priv->gptp_clk = devm_clk_get(&pdev->dev, "gptp");
2784 if (IS_ERR(priv->gptp_clk)) {
2785 error = PTR_ERR(priv->gptp_clk);
2786 goto out_disable_refclk;
2787 }
2788 clk_prepare_enable(priv->gptp_clk);
2789 }
2790
2791 ndev->max_mtu = info->rx_max_buf_size - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2792 ndev->min_mtu = ETH_MIN_MTU;
2793
2794 /* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer
2795 * Use two descriptor to handle such situation. First descriptor to
2796 * handle aligned data buffer and second descriptor to handle the
2797 * overflow data because of alignment.
2798 */
2799 priv->num_tx_desc = info->aligned_tx ? 2 : 1;
2800
2801 /* Set function */
2802 ndev->netdev_ops = &ravb_netdev_ops;
2803 ndev->ethtool_ops = &ravb_ethtool_ops;
2804
2805 /* Set AVB config mode */
2806 error = ravb_set_config_mode(ndev);
2807 if (error)
2808 goto out_disable_gptp_clk;
2809
2810 if (info->gptp || info->ccc_gac) {
2811 /* Set GTI value */
2812 error = ravb_set_gti(ndev);
2813 if (error)
2814 goto out_disable_gptp_clk;
2815
2816 /* Request GTI loading */
2817 ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2818 }
2819
2820 if (info->internal_delay) {
2821 ravb_parse_delay_mode(np, ndev);
2822 ravb_set_delay_mode(ndev);
2823 }
2824
2825 /* Allocate descriptor base address table */
2826 priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2827 priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2828 &priv->desc_bat_dma, GFP_KERNEL);
2829 if (!priv->desc_bat) {
2830 dev_err(&pdev->dev,
2831 "Cannot allocate desc base address table (size %d bytes)\n",
2832 priv->desc_bat_size);
2833 error = -ENOMEM;
2834 goto out_disable_gptp_clk;
2835 }
2836 for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2837 priv->desc_bat[q].die_dt = DT_EOS;
2838 ravb_write(ndev, priv->desc_bat_dma, DBAT);
2839
2840 /* Initialise HW timestamp list */
2841 INIT_LIST_HEAD(&priv->ts_skb_list);
2842
2843 /* Initialise PTP Clock driver */
2844 if (info->ccc_gac)
2845 ravb_ptp_init(ndev, pdev);
2846
2847 /* Debug message level */
2848 priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2849
2850 /* Read and set MAC address */
2851 ravb_read_mac_address(np, ndev);
2852 if (!is_valid_ether_addr(ndev->dev_addr)) {
2853 dev_warn(&pdev->dev,
2854 "no valid MAC address supplied, using a random one\n");
2855 eth_hw_addr_random(ndev);
2856 }
2857
2858 /* MDIO bus init */
2859 error = ravb_mdio_init(priv);
2860 if (error) {
2861 dev_err(&pdev->dev, "failed to initialize MDIO\n");
2862 goto out_dma_free;
2863 }
2864
2865 netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll);
2866 if (info->nc_queues)
2867 netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll);
2868
2869 /* Network device register */
2870 error = register_netdev(ndev);
2871 if (error)
2872 goto out_napi_del;
2873
2874 device_set_wakeup_capable(&pdev->dev, 1);
2875
2876 /* Print device information */
2877 netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2878 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2879
2880 platform_set_drvdata(pdev, ndev);
2881
2882 return 0;
2883
2884out_napi_del:
2885 if (info->nc_queues)
2886 netif_napi_del(&priv->napi[RAVB_NC]);
2887
2888 netif_napi_del(&priv->napi[RAVB_BE]);
2889 ravb_mdio_release(priv);
2890out_dma_free:
2891 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2892 priv->desc_bat_dma);
2893
2894 /* Stop PTP Clock driver */
2895 if (info->ccc_gac)
2896 ravb_ptp_stop(ndev);
2897out_disable_gptp_clk:
2898 clk_disable_unprepare(priv->gptp_clk);
2899out_disable_refclk:
2900 clk_disable_unprepare(priv->refclk);
2901out_release:
2902 pm_runtime_put(&pdev->dev);
2903out_rpm_disable:
2904 pm_runtime_disable(&pdev->dev);
2905 reset_control_assert(rstc);
2906out_free_netdev:
2907 free_netdev(ndev);
2908 return error;
2909}
2910
2911static void ravb_remove(struct platform_device *pdev)
2912{
2913 struct net_device *ndev = platform_get_drvdata(pdev);
2914 struct ravb_private *priv = netdev_priv(ndev);
2915 const struct ravb_hw_info *info = priv->info;
2916
2917 unregister_netdev(ndev);
2918 if (info->nc_queues)
2919 netif_napi_del(&priv->napi[RAVB_NC]);
2920 netif_napi_del(&priv->napi[RAVB_BE]);
2921
2922 ravb_mdio_release(priv);
2923
2924 /* Stop PTP Clock driver */
2925 if (info->ccc_gac)
2926 ravb_ptp_stop(ndev);
2927
2928 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2929 priv->desc_bat_dma);
2930
2931 ravb_set_opmode(ndev, CCC_OPC_RESET);
2932
2933 clk_disable_unprepare(priv->gptp_clk);
2934 clk_disable_unprepare(priv->refclk);
2935
2936 pm_runtime_put_sync(&pdev->dev);
2937 pm_runtime_disable(&pdev->dev);
2938 reset_control_assert(priv->rstc);
2939 free_netdev(ndev);
2940 platform_set_drvdata(pdev, NULL);
2941}
2942
2943static int ravb_wol_setup(struct net_device *ndev)
2944{
2945 struct ravb_private *priv = netdev_priv(ndev);
2946 const struct ravb_hw_info *info = priv->info;
2947
2948 /* Disable interrupts by clearing the interrupt masks. */
2949 ravb_write(ndev, 0, RIC0);
2950 ravb_write(ndev, 0, RIC2);
2951 ravb_write(ndev, 0, TIC);
2952
2953 /* Only allow ECI interrupts */
2954 synchronize_irq(priv->emac_irq);
2955 if (info->nc_queues)
2956 napi_disable(&priv->napi[RAVB_NC]);
2957 napi_disable(&priv->napi[RAVB_BE]);
2958 ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2959
2960 /* Enable MagicPacket */
2961 ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2962
2963 return enable_irq_wake(priv->emac_irq);
2964}
2965
2966static int ravb_wol_restore(struct net_device *ndev)
2967{
2968 struct ravb_private *priv = netdev_priv(ndev);
2969 const struct ravb_hw_info *info = priv->info;
2970
2971 if (info->nc_queues)
2972 napi_enable(&priv->napi[RAVB_NC]);
2973 napi_enable(&priv->napi[RAVB_BE]);
2974
2975 /* Disable MagicPacket */
2976 ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2977
2978 ravb_close(ndev);
2979
2980 return disable_irq_wake(priv->emac_irq);
2981}
2982
2983static int __maybe_unused ravb_suspend(struct device *dev)
2984{
2985 struct net_device *ndev = dev_get_drvdata(dev);
2986 struct ravb_private *priv = netdev_priv(ndev);
2987 int ret;
2988
2989 if (!netif_running(ndev))
2990 return 0;
2991
2992 netif_device_detach(ndev);
2993
2994 if (priv->wol_enabled)
2995 ret = ravb_wol_setup(ndev);
2996 else
2997 ret = ravb_close(ndev);
2998
2999 if (priv->info->ccc_gac)
3000 ravb_ptp_stop(ndev);
3001
3002 return ret;
3003}
3004
3005static int __maybe_unused ravb_resume(struct device *dev)
3006{
3007 struct net_device *ndev = dev_get_drvdata(dev);
3008 struct ravb_private *priv = netdev_priv(ndev);
3009 const struct ravb_hw_info *info = priv->info;
3010 int ret = 0;
3011
3012 /* If WoL is enabled set reset mode to rearm the WoL logic */
3013 if (priv->wol_enabled) {
3014 ret = ravb_set_opmode(ndev, CCC_OPC_RESET);
3015 if (ret)
3016 return ret;
3017 }
3018
3019 /* All register have been reset to default values.
3020 * Restore all registers which where setup at probe time and
3021 * reopen device if it was running before system suspended.
3022 */
3023
3024 /* Set AVB config mode */
3025 ret = ravb_set_config_mode(ndev);
3026 if (ret)
3027 return ret;
3028
3029 if (info->gptp || info->ccc_gac) {
3030 /* Set GTI value */
3031 ret = ravb_set_gti(ndev);
3032 if (ret)
3033 return ret;
3034
3035 /* Request GTI loading */
3036 ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
3037 }
3038
3039 if (info->internal_delay)
3040 ravb_set_delay_mode(ndev);
3041
3042 /* Restore descriptor base address table */
3043 ravb_write(ndev, priv->desc_bat_dma, DBAT);
3044
3045 if (priv->info->ccc_gac)
3046 ravb_ptp_init(ndev, priv->pdev);
3047
3048 if (netif_running(ndev)) {
3049 if (priv->wol_enabled) {
3050 ret = ravb_wol_restore(ndev);
3051 if (ret)
3052 return ret;
3053 }
3054 ret = ravb_open(ndev);
3055 if (ret < 0)
3056 return ret;
3057 ravb_set_rx_mode(ndev);
3058 netif_device_attach(ndev);
3059 }
3060
3061 return ret;
3062}
3063
3064static int __maybe_unused ravb_runtime_nop(struct device *dev)
3065{
3066 /* Runtime PM callback shared between ->runtime_suspend()
3067 * and ->runtime_resume(). Simply returns success.
3068 *
3069 * This driver re-initializes all registers after
3070 * pm_runtime_get_sync() anyway so there is no need
3071 * to save and restore registers here.
3072 */
3073 return 0;
3074}
3075
3076static const struct dev_pm_ops ravb_dev_pm_ops = {
3077 SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
3078 SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
3079};
3080
3081static struct platform_driver ravb_driver = {
3082 .probe = ravb_probe,
3083 .remove_new = ravb_remove,
3084 .driver = {
3085 .name = "ravb",
3086 .pm = &ravb_dev_pm_ops,
3087 .of_match_table = ravb_match_table,
3088 },
3089};
3090
3091module_platform_driver(ravb_driver);
3092
3093MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
3094MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
3095MODULE_LICENSE("GPL v2");