Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2011 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include <linux/delay.h>
  30
  31#include "e1000.h"
  32
  33static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
  34static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
  35static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
  36static s32 e1000_wait_autoneg(struct e1000_hw *hw);
  37static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
  38static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
  39					  u16 *data, bool read, bool page_set);
  40static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  41static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  42                                          u16 *data, bool read);
  43
  44/* Cable length tables */
  45static const u16 e1000_m88_cable_length_table[] = {
  46	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
  47#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  48		ARRAY_SIZE(e1000_m88_cable_length_table)
  49
  50static const u16 e1000_igp_2_cable_length_table[] = {
  51	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  52	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  53	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  54	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  55	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  56	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  57	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  58	124};
  59#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  60		ARRAY_SIZE(e1000_igp_2_cable_length_table)
  61
  62#define BM_PHY_REG_PAGE(offset) \
  63	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
  64#define BM_PHY_REG_NUM(offset) \
  65	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
  66	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
  67		~MAX_PHY_REG_ADDRESS)))
  68
  69#define HV_INTC_FC_PAGE_START             768
  70#define I82578_ADDR_REG                   29
  71#define I82577_ADDR_REG                   16
  72#define I82577_CFG_REG                    22
  73#define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15)
  74#define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */
  75#define I82577_CTRL_REG                   23
  76
  77/* 82577 specific PHY registers */
  78#define I82577_PHY_CTRL_2            18
  79#define I82577_PHY_STATUS_2          26
  80#define I82577_PHY_DIAG_STATUS       31
  81
  82/* I82577 PHY Status 2 */
  83#define I82577_PHY_STATUS2_REV_POLARITY   0x0400
  84#define I82577_PHY_STATUS2_MDIX           0x0800
  85#define I82577_PHY_STATUS2_SPEED_MASK     0x0300
  86#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
  87
  88/* I82577 PHY Control 2 */
  89#define I82577_PHY_CTRL2_AUTO_MDIX        0x0400
  90#define I82577_PHY_CTRL2_FORCE_MDI_MDIX   0x0200
  91
  92/* I82577 PHY Diagnostics Status */
  93#define I82577_DSTATUS_CABLE_LENGTH       0x03FC
  94#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
  95
  96/* BM PHY Copper Specific Control 1 */
  97#define BM_CS_CTRL1                       16
  98
  99#define HV_MUX_DATA_CTRL               PHY_REG(776, 16)
 100#define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400
 101#define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004
 102
 103/**
 104 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
 105 *  @hw: pointer to the HW structure
 106 *
 107 *  Read the PHY management control register and check whether a PHY reset
 108 *  is blocked.  If a reset is not blocked return 0, otherwise
 109 *  return E1000_BLK_PHY_RESET (12).
 110 **/
 111s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
 112{
 113	u32 manc;
 114
 115	manc = er32(MANC);
 116
 117	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
 118	       E1000_BLK_PHY_RESET : 0;
 119}
 120
 121/**
 122 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
 123 *  @hw: pointer to the HW structure
 124 *
 125 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 126 *  revision in the hardware structure.
 127 **/
 128s32 e1000e_get_phy_id(struct e1000_hw *hw)
 129{
 130	struct e1000_phy_info *phy = &hw->phy;
 131	s32 ret_val = 0;
 132	u16 phy_id;
 133	u16 retry_count = 0;
 134
 135	if (!(phy->ops.read_reg))
 136		goto out;
 137
 138	while (retry_count < 2) {
 139		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
 140		if (ret_val)
 141			goto out;
 142
 143		phy->id = (u32)(phy_id << 16);
 144		udelay(20);
 145		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
 146		if (ret_val)
 147			goto out;
 148
 149		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
 150		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
 151
 152		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
 153			goto out;
 154
 155		retry_count++;
 156	}
 157out:
 158	return ret_val;
 159}
 160
 161/**
 162 *  e1000e_phy_reset_dsp - Reset PHY DSP
 163 *  @hw: pointer to the HW structure
 164 *
 165 *  Reset the digital signal processor.
 166 **/
 167s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
 168{
 169	s32 ret_val;
 170
 171	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 172	if (ret_val)
 173		return ret_val;
 174
 175	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 176}
 177
 178/**
 179 *  e1000e_read_phy_reg_mdic - Read MDI control register
 180 *  @hw: pointer to the HW structure
 181 *  @offset: register offset to be read
 182 *  @data: pointer to the read data
 183 *
 184 *  Reads the MDI control register in the PHY at offset and stores the
 185 *  information read to data.
 186 **/
 187s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 188{
 189	struct e1000_phy_info *phy = &hw->phy;
 190	u32 i, mdic = 0;
 191
 192	if (offset > MAX_PHY_REG_ADDRESS) {
 193		e_dbg("PHY Address %d is out of range\n", offset);
 194		return -E1000_ERR_PARAM;
 195	}
 196
 197	/*
 198	 * Set up Op-code, Phy Address, and register offset in the MDI
 199	 * Control register.  The MAC will take care of interfacing with the
 200	 * PHY to retrieve the desired data.
 201	 */
 202	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 203		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 204		(E1000_MDIC_OP_READ));
 205
 206	ew32(MDIC, mdic);
 207
 208	/*
 209	 * Poll the ready bit to see if the MDI read completed
 210	 * Increasing the time out as testing showed failures with
 211	 * the lower time out
 212	 */
 213	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 214		udelay(50);
 215		mdic = er32(MDIC);
 216		if (mdic & E1000_MDIC_READY)
 217			break;
 218	}
 219	if (!(mdic & E1000_MDIC_READY)) {
 220		e_dbg("MDI Read did not complete\n");
 221		return -E1000_ERR_PHY;
 222	}
 223	if (mdic & E1000_MDIC_ERROR) {
 224		e_dbg("MDI Error\n");
 225		return -E1000_ERR_PHY;
 226	}
 227	*data = (u16) mdic;
 228
 229	/*
 230	 * Allow some time after each MDIC transaction to avoid
 231	 * reading duplicate data in the next MDIC transaction.
 232	 */
 233	if (hw->mac.type == e1000_pch2lan)
 234		udelay(100);
 235
 236	return 0;
 237}
 238
 239/**
 240 *  e1000e_write_phy_reg_mdic - Write MDI control register
 241 *  @hw: pointer to the HW structure
 242 *  @offset: register offset to write to
 243 *  @data: data to write to register at offset
 244 *
 245 *  Writes data to MDI control register in the PHY at offset.
 246 **/
 247s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 248{
 249	struct e1000_phy_info *phy = &hw->phy;
 250	u32 i, mdic = 0;
 251
 252	if (offset > MAX_PHY_REG_ADDRESS) {
 253		e_dbg("PHY Address %d is out of range\n", offset);
 254		return -E1000_ERR_PARAM;
 255	}
 256
 257	/*
 258	 * Set up Op-code, Phy Address, and register offset in the MDI
 259	 * Control register.  The MAC will take care of interfacing with the
 260	 * PHY to retrieve the desired data.
 261	 */
 262	mdic = (((u32)data) |
 263		(offset << E1000_MDIC_REG_SHIFT) |
 264		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 265		(E1000_MDIC_OP_WRITE));
 266
 267	ew32(MDIC, mdic);
 268
 269	/*
 270	 * Poll the ready bit to see if the MDI read completed
 271	 * Increasing the time out as testing showed failures with
 272	 * the lower time out
 273	 */
 274	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 275		udelay(50);
 276		mdic = er32(MDIC);
 277		if (mdic & E1000_MDIC_READY)
 278			break;
 279	}
 280	if (!(mdic & E1000_MDIC_READY)) {
 281		e_dbg("MDI Write did not complete\n");
 282		return -E1000_ERR_PHY;
 283	}
 284	if (mdic & E1000_MDIC_ERROR) {
 285		e_dbg("MDI Error\n");
 286		return -E1000_ERR_PHY;
 287	}
 288
 289	/*
 290	 * Allow some time after each MDIC transaction to avoid
 291	 * reading duplicate data in the next MDIC transaction.
 292	 */
 293	if (hw->mac.type == e1000_pch2lan)
 294		udelay(100);
 295
 296	return 0;
 297}
 298
 299/**
 300 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 301 *  @hw: pointer to the HW structure
 302 *  @offset: register offset to be read
 303 *  @data: pointer to the read data
 304 *
 305 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 306 *  and storing the retrieved information in data.  Release any acquired
 307 *  semaphores before exiting.
 308 **/
 309s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 310{
 311	s32 ret_val;
 312
 313	ret_val = hw->phy.ops.acquire(hw);
 314	if (ret_val)
 315		return ret_val;
 316
 317	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 318					   data);
 319
 320	hw->phy.ops.release(hw);
 321
 322	return ret_val;
 323}
 324
 325/**
 326 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 327 *  @hw: pointer to the HW structure
 328 *  @offset: register offset to write to
 329 *  @data: data to write at register offset
 330 *
 331 *  Acquires semaphore, if necessary, then writes the data to PHY register
 332 *  at the offset.  Release any acquired semaphores before exiting.
 333 **/
 334s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 335{
 336	s32 ret_val;
 337
 338	ret_val = hw->phy.ops.acquire(hw);
 339	if (ret_val)
 340		return ret_val;
 341
 342	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 343					    data);
 344
 345	hw->phy.ops.release(hw);
 346
 347	return ret_val;
 348}
 349
 350/**
 351 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 352 *  @hw: pointer to the HW structure
 353 *  @page: page to set (shifted left when necessary)
 354 *
 355 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 356 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 357 *  must set it appropriately (if necessary) after this function returns.
 358 **/
 359s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
 360{
 361	e_dbg("Setting page 0x%x\n", page);
 362
 363	hw->phy.addr = 1;
 364
 365	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
 366}
 367
 368/**
 369 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 370 *  @hw: pointer to the HW structure
 371 *  @offset: register offset to be read
 372 *  @data: pointer to the read data
 373 *  @locked: semaphore has already been acquired or not
 374 *
 375 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 376 *  and stores the retrieved information in data.  Release any acquired
 377 *  semaphores before exiting.
 378 **/
 379static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
 380                                    bool locked)
 381{
 382	s32 ret_val = 0;
 383
 384	if (!locked) {
 385		if (!(hw->phy.ops.acquire))
 386			goto out;
 387
 388		ret_val = hw->phy.ops.acquire(hw);
 389		if (ret_val)
 390			goto out;
 391	}
 392
 393	if (offset > MAX_PHY_MULTI_PAGE_REG) {
 394		ret_val = e1000e_write_phy_reg_mdic(hw,
 395						    IGP01E1000_PHY_PAGE_SELECT,
 396						    (u16)offset);
 397		if (ret_val)
 398			goto release;
 399	}
 400
 401	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 402	                                  data);
 403
 404release:
 405	if (!locked)
 406		hw->phy.ops.release(hw);
 407out:
 408	return ret_val;
 409}
 410
 411/**
 412 *  e1000e_read_phy_reg_igp - Read igp PHY register
 413 *  @hw: pointer to the HW structure
 414 *  @offset: register offset to be read
 415 *  @data: pointer to the read data
 416 *
 417 *  Acquires semaphore then reads the PHY register at offset and stores the
 418 *  retrieved information in data.
 419 *  Release the acquired semaphore before exiting.
 420 **/
 421s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 422{
 423	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
 424}
 425
 426/**
 427 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 428 *  @hw: pointer to the HW structure
 429 *  @offset: register offset to be read
 430 *  @data: pointer to the read data
 431 *
 432 *  Reads the PHY register at offset and stores the retrieved information
 433 *  in data.  Assumes semaphore already acquired.
 434 **/
 435s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 436{
 437	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
 438}
 439
 440/**
 441 *  e1000e_write_phy_reg_igp - Write igp PHY register
 442 *  @hw: pointer to the HW structure
 443 *  @offset: register offset to write to
 444 *  @data: data to write at register offset
 445 *  @locked: semaphore has already been acquired or not
 446 *
 447 *  Acquires semaphore, if necessary, then writes the data to PHY register
 448 *  at the offset.  Release any acquired semaphores before exiting.
 449 **/
 450static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
 451                                     bool locked)
 452{
 453	s32 ret_val = 0;
 454
 455	if (!locked) {
 456		if (!(hw->phy.ops.acquire))
 457			goto out;
 458
 459		ret_val = hw->phy.ops.acquire(hw);
 460		if (ret_val)
 461			goto out;
 462	}
 463
 464	if (offset > MAX_PHY_MULTI_PAGE_REG) {
 465		ret_val = e1000e_write_phy_reg_mdic(hw,
 466						    IGP01E1000_PHY_PAGE_SELECT,
 467						    (u16)offset);
 468		if (ret_val)
 469			goto release;
 470	}
 471
 472	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 473					    data);
 474
 475release:
 476	if (!locked)
 477		hw->phy.ops.release(hw);
 478
 479out:
 480	return ret_val;
 481}
 482
 483/**
 484 *  e1000e_write_phy_reg_igp - Write igp PHY register
 485 *  @hw: pointer to the HW structure
 486 *  @offset: register offset to write to
 487 *  @data: data to write at register offset
 488 *
 489 *  Acquires semaphore then writes the data to PHY register
 490 *  at the offset.  Release any acquired semaphores before exiting.
 491 **/
 492s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 493{
 494	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
 495}
 496
 497/**
 498 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 499 *  @hw: pointer to the HW structure
 500 *  @offset: register offset to write to
 501 *  @data: data to write at register offset
 502 *
 503 *  Writes the data to PHY register at the offset.
 504 *  Assumes semaphore already acquired.
 505 **/
 506s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
 507{
 508	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
 509}
 510
 511/**
 512 *  __e1000_read_kmrn_reg - Read kumeran register
 513 *  @hw: pointer to the HW structure
 514 *  @offset: register offset to be read
 515 *  @data: pointer to the read data
 516 *  @locked: semaphore has already been acquired or not
 517 *
 518 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 519 *  using the kumeran interface.  The information retrieved is stored in data.
 520 *  Release any acquired semaphores before exiting.
 521 **/
 522static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
 523                                 bool locked)
 524{
 525	u32 kmrnctrlsta;
 526	s32 ret_val = 0;
 527
 528	if (!locked) {
 529		if (!(hw->phy.ops.acquire))
 530			goto out;
 531
 532		ret_val = hw->phy.ops.acquire(hw);
 533		if (ret_val)
 534			goto out;
 535	}
 536
 537	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 538		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
 539	ew32(KMRNCTRLSTA, kmrnctrlsta);
 540	e1e_flush();
 541
 542	udelay(2);
 543
 544	kmrnctrlsta = er32(KMRNCTRLSTA);
 545	*data = (u16)kmrnctrlsta;
 546
 547	if (!locked)
 548		hw->phy.ops.release(hw);
 549
 550out:
 551	return ret_val;
 552}
 553
 554/**
 555 *  e1000e_read_kmrn_reg -  Read kumeran register
 556 *  @hw: pointer to the HW structure
 557 *  @offset: register offset to be read
 558 *  @data: pointer to the read data
 559 *
 560 *  Acquires semaphore then reads the PHY register at offset using the
 561 *  kumeran interface.  The information retrieved is stored in data.
 562 *  Release the acquired semaphore before exiting.
 563 **/
 564s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 565{
 566	return __e1000_read_kmrn_reg(hw, offset, data, false);
 567}
 568
 569/**
 570 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 571 *  @hw: pointer to the HW structure
 572 *  @offset: register offset to be read
 573 *  @data: pointer to the read data
 574 *
 575 *  Reads the PHY register at offset using the kumeran interface.  The
 576 *  information retrieved is stored in data.
 577 *  Assumes semaphore already acquired.
 578 **/
 579s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 580{
 581	return __e1000_read_kmrn_reg(hw, offset, data, true);
 582}
 583
 584/**
 585 *  __e1000_write_kmrn_reg - Write kumeran register
 586 *  @hw: pointer to the HW structure
 587 *  @offset: register offset to write to
 588 *  @data: data to write at register offset
 589 *  @locked: semaphore has already been acquired or not
 590 *
 591 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 592 *  at the offset using the kumeran interface.  Release any acquired semaphores
 593 *  before exiting.
 594 **/
 595static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
 596                                  bool locked)
 597{
 598	u32 kmrnctrlsta;
 599	s32 ret_val = 0;
 600
 601	if (!locked) {
 602		if (!(hw->phy.ops.acquire))
 603			goto out;
 604
 605		ret_val = hw->phy.ops.acquire(hw);
 606		if (ret_val)
 607			goto out;
 608	}
 609
 610	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 611		       E1000_KMRNCTRLSTA_OFFSET) | data;
 612	ew32(KMRNCTRLSTA, kmrnctrlsta);
 613	e1e_flush();
 614
 615	udelay(2);
 616
 617	if (!locked)
 618		hw->phy.ops.release(hw);
 619
 620out:
 621	return ret_val;
 622}
 623
 624/**
 625 *  e1000e_write_kmrn_reg -  Write kumeran register
 626 *  @hw: pointer to the HW structure
 627 *  @offset: register offset to write to
 628 *  @data: data to write at register offset
 629 *
 630 *  Acquires semaphore then writes the data to the PHY register at the offset
 631 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 632 **/
 633s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 634{
 635	return __e1000_write_kmrn_reg(hw, offset, data, false);
 636}
 637
 638/**
 639 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 640 *  @hw: pointer to the HW structure
 641 *  @offset: register offset to write to
 642 *  @data: data to write at register offset
 643 *
 644 *  Write the data to PHY register at the offset using the kumeran interface.
 645 *  Assumes semaphore already acquired.
 646 **/
 647s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
 648{
 649	return __e1000_write_kmrn_reg(hw, offset, data, true);
 650}
 651
 652/**
 653 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 654 *  @hw: pointer to the HW structure
 655 *
 656 *  Sets up Carrier-sense on Transmit and downshift values.
 657 **/
 658s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
 659{
 660	s32 ret_val;
 661	u16 phy_data;
 662
 663	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 664	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
 665	if (ret_val)
 666		goto out;
 667
 668	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
 669
 670	/* Enable downshift */
 671	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
 672
 673	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
 674
 675out:
 676	return ret_val;
 677}
 678
 679/**
 680 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 681 *  @hw: pointer to the HW structure
 682 *
 683 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 684 *  and downshift values are set also.
 685 **/
 686s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 687{
 688	struct e1000_phy_info *phy = &hw->phy;
 689	s32 ret_val;
 690	u16 phy_data;
 691
 692	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 693	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 694	if (ret_val)
 695		return ret_val;
 696
 697	/* For BM PHY this bit is downshift enable */
 698	if (phy->type != e1000_phy_bm)
 699		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 700
 701	/*
 702	 * Options:
 703	 *   MDI/MDI-X = 0 (default)
 704	 *   0 - Auto for all speeds
 705	 *   1 - MDI mode
 706	 *   2 - MDI-X mode
 707	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 708	 */
 709	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 710
 711	switch (phy->mdix) {
 712	case 1:
 713		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 714		break;
 715	case 2:
 716		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 717		break;
 718	case 3:
 719		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 720		break;
 721	case 0:
 722	default:
 723		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 724		break;
 725	}
 726
 727	/*
 728	 * Options:
 729	 *   disable_polarity_correction = 0 (default)
 730	 *       Automatic Correction for Reversed Cable Polarity
 731	 *   0 - Disabled
 732	 *   1 - Enabled
 733	 */
 734	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 735	if (phy->disable_polarity_correction == 1)
 736		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 737
 738	/* Enable downshift on BM (disabled by default) */
 739	if (phy->type == e1000_phy_bm)
 740		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
 741
 742	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 743	if (ret_val)
 744		return ret_val;
 745
 746	if ((phy->type == e1000_phy_m88) &&
 747	    (phy->revision < E1000_REVISION_4) &&
 748	    (phy->id != BME1000_E_PHY_ID_R2)) {
 749		/*
 750		 * Force TX_CLK in the Extended PHY Specific Control Register
 751		 * to 25MHz clock.
 752		 */
 753		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 754		if (ret_val)
 755			return ret_val;
 756
 757		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 758
 759		if ((phy->revision == 2) &&
 760		    (phy->id == M88E1111_I_PHY_ID)) {
 761			/* 82573L PHY - set the downshift counter to 5x. */
 762			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 763			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 764		} else {
 765			/* Configure Master and Slave downshift values */
 766			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 767				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 768			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 769				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 770		}
 771		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 772		if (ret_val)
 773			return ret_val;
 774	}
 775
 776	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
 777		/* Set PHY page 0, register 29 to 0x0003 */
 778		ret_val = e1e_wphy(hw, 29, 0x0003);
 779		if (ret_val)
 780			return ret_val;
 781
 782		/* Set PHY page 0, register 30 to 0x0000 */
 783		ret_val = e1e_wphy(hw, 30, 0x0000);
 784		if (ret_val)
 785			return ret_val;
 786	}
 787
 788	/* Commit the changes. */
 789	ret_val = e1000e_commit_phy(hw);
 790	if (ret_val) {
 791		e_dbg("Error committing the PHY changes\n");
 792		return ret_val;
 793	}
 794
 795	if (phy->type == e1000_phy_82578) {
 796		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 797		if (ret_val)
 798			return ret_val;
 799
 800		/* 82578 PHY - set the downshift count to 1x. */
 801		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
 802		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
 803		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 804		if (ret_val)
 805			return ret_val;
 806	}
 807
 808	return 0;
 809}
 810
 811/**
 812 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 813 *  @hw: pointer to the HW structure
 814 *
 815 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 816 *  igp PHY's.
 817 **/
 818s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 819{
 820	struct e1000_phy_info *phy = &hw->phy;
 821	s32 ret_val;
 822	u16 data;
 823
 824	ret_val = e1000_phy_hw_reset(hw);
 825	if (ret_val) {
 826		e_dbg("Error resetting the PHY.\n");
 827		return ret_val;
 828	}
 829
 830	/*
 831	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 832	 * timeout issues when LFS is enabled.
 833	 */
 834	msleep(100);
 835
 836	/* disable lplu d0 during driver init */
 837	ret_val = e1000_set_d0_lplu_state(hw, false);
 838	if (ret_val) {
 839		e_dbg("Error Disabling LPLU D0\n");
 840		return ret_val;
 841	}
 842	/* Configure mdi-mdix settings */
 843	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 844	if (ret_val)
 845		return ret_val;
 846
 847	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 848
 849	switch (phy->mdix) {
 850	case 1:
 851		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 852		break;
 853	case 2:
 854		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 855		break;
 856	case 0:
 857	default:
 858		data |= IGP01E1000_PSCR_AUTO_MDIX;
 859		break;
 860	}
 861	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 862	if (ret_val)
 863		return ret_val;
 864
 865	/* set auto-master slave resolution settings */
 866	if (hw->mac.autoneg) {
 867		/*
 868		 * when autonegotiation advertisement is only 1000Mbps then we
 869		 * should disable SmartSpeed and enable Auto MasterSlave
 870		 * resolution as hardware default.
 871		 */
 872		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 873			/* Disable SmartSpeed */
 874			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 875					   &data);
 876			if (ret_val)
 877				return ret_val;
 878
 879			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 880			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 881					   data);
 882			if (ret_val)
 883				return ret_val;
 884
 885			/* Set auto Master/Slave resolution process */
 886			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
 887			if (ret_val)
 888				return ret_val;
 889
 890			data &= ~CR_1000T_MS_ENABLE;
 891			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
 892			if (ret_val)
 893				return ret_val;
 894		}
 895
 896		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
 897		if (ret_val)
 898			return ret_val;
 899
 900		/* load defaults for future use */
 901		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
 902			((data & CR_1000T_MS_VALUE) ?
 903			e1000_ms_force_master :
 904			e1000_ms_force_slave) :
 905			e1000_ms_auto;
 906
 907		switch (phy->ms_type) {
 908		case e1000_ms_force_master:
 909			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
 910			break;
 911		case e1000_ms_force_slave:
 912			data |= CR_1000T_MS_ENABLE;
 913			data &= ~(CR_1000T_MS_VALUE);
 914			break;
 915		case e1000_ms_auto:
 916			data &= ~CR_1000T_MS_ENABLE;
 917		default:
 918			break;
 919		}
 920		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
 921	}
 922
 923	return ret_val;
 924}
 925
 926/**
 927 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 928 *  @hw: pointer to the HW structure
 929 *
 930 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 931 *  register and if the PHY is already setup for auto-negotiation, then
 932 *  return successful.  Otherwise, setup advertisement and flow control to
 933 *  the appropriate values for the wanted auto-negotiation.
 934 **/
 935static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 936{
 937	struct e1000_phy_info *phy = &hw->phy;
 938	s32 ret_val;
 939	u16 mii_autoneg_adv_reg;
 940	u16 mii_1000t_ctrl_reg = 0;
 941
 942	phy->autoneg_advertised &= phy->autoneg_mask;
 943
 944	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 945	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
 946	if (ret_val)
 947		return ret_val;
 948
 949	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 950		/* Read the MII 1000Base-T Control Register (Address 9). */
 951		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
 952		if (ret_val)
 953			return ret_val;
 954	}
 955
 956	/*
 957	 * Need to parse both autoneg_advertised and fc and set up
 958	 * the appropriate PHY registers.  First we will parse for
 959	 * autoneg_advertised software override.  Since we can advertise
 960	 * a plethora of combinations, we need to check each bit
 961	 * individually.
 962	 */
 963
 964	/*
 965	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
 966	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 967	 * the  1000Base-T Control Register (Address 9).
 968	 */
 969	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
 970				 NWAY_AR_100TX_HD_CAPS |
 971				 NWAY_AR_10T_FD_CAPS   |
 972				 NWAY_AR_10T_HD_CAPS);
 973	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
 974
 975	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 976
 977	/* Do we want to advertise 10 Mb Half Duplex? */
 978	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 979		e_dbg("Advertise 10mb Half duplex\n");
 980		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
 981	}
 982
 983	/* Do we want to advertise 10 Mb Full Duplex? */
 984	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 985		e_dbg("Advertise 10mb Full duplex\n");
 986		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
 987	}
 988
 989	/* Do we want to advertise 100 Mb Half Duplex? */
 990	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 991		e_dbg("Advertise 100mb Half duplex\n");
 992		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
 993	}
 994
 995	/* Do we want to advertise 100 Mb Full Duplex? */
 996	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
 997		e_dbg("Advertise 100mb Full duplex\n");
 998		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
 999	}
1000
1001	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1002	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1003		e_dbg("Advertise 1000mb Half duplex request denied!\n");
1004
1005	/* Do we want to advertise 1000 Mb Full Duplex? */
1006	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1007		e_dbg("Advertise 1000mb Full duplex\n");
1008		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1009	}
1010
1011	/*
1012	 * Check for a software override of the flow control settings, and
1013	 * setup the PHY advertisement registers accordingly.  If
1014	 * auto-negotiation is enabled, then software will have to set the
1015	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1016	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1017	 * negotiation.
1018	 *
1019	 * The possible values of the "fc" parameter are:
1020	 *      0:  Flow control is completely disabled
1021	 *      1:  Rx flow control is enabled (we can receive pause frames
1022	 *	  but not send pause frames).
1023	 *      2:  Tx flow control is enabled (we can send pause frames
1024	 *	  but we do not support receiving pause frames).
1025	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1026	 *  other:  No software override.  The flow control configuration
1027	 *	  in the EEPROM is used.
1028	 */
1029	switch (hw->fc.current_mode) {
1030	case e1000_fc_none:
1031		/*
1032		 * Flow control (Rx & Tx) is completely disabled by a
1033		 * software over-ride.
1034		 */
1035		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1036		break;
1037	case e1000_fc_rx_pause:
1038		/*
1039		 * Rx Flow control is enabled, and Tx Flow control is
1040		 * disabled, by a software over-ride.
1041		 *
1042		 * Since there really isn't a way to advertise that we are
1043		 * capable of Rx Pause ONLY, we will advertise that we
1044		 * support both symmetric and asymmetric Rx PAUSE.  Later
1045		 * (in e1000e_config_fc_after_link_up) we will disable the
1046		 * hw's ability to send PAUSE frames.
1047		 */
1048		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1049		break;
1050	case e1000_fc_tx_pause:
1051		/*
1052		 * Tx Flow control is enabled, and Rx Flow control is
1053		 * disabled, by a software over-ride.
1054		 */
1055		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1056		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1057		break;
1058	case e1000_fc_full:
1059		/*
1060		 * Flow control (both Rx and Tx) is enabled by a software
1061		 * over-ride.
1062		 */
1063		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1064		break;
1065	default:
1066		e_dbg("Flow control param set incorrectly\n");
1067		ret_val = -E1000_ERR_CONFIG;
1068		return ret_val;
1069	}
1070
1071	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1072	if (ret_val)
1073		return ret_val;
1074
1075	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1076
1077	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1078		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1079
1080	return ret_val;
1081}
1082
1083/**
1084 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1085 *  @hw: pointer to the HW structure
1086 *
1087 *  Performs initial bounds checking on autoneg advertisement parameter, then
1088 *  configure to advertise the full capability.  Setup the PHY to autoneg
1089 *  and restart the negotiation process between the link partner.  If
1090 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1091 **/
1092static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1093{
1094	struct e1000_phy_info *phy = &hw->phy;
1095	s32 ret_val;
1096	u16 phy_ctrl;
1097
1098	/*
1099	 * Perform some bounds checking on the autoneg advertisement
1100	 * parameter.
1101	 */
1102	phy->autoneg_advertised &= phy->autoneg_mask;
1103
1104	/*
1105	 * If autoneg_advertised is zero, we assume it was not defaulted
1106	 * by the calling code so we set to advertise full capability.
1107	 */
1108	if (phy->autoneg_advertised == 0)
1109		phy->autoneg_advertised = phy->autoneg_mask;
1110
1111	e_dbg("Reconfiguring auto-neg advertisement params\n");
1112	ret_val = e1000_phy_setup_autoneg(hw);
1113	if (ret_val) {
1114		e_dbg("Error Setting up Auto-Negotiation\n");
1115		return ret_val;
1116	}
1117	e_dbg("Restarting Auto-Neg\n");
1118
1119	/*
1120	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1121	 * the Auto Neg Restart bit in the PHY control register.
1122	 */
1123	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1124	if (ret_val)
1125		return ret_val;
1126
1127	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1128	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1129	if (ret_val)
1130		return ret_val;
1131
1132	/*
1133	 * Does the user want to wait for Auto-Neg to complete here, or
1134	 * check at a later time (for example, callback routine).
1135	 */
1136	if (phy->autoneg_wait_to_complete) {
1137		ret_val = e1000_wait_autoneg(hw);
1138		if (ret_val) {
1139			e_dbg("Error while waiting for "
1140				 "autoneg to complete\n");
1141			return ret_val;
1142		}
1143	}
1144
1145	hw->mac.get_link_status = 1;
1146
1147	return ret_val;
1148}
1149
1150/**
1151 *  e1000e_setup_copper_link - Configure copper link settings
1152 *  @hw: pointer to the HW structure
1153 *
1154 *  Calls the appropriate function to configure the link for auto-neg or forced
1155 *  speed and duplex.  Then we check for link, once link is established calls
1156 *  to configure collision distance and flow control are called.  If link is
1157 *  not established, we return -E1000_ERR_PHY (-2).
1158 **/
1159s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1160{
1161	s32 ret_val;
1162	bool link;
1163
1164	if (hw->mac.autoneg) {
1165		/*
1166		 * Setup autoneg and flow control advertisement and perform
1167		 * autonegotiation.
1168		 */
1169		ret_val = e1000_copper_link_autoneg(hw);
1170		if (ret_val)
1171			return ret_val;
1172	} else {
1173		/*
1174		 * PHY will be set to 10H, 10F, 100H or 100F
1175		 * depending on user settings.
1176		 */
1177		e_dbg("Forcing Speed and Duplex\n");
1178		ret_val = e1000_phy_force_speed_duplex(hw);
1179		if (ret_val) {
1180			e_dbg("Error Forcing Speed and Duplex\n");
1181			return ret_val;
1182		}
1183	}
1184
1185	/*
1186	 * Check link status. Wait up to 100 microseconds for link to become
1187	 * valid.
1188	 */
1189	ret_val = e1000e_phy_has_link_generic(hw,
1190					     COPPER_LINK_UP_LIMIT,
1191					     10,
1192					     &link);
1193	if (ret_val)
1194		return ret_val;
1195
1196	if (link) {
1197		e_dbg("Valid link established!!!\n");
1198		e1000e_config_collision_dist(hw);
1199		ret_val = e1000e_config_fc_after_link_up(hw);
1200	} else {
1201		e_dbg("Unable to establish link!!!\n");
1202	}
1203
1204	return ret_val;
1205}
1206
1207/**
1208 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1209 *  @hw: pointer to the HW structure
1210 *
1211 *  Calls the PHY setup function to force speed and duplex.  Clears the
1212 *  auto-crossover to force MDI manually.  Waits for link and returns
1213 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1214 **/
1215s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1216{
1217	struct e1000_phy_info *phy = &hw->phy;
1218	s32 ret_val;
1219	u16 phy_data;
1220	bool link;
1221
1222	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1223	if (ret_val)
1224		return ret_val;
1225
1226	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1227
1228	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1229	if (ret_val)
1230		return ret_val;
1231
1232	/*
1233	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1234	 * forced whenever speed and duplex are forced.
1235	 */
1236	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1237	if (ret_val)
1238		return ret_val;
1239
1240	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1241	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1242
1243	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1244	if (ret_val)
1245		return ret_val;
1246
1247	e_dbg("IGP PSCR: %X\n", phy_data);
1248
1249	udelay(1);
1250
1251	if (phy->autoneg_wait_to_complete) {
1252		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1253
1254		ret_val = e1000e_phy_has_link_generic(hw,
1255						     PHY_FORCE_LIMIT,
1256						     100000,
1257						     &link);
1258		if (ret_val)
1259			return ret_val;
1260
1261		if (!link)
1262			e_dbg("Link taking longer than expected.\n");
1263
1264		/* Try once more */
1265		ret_val = e1000e_phy_has_link_generic(hw,
1266						     PHY_FORCE_LIMIT,
1267						     100000,
1268						     &link);
1269		if (ret_val)
1270			return ret_val;
1271	}
1272
1273	return ret_val;
1274}
1275
1276/**
1277 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1278 *  @hw: pointer to the HW structure
1279 *
1280 *  Calls the PHY setup function to force speed and duplex.  Clears the
1281 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1282 *  changes.  If time expires while waiting for link up, we reset the DSP.
1283 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1284 *  successful completion, else return corresponding error code.
1285 **/
1286s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1287{
1288	struct e1000_phy_info *phy = &hw->phy;
1289	s32 ret_val;
1290	u16 phy_data;
1291	bool link;
1292
1293	/*
1294	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1295	 * forced whenever speed and duplex are forced.
1296	 */
1297	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1298	if (ret_val)
1299		return ret_val;
1300
1301	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1302	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1303	if (ret_val)
1304		return ret_val;
1305
1306	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1307
1308	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1309	if (ret_val)
1310		return ret_val;
1311
1312	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1313
1314	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1315	if (ret_val)
1316		return ret_val;
1317
1318	/* Reset the phy to commit changes. */
1319	ret_val = e1000e_commit_phy(hw);
1320	if (ret_val)
1321		return ret_val;
1322
1323	if (phy->autoneg_wait_to_complete) {
1324		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1325
1326		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1327						     100000, &link);
1328		if (ret_val)
1329			return ret_val;
1330
1331		if (!link) {
1332			if (hw->phy.type != e1000_phy_m88) {
1333				e_dbg("Link taking longer than expected.\n");
1334			} else {
1335				/*
1336				 * We didn't get link.
1337				 * Reset the DSP and cross our fingers.
1338				 */
1339				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1340						   0x001d);
1341				if (ret_val)
1342					return ret_val;
1343				ret_val = e1000e_phy_reset_dsp(hw);
1344				if (ret_val)
1345					return ret_val;
1346			}
1347		}
1348
1349		/* Try once more */
1350		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1351						     100000, &link);
1352		if (ret_val)
1353			return ret_val;
1354	}
1355
1356	if (hw->phy.type != e1000_phy_m88)
1357		return 0;
1358
1359	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1360	if (ret_val)
1361		return ret_val;
1362
1363	/*
1364	 * Resetting the phy means we need to re-force TX_CLK in the
1365	 * Extended PHY Specific Control Register to 25MHz clock from
1366	 * the reset value of 2.5MHz.
1367	 */
1368	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1369	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1370	if (ret_val)
1371		return ret_val;
1372
1373	/*
1374	 * In addition, we must re-enable CRS on Tx for both half and full
1375	 * duplex.
1376	 */
1377	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1378	if (ret_val)
1379		return ret_val;
1380
1381	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1382	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1383
1384	return ret_val;
1385}
1386
1387/**
1388 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1389 *  @hw: pointer to the HW structure
1390 *
1391 *  Forces the speed and duplex settings of the PHY.
1392 *  This is a function pointer entry point only called by
1393 *  PHY setup routines.
1394 **/
1395s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1396{
1397	struct e1000_phy_info *phy = &hw->phy;
1398	s32 ret_val;
1399	u16 data;
1400	bool link;
1401
1402	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
1403	if (ret_val)
1404		goto out;
1405
1406	e1000e_phy_force_speed_duplex_setup(hw, &data);
1407
1408	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
1409	if (ret_val)
1410		goto out;
1411
1412	/* Disable MDI-X support for 10/100 */
1413	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1414	if (ret_val)
1415		goto out;
1416
1417	data &= ~IFE_PMC_AUTO_MDIX;
1418	data &= ~IFE_PMC_FORCE_MDIX;
1419
1420	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1421	if (ret_val)
1422		goto out;
1423
1424	e_dbg("IFE PMC: %X\n", data);
1425
1426	udelay(1);
1427
1428	if (phy->autoneg_wait_to_complete) {
1429		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1430
1431		ret_val = e1000e_phy_has_link_generic(hw,
1432		                                     PHY_FORCE_LIMIT,
1433		                                     100000,
1434		                                     &link);
1435		if (ret_val)
1436			goto out;
1437
1438		if (!link)
1439			e_dbg("Link taking longer than expected.\n");
1440
1441		/* Try once more */
1442		ret_val = e1000e_phy_has_link_generic(hw,
1443		                                     PHY_FORCE_LIMIT,
1444		                                     100000,
1445		                                     &link);
1446		if (ret_val)
1447			goto out;
1448	}
1449
1450out:
1451	return ret_val;
1452}
1453
1454/**
1455 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1456 *  @hw: pointer to the HW structure
1457 *  @phy_ctrl: pointer to current value of PHY_CONTROL
1458 *
1459 *  Forces speed and duplex on the PHY by doing the following: disable flow
1460 *  control, force speed/duplex on the MAC, disable auto speed detection,
1461 *  disable auto-negotiation, configure duplex, configure speed, configure
1462 *  the collision distance, write configuration to CTRL register.  The
1463 *  caller must write to the PHY_CONTROL register for these settings to
1464 *  take affect.
1465 **/
1466void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1467{
1468	struct e1000_mac_info *mac = &hw->mac;
1469	u32 ctrl;
1470
1471	/* Turn off flow control when forcing speed/duplex */
1472	hw->fc.current_mode = e1000_fc_none;
1473
1474	/* Force speed/duplex on the mac */
1475	ctrl = er32(CTRL);
1476	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1477	ctrl &= ~E1000_CTRL_SPD_SEL;
1478
1479	/* Disable Auto Speed Detection */
1480	ctrl &= ~E1000_CTRL_ASDE;
1481
1482	/* Disable autoneg on the phy */
1483	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1484
1485	/* Forcing Full or Half Duplex? */
1486	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1487		ctrl &= ~E1000_CTRL_FD;
1488		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1489		e_dbg("Half Duplex\n");
1490	} else {
1491		ctrl |= E1000_CTRL_FD;
1492		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1493		e_dbg("Full Duplex\n");
1494	}
1495
1496	/* Forcing 10mb or 100mb? */
1497	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1498		ctrl |= E1000_CTRL_SPD_100;
1499		*phy_ctrl |= MII_CR_SPEED_100;
1500		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1501		e_dbg("Forcing 100mb\n");
1502	} else {
1503		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1504		*phy_ctrl |= MII_CR_SPEED_10;
1505		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1506		e_dbg("Forcing 10mb\n");
1507	}
1508
1509	e1000e_config_collision_dist(hw);
1510
1511	ew32(CTRL, ctrl);
1512}
1513
1514/**
1515 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1516 *  @hw: pointer to the HW structure
1517 *  @active: boolean used to enable/disable lplu
1518 *
1519 *  Success returns 0, Failure returns 1
1520 *
1521 *  The low power link up (lplu) state is set to the power management level D3
1522 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1523 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1524 *  is used during Dx states where the power conservation is most important.
1525 *  During driver activity, SmartSpeed should be enabled so performance is
1526 *  maintained.
1527 **/
1528s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1529{
1530	struct e1000_phy_info *phy = &hw->phy;
1531	s32 ret_val;
1532	u16 data;
1533
1534	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1535	if (ret_val)
1536		return ret_val;
1537
1538	if (!active) {
1539		data &= ~IGP02E1000_PM_D3_LPLU;
1540		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1541		if (ret_val)
1542			return ret_val;
1543		/*
1544		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1545		 * during Dx states where the power conservation is most
1546		 * important.  During driver activity we should enable
1547		 * SmartSpeed, so performance is maintained.
1548		 */
1549		if (phy->smart_speed == e1000_smart_speed_on) {
1550			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1551					   &data);
1552			if (ret_val)
1553				return ret_val;
1554
1555			data |= IGP01E1000_PSCFR_SMART_SPEED;
1556			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1557					   data);
1558			if (ret_val)
1559				return ret_val;
1560		} else if (phy->smart_speed == e1000_smart_speed_off) {
1561			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1562					   &data);
1563			if (ret_val)
1564				return ret_val;
1565
1566			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1567			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1568					   data);
1569			if (ret_val)
1570				return ret_val;
1571		}
1572	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1573		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1574		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1575		data |= IGP02E1000_PM_D3_LPLU;
1576		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1577		if (ret_val)
1578			return ret_val;
1579
1580		/* When LPLU is enabled, we should disable SmartSpeed */
1581		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1582		if (ret_val)
1583			return ret_val;
1584
1585		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1586		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1587	}
1588
1589	return ret_val;
1590}
1591
1592/**
1593 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1594 *  @hw: pointer to the HW structure
1595 *
1596 *  Success returns 0, Failure returns 1
1597 *
1598 *  A downshift is detected by querying the PHY link health.
1599 **/
1600s32 e1000e_check_downshift(struct e1000_hw *hw)
1601{
1602	struct e1000_phy_info *phy = &hw->phy;
1603	s32 ret_val;
1604	u16 phy_data, offset, mask;
1605
1606	switch (phy->type) {
1607	case e1000_phy_m88:
1608	case e1000_phy_gg82563:
1609	case e1000_phy_bm:
1610	case e1000_phy_82578:
1611		offset	= M88E1000_PHY_SPEC_STATUS;
1612		mask	= M88E1000_PSSR_DOWNSHIFT;
1613		break;
1614	case e1000_phy_igp_2:
1615	case e1000_phy_igp_3:
1616		offset	= IGP01E1000_PHY_LINK_HEALTH;
1617		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1618		break;
1619	default:
1620		/* speed downshift not supported */
1621		phy->speed_downgraded = false;
1622		return 0;
1623	}
1624
1625	ret_val = e1e_rphy(hw, offset, &phy_data);
1626
1627	if (!ret_val)
1628		phy->speed_downgraded = (phy_data & mask);
1629
1630	return ret_val;
1631}
1632
1633/**
1634 *  e1000_check_polarity_m88 - Checks the polarity.
1635 *  @hw: pointer to the HW structure
1636 *
1637 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1638 *
1639 *  Polarity is determined based on the PHY specific status register.
1640 **/
1641s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1642{
1643	struct e1000_phy_info *phy = &hw->phy;
1644	s32 ret_val;
1645	u16 data;
1646
1647	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1648
1649	if (!ret_val)
1650		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1651				      ? e1000_rev_polarity_reversed
1652				      : e1000_rev_polarity_normal;
1653
1654	return ret_val;
1655}
1656
1657/**
1658 *  e1000_check_polarity_igp - Checks the polarity.
1659 *  @hw: pointer to the HW structure
1660 *
1661 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1662 *
1663 *  Polarity is determined based on the PHY port status register, and the
1664 *  current speed (since there is no polarity at 100Mbps).
1665 **/
1666s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1667{
1668	struct e1000_phy_info *phy = &hw->phy;
1669	s32 ret_val;
1670	u16 data, offset, mask;
1671
1672	/*
1673	 * Polarity is determined based on the speed of
1674	 * our connection.
1675	 */
1676	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1677	if (ret_val)
1678		return ret_val;
1679
1680	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1681	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1682		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1683		mask	= IGP01E1000_PHY_POLARITY_MASK;
1684	} else {
1685		/*
1686		 * This really only applies to 10Mbps since
1687		 * there is no polarity for 100Mbps (always 0).
1688		 */
1689		offset	= IGP01E1000_PHY_PORT_STATUS;
1690		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1691	}
1692
1693	ret_val = e1e_rphy(hw, offset, &data);
1694
1695	if (!ret_val)
1696		phy->cable_polarity = (data & mask)
1697				      ? e1000_rev_polarity_reversed
1698				      : e1000_rev_polarity_normal;
1699
1700	return ret_val;
1701}
1702
1703/**
1704 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1705 *  @hw: pointer to the HW structure
1706 *
1707 *  Polarity is determined on the polarity reversal feature being enabled.
1708 **/
1709s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1710{
1711	struct e1000_phy_info *phy = &hw->phy;
1712	s32 ret_val;
1713	u16 phy_data, offset, mask;
1714
1715	/*
1716	 * Polarity is determined based on the reversal feature being enabled.
1717	 */
1718	if (phy->polarity_correction) {
1719		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1720		mask = IFE_PESC_POLARITY_REVERSED;
1721	} else {
1722		offset = IFE_PHY_SPECIAL_CONTROL;
1723		mask = IFE_PSC_FORCE_POLARITY;
1724	}
1725
1726	ret_val = e1e_rphy(hw, offset, &phy_data);
1727
1728	if (!ret_val)
1729		phy->cable_polarity = (phy_data & mask)
1730		                       ? e1000_rev_polarity_reversed
1731		                       : e1000_rev_polarity_normal;
1732
1733	return ret_val;
1734}
1735
1736/**
1737 *  e1000_wait_autoneg - Wait for auto-neg completion
1738 *  @hw: pointer to the HW structure
1739 *
1740 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1741 *  limit to expire, which ever happens first.
1742 **/
1743static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1744{
1745	s32 ret_val = 0;
1746	u16 i, phy_status;
1747
1748	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1749	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1750		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1751		if (ret_val)
1752			break;
1753		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1754		if (ret_val)
1755			break;
1756		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1757			break;
1758		msleep(100);
1759	}
1760
1761	/*
1762	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1763	 * has completed.
1764	 */
1765	return ret_val;
1766}
1767
1768/**
1769 *  e1000e_phy_has_link_generic - Polls PHY for link
1770 *  @hw: pointer to the HW structure
1771 *  @iterations: number of times to poll for link
1772 *  @usec_interval: delay between polling attempts
1773 *  @success: pointer to whether polling was successful or not
1774 *
1775 *  Polls the PHY status register for link, 'iterations' number of times.
1776 **/
1777s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1778			       u32 usec_interval, bool *success)
1779{
1780	s32 ret_val = 0;
1781	u16 i, phy_status;
1782
1783	for (i = 0; i < iterations; i++) {
1784		/*
1785		 * Some PHYs require the PHY_STATUS register to be read
1786		 * twice due to the link bit being sticky.  No harm doing
1787		 * it across the board.
1788		 */
1789		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1790		if (ret_val)
1791			/*
1792			 * If the first read fails, another entity may have
1793			 * ownership of the resources, wait and try again to
1794			 * see if they have relinquished the resources yet.
1795			 */
1796			udelay(usec_interval);
1797		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1798		if (ret_val)
1799			break;
1800		if (phy_status & MII_SR_LINK_STATUS)
1801			break;
1802		if (usec_interval >= 1000)
1803			mdelay(usec_interval/1000);
1804		else
1805			udelay(usec_interval);
1806	}
1807
1808	*success = (i < iterations);
1809
1810	return ret_val;
1811}
1812
1813/**
1814 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1815 *  @hw: pointer to the HW structure
1816 *
1817 *  Reads the PHY specific status register to retrieve the cable length
1818 *  information.  The cable length is determined by averaging the minimum and
1819 *  maximum values to get the "average" cable length.  The m88 PHY has four
1820 *  possible cable length values, which are:
1821 *	Register Value		Cable Length
1822 *	0			< 50 meters
1823 *	1			50 - 80 meters
1824 *	2			80 - 110 meters
1825 *	3			110 - 140 meters
1826 *	4			> 140 meters
1827 **/
1828s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1829{
1830	struct e1000_phy_info *phy = &hw->phy;
1831	s32 ret_val;
1832	u16 phy_data, index;
1833
1834	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1835	if (ret_val)
1836		goto out;
1837
1838	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1839	        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1840	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1841		ret_val = -E1000_ERR_PHY;
1842		goto out;
1843	}
1844
1845	phy->min_cable_length = e1000_m88_cable_length_table[index];
1846	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1847
1848	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1849
1850out:
1851	return ret_val;
1852}
1853
1854/**
1855 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1856 *  @hw: pointer to the HW structure
1857 *
1858 *  The automatic gain control (agc) normalizes the amplitude of the
1859 *  received signal, adjusting for the attenuation produced by the
1860 *  cable.  By reading the AGC registers, which represent the
1861 *  combination of coarse and fine gain value, the value can be put
1862 *  into a lookup table to obtain the approximate cable length
1863 *  for each channel.
1864 **/
1865s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1866{
1867	struct e1000_phy_info *phy = &hw->phy;
1868	s32 ret_val;
1869	u16 phy_data, i, agc_value = 0;
1870	u16 cur_agc_index, max_agc_index = 0;
1871	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1872	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1873	       IGP02E1000_PHY_AGC_A,
1874	       IGP02E1000_PHY_AGC_B,
1875	       IGP02E1000_PHY_AGC_C,
1876	       IGP02E1000_PHY_AGC_D
1877	};
1878
1879	/* Read the AGC registers for all channels */
1880	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1881		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1882		if (ret_val)
1883			return ret_val;
1884
1885		/*
1886		 * Getting bits 15:9, which represent the combination of
1887		 * coarse and fine gain values.  The result is a number
1888		 * that can be put into the lookup table to obtain the
1889		 * approximate cable length.
1890		 */
1891		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1892				IGP02E1000_AGC_LENGTH_MASK;
1893
1894		/* Array index bound check. */
1895		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1896		    (cur_agc_index == 0))
1897			return -E1000_ERR_PHY;
1898
1899		/* Remove min & max AGC values from calculation. */
1900		if (e1000_igp_2_cable_length_table[min_agc_index] >
1901		    e1000_igp_2_cable_length_table[cur_agc_index])
1902			min_agc_index = cur_agc_index;
1903		if (e1000_igp_2_cable_length_table[max_agc_index] <
1904		    e1000_igp_2_cable_length_table[cur_agc_index])
1905			max_agc_index = cur_agc_index;
1906
1907		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1908	}
1909
1910	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1911		      e1000_igp_2_cable_length_table[max_agc_index]);
1912	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1913
1914	/* Calculate cable length with the error range of +/- 10 meters. */
1915	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1916				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1917	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1918
1919	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1920
1921	return ret_val;
1922}
1923
1924/**
1925 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1926 *  @hw: pointer to the HW structure
1927 *
1928 *  Valid for only copper links.  Read the PHY status register (sticky read)
1929 *  to verify that link is up.  Read the PHY special control register to
1930 *  determine the polarity and 10base-T extended distance.  Read the PHY
1931 *  special status register to determine MDI/MDIx and current speed.  If
1932 *  speed is 1000, then determine cable length, local and remote receiver.
1933 **/
1934s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1935{
1936	struct e1000_phy_info *phy = &hw->phy;
1937	s32  ret_val;
1938	u16 phy_data;
1939	bool link;
1940
1941	if (phy->media_type != e1000_media_type_copper) {
1942		e_dbg("Phy info is only valid for copper media\n");
1943		return -E1000_ERR_CONFIG;
1944	}
1945
1946	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1947	if (ret_val)
1948		return ret_val;
1949
1950	if (!link) {
1951		e_dbg("Phy info is only valid if link is up\n");
1952		return -E1000_ERR_CONFIG;
1953	}
1954
1955	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1956	if (ret_val)
1957		return ret_val;
1958
1959	phy->polarity_correction = (phy_data &
1960				    M88E1000_PSCR_POLARITY_REVERSAL);
1961
1962	ret_val = e1000_check_polarity_m88(hw);
1963	if (ret_val)
1964		return ret_val;
1965
1966	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1967	if (ret_val)
1968		return ret_val;
1969
1970	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
1971
1972	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1973		ret_val = e1000_get_cable_length(hw);
1974		if (ret_val)
1975			return ret_val;
1976
1977		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1978		if (ret_val)
1979			return ret_val;
1980
1981		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1982				? e1000_1000t_rx_status_ok
1983				: e1000_1000t_rx_status_not_ok;
1984
1985		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1986				 ? e1000_1000t_rx_status_ok
1987				 : e1000_1000t_rx_status_not_ok;
1988	} else {
1989		/* Set values to "undefined" */
1990		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1991		phy->local_rx = e1000_1000t_rx_status_undefined;
1992		phy->remote_rx = e1000_1000t_rx_status_undefined;
1993	}
1994
1995	return ret_val;
1996}
1997
1998/**
1999 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
2000 *  @hw: pointer to the HW structure
2001 *
2002 *  Read PHY status to determine if link is up.  If link is up, then
2003 *  set/determine 10base-T extended distance and polarity correction.  Read
2004 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2005 *  determine on the cable length, local and remote receiver.
2006 **/
2007s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
2008{
2009	struct e1000_phy_info *phy = &hw->phy;
2010	s32 ret_val;
2011	u16 data;
2012	bool link;
2013
2014	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2015	if (ret_val)
2016		return ret_val;
2017
2018	if (!link) {
2019		e_dbg("Phy info is only valid if link is up\n");
2020		return -E1000_ERR_CONFIG;
2021	}
2022
2023	phy->polarity_correction = true;
2024
2025	ret_val = e1000_check_polarity_igp(hw);
2026	if (ret_val)
2027		return ret_val;
2028
2029	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2030	if (ret_val)
2031		return ret_val;
2032
2033	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
2034
2035	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2036	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2037		ret_val = e1000_get_cable_length(hw);
2038		if (ret_val)
2039			return ret_val;
2040
2041		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
2042		if (ret_val)
2043			return ret_val;
2044
2045		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2046				? e1000_1000t_rx_status_ok
2047				: e1000_1000t_rx_status_not_ok;
2048
2049		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2050				 ? e1000_1000t_rx_status_ok
2051				 : e1000_1000t_rx_status_not_ok;
2052	} else {
2053		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2054		phy->local_rx = e1000_1000t_rx_status_undefined;
2055		phy->remote_rx = e1000_1000t_rx_status_undefined;
2056	}
2057
2058	return ret_val;
2059}
2060
2061/**
2062 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2063 *  @hw: pointer to the HW structure
2064 *
2065 *  Populates "phy" structure with various feature states.
2066 **/
2067s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2068{
2069	struct e1000_phy_info *phy = &hw->phy;
2070	s32 ret_val;
2071	u16 data;
2072	bool link;
2073
2074	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2075	if (ret_val)
2076		goto out;
2077
2078	if (!link) {
2079		e_dbg("Phy info is only valid if link is up\n");
2080		ret_val = -E1000_ERR_CONFIG;
2081		goto out;
2082	}
2083
2084	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2085	if (ret_val)
2086		goto out;
2087	phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
2088	                           ? false : true;
2089
2090	if (phy->polarity_correction) {
2091		ret_val = e1000_check_polarity_ife(hw);
2092		if (ret_val)
2093			goto out;
2094	} else {
2095		/* Polarity is forced */
2096		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
2097		                      ? e1000_rev_polarity_reversed
2098		                      : e1000_rev_polarity_normal;
2099	}
2100
2101	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2102	if (ret_val)
2103		goto out;
2104
2105	phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false;
2106
2107	/* The following parameters are undefined for 10/100 operation. */
2108	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2109	phy->local_rx = e1000_1000t_rx_status_undefined;
2110	phy->remote_rx = e1000_1000t_rx_status_undefined;
2111
2112out:
2113	return ret_val;
2114}
2115
2116/**
2117 *  e1000e_phy_sw_reset - PHY software reset
2118 *  @hw: pointer to the HW structure
2119 *
2120 *  Does a software reset of the PHY by reading the PHY control register and
2121 *  setting/write the control register reset bit to the PHY.
2122 **/
2123s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2124{
2125	s32 ret_val;
2126	u16 phy_ctrl;
2127
2128	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
2129	if (ret_val)
2130		return ret_val;
2131
2132	phy_ctrl |= MII_CR_RESET;
2133	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
2134	if (ret_val)
2135		return ret_val;
2136
2137	udelay(1);
2138
2139	return ret_val;
2140}
2141
2142/**
2143 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2144 *  @hw: pointer to the HW structure
2145 *
2146 *  Verify the reset block is not blocking us from resetting.  Acquire
2147 *  semaphore (if necessary) and read/set/write the device control reset
2148 *  bit in the PHY.  Wait the appropriate delay time for the device to
2149 *  reset and release the semaphore (if necessary).
2150 **/
2151s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2152{
2153	struct e1000_phy_info *phy = &hw->phy;
2154	s32 ret_val;
2155	u32 ctrl;
2156
2157	ret_val = e1000_check_reset_block(hw);
2158	if (ret_val)
2159		return 0;
2160
2161	ret_val = phy->ops.acquire(hw);
2162	if (ret_val)
2163		return ret_val;
2164
2165	ctrl = er32(CTRL);
2166	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2167	e1e_flush();
2168
2169	udelay(phy->reset_delay_us);
2170
2171	ew32(CTRL, ctrl);
2172	e1e_flush();
2173
2174	udelay(150);
2175
2176	phy->ops.release(hw);
2177
2178	return e1000_get_phy_cfg_done(hw);
2179}
2180
2181/**
2182 *  e1000e_get_cfg_done - Generic configuration done
2183 *  @hw: pointer to the HW structure
2184 *
2185 *  Generic function to wait 10 milli-seconds for configuration to complete
2186 *  and return success.
2187 **/
2188s32 e1000e_get_cfg_done(struct e1000_hw *hw)
2189{
2190	mdelay(10);
2191	return 0;
2192}
2193
2194/**
2195 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2196 *  @hw: pointer to the HW structure
2197 *
2198 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2199 **/
2200s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2201{
2202	e_dbg("Running IGP 3 PHY init script\n");
2203
2204	/* PHY init IGP 3 */
2205	/* Enable rise/fall, 10-mode work in class-A */
2206	e1e_wphy(hw, 0x2F5B, 0x9018);
2207	/* Remove all caps from Replica path filter */
2208	e1e_wphy(hw, 0x2F52, 0x0000);
2209	/* Bias trimming for ADC, AFE and Driver (Default) */
2210	e1e_wphy(hw, 0x2FB1, 0x8B24);
2211	/* Increase Hybrid poly bias */
2212	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2213	/* Add 4% to Tx amplitude in Gig mode */
2214	e1e_wphy(hw, 0x2010, 0x10B0);
2215	/* Disable trimming (TTT) */
2216	e1e_wphy(hw, 0x2011, 0x0000);
2217	/* Poly DC correction to 94.6% + 2% for all channels */
2218	e1e_wphy(hw, 0x20DD, 0x249A);
2219	/* ABS DC correction to 95.9% */
2220	e1e_wphy(hw, 0x20DE, 0x00D3);
2221	/* BG temp curve trim */
2222	e1e_wphy(hw, 0x28B4, 0x04CE);
2223	/* Increasing ADC OPAMP stage 1 currents to max */
2224	e1e_wphy(hw, 0x2F70, 0x29E4);
2225	/* Force 1000 ( required for enabling PHY regs configuration) */
2226	e1e_wphy(hw, 0x0000, 0x0140);
2227	/* Set upd_freq to 6 */
2228	e1e_wphy(hw, 0x1F30, 0x1606);
2229	/* Disable NPDFE */
2230	e1e_wphy(hw, 0x1F31, 0xB814);
2231	/* Disable adaptive fixed FFE (Default) */
2232	e1e_wphy(hw, 0x1F35, 0x002A);
2233	/* Enable FFE hysteresis */
2234	e1e_wphy(hw, 0x1F3E, 0x0067);
2235	/* Fixed FFE for short cable lengths */
2236	e1e_wphy(hw, 0x1F54, 0x0065);
2237	/* Fixed FFE for medium cable lengths */
2238	e1e_wphy(hw, 0x1F55, 0x002A);
2239	/* Fixed FFE for long cable lengths */
2240	e1e_wphy(hw, 0x1F56, 0x002A);
2241	/* Enable Adaptive Clip Threshold */
2242	e1e_wphy(hw, 0x1F72, 0x3FB0);
2243	/* AHT reset limit to 1 */
2244	e1e_wphy(hw, 0x1F76, 0xC0FF);
2245	/* Set AHT master delay to 127 msec */
2246	e1e_wphy(hw, 0x1F77, 0x1DEC);
2247	/* Set scan bits for AHT */
2248	e1e_wphy(hw, 0x1F78, 0xF9EF);
2249	/* Set AHT Preset bits */
2250	e1e_wphy(hw, 0x1F79, 0x0210);
2251	/* Change integ_factor of channel A to 3 */
2252	e1e_wphy(hw, 0x1895, 0x0003);
2253	/* Change prop_factor of channels BCD to 8 */
2254	e1e_wphy(hw, 0x1796, 0x0008);
2255	/* Change cg_icount + enable integbp for channels BCD */
2256	e1e_wphy(hw, 0x1798, 0xD008);
2257	/*
2258	 * Change cg_icount + enable integbp + change prop_factor_master
2259	 * to 8 for channel A
2260	 */
2261	e1e_wphy(hw, 0x1898, 0xD918);
2262	/* Disable AHT in Slave mode on channel A */
2263	e1e_wphy(hw, 0x187A, 0x0800);
2264	/*
2265	 * Enable LPLU and disable AN to 1000 in non-D0a states,
2266	 * Enable SPD+B2B
2267	 */
2268	e1e_wphy(hw, 0x0019, 0x008D);
2269	/* Enable restart AN on an1000_dis change */
2270	e1e_wphy(hw, 0x001B, 0x2080);
2271	/* Enable wh_fifo read clock in 10/100 modes */
2272	e1e_wphy(hw, 0x0014, 0x0045);
2273	/* Restart AN, Speed selection is 1000 */
2274	e1e_wphy(hw, 0x0000, 0x1340);
2275
2276	return 0;
2277}
2278
2279/* Internal function pointers */
2280
2281/**
2282 *  e1000_get_phy_cfg_done - Generic PHY configuration done
2283 *  @hw: pointer to the HW structure
2284 *
2285 *  Return success if silicon family did not implement a family specific
2286 *  get_cfg_done function.
2287 **/
2288static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
2289{
2290	if (hw->phy.ops.get_cfg_done)
2291		return hw->phy.ops.get_cfg_done(hw);
2292
2293	return 0;
2294}
2295
2296/**
2297 *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2298 *  @hw: pointer to the HW structure
2299 *
2300 *  When the silicon family has not implemented a forced speed/duplex
2301 *  function for the PHY, simply return 0.
2302 **/
2303static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2304{
2305	if (hw->phy.ops.force_speed_duplex)
2306		return hw->phy.ops.force_speed_duplex(hw);
2307
2308	return 0;
2309}
2310
2311/**
2312 *  e1000e_get_phy_type_from_id - Get PHY type from id
2313 *  @phy_id: phy_id read from the phy
2314 *
2315 *  Returns the phy type from the id.
2316 **/
2317enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2318{
2319	enum e1000_phy_type phy_type = e1000_phy_unknown;
2320
2321	switch (phy_id) {
2322	case M88E1000_I_PHY_ID:
2323	case M88E1000_E_PHY_ID:
2324	case M88E1111_I_PHY_ID:
2325	case M88E1011_I_PHY_ID:
2326		phy_type = e1000_phy_m88;
2327		break;
2328	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2329		phy_type = e1000_phy_igp_2;
2330		break;
2331	case GG82563_E_PHY_ID:
2332		phy_type = e1000_phy_gg82563;
2333		break;
2334	case IGP03E1000_E_PHY_ID:
2335		phy_type = e1000_phy_igp_3;
2336		break;
2337	case IFE_E_PHY_ID:
2338	case IFE_PLUS_E_PHY_ID:
2339	case IFE_C_E_PHY_ID:
2340		phy_type = e1000_phy_ife;
2341		break;
2342	case BME1000_E_PHY_ID:
2343	case BME1000_E_PHY_ID_R2:
2344		phy_type = e1000_phy_bm;
2345		break;
2346	case I82578_E_PHY_ID:
2347		phy_type = e1000_phy_82578;
2348		break;
2349	case I82577_E_PHY_ID:
2350		phy_type = e1000_phy_82577;
2351		break;
2352	case I82579_E_PHY_ID:
2353		phy_type = e1000_phy_82579;
2354		break;
2355	default:
2356		phy_type = e1000_phy_unknown;
2357		break;
2358	}
2359	return phy_type;
2360}
2361
2362/**
2363 *  e1000e_determine_phy_address - Determines PHY address.
2364 *  @hw: pointer to the HW structure
2365 *
2366 *  This uses a trial and error method to loop through possible PHY
2367 *  addresses. It tests each by reading the PHY ID registers and
2368 *  checking for a match.
2369 **/
2370s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2371{
2372	s32 ret_val = -E1000_ERR_PHY_TYPE;
2373	u32 phy_addr = 0;
2374	u32 i;
2375	enum e1000_phy_type phy_type = e1000_phy_unknown;
2376
2377	hw->phy.id = phy_type;
2378
2379	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2380		hw->phy.addr = phy_addr;
2381		i = 0;
2382
2383		do {
2384			e1000e_get_phy_id(hw);
2385			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2386
2387			/*
2388			 * If phy_type is valid, break - we found our
2389			 * PHY address
2390			 */
2391			if (phy_type  != e1000_phy_unknown) {
2392				ret_val = 0;
2393				goto out;
2394			}
2395			usleep_range(1000, 2000);
2396			i++;
2397		} while (i < 10);
2398	}
2399
2400out:
2401	return ret_val;
2402}
2403
2404/**
2405 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2406 *  @page: page to access
2407 *
2408 *  Returns the phy address for the page requested.
2409 **/
2410static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2411{
2412	u32 phy_addr = 2;
2413
2414	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2415		phy_addr = 1;
2416
2417	return phy_addr;
2418}
2419
2420/**
2421 *  e1000e_write_phy_reg_bm - Write BM PHY register
2422 *  @hw: pointer to the HW structure
2423 *  @offset: register offset to write to
2424 *  @data: data to write at register offset
2425 *
2426 *  Acquires semaphore, if necessary, then writes the data to PHY register
2427 *  at the offset.  Release any acquired semaphores before exiting.
2428 **/
2429s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2430{
2431	s32 ret_val;
2432	u32 page = offset >> IGP_PAGE_SHIFT;
2433
2434	ret_val = hw->phy.ops.acquire(hw);
2435	if (ret_val)
2436		return ret_val;
2437
2438	/* Page 800 works differently than the rest so it has its own func */
2439	if (page == BM_WUC_PAGE) {
2440		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2441							 false, false);
2442		goto out;
2443	}
2444
2445	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2446
2447	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2448		u32 page_shift, page_select;
2449
2450		/*
2451		 * Page select is register 31 for phy address 1 and 22 for
2452		 * phy address 2 and 3. Page select is shifted only for
2453		 * phy address 1.
2454		 */
2455		if (hw->phy.addr == 1) {
2456			page_shift = IGP_PAGE_SHIFT;
2457			page_select = IGP01E1000_PHY_PAGE_SELECT;
2458		} else {
2459			page_shift = 0;
2460			page_select = BM_PHY_PAGE_SELECT;
2461		}
2462
2463		/* Page is shifted left, PHY expects (page x 32) */
2464		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2465		                                    (page << page_shift));
2466		if (ret_val)
2467			goto out;
2468	}
2469
2470	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2471	                                    data);
2472
2473out:
2474	hw->phy.ops.release(hw);
2475	return ret_val;
2476}
2477
2478/**
2479 *  e1000e_read_phy_reg_bm - Read BM PHY register
2480 *  @hw: pointer to the HW structure
2481 *  @offset: register offset to be read
2482 *  @data: pointer to the read data
2483 *
2484 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2485 *  and storing the retrieved information in data.  Release any acquired
2486 *  semaphores before exiting.
2487 **/
2488s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2489{
2490	s32 ret_val;
2491	u32 page = offset >> IGP_PAGE_SHIFT;
2492
2493	ret_val = hw->phy.ops.acquire(hw);
2494	if (ret_val)
2495		return ret_val;
2496
2497	/* Page 800 works differently than the rest so it has its own func */
2498	if (page == BM_WUC_PAGE) {
2499		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2500							 true, false);
2501		goto out;
2502	}
2503
2504	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2505
2506	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2507		u32 page_shift, page_select;
2508
2509		/*
2510		 * Page select is register 31 for phy address 1 and 22 for
2511		 * phy address 2 and 3. Page select is shifted only for
2512		 * phy address 1.
2513		 */
2514		if (hw->phy.addr == 1) {
2515			page_shift = IGP_PAGE_SHIFT;
2516			page_select = IGP01E1000_PHY_PAGE_SELECT;
2517		} else {
2518			page_shift = 0;
2519			page_select = BM_PHY_PAGE_SELECT;
2520		}
2521
2522		/* Page is shifted left, PHY expects (page x 32) */
2523		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2524		                                    (page << page_shift));
2525		if (ret_val)
2526			goto out;
2527	}
2528
2529	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2530	                                   data);
2531out:
2532	hw->phy.ops.release(hw);
2533	return ret_val;
2534}
2535
2536/**
2537 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2538 *  @hw: pointer to the HW structure
2539 *  @offset: register offset to be read
2540 *  @data: pointer to the read data
2541 *
2542 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2543 *  and storing the retrieved information in data.  Release any acquired
2544 *  semaphores before exiting.
2545 **/
2546s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2547{
2548	s32 ret_val;
2549	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2550
2551	ret_val = hw->phy.ops.acquire(hw);
2552	if (ret_val)
2553		return ret_val;
2554
2555	/* Page 800 works differently than the rest so it has its own func */
2556	if (page == BM_WUC_PAGE) {
2557		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2558							 true, false);
2559		goto out;
2560	}
2561
2562	hw->phy.addr = 1;
2563
2564	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2565
2566		/* Page is shifted left, PHY expects (page x 32) */
2567		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2568						    page);
2569
2570		if (ret_val)
2571			goto out;
2572	}
2573
2574	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2575					   data);
2576out:
2577	hw->phy.ops.release(hw);
2578	return ret_val;
2579}
2580
2581/**
2582 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2583 *  @hw: pointer to the HW structure
2584 *  @offset: register offset to write to
2585 *  @data: data to write at register offset
2586 *
2587 *  Acquires semaphore, if necessary, then writes the data to PHY register
2588 *  at the offset.  Release any acquired semaphores before exiting.
2589 **/
2590s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2591{
2592	s32 ret_val;
2593	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2594
2595	ret_val = hw->phy.ops.acquire(hw);
2596	if (ret_val)
2597		return ret_val;
2598
2599	/* Page 800 works differently than the rest so it has its own func */
2600	if (page == BM_WUC_PAGE) {
2601		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2602							 false, false);
2603		goto out;
2604	}
2605
2606	hw->phy.addr = 1;
2607
2608	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2609		/* Page is shifted left, PHY expects (page x 32) */
2610		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2611						    page);
2612
2613		if (ret_val)
2614			goto out;
2615	}
2616
2617	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2618					    data);
2619
2620out:
2621	hw->phy.ops.release(hw);
2622	return ret_val;
2623}
2624
2625/**
2626 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2627 *  @hw: pointer to the HW structure
2628 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2629 *
2630 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2631 *  address to store contents of the BM_WUC_ENABLE_REG register.
2632 **/
2633s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2634{
2635	s32 ret_val;
2636	u16 temp;
2637
2638	/* All page select, port ctrl and wakeup registers use phy address 1 */
2639	hw->phy.addr = 1;
2640
2641	/* Select Port Control Registers page */
2642	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2643	if (ret_val) {
2644		e_dbg("Could not set Port Control page\n");
2645		goto out;
2646	}
2647
2648	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2649	if (ret_val) {
2650		e_dbg("Could not read PHY register %d.%d\n",
2651		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2652		goto out;
2653	}
2654
2655	/*
2656	 * Enable both PHY wakeup mode and Wakeup register page writes.
2657	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2658	 */
2659	temp = *phy_reg;
2660	temp |= BM_WUC_ENABLE_BIT;
2661	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2662
2663	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2664	if (ret_val) {
2665		e_dbg("Could not write PHY register %d.%d\n",
2666		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2667		goto out;
2668	}
2669
2670	/* Select Host Wakeup Registers page */
2671	ret_val = e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2672
2673	/* caller now able to write registers on the Wakeup registers page */
2674out:
2675	return ret_val;
2676}
2677
2678/**
2679 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2680 *  @hw: pointer to the HW structure
2681 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2682 *
2683 *  Restore BM_WUC_ENABLE_REG to its original value.
2684 *
2685 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2686 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2687 *  caller.
2688 **/
2689s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2690{
2691	s32 ret_val = 0;
2692
2693	/* Select Port Control Registers page */
2694	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2695	if (ret_val) {
2696		e_dbg("Could not set Port Control page\n");
2697		goto out;
2698	}
2699
2700	/* Restore 769.17 to its original value */
2701	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2702	if (ret_val)
2703		e_dbg("Could not restore PHY register %d.%d\n",
2704		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2705out:
2706	return ret_val;
2707}
2708
2709/**
2710 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2711 *  @hw: pointer to the HW structure
2712 *  @offset: register offset to be read or written
2713 *  @data: pointer to the data to read or write
2714 *  @read: determines if operation is read or write
2715 *  @page_set: BM_WUC_PAGE already set and access enabled
2716 *
2717 *  Read the PHY register at offset and store the retrieved information in
2718 *  data, or write data to PHY register at offset.  Note the procedure to
2719 *  access the PHY wakeup registers is different than reading the other PHY
2720 *  registers. It works as such:
2721 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2722 *  2) Set page to 800 for host (801 if we were manageability)
2723 *  3) Write the address using the address opcode (0x11)
2724 *  4) Read or write the data using the data opcode (0x12)
2725 *  5) Restore 769.17.2 to its original value
2726 *
2727 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2728 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2729 *
2730 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2731 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2732 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2733 **/
2734static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2735					  u16 *data, bool read, bool page_set)
2736{
2737	s32 ret_val;
2738	u16 reg = BM_PHY_REG_NUM(offset);
2739	u16 page = BM_PHY_REG_PAGE(offset);
2740	u16 phy_reg = 0;
2741
2742	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2743	if ((hw->mac.type == e1000_pchlan) &&
2744	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2745		e_dbg("Attempting to access page %d while gig enabled.\n",
2746		      page);
2747
2748	if (!page_set) {
2749		/* Enable access to PHY wakeup registers */
2750		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2751		if (ret_val) {
2752			e_dbg("Could not enable PHY wakeup reg access\n");
2753			goto out;
2754		}
2755	}
2756
2757	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2758
2759	/* Write the Wakeup register page offset value using opcode 0x11 */
2760	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2761	if (ret_val) {
2762		e_dbg("Could not write address opcode to page %d\n", page);
2763		goto out;
2764	}
2765
2766	if (read) {
2767		/* Read the Wakeup register page value using opcode 0x12 */
2768		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2769		                                   data);
2770	} else {
2771		/* Write the Wakeup register page value using opcode 0x12 */
2772		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2773						    *data);
2774	}
2775
2776	if (ret_val) {
2777		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2778		goto out;
2779	}
2780
2781	if (!page_set)
2782		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2783
2784out:
2785	return ret_val;
2786}
2787
2788/**
2789 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2790 * @hw: pointer to the HW structure
2791 *
2792 * In the case of a PHY power down to save power, or to turn off link during a
2793 * driver unload, or wake on lan is not enabled, restore the link to previous
2794 * settings.
2795 **/
2796void e1000_power_up_phy_copper(struct e1000_hw *hw)
2797{
2798	u16 mii_reg = 0;
2799
2800	/* The PHY will retain its settings across a power down/up cycle */
2801	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2802	mii_reg &= ~MII_CR_POWER_DOWN;
2803	e1e_wphy(hw, PHY_CONTROL, mii_reg);
2804}
2805
2806/**
2807 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2808 * @hw: pointer to the HW structure
2809 *
2810 * In the case of a PHY power down to save power, or to turn off link during a
2811 * driver unload, or wake on lan is not enabled, restore the link to previous
2812 * settings.
2813 **/
2814void e1000_power_down_phy_copper(struct e1000_hw *hw)
2815{
2816	u16 mii_reg = 0;
2817
2818	/* The PHY will retain its settings across a power down/up cycle */
2819	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2820	mii_reg |= MII_CR_POWER_DOWN;
2821	e1e_wphy(hw, PHY_CONTROL, mii_reg);
2822	usleep_range(1000, 2000);
2823}
2824
2825/**
2826 *  e1000e_commit_phy - Soft PHY reset
2827 *  @hw: pointer to the HW structure
2828 *
2829 *  Performs a soft PHY reset on those that apply. This is a function pointer
2830 *  entry point called by drivers.
2831 **/
2832s32 e1000e_commit_phy(struct e1000_hw *hw)
2833{
2834	if (hw->phy.ops.commit)
2835		return hw->phy.ops.commit(hw);
2836
2837	return 0;
2838}
2839
2840/**
2841 *  e1000_set_d0_lplu_state - Sets low power link up state for D0
2842 *  @hw: pointer to the HW structure
2843 *  @active: boolean used to enable/disable lplu
2844 *
2845 *  Success returns 0, Failure returns 1
2846 *
2847 *  The low power link up (lplu) state is set to the power management level D0
2848 *  and SmartSpeed is disabled when active is true, else clear lplu for D0
2849 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
2850 *  is used during Dx states where the power conservation is most important.
2851 *  During driver activity, SmartSpeed should be enabled so performance is
2852 *  maintained.  This is a function pointer entry point called by drivers.
2853 **/
2854static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2855{
2856	if (hw->phy.ops.set_d0_lplu_state)
2857		return hw->phy.ops.set_d0_lplu_state(hw, active);
2858
2859	return 0;
2860}
2861
2862/**
2863 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2864 *  @hw: pointer to the HW structure
2865 *  @offset: register offset to be read
2866 *  @data: pointer to the read data
2867 *  @locked: semaphore has already been acquired or not
2868 *
2869 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2870 *  and stores the retrieved information in data.  Release any acquired
2871 *  semaphore before exiting.
2872 **/
2873static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2874				   bool locked, bool page_set)
2875{
2876	s32 ret_val;
2877	u16 page = BM_PHY_REG_PAGE(offset);
2878	u16 reg = BM_PHY_REG_NUM(offset);
2879	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2880
2881	if (!locked) {
2882		ret_val = hw->phy.ops.acquire(hw);
2883		if (ret_val)
2884			return ret_val;
2885	}
2886
2887	/* Page 800 works differently than the rest so it has its own func */
2888	if (page == BM_WUC_PAGE) {
2889		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2890							 true, page_set);
2891		goto out;
2892	}
2893
2894	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2895		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2896		                                         data, true);
2897		goto out;
2898	}
2899
2900	if (!page_set) {
2901		if (page == HV_INTC_FC_PAGE_START)
2902			page = 0;
2903
2904		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2905			/* Page is shifted left, PHY expects (page x 32) */
2906			ret_val = e1000_set_page_igp(hw,
2907						     (page << IGP_PAGE_SHIFT));
2908
2909			hw->phy.addr = phy_addr;
2910
2911			if (ret_val)
2912				goto out;
2913		}
2914	}
2915
2916	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2917	      page << IGP_PAGE_SHIFT, reg);
2918
2919	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2920	                                  data);
2921out:
2922	if (!locked)
2923		hw->phy.ops.release(hw);
2924
2925	return ret_val;
2926}
2927
2928/**
2929 *  e1000_read_phy_reg_hv -  Read HV PHY register
2930 *  @hw: pointer to the HW structure
2931 *  @offset: register offset to be read
2932 *  @data: pointer to the read data
2933 *
2934 *  Acquires semaphore then reads the PHY register at offset and stores
2935 *  the retrieved information in data.  Release the acquired semaphore
2936 *  before exiting.
2937 **/
2938s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2939{
2940	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2941}
2942
2943/**
2944 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2945 *  @hw: pointer to the HW structure
2946 *  @offset: register offset to be read
2947 *  @data: pointer to the read data
2948 *
2949 *  Reads the PHY register at offset and stores the retrieved information
2950 *  in data.  Assumes semaphore already acquired.
2951 **/
2952s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2953{
2954	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2955}
2956
2957/**
2958 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2959 *  @hw: pointer to the HW structure
2960 *  @offset: register offset to write to
2961 *  @data: data to write at register offset
2962 *
2963 *  Reads the PHY register at offset and stores the retrieved information
2964 *  in data.  Assumes semaphore already acquired and page already set.
2965 **/
2966s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2967{
2968	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2969}
2970
2971/**
2972 *  __e1000_write_phy_reg_hv - Write HV PHY register
2973 *  @hw: pointer to the HW structure
2974 *  @offset: register offset to write to
2975 *  @data: data to write at register offset
2976 *  @locked: semaphore has already been acquired or not
2977 *
2978 *  Acquires semaphore, if necessary, then writes the data to PHY register
2979 *  at the offset.  Release any acquired semaphores before exiting.
2980 **/
2981static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2982				    bool locked, bool page_set)
2983{
2984	s32 ret_val;
2985	u16 page = BM_PHY_REG_PAGE(offset);
2986	u16 reg = BM_PHY_REG_NUM(offset);
2987	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2988
2989	if (!locked) {
2990		ret_val = hw->phy.ops.acquire(hw);
2991		if (ret_val)
2992			return ret_val;
2993	}
2994
2995	/* Page 800 works differently than the rest so it has its own func */
2996	if (page == BM_WUC_PAGE) {
2997		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2998							 false, page_set);
2999		goto out;
3000	}
3001
3002	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
3003		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
3004		                                         &data, false);
3005		goto out;
3006	}
3007
3008	if (!page_set) {
3009		if (page == HV_INTC_FC_PAGE_START)
3010			page = 0;
3011
3012		/*
3013		 * Workaround MDIO accesses being disabled after entering IEEE
3014		 * Power Down (when bit 11 of the PHY Control register is set)
3015		 */
3016		if ((hw->phy.type == e1000_phy_82578) &&
3017		    (hw->phy.revision >= 1) &&
3018		    (hw->phy.addr == 2) &&
3019		    ((MAX_PHY_REG_ADDRESS & reg) == 0) && (data & (1 << 11))) {
3020			u16 data2 = 0x7EFF;
3021			ret_val = e1000_access_phy_debug_regs_hv(hw,
3022								 (1 << 6) | 0x3,
3023								 &data2, false);
3024			if (ret_val)
3025				goto out;
3026		}
3027
3028		if (reg > MAX_PHY_MULTI_PAGE_REG) {
3029			/* Page is shifted left, PHY expects (page x 32) */
3030			ret_val = e1000_set_page_igp(hw,
3031						     (page << IGP_PAGE_SHIFT));
3032
3033			hw->phy.addr = phy_addr;
3034
3035			if (ret_val)
3036				goto out;
3037		}
3038	}
3039
3040	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
3041	      page << IGP_PAGE_SHIFT, reg);
3042
3043	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
3044	                                  data);
3045
3046out:
3047	if (!locked)
3048		hw->phy.ops.release(hw);
3049
3050	return ret_val;
3051}
3052
3053/**
3054 *  e1000_write_phy_reg_hv - Write HV PHY register
3055 *  @hw: pointer to the HW structure
3056 *  @offset: register offset to write to
3057 *  @data: data to write at register offset
3058 *
3059 *  Acquires semaphore then writes the data to PHY register at the offset.
3060 *  Release the acquired semaphores before exiting.
3061 **/
3062s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
3063{
3064	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
3065}
3066
3067/**
3068 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
3069 *  @hw: pointer to the HW structure
3070 *  @offset: register offset to write to
3071 *  @data: data to write at register offset
3072 *
3073 *  Writes the data to PHY register at the offset.  Assumes semaphore
3074 *  already acquired.
3075 **/
3076s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3077{
3078	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
3079}
3080
3081/**
3082 *  e1000_write_phy_reg_page_hv - Write HV PHY register
3083 *  @hw: pointer to the HW structure
3084 *  @offset: register offset to write to
3085 *  @data: data to write at register offset
3086 *
3087 *  Writes the data to PHY register at the offset.  Assumes semaphore
3088 *  already acquired and page already set.
3089 **/
3090s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3091{
3092	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
3093}
3094
3095/**
3096 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3097 *  @page: page to be accessed
3098 **/
3099static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3100{
3101	u32 phy_addr = 2;
3102
3103	if (page >= HV_INTC_FC_PAGE_START)
3104		phy_addr = 1;
3105
3106	return phy_addr;
3107}
3108
3109/**
3110 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3111 *  @hw: pointer to the HW structure
3112 *  @offset: register offset to be read or written
3113 *  @data: pointer to the data to be read or written
3114 *  @read: determines if operation is read or write
3115 *
3116 *  Reads the PHY register at offset and stores the retreived information
3117 *  in data.  Assumes semaphore already acquired.  Note that the procedure
3118 *  to access these regs uses the address port and data port to read/write.
3119 *  These accesses done with PHY address 2 and without using pages.
3120 **/
3121static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3122                                          u16 *data, bool read)
3123{
3124	s32 ret_val;
3125	u32 addr_reg = 0;
3126	u32 data_reg = 0;
3127
3128	/* This takes care of the difference with desktop vs mobile phy */
3129	addr_reg = (hw->phy.type == e1000_phy_82578) ?
3130	           I82578_ADDR_REG : I82577_ADDR_REG;
3131	data_reg = addr_reg + 1;
3132
3133	/* All operations in this function are phy address 2 */
3134	hw->phy.addr = 2;
3135
3136	/* masking with 0x3F to remove the page from offset */
3137	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3138	if (ret_val) {
3139		e_dbg("Could not write the Address Offset port register\n");
3140		goto out;
3141	}
3142
3143	/* Read or write the data value next */
3144	if (read)
3145		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3146	else
3147		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3148
3149	if (ret_val) {
3150		e_dbg("Could not access the Data port register\n");
3151		goto out;
3152	}
3153
3154out:
3155	return ret_val;
3156}
3157
3158/**
3159 *  e1000_link_stall_workaround_hv - Si workaround
3160 *  @hw: pointer to the HW structure
3161 *
3162 *  This function works around a Si bug where the link partner can get
3163 *  a link up indication before the PHY does.  If small packets are sent
3164 *  by the link partner they can be placed in the packet buffer without
3165 *  being properly accounted for by the PHY and will stall preventing
3166 *  further packets from being received.  The workaround is to clear the
3167 *  packet buffer after the PHY detects link up.
3168 **/
3169s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3170{
3171	s32 ret_val = 0;
3172	u16 data;
3173
3174	if (hw->phy.type != e1000_phy_82578)
3175		goto out;
3176
3177	/* Do not apply workaround if in PHY loopback bit 14 set */
3178	e1e_rphy(hw, PHY_CONTROL, &data);
3179	if (data & PHY_CONTROL_LB)
3180		goto out;
3181
3182	/* check if link is up and at 1Gbps */
3183	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3184	if (ret_val)
3185		goto out;
3186
3187	data &= BM_CS_STATUS_LINK_UP |
3188	        BM_CS_STATUS_RESOLVED |
3189	        BM_CS_STATUS_SPEED_MASK;
3190
3191	if (data != (BM_CS_STATUS_LINK_UP |
3192	             BM_CS_STATUS_RESOLVED |
3193	             BM_CS_STATUS_SPEED_1000))
3194		goto out;
3195
3196	mdelay(200);
3197
3198	/* flush the packets in the fifo buffer */
3199	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
3200			   HV_MUX_DATA_CTRL_FORCE_SPEED);
3201	if (ret_val)
3202		goto out;
3203
3204	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3205
3206out:
3207	return ret_val;
3208}
3209
3210/**
3211 *  e1000_check_polarity_82577 - Checks the polarity.
3212 *  @hw: pointer to the HW structure
3213 *
3214 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3215 *
3216 *  Polarity is determined based on the PHY specific status register.
3217 **/
3218s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3219{
3220	struct e1000_phy_info *phy = &hw->phy;
3221	s32 ret_val;
3222	u16 data;
3223
3224	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3225
3226	if (!ret_val)
3227		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
3228		                      ? e1000_rev_polarity_reversed
3229		                      : e1000_rev_polarity_normal;
3230
3231	return ret_val;
3232}
3233
3234/**
3235 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3236 *  @hw: pointer to the HW structure
3237 *
3238 *  Calls the PHY setup function to force speed and duplex.
3239 **/
3240s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3241{
3242	struct e1000_phy_info *phy = &hw->phy;
3243	s32 ret_val;
3244	u16 phy_data;
3245	bool link;
3246
3247	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
3248	if (ret_val)
3249		goto out;
3250
3251	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3252
3253	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
3254	if (ret_val)
3255		goto out;
3256
3257	udelay(1);
3258
3259	if (phy->autoneg_wait_to_complete) {
3260		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3261
3262		ret_val = e1000e_phy_has_link_generic(hw,
3263		                                     PHY_FORCE_LIMIT,
3264		                                     100000,
3265		                                     &link);
3266		if (ret_val)
3267			goto out;
3268
3269		if (!link)
3270			e_dbg("Link taking longer than expected.\n");
3271
3272		/* Try once more */
3273		ret_val = e1000e_phy_has_link_generic(hw,
3274		                                     PHY_FORCE_LIMIT,
3275		                                     100000,
3276		                                     &link);
3277		if (ret_val)
3278			goto out;
3279	}
3280
3281out:
3282	return ret_val;
3283}
3284
3285/**
3286 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3287 *  @hw: pointer to the HW structure
3288 *
3289 *  Read PHY status to determine if link is up.  If link is up, then
3290 *  set/determine 10base-T extended distance and polarity correction.  Read
3291 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3292 *  determine on the cable length, local and remote receiver.
3293 **/
3294s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3295{
3296	struct e1000_phy_info *phy = &hw->phy;
3297	s32 ret_val;
3298	u16 data;
3299	bool link;
3300
3301	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3302	if (ret_val)
3303		goto out;
3304
3305	if (!link) {
3306		e_dbg("Phy info is only valid if link is up\n");
3307		ret_val = -E1000_ERR_CONFIG;
3308		goto out;
3309	}
3310
3311	phy->polarity_correction = true;
3312
3313	ret_val = e1000_check_polarity_82577(hw);
3314	if (ret_val)
3315		goto out;
3316
3317	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3318	if (ret_val)
3319		goto out;
3320
3321	phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;
3322
3323	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3324	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3325		ret_val = hw->phy.ops.get_cable_length(hw);
3326		if (ret_val)
3327			goto out;
3328
3329		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
3330		if (ret_val)
3331			goto out;
3332
3333		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3334		                ? e1000_1000t_rx_status_ok
3335		                : e1000_1000t_rx_status_not_ok;
3336
3337		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3338		                 ? e1000_1000t_rx_status_ok
3339		                 : e1000_1000t_rx_status_not_ok;
3340	} else {
3341		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3342		phy->local_rx = e1000_1000t_rx_status_undefined;
3343		phy->remote_rx = e1000_1000t_rx_status_undefined;
3344	}
3345
3346out:
3347	return ret_val;
3348}
3349
3350/**
3351 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3352 *  @hw: pointer to the HW structure
3353 *
3354 * Reads the diagnostic status register and verifies result is valid before
3355 * placing it in the phy_cable_length field.
3356 **/
3357s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3358{
3359	struct e1000_phy_info *phy = &hw->phy;
3360	s32 ret_val;
3361	u16 phy_data, length;
3362
3363	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3364	if (ret_val)
3365		goto out;
3366
3367	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3368	         I82577_DSTATUS_CABLE_LENGTH_SHIFT;
3369
3370	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3371		ret_val = -E1000_ERR_PHY;
3372
3373	phy->cable_length = length;
3374
3375out:
3376	return ret_val;
3377}