Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2011 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include "e1000.h"
  30
  31enum e1000_mng_mode {
  32	e1000_mng_mode_none = 0,
  33	e1000_mng_mode_asf,
  34	e1000_mng_mode_pt,
  35	e1000_mng_mode_ipmi,
  36	e1000_mng_mode_host_if_only
  37};
  38
  39#define E1000_FACTPS_MNGCG		0x20000000
  40
  41/* Intel(R) Active Management Technology signature */
  42#define E1000_IAMT_SIGNATURE		0x544D4149
  43
  44/**
  45 *  e1000e_get_bus_info_pcie - Get PCIe bus information
  46 *  @hw: pointer to the HW structure
  47 *
  48 *  Determines and stores the system bus information for a particular
  49 *  network interface.  The following bus information is determined and stored:
  50 *  bus speed, bus width, type (PCIe), and PCIe function.
  51 **/
  52s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
  53{
  54	struct e1000_mac_info *mac = &hw->mac;
  55	struct e1000_bus_info *bus = &hw->bus;
  56	struct e1000_adapter *adapter = hw->adapter;
  57	u16 pcie_link_status, cap_offset;
  58
  59	cap_offset = adapter->pdev->pcie_cap;
  60	if (!cap_offset) {
  61		bus->width = e1000_bus_width_unknown;
  62	} else {
  63		pci_read_config_word(adapter->pdev,
  64				     cap_offset + PCIE_LINK_STATUS,
  65				     &pcie_link_status);
  66		bus->width = (enum e1000_bus_width)((pcie_link_status &
  67						     PCIE_LINK_WIDTH_MASK) >>
  68						    PCIE_LINK_WIDTH_SHIFT);
  69	}
  70
  71	mac->ops.set_lan_id(hw);
  72
  73	return 0;
  74}
  75
  76/**
  77 *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
  78 *
  79 *  @hw: pointer to the HW structure
  80 *
  81 *  Determines the LAN function id by reading memory-mapped registers
  82 *  and swaps the port value if requested.
  83 **/
  84void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
  85{
  86	struct e1000_bus_info *bus = &hw->bus;
  87	u32 reg;
  88
  89	/*
  90	 * The status register reports the correct function number
  91	 * for the device regardless of function swap state.
  92	 */
  93	reg = er32(STATUS);
  94	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
  95}
  96
  97/**
  98 *  e1000_set_lan_id_single_port - Set LAN id for a single port device
  99 *  @hw: pointer to the HW structure
 100 *
 101 *  Sets the LAN function id to zero for a single port device.
 102 **/
 103void e1000_set_lan_id_single_port(struct e1000_hw *hw)
 104{
 105	struct e1000_bus_info *bus = &hw->bus;
 106
 107	bus->func = 0;
 108}
 109
 110/**
 111 *  e1000_clear_vfta_generic - Clear VLAN filter table
 112 *  @hw: pointer to the HW structure
 113 *
 114 *  Clears the register array which contains the VLAN filter table by
 115 *  setting all the values to 0.
 116 **/
 117void e1000_clear_vfta_generic(struct e1000_hw *hw)
 118{
 119	u32 offset;
 120
 121	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
 122		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
 123		e1e_flush();
 124	}
 125}
 126
 127/**
 128 *  e1000_write_vfta_generic - Write value to VLAN filter table
 129 *  @hw: pointer to the HW structure
 130 *  @offset: register offset in VLAN filter table
 131 *  @value: register value written to VLAN filter table
 132 *
 133 *  Writes value at the given offset in the register array which stores
 134 *  the VLAN filter table.
 135 **/
 136void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
 137{
 138	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
 139	e1e_flush();
 140}
 141
 142/**
 143 *  e1000e_init_rx_addrs - Initialize receive address's
 144 *  @hw: pointer to the HW structure
 145 *  @rar_count: receive address registers
 146 *
 147 *  Setup the receive address registers by setting the base receive address
 148 *  register to the devices MAC address and clearing all the other receive
 149 *  address registers to 0.
 150 **/
 151void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
 152{
 153	u32 i;
 154	u8 mac_addr[ETH_ALEN] = {0};
 155
 156	/* Setup the receive address */
 157	e_dbg("Programming MAC Address into RAR[0]\n");
 158
 159	e1000e_rar_set(hw, hw->mac.addr, 0);
 160
 161	/* Zero out the other (rar_entry_count - 1) receive addresses */
 162	e_dbg("Clearing RAR[1-%u]\n", rar_count-1);
 163	for (i = 1; i < rar_count; i++)
 164		e1000e_rar_set(hw, mac_addr, i);
 165}
 166
 167/**
 168 *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
 169 *  @hw: pointer to the HW structure
 170 *
 171 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
 172 *  can be setup by pre-boot software and must be treated like a permanent
 173 *  address and must override the actual permanent MAC address. If an
 174 *  alternate MAC address is found it is programmed into RAR0, replacing
 175 *  the permanent address that was installed into RAR0 by the Si on reset.
 176 *  This function will return SUCCESS unless it encounters an error while
 177 *  reading the EEPROM.
 178 **/
 179s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
 180{
 181	u32 i;
 182	s32 ret_val = 0;
 183	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
 184	u8 alt_mac_addr[ETH_ALEN];
 185
 186	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
 187	if (ret_val)
 188		goto out;
 189
 190	/* Check for LOM (vs. NIC) or one of two valid mezzanine cards */
 191	if (!((nvm_data & NVM_COMPAT_LOM) ||
 192	      (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_DUAL) ||
 193	      (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD) ||
 194	      (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES)))
 195		goto out;
 196
 197	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
 198	                         &nvm_alt_mac_addr_offset);
 199	if (ret_val) {
 200		e_dbg("NVM Read Error\n");
 201		goto out;
 202	}
 203
 204	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
 205	    (nvm_alt_mac_addr_offset == 0x0000))
 206		/* There is no Alternate MAC Address */
 207		goto out;
 208
 209	if (hw->bus.func == E1000_FUNC_1)
 210		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
 211	for (i = 0; i < ETH_ALEN; i += 2) {
 212		offset = nvm_alt_mac_addr_offset + (i >> 1);
 213		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
 214		if (ret_val) {
 215			e_dbg("NVM Read Error\n");
 216			goto out;
 217		}
 218
 219		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
 220		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
 221	}
 222
 223	/* if multicast bit is set, the alternate address will not be used */
 224	if (is_multicast_ether_addr(alt_mac_addr)) {
 225		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
 226		goto out;
 227	}
 228
 229	/*
 230	 * We have a valid alternate MAC address, and we want to treat it the
 231	 * same as the normal permanent MAC address stored by the HW into the
 232	 * RAR. Do this by mapping this address into RAR0.
 233	 */
 234	e1000e_rar_set(hw, alt_mac_addr, 0);
 235
 236out:
 237	return ret_val;
 238}
 239
 240/**
 241 *  e1000e_rar_set - Set receive address register
 242 *  @hw: pointer to the HW structure
 243 *  @addr: pointer to the receive address
 244 *  @index: receive address array register
 245 *
 246 *  Sets the receive address array register at index to the address passed
 247 *  in by addr.
 248 **/
 249void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
 250{
 251	u32 rar_low, rar_high;
 252
 253	/*
 254	 * HW expects these in little endian so we reverse the byte order
 255	 * from network order (big endian) to little endian
 256	 */
 257	rar_low = ((u32) addr[0] |
 258		   ((u32) addr[1] << 8) |
 259		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
 260
 261	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
 262
 263	/* If MAC address zero, no need to set the AV bit */
 264	if (rar_low || rar_high)
 265		rar_high |= E1000_RAH_AV;
 266
 267	/*
 268	 * Some bridges will combine consecutive 32-bit writes into
 269	 * a single burst write, which will malfunction on some parts.
 270	 * The flushes avoid this.
 271	 */
 272	ew32(RAL(index), rar_low);
 273	e1e_flush();
 274	ew32(RAH(index), rar_high);
 275	e1e_flush();
 276}
 277
 278/**
 279 *  e1000_hash_mc_addr - Generate a multicast hash value
 280 *  @hw: pointer to the HW structure
 281 *  @mc_addr: pointer to a multicast address
 282 *
 283 *  Generates a multicast address hash value which is used to determine
 284 *  the multicast filter table array address and new table value.  See
 285 *  e1000_mta_set_generic()
 286 **/
 287static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 288{
 289	u32 hash_value, hash_mask;
 290	u8 bit_shift = 0;
 291
 292	/* Register count multiplied by bits per register */
 293	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
 294
 295	/*
 296	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
 297	 * where 0xFF would still fall within the hash mask.
 298	 */
 299	while (hash_mask >> bit_shift != 0xFF)
 300		bit_shift++;
 301
 302	/*
 303	 * The portion of the address that is used for the hash table
 304	 * is determined by the mc_filter_type setting.
 305	 * The algorithm is such that there is a total of 8 bits of shifting.
 306	 * The bit_shift for a mc_filter_type of 0 represents the number of
 307	 * left-shifts where the MSB of mc_addr[5] would still fall within
 308	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
 309	 * of 8 bits of shifting, then mc_addr[4] will shift right the
 310	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
 311	 * cases are a variation of this algorithm...essentially raising the
 312	 * number of bits to shift mc_addr[5] left, while still keeping the
 313	 * 8-bit shifting total.
 314	 *
 315	 * For example, given the following Destination MAC Address and an
 316	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
 317	 * we can see that the bit_shift for case 0 is 4.  These are the hash
 318	 * values resulting from each mc_filter_type...
 319	 * [0] [1] [2] [3] [4] [5]
 320	 * 01  AA  00  12  34  56
 321	 * LSB		 MSB
 322	 *
 323	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
 324	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
 325	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
 326	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
 327	 */
 328	switch (hw->mac.mc_filter_type) {
 329	default:
 330	case 0:
 331		break;
 332	case 1:
 333		bit_shift += 1;
 334		break;
 335	case 2:
 336		bit_shift += 2;
 337		break;
 338	case 3:
 339		bit_shift += 4;
 340		break;
 341	}
 342
 343	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
 344				  (((u16) mc_addr[5]) << bit_shift)));
 345
 346	return hash_value;
 347}
 348
 349/**
 350 *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
 351 *  @hw: pointer to the HW structure
 352 *  @mc_addr_list: array of multicast addresses to program
 353 *  @mc_addr_count: number of multicast addresses to program
 354 *
 355 *  Updates entire Multicast Table Array.
 356 *  The caller must have a packed mc_addr_list of multicast addresses.
 357 **/
 358void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
 359					u8 *mc_addr_list, u32 mc_addr_count)
 360{
 361	u32 hash_value, hash_bit, hash_reg;
 362	int i;
 363
 364	/* clear mta_shadow */
 365	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
 366
 367	/* update mta_shadow from mc_addr_list */
 368	for (i = 0; (u32) i < mc_addr_count; i++) {
 369		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
 370
 371		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 372		hash_bit = hash_value & 0x1F;
 373
 374		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
 375		mc_addr_list += (ETH_ALEN);
 376	}
 377
 378	/* replace the entire MTA table */
 379	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
 380		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
 381	e1e_flush();
 382}
 383
 384/**
 385 *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
 386 *  @hw: pointer to the HW structure
 387 *
 388 *  Clears the base hardware counters by reading the counter registers.
 389 **/
 390void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
 391{
 392	er32(CRCERRS);
 393	er32(SYMERRS);
 394	er32(MPC);
 395	er32(SCC);
 396	er32(ECOL);
 397	er32(MCC);
 398	er32(LATECOL);
 399	er32(COLC);
 400	er32(DC);
 401	er32(SEC);
 402	er32(RLEC);
 403	er32(XONRXC);
 404	er32(XONTXC);
 405	er32(XOFFRXC);
 406	er32(XOFFTXC);
 407	er32(FCRUC);
 408	er32(GPRC);
 409	er32(BPRC);
 410	er32(MPRC);
 411	er32(GPTC);
 412	er32(GORCL);
 413	er32(GORCH);
 414	er32(GOTCL);
 415	er32(GOTCH);
 416	er32(RNBC);
 417	er32(RUC);
 418	er32(RFC);
 419	er32(ROC);
 420	er32(RJC);
 421	er32(TORL);
 422	er32(TORH);
 423	er32(TOTL);
 424	er32(TOTH);
 425	er32(TPR);
 426	er32(TPT);
 427	er32(MPTC);
 428	er32(BPTC);
 429}
 430
 431/**
 432 *  e1000e_check_for_copper_link - Check for link (Copper)
 433 *  @hw: pointer to the HW structure
 434 *
 435 *  Checks to see of the link status of the hardware has changed.  If a
 436 *  change in link status has been detected, then we read the PHY registers
 437 *  to get the current speed/duplex if link exists.
 438 **/
 439s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
 440{
 441	struct e1000_mac_info *mac = &hw->mac;
 442	s32 ret_val;
 443	bool link;
 444
 445	/*
 446	 * We only want to go out to the PHY registers to see if Auto-Neg
 447	 * has completed and/or if our link status has changed.  The
 448	 * get_link_status flag is set upon receiving a Link Status
 449	 * Change or Rx Sequence Error interrupt.
 450	 */
 451	if (!mac->get_link_status)
 452		return 0;
 453
 454	/*
 455	 * First we want to see if the MII Status Register reports
 456	 * link.  If so, then we want to get the current speed/duplex
 457	 * of the PHY.
 458	 */
 459	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
 460	if (ret_val)
 461		return ret_val;
 462
 463	if (!link)
 464		return ret_val; /* No link detected */
 465
 466	mac->get_link_status = false;
 467
 468	/*
 469	 * Check if there was DownShift, must be checked
 470	 * immediately after link-up
 471	 */
 472	e1000e_check_downshift(hw);
 473
 474	/*
 475	 * If we are forcing speed/duplex, then we simply return since
 476	 * we have already determined whether we have link or not.
 477	 */
 478	if (!mac->autoneg) {
 479		ret_val = -E1000_ERR_CONFIG;
 480		return ret_val;
 481	}
 482
 483	/*
 484	 * Auto-Neg is enabled.  Auto Speed Detection takes care
 485	 * of MAC speed/duplex configuration.  So we only need to
 486	 * configure Collision Distance in the MAC.
 487	 */
 488	e1000e_config_collision_dist(hw);
 489
 490	/*
 491	 * Configure Flow Control now that Auto-Neg has completed.
 492	 * First, we need to restore the desired flow control
 493	 * settings because we may have had to re-autoneg with a
 494	 * different link partner.
 495	 */
 496	ret_val = e1000e_config_fc_after_link_up(hw);
 497	if (ret_val)
 498		e_dbg("Error configuring flow control\n");
 499
 500	return ret_val;
 501}
 502
 503/**
 504 *  e1000e_check_for_fiber_link - Check for link (Fiber)
 505 *  @hw: pointer to the HW structure
 506 *
 507 *  Checks for link up on the hardware.  If link is not up and we have
 508 *  a signal, then we need to force link up.
 509 **/
 510s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
 511{
 512	struct e1000_mac_info *mac = &hw->mac;
 513	u32 rxcw;
 514	u32 ctrl;
 515	u32 status;
 516	s32 ret_val;
 517
 518	ctrl = er32(CTRL);
 519	status = er32(STATUS);
 520	rxcw = er32(RXCW);
 521
 522	/*
 523	 * If we don't have link (auto-negotiation failed or link partner
 524	 * cannot auto-negotiate), the cable is plugged in (we have signal),
 525	 * and our link partner is not trying to auto-negotiate with us (we
 526	 * are receiving idles or data), we need to force link up. We also
 527	 * need to give auto-negotiation time to complete, in case the cable
 528	 * was just plugged in. The autoneg_failed flag does this.
 529	 */
 530	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
 531	if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
 532	    (!(rxcw & E1000_RXCW_C))) {
 533		if (mac->autoneg_failed == 0) {
 534			mac->autoneg_failed = 1;
 535			return 0;
 536		}
 537		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
 538
 539		/* Disable auto-negotiation in the TXCW register */
 540		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
 541
 542		/* Force link-up and also force full-duplex. */
 543		ctrl = er32(CTRL);
 544		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
 545		ew32(CTRL, ctrl);
 546
 547		/* Configure Flow Control after forcing link up. */
 548		ret_val = e1000e_config_fc_after_link_up(hw);
 549		if (ret_val) {
 550			e_dbg("Error configuring flow control\n");
 551			return ret_val;
 552		}
 553	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
 554		/*
 555		 * If we are forcing link and we are receiving /C/ ordered
 556		 * sets, re-enable auto-negotiation in the TXCW register
 557		 * and disable forced link in the Device Control register
 558		 * in an attempt to auto-negotiate with our link partner.
 559		 */
 560		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
 561		ew32(TXCW, mac->txcw);
 562		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
 563
 564		mac->serdes_has_link = true;
 565	}
 566
 567	return 0;
 568}
 569
 570/**
 571 *  e1000e_check_for_serdes_link - Check for link (Serdes)
 572 *  @hw: pointer to the HW structure
 573 *
 574 *  Checks for link up on the hardware.  If link is not up and we have
 575 *  a signal, then we need to force link up.
 576 **/
 577s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
 578{
 579	struct e1000_mac_info *mac = &hw->mac;
 580	u32 rxcw;
 581	u32 ctrl;
 582	u32 status;
 583	s32 ret_val;
 584
 585	ctrl = er32(CTRL);
 586	status = er32(STATUS);
 587	rxcw = er32(RXCW);
 588
 589	/*
 590	 * If we don't have link (auto-negotiation failed or link partner
 591	 * cannot auto-negotiate), and our link partner is not trying to
 592	 * auto-negotiate with us (we are receiving idles or data),
 593	 * we need to force link up. We also need to give auto-negotiation
 594	 * time to complete.
 595	 */
 596	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
 597	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
 598		if (mac->autoneg_failed == 0) {
 599			mac->autoneg_failed = 1;
 600			return 0;
 601		}
 602		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
 603
 604		/* Disable auto-negotiation in the TXCW register */
 605		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
 606
 607		/* Force link-up and also force full-duplex. */
 608		ctrl = er32(CTRL);
 609		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
 610		ew32(CTRL, ctrl);
 611
 612		/* Configure Flow Control after forcing link up. */
 613		ret_val = e1000e_config_fc_after_link_up(hw);
 614		if (ret_val) {
 615			e_dbg("Error configuring flow control\n");
 616			return ret_val;
 617		}
 618	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
 619		/*
 620		 * If we are forcing link and we are receiving /C/ ordered
 621		 * sets, re-enable auto-negotiation in the TXCW register
 622		 * and disable forced link in the Device Control register
 623		 * in an attempt to auto-negotiate with our link partner.
 624		 */
 625		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
 626		ew32(TXCW, mac->txcw);
 627		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
 628
 629		mac->serdes_has_link = true;
 630	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
 631		/*
 632		 * If we force link for non-auto-negotiation switch, check
 633		 * link status based on MAC synchronization for internal
 634		 * serdes media type.
 635		 */
 636		/* SYNCH bit and IV bit are sticky. */
 637		udelay(10);
 638		rxcw = er32(RXCW);
 639		if (rxcw & E1000_RXCW_SYNCH) {
 640			if (!(rxcw & E1000_RXCW_IV)) {
 641				mac->serdes_has_link = true;
 642				e_dbg("SERDES: Link up - forced.\n");
 643			}
 644		} else {
 645			mac->serdes_has_link = false;
 646			e_dbg("SERDES: Link down - force failed.\n");
 647		}
 648	}
 649
 650	if (E1000_TXCW_ANE & er32(TXCW)) {
 651		status = er32(STATUS);
 652		if (status & E1000_STATUS_LU) {
 653			/* SYNCH bit and IV bit are sticky, so reread rxcw.  */
 654			udelay(10);
 655			rxcw = er32(RXCW);
 656			if (rxcw & E1000_RXCW_SYNCH) {
 657				if (!(rxcw & E1000_RXCW_IV)) {
 658					mac->serdes_has_link = true;
 659					e_dbg("SERDES: Link up - autoneg "
 660					   "completed successfully.\n");
 661				} else {
 662					mac->serdes_has_link = false;
 663					e_dbg("SERDES: Link down - invalid"
 664					   "codewords detected in autoneg.\n");
 665				}
 666			} else {
 667				mac->serdes_has_link = false;
 668				e_dbg("SERDES: Link down - no sync.\n");
 669			}
 670		} else {
 671			mac->serdes_has_link = false;
 672			e_dbg("SERDES: Link down - autoneg failed\n");
 673		}
 674	}
 675
 676	return 0;
 677}
 678
 679/**
 680 *  e1000_set_default_fc_generic - Set flow control default values
 681 *  @hw: pointer to the HW structure
 682 *
 683 *  Read the EEPROM for the default values for flow control and store the
 684 *  values.
 685 **/
 686static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
 687{
 688	s32 ret_val;
 689	u16 nvm_data;
 690
 691	/*
 692	 * Read and store word 0x0F of the EEPROM. This word contains bits
 693	 * that determine the hardware's default PAUSE (flow control) mode,
 694	 * a bit that determines whether the HW defaults to enabling or
 695	 * disabling auto-negotiation, and the direction of the
 696	 * SW defined pins. If there is no SW over-ride of the flow
 697	 * control setting, then the variable hw->fc will
 698	 * be initialized based on a value in the EEPROM.
 699	 */
 700	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
 701
 702	if (ret_val) {
 703		e_dbg("NVM Read Error\n");
 704		return ret_val;
 705	}
 706
 707	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
 708		hw->fc.requested_mode = e1000_fc_none;
 709	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
 710		 NVM_WORD0F_ASM_DIR)
 711		hw->fc.requested_mode = e1000_fc_tx_pause;
 712	else
 713		hw->fc.requested_mode = e1000_fc_full;
 714
 715	return 0;
 716}
 717
 718/**
 719 *  e1000e_setup_link - Setup flow control and link settings
 720 *  @hw: pointer to the HW structure
 721 *
 722 *  Determines which flow control settings to use, then configures flow
 723 *  control.  Calls the appropriate media-specific link configuration
 724 *  function.  Assuming the adapter has a valid link partner, a valid link
 725 *  should be established.  Assumes the hardware has previously been reset
 726 *  and the transmitter and receiver are not enabled.
 727 **/
 728s32 e1000e_setup_link(struct e1000_hw *hw)
 729{
 730	struct e1000_mac_info *mac = &hw->mac;
 731	s32 ret_val;
 732
 733	/*
 734	 * In the case of the phy reset being blocked, we already have a link.
 735	 * We do not need to set it up again.
 736	 */
 737	if (e1000_check_reset_block(hw))
 738		return 0;
 739
 740	/*
 741	 * If requested flow control is set to default, set flow control
 742	 * based on the EEPROM flow control settings.
 743	 */
 744	if (hw->fc.requested_mode == e1000_fc_default) {
 745		ret_val = e1000_set_default_fc_generic(hw);
 746		if (ret_val)
 747			return ret_val;
 748	}
 749
 750	/*
 751	 * Save off the requested flow control mode for use later.  Depending
 752	 * on the link partner's capabilities, we may or may not use this mode.
 753	 */
 754	hw->fc.current_mode = hw->fc.requested_mode;
 755
 756	e_dbg("After fix-ups FlowControl is now = %x\n",
 757		hw->fc.current_mode);
 758
 759	/* Call the necessary media_type subroutine to configure the link. */
 760	ret_val = mac->ops.setup_physical_interface(hw);
 761	if (ret_val)
 762		return ret_val;
 763
 764	/*
 765	 * Initialize the flow control address, type, and PAUSE timer
 766	 * registers to their default values.  This is done even if flow
 767	 * control is disabled, because it does not hurt anything to
 768	 * initialize these registers.
 769	 */
 770	e_dbg("Initializing the Flow Control address, type and timer regs\n");
 771	ew32(FCT, FLOW_CONTROL_TYPE);
 772	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 773	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
 774
 775	ew32(FCTTV, hw->fc.pause_time);
 776
 777	return e1000e_set_fc_watermarks(hw);
 778}
 779
 780/**
 781 *  e1000_commit_fc_settings_generic - Configure flow control
 782 *  @hw: pointer to the HW structure
 783 *
 784 *  Write the flow control settings to the Transmit Config Word Register (TXCW)
 785 *  base on the flow control settings in e1000_mac_info.
 786 **/
 787static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
 788{
 789	struct e1000_mac_info *mac = &hw->mac;
 790	u32 txcw;
 791
 792	/*
 793	 * Check for a software override of the flow control settings, and
 794	 * setup the device accordingly.  If auto-negotiation is enabled, then
 795	 * software will have to set the "PAUSE" bits to the correct value in
 796	 * the Transmit Config Word Register (TXCW) and re-start auto-
 797	 * negotiation.  However, if auto-negotiation is disabled, then
 798	 * software will have to manually configure the two flow control enable
 799	 * bits in the CTRL register.
 800	 *
 801	 * The possible values of the "fc" parameter are:
 802	 *      0:  Flow control is completely disabled
 803	 *      1:  Rx flow control is enabled (we can receive pause frames,
 804	 *          but not send pause frames).
 805	 *      2:  Tx flow control is enabled (we can send pause frames but we
 806	 *          do not support receiving pause frames).
 807	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
 808	 */
 809	switch (hw->fc.current_mode) {
 810	case e1000_fc_none:
 811		/* Flow control completely disabled by a software over-ride. */
 812		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
 813		break;
 814	case e1000_fc_rx_pause:
 815		/*
 816		 * Rx Flow control is enabled and Tx Flow control is disabled
 817		 * by a software over-ride. Since there really isn't a way to
 818		 * advertise that we are capable of Rx Pause ONLY, we will
 819		 * advertise that we support both symmetric and asymmetric Rx
 820		 * PAUSE.  Later, we will disable the adapter's ability to send
 821		 * PAUSE frames.
 822		 */
 823		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 824		break;
 825	case e1000_fc_tx_pause:
 826		/*
 827		 * Tx Flow control is enabled, and Rx Flow control is disabled,
 828		 * by a software over-ride.
 829		 */
 830		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
 831		break;
 832	case e1000_fc_full:
 833		/*
 834		 * Flow control (both Rx and Tx) is enabled by a software
 835		 * over-ride.
 836		 */
 837		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 838		break;
 839	default:
 840		e_dbg("Flow control param set incorrectly\n");
 841		return -E1000_ERR_CONFIG;
 842		break;
 843	}
 844
 845	ew32(TXCW, txcw);
 846	mac->txcw = txcw;
 847
 848	return 0;
 849}
 850
 851/**
 852 *  e1000_poll_fiber_serdes_link_generic - Poll for link up
 853 *  @hw: pointer to the HW structure
 854 *
 855 *  Polls for link up by reading the status register, if link fails to come
 856 *  up with auto-negotiation, then the link is forced if a signal is detected.
 857 **/
 858static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
 859{
 860	struct e1000_mac_info *mac = &hw->mac;
 861	u32 i, status;
 862	s32 ret_val;
 863
 864	/*
 865	 * If we have a signal (the cable is plugged in, or assumed true for
 866	 * serdes media) then poll for a "Link-Up" indication in the Device
 867	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
 868	 * seconds (Auto-negotiation should complete in less than 500
 869	 * milliseconds even if the other end is doing it in SW).
 870	 */
 871	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
 872		usleep_range(10000, 20000);
 873		status = er32(STATUS);
 874		if (status & E1000_STATUS_LU)
 875			break;
 876	}
 877	if (i == FIBER_LINK_UP_LIMIT) {
 878		e_dbg("Never got a valid link from auto-neg!!!\n");
 879		mac->autoneg_failed = 1;
 880		/*
 881		 * AutoNeg failed to achieve a link, so we'll call
 882		 * mac->check_for_link. This routine will force the
 883		 * link up if we detect a signal. This will allow us to
 884		 * communicate with non-autonegotiating link partners.
 885		 */
 886		ret_val = mac->ops.check_for_link(hw);
 887		if (ret_val) {
 888			e_dbg("Error while checking for link\n");
 889			return ret_val;
 890		}
 891		mac->autoneg_failed = 0;
 892	} else {
 893		mac->autoneg_failed = 0;
 894		e_dbg("Valid Link Found\n");
 895	}
 896
 897	return 0;
 898}
 899
 900/**
 901 *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
 902 *  @hw: pointer to the HW structure
 903 *
 904 *  Configures collision distance and flow control for fiber and serdes
 905 *  links.  Upon successful setup, poll for link.
 906 **/
 907s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
 908{
 909	u32 ctrl;
 910	s32 ret_val;
 911
 912	ctrl = er32(CTRL);
 913
 914	/* Take the link out of reset */
 915	ctrl &= ~E1000_CTRL_LRST;
 916
 917	e1000e_config_collision_dist(hw);
 918
 919	ret_val = e1000_commit_fc_settings_generic(hw);
 920	if (ret_val)
 921		return ret_val;
 922
 923	/*
 924	 * Since auto-negotiation is enabled, take the link out of reset (the
 925	 * link will be in reset, because we previously reset the chip). This
 926	 * will restart auto-negotiation.  If auto-negotiation is successful
 927	 * then the link-up status bit will be set and the flow control enable
 928	 * bits (RFCE and TFCE) will be set according to their negotiated value.
 929	 */
 930	e_dbg("Auto-negotiation enabled\n");
 931
 932	ew32(CTRL, ctrl);
 933	e1e_flush();
 934	usleep_range(1000, 2000);
 935
 936	/*
 937	 * For these adapters, the SW definable pin 1 is set when the optics
 938	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
 939	 * indication.
 940	 */
 941	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
 942	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
 943		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
 944	} else {
 945		e_dbg("No signal detected\n");
 946	}
 947
 948	return 0;
 949}
 950
 951/**
 952 *  e1000e_config_collision_dist - Configure collision distance
 953 *  @hw: pointer to the HW structure
 954 *
 955 *  Configures the collision distance to the default value and is used
 956 *  during link setup. Currently no func pointer exists and all
 957 *  implementations are handled in the generic version of this function.
 958 **/
 959void e1000e_config_collision_dist(struct e1000_hw *hw)
 960{
 961	u32 tctl;
 962
 963	tctl = er32(TCTL);
 964
 965	tctl &= ~E1000_TCTL_COLD;
 966	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
 967
 968	ew32(TCTL, tctl);
 969	e1e_flush();
 970}
 971
 972/**
 973 *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
 974 *  @hw: pointer to the HW structure
 975 *
 976 *  Sets the flow control high/low threshold (watermark) registers.  If
 977 *  flow control XON frame transmission is enabled, then set XON frame
 978 *  transmission as well.
 979 **/
 980s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
 981{
 982	u32 fcrtl = 0, fcrth = 0;
 983
 984	/*
 985	 * Set the flow control receive threshold registers.  Normally,
 986	 * these registers will be set to a default threshold that may be
 987	 * adjusted later by the driver's runtime code.  However, if the
 988	 * ability to transmit pause frames is not enabled, then these
 989	 * registers will be set to 0.
 990	 */
 991	if (hw->fc.current_mode & e1000_fc_tx_pause) {
 992		/*
 993		 * We need to set up the Receive Threshold high and low water
 994		 * marks as well as (optionally) enabling the transmission of
 995		 * XON frames.
 996		 */
 997		fcrtl = hw->fc.low_water;
 998		fcrtl |= E1000_FCRTL_XONE;
 999		fcrth = hw->fc.high_water;
1000	}
1001	ew32(FCRTL, fcrtl);
1002	ew32(FCRTH, fcrth);
1003
1004	return 0;
1005}
1006
1007/**
1008 *  e1000e_force_mac_fc - Force the MAC's flow control settings
1009 *  @hw: pointer to the HW structure
1010 *
1011 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
1012 *  device control register to reflect the adapter settings.  TFCE and RFCE
1013 *  need to be explicitly set by software when a copper PHY is used because
1014 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
1015 *  also configure these bits when link is forced on a fiber connection.
1016 **/
1017s32 e1000e_force_mac_fc(struct e1000_hw *hw)
1018{
1019	u32 ctrl;
1020
1021	ctrl = er32(CTRL);
1022
1023	/*
1024	 * Because we didn't get link via the internal auto-negotiation
1025	 * mechanism (we either forced link or we got link via PHY
1026	 * auto-neg), we have to manually enable/disable transmit an
1027	 * receive flow control.
1028	 *
1029	 * The "Case" statement below enables/disable flow control
1030	 * according to the "hw->fc.current_mode" parameter.
1031	 *
1032	 * The possible values of the "fc" parameter are:
1033	 *      0:  Flow control is completely disabled
1034	 *      1:  Rx flow control is enabled (we can receive pause
1035	 *          frames but not send pause frames).
1036	 *      2:  Tx flow control is enabled (we can send pause frames
1037	 *          frames but we do not receive pause frames).
1038	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
1039	 *  other:  No other values should be possible at this point.
1040	 */
1041	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
1042
1043	switch (hw->fc.current_mode) {
1044	case e1000_fc_none:
1045		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1046		break;
1047	case e1000_fc_rx_pause:
1048		ctrl &= (~E1000_CTRL_TFCE);
1049		ctrl |= E1000_CTRL_RFCE;
1050		break;
1051	case e1000_fc_tx_pause:
1052		ctrl &= (~E1000_CTRL_RFCE);
1053		ctrl |= E1000_CTRL_TFCE;
1054		break;
1055	case e1000_fc_full:
1056		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1057		break;
1058	default:
1059		e_dbg("Flow control param set incorrectly\n");
1060		return -E1000_ERR_CONFIG;
1061	}
1062
1063	ew32(CTRL, ctrl);
1064
1065	return 0;
1066}
1067
1068/**
1069 *  e1000e_config_fc_after_link_up - Configures flow control after link
1070 *  @hw: pointer to the HW structure
1071 *
1072 *  Checks the status of auto-negotiation after link up to ensure that the
1073 *  speed and duplex were not forced.  If the link needed to be forced, then
1074 *  flow control needs to be forced also.  If auto-negotiation is enabled
1075 *  and did not fail, then we configure flow control based on our link
1076 *  partner.
1077 **/
1078s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1079{
1080	struct e1000_mac_info *mac = &hw->mac;
1081	s32 ret_val = 0;
1082	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1083	u16 speed, duplex;
1084
1085	/*
1086	 * Check for the case where we have fiber media and auto-neg failed
1087	 * so we had to force link.  In this case, we need to force the
1088	 * configuration of the MAC to match the "fc" parameter.
1089	 */
1090	if (mac->autoneg_failed) {
1091		if (hw->phy.media_type == e1000_media_type_fiber ||
1092		    hw->phy.media_type == e1000_media_type_internal_serdes)
1093			ret_val = e1000e_force_mac_fc(hw);
1094	} else {
1095		if (hw->phy.media_type == e1000_media_type_copper)
1096			ret_val = e1000e_force_mac_fc(hw);
1097	}
1098
1099	if (ret_val) {
1100		e_dbg("Error forcing flow control settings\n");
1101		return ret_val;
1102	}
1103
1104	/*
1105	 * Check for the case where we have copper media and auto-neg is
1106	 * enabled.  In this case, we need to check and see if Auto-Neg
1107	 * has completed, and if so, how the PHY and link partner has
1108	 * flow control configured.
1109	 */
1110	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1111		/*
1112		 * Read the MII Status Register and check to see if AutoNeg
1113		 * has completed.  We read this twice because this reg has
1114		 * some "sticky" (latched) bits.
1115		 */
1116		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1117		if (ret_val)
1118			return ret_val;
1119		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1120		if (ret_val)
1121			return ret_val;
1122
1123		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1124			e_dbg("Copper PHY and Auto Neg "
1125				 "has not completed.\n");
1126			return ret_val;
1127		}
1128
1129		/*
1130		 * The AutoNeg process has completed, so we now need to
1131		 * read both the Auto Negotiation Advertisement
1132		 * Register (Address 4) and the Auto_Negotiation Base
1133		 * Page Ability Register (Address 5) to determine how
1134		 * flow control was negotiated.
1135		 */
1136		ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
1137		if (ret_val)
1138			return ret_val;
1139		ret_val =
1140		    e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
1141		if (ret_val)
1142			return ret_val;
1143
1144		/*
1145		 * Two bits in the Auto Negotiation Advertisement Register
1146		 * (Address 4) and two bits in the Auto Negotiation Base
1147		 * Page Ability Register (Address 5) determine flow control
1148		 * for both the PHY and the link partner.  The following
1149		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1150		 * 1999, describes these PAUSE resolution bits and how flow
1151		 * control is determined based upon these settings.
1152		 * NOTE:  DC = Don't Care
1153		 *
1154		 *   LOCAL DEVICE  |   LINK PARTNER
1155		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1156		 *-------|---------|-------|---------|--------------------
1157		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1158		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1159		 *   0   |    1    |   1   |    0    | e1000_fc_none
1160		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1161		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1162		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1163		 *   1   |    1    |   0   |    0    | e1000_fc_none
1164		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1165		 *
1166		 * Are both PAUSE bits set to 1?  If so, this implies
1167		 * Symmetric Flow Control is enabled at both ends.  The
1168		 * ASM_DIR bits are irrelevant per the spec.
1169		 *
1170		 * For Symmetric Flow Control:
1171		 *
1172		 *   LOCAL DEVICE  |   LINK PARTNER
1173		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1174		 *-------|---------|-------|---------|--------------------
1175		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1176		 *
1177		 */
1178		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1179		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1180			/*
1181			 * Now we need to check if the user selected Rx ONLY
1182			 * of pause frames.  In this case, we had to advertise
1183			 * FULL flow control because we could not advertise Rx
1184			 * ONLY. Hence, we must now check to see if we need to
1185			 * turn OFF the TRANSMISSION of PAUSE frames.
1186			 */
1187			if (hw->fc.requested_mode == e1000_fc_full) {
1188				hw->fc.current_mode = e1000_fc_full;
1189				e_dbg("Flow Control = FULL.\r\n");
1190			} else {
1191				hw->fc.current_mode = e1000_fc_rx_pause;
1192				e_dbg("Flow Control = "
1193				      "Rx PAUSE frames only.\r\n");
1194			}
1195		}
1196		/*
1197		 * For receiving PAUSE frames ONLY.
1198		 *
1199		 *   LOCAL DEVICE  |   LINK PARTNER
1200		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1201		 *-------|---------|-------|---------|--------------------
1202		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1203		 */
1204		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1205			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1206			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1207			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1208			hw->fc.current_mode = e1000_fc_tx_pause;
1209			e_dbg("Flow Control = Tx PAUSE frames only.\r\n");
1210		}
1211		/*
1212		 * For transmitting PAUSE frames ONLY.
1213		 *
1214		 *   LOCAL DEVICE  |   LINK PARTNER
1215		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1216		 *-------|---------|-------|---------|--------------------
1217		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1218		 */
1219		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1220			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1221			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1222			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1223			hw->fc.current_mode = e1000_fc_rx_pause;
1224			e_dbg("Flow Control = Rx PAUSE frames only.\r\n");
1225		} else {
1226			/*
1227			 * Per the IEEE spec, at this point flow control
1228			 * should be disabled.
1229			 */
1230			hw->fc.current_mode = e1000_fc_none;
1231			e_dbg("Flow Control = NONE.\r\n");
1232		}
1233
1234		/*
1235		 * Now we need to do one last check...  If we auto-
1236		 * negotiated to HALF DUPLEX, flow control should not be
1237		 * enabled per IEEE 802.3 spec.
1238		 */
1239		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1240		if (ret_val) {
1241			e_dbg("Error getting link speed and duplex\n");
1242			return ret_val;
1243		}
1244
1245		if (duplex == HALF_DUPLEX)
1246			hw->fc.current_mode = e1000_fc_none;
1247
1248		/*
1249		 * Now we call a subroutine to actually force the MAC
1250		 * controller to use the correct flow control settings.
1251		 */
1252		ret_val = e1000e_force_mac_fc(hw);
1253		if (ret_val) {
1254			e_dbg("Error forcing flow control settings\n");
1255			return ret_val;
1256		}
1257	}
1258
1259	return 0;
1260}
1261
1262/**
1263 *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1264 *  @hw: pointer to the HW structure
1265 *  @speed: stores the current speed
1266 *  @duplex: stores the current duplex
1267 *
1268 *  Read the status register for the current speed/duplex and store the current
1269 *  speed and duplex for copper connections.
1270 **/
1271s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
1272{
1273	u32 status;
1274
1275	status = er32(STATUS);
1276	if (status & E1000_STATUS_SPEED_1000)
1277		*speed = SPEED_1000;
1278	else if (status & E1000_STATUS_SPEED_100)
1279		*speed = SPEED_100;
1280	else
1281		*speed = SPEED_10;
1282
1283	if (status & E1000_STATUS_FD)
1284		*duplex = FULL_DUPLEX;
1285	else
1286		*duplex = HALF_DUPLEX;
1287
1288	e_dbg("%u Mbps, %s Duplex\n",
1289	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1290	      *duplex == FULL_DUPLEX ? "Full" : "Half");
1291
1292	return 0;
1293}
1294
1295/**
1296 *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1297 *  @hw: pointer to the HW structure
1298 *  @speed: stores the current speed
1299 *  @duplex: stores the current duplex
1300 *
1301 *  Sets the speed and duplex to gigabit full duplex (the only possible option)
1302 *  for fiber/serdes links.
1303 **/
1304s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
1305{
1306	*speed = SPEED_1000;
1307	*duplex = FULL_DUPLEX;
1308
1309	return 0;
1310}
1311
1312/**
1313 *  e1000e_get_hw_semaphore - Acquire hardware semaphore
1314 *  @hw: pointer to the HW structure
1315 *
1316 *  Acquire the HW semaphore to access the PHY or NVM
1317 **/
1318s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1319{
1320	u32 swsm;
1321	s32 timeout = hw->nvm.word_size + 1;
1322	s32 i = 0;
1323
1324	/* Get the SW semaphore */
1325	while (i < timeout) {
1326		swsm = er32(SWSM);
1327		if (!(swsm & E1000_SWSM_SMBI))
1328			break;
1329
1330		udelay(50);
1331		i++;
1332	}
1333
1334	if (i == timeout) {
1335		e_dbg("Driver can't access device - SMBI bit is set.\n");
1336		return -E1000_ERR_NVM;
1337	}
1338
1339	/* Get the FW semaphore. */
1340	for (i = 0; i < timeout; i++) {
1341		swsm = er32(SWSM);
1342		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1343
1344		/* Semaphore acquired if bit latched */
1345		if (er32(SWSM) & E1000_SWSM_SWESMBI)
1346			break;
1347
1348		udelay(50);
1349	}
1350
1351	if (i == timeout) {
1352		/* Release semaphores */
1353		e1000e_put_hw_semaphore(hw);
1354		e_dbg("Driver can't access the NVM\n");
1355		return -E1000_ERR_NVM;
1356	}
1357
1358	return 0;
1359}
1360
1361/**
1362 *  e1000e_put_hw_semaphore - Release hardware semaphore
1363 *  @hw: pointer to the HW structure
1364 *
1365 *  Release hardware semaphore used to access the PHY or NVM
1366 **/
1367void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1368{
1369	u32 swsm;
1370
1371	swsm = er32(SWSM);
1372	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1373	ew32(SWSM, swsm);
1374}
1375
1376/**
1377 *  e1000e_get_auto_rd_done - Check for auto read completion
1378 *  @hw: pointer to the HW structure
1379 *
1380 *  Check EEPROM for Auto Read done bit.
1381 **/
1382s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1383{
1384	s32 i = 0;
1385
1386	while (i < AUTO_READ_DONE_TIMEOUT) {
1387		if (er32(EECD) & E1000_EECD_AUTO_RD)
1388			break;
1389		usleep_range(1000, 2000);
1390		i++;
1391	}
1392
1393	if (i == AUTO_READ_DONE_TIMEOUT) {
1394		e_dbg("Auto read by HW from NVM has not completed.\n");
1395		return -E1000_ERR_RESET;
1396	}
1397
1398	return 0;
1399}
1400
1401/**
1402 *  e1000e_valid_led_default - Verify a valid default LED config
1403 *  @hw: pointer to the HW structure
1404 *  @data: pointer to the NVM (EEPROM)
1405 *
1406 *  Read the EEPROM for the current default LED configuration.  If the
1407 *  LED configuration is not valid, set to a valid LED configuration.
1408 **/
1409s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1410{
1411	s32 ret_val;
1412
1413	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1414	if (ret_val) {
1415		e_dbg("NVM Read Error\n");
1416		return ret_val;
1417	}
1418
1419	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1420		*data = ID_LED_DEFAULT;
1421
1422	return 0;
1423}
1424
1425/**
1426 *  e1000e_id_led_init -
1427 *  @hw: pointer to the HW structure
1428 *
1429 **/
1430s32 e1000e_id_led_init(struct e1000_hw *hw)
1431{
1432	struct e1000_mac_info *mac = &hw->mac;
1433	s32 ret_val;
1434	const u32 ledctl_mask = 0x000000FF;
1435	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1436	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1437	u16 data, i, temp;
1438	const u16 led_mask = 0x0F;
1439
1440	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1441	if (ret_val)
1442		return ret_val;
1443
1444	mac->ledctl_default = er32(LEDCTL);
1445	mac->ledctl_mode1 = mac->ledctl_default;
1446	mac->ledctl_mode2 = mac->ledctl_default;
1447
1448	for (i = 0; i < 4; i++) {
1449		temp = (data >> (i << 2)) & led_mask;
1450		switch (temp) {
1451		case ID_LED_ON1_DEF2:
1452		case ID_LED_ON1_ON2:
1453		case ID_LED_ON1_OFF2:
1454			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1455			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1456			break;
1457		case ID_LED_OFF1_DEF2:
1458		case ID_LED_OFF1_ON2:
1459		case ID_LED_OFF1_OFF2:
1460			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1461			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1462			break;
1463		default:
1464			/* Do nothing */
1465			break;
1466		}
1467		switch (temp) {
1468		case ID_LED_DEF1_ON2:
1469		case ID_LED_ON1_ON2:
1470		case ID_LED_OFF1_ON2:
1471			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1472			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1473			break;
1474		case ID_LED_DEF1_OFF2:
1475		case ID_LED_ON1_OFF2:
1476		case ID_LED_OFF1_OFF2:
1477			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1478			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1479			break;
1480		default:
1481			/* Do nothing */
1482			break;
1483		}
1484	}
1485
1486	return 0;
1487}
1488
1489/**
1490 *  e1000e_setup_led_generic - Configures SW controllable LED
1491 *  @hw: pointer to the HW structure
1492 *
1493 *  This prepares the SW controllable LED for use and saves the current state
1494 *  of the LED so it can be later restored.
1495 **/
1496s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1497{
1498	u32 ledctl;
1499
1500	if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1501		return -E1000_ERR_CONFIG;
1502
1503	if (hw->phy.media_type == e1000_media_type_fiber) {
1504		ledctl = er32(LEDCTL);
1505		hw->mac.ledctl_default = ledctl;
1506		/* Turn off LED0 */
1507		ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
1508		            E1000_LEDCTL_LED0_BLINK |
1509		            E1000_LEDCTL_LED0_MODE_MASK);
1510		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1511		           E1000_LEDCTL_LED0_MODE_SHIFT);
1512		ew32(LEDCTL, ledctl);
1513	} else if (hw->phy.media_type == e1000_media_type_copper) {
1514		ew32(LEDCTL, hw->mac.ledctl_mode1);
1515	}
1516
1517	return 0;
1518}
1519
1520/**
1521 *  e1000e_cleanup_led_generic - Set LED config to default operation
1522 *  @hw: pointer to the HW structure
1523 *
1524 *  Remove the current LED configuration and set the LED configuration
1525 *  to the default value, saved from the EEPROM.
1526 **/
1527s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1528{
1529	ew32(LEDCTL, hw->mac.ledctl_default);
1530	return 0;
1531}
1532
1533/**
1534 *  e1000e_blink_led_generic - Blink LED
1535 *  @hw: pointer to the HW structure
1536 *
1537 *  Blink the LEDs which are set to be on.
1538 **/
1539s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1540{
1541	u32 ledctl_blink = 0;
1542	u32 i;
1543
1544	if (hw->phy.media_type == e1000_media_type_fiber) {
1545		/* always blink LED0 for PCI-E fiber */
1546		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1547		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1548	} else {
1549		/*
1550		 * set the blink bit for each LED that's "on" (0x0E)
1551		 * in ledctl_mode2
1552		 */
1553		ledctl_blink = hw->mac.ledctl_mode2;
1554		for (i = 0; i < 4; i++)
1555			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1556			    E1000_LEDCTL_MODE_LED_ON)
1557				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1558						 (i * 8));
1559	}
1560
1561	ew32(LEDCTL, ledctl_blink);
1562
1563	return 0;
1564}
1565
1566/**
1567 *  e1000e_led_on_generic - Turn LED on
1568 *  @hw: pointer to the HW structure
1569 *
1570 *  Turn LED on.
1571 **/
1572s32 e1000e_led_on_generic(struct e1000_hw *hw)
1573{
1574	u32 ctrl;
1575
1576	switch (hw->phy.media_type) {
1577	case e1000_media_type_fiber:
1578		ctrl = er32(CTRL);
1579		ctrl &= ~E1000_CTRL_SWDPIN0;
1580		ctrl |= E1000_CTRL_SWDPIO0;
1581		ew32(CTRL, ctrl);
1582		break;
1583	case e1000_media_type_copper:
1584		ew32(LEDCTL, hw->mac.ledctl_mode2);
1585		break;
1586	default:
1587		break;
1588	}
1589
1590	return 0;
1591}
1592
1593/**
1594 *  e1000e_led_off_generic - Turn LED off
1595 *  @hw: pointer to the HW structure
1596 *
1597 *  Turn LED off.
1598 **/
1599s32 e1000e_led_off_generic(struct e1000_hw *hw)
1600{
1601	u32 ctrl;
1602
1603	switch (hw->phy.media_type) {
1604	case e1000_media_type_fiber:
1605		ctrl = er32(CTRL);
1606		ctrl |= E1000_CTRL_SWDPIN0;
1607		ctrl |= E1000_CTRL_SWDPIO0;
1608		ew32(CTRL, ctrl);
1609		break;
1610	case e1000_media_type_copper:
1611		ew32(LEDCTL, hw->mac.ledctl_mode1);
1612		break;
1613	default:
1614		break;
1615	}
1616
1617	return 0;
1618}
1619
1620/**
1621 *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1622 *  @hw: pointer to the HW structure
1623 *  @no_snoop: bitmap of snoop events
1624 *
1625 *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1626 **/
1627void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1628{
1629	u32 gcr;
1630
1631	if (no_snoop) {
1632		gcr = er32(GCR);
1633		gcr &= ~(PCIE_NO_SNOOP_ALL);
1634		gcr |= no_snoop;
1635		ew32(GCR, gcr);
1636	}
1637}
1638
1639/**
1640 *  e1000e_disable_pcie_master - Disables PCI-express master access
1641 *  @hw: pointer to the HW structure
1642 *
1643 *  Returns 0 if successful, else returns -10
1644 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1645 *  the master requests to be disabled.
1646 *
1647 *  Disables PCI-Express master access and verifies there are no pending
1648 *  requests.
1649 **/
1650s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1651{
1652	u32 ctrl;
1653	s32 timeout = MASTER_DISABLE_TIMEOUT;
1654
1655	ctrl = er32(CTRL);
1656	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1657	ew32(CTRL, ctrl);
1658
1659	while (timeout) {
1660		if (!(er32(STATUS) &
1661		      E1000_STATUS_GIO_MASTER_ENABLE))
1662			break;
1663		udelay(100);
1664		timeout--;
1665	}
1666
1667	if (!timeout) {
1668		e_dbg("Master requests are pending.\n");
1669		return -E1000_ERR_MASTER_REQUESTS_PENDING;
1670	}
1671
1672	return 0;
1673}
1674
1675/**
1676 *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1677 *  @hw: pointer to the HW structure
1678 *
1679 *  Reset the Adaptive Interframe Spacing throttle to default values.
1680 **/
1681void e1000e_reset_adaptive(struct e1000_hw *hw)
1682{
1683	struct e1000_mac_info *mac = &hw->mac;
1684
1685	if (!mac->adaptive_ifs) {
1686		e_dbg("Not in Adaptive IFS mode!\n");
1687		goto out;
1688	}
1689
1690	mac->current_ifs_val = 0;
1691	mac->ifs_min_val = IFS_MIN;
1692	mac->ifs_max_val = IFS_MAX;
1693	mac->ifs_step_size = IFS_STEP;
1694	mac->ifs_ratio = IFS_RATIO;
1695
1696	mac->in_ifs_mode = false;
1697	ew32(AIT, 0);
1698out:
1699	return;
1700}
1701
1702/**
1703 *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
1704 *  @hw: pointer to the HW structure
1705 *
1706 *  Update the Adaptive Interframe Spacing Throttle value based on the
1707 *  time between transmitted packets and time between collisions.
1708 **/
1709void e1000e_update_adaptive(struct e1000_hw *hw)
1710{
1711	struct e1000_mac_info *mac = &hw->mac;
1712
1713	if (!mac->adaptive_ifs) {
1714		e_dbg("Not in Adaptive IFS mode!\n");
1715		goto out;
1716	}
1717
1718	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1719		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1720			mac->in_ifs_mode = true;
1721			if (mac->current_ifs_val < mac->ifs_max_val) {
1722				if (!mac->current_ifs_val)
1723					mac->current_ifs_val = mac->ifs_min_val;
1724				else
1725					mac->current_ifs_val +=
1726						mac->ifs_step_size;
1727				ew32(AIT, mac->current_ifs_val);
1728			}
1729		}
1730	} else {
1731		if (mac->in_ifs_mode &&
1732		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1733			mac->current_ifs_val = 0;
1734			mac->in_ifs_mode = false;
1735			ew32(AIT, 0);
1736		}
1737	}
1738out:
1739	return;
1740}
1741
1742/**
1743 *  e1000_raise_eec_clk - Raise EEPROM clock
1744 *  @hw: pointer to the HW structure
1745 *  @eecd: pointer to the EEPROM
1746 *
1747 *  Enable/Raise the EEPROM clock bit.
1748 **/
1749static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
1750{
1751	*eecd = *eecd | E1000_EECD_SK;
1752	ew32(EECD, *eecd);
1753	e1e_flush();
1754	udelay(hw->nvm.delay_usec);
1755}
1756
1757/**
1758 *  e1000_lower_eec_clk - Lower EEPROM clock
1759 *  @hw: pointer to the HW structure
1760 *  @eecd: pointer to the EEPROM
1761 *
1762 *  Clear/Lower the EEPROM clock bit.
1763 **/
1764static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
1765{
1766	*eecd = *eecd & ~E1000_EECD_SK;
1767	ew32(EECD, *eecd);
1768	e1e_flush();
1769	udelay(hw->nvm.delay_usec);
1770}
1771
1772/**
1773 *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
1774 *  @hw: pointer to the HW structure
1775 *  @data: data to send to the EEPROM
1776 *  @count: number of bits to shift out
1777 *
1778 *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
1779 *  "data" parameter will be shifted out to the EEPROM one bit at a time.
1780 *  In order to do this, "data" must be broken down into bits.
1781 **/
1782static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
1783{
1784	struct e1000_nvm_info *nvm = &hw->nvm;
1785	u32 eecd = er32(EECD);
1786	u32 mask;
1787
1788	mask = 0x01 << (count - 1);
1789	if (nvm->type == e1000_nvm_eeprom_spi)
1790		eecd |= E1000_EECD_DO;
1791
1792	do {
1793		eecd &= ~E1000_EECD_DI;
1794
1795		if (data & mask)
1796			eecd |= E1000_EECD_DI;
1797
1798		ew32(EECD, eecd);
1799		e1e_flush();
1800
1801		udelay(nvm->delay_usec);
1802
1803		e1000_raise_eec_clk(hw, &eecd);
1804		e1000_lower_eec_clk(hw, &eecd);
1805
1806		mask >>= 1;
1807	} while (mask);
1808
1809	eecd &= ~E1000_EECD_DI;
1810	ew32(EECD, eecd);
1811}
1812
1813/**
1814 *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
1815 *  @hw: pointer to the HW structure
1816 *  @count: number of bits to shift in
1817 *
1818 *  In order to read a register from the EEPROM, we need to shift 'count' bits
1819 *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
1820 *  the EEPROM (setting the SK bit), and then reading the value of the data out
1821 *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
1822 *  always be clear.
1823 **/
1824static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
1825{
1826	u32 eecd;
1827	u32 i;
1828	u16 data;
1829
1830	eecd = er32(EECD);
1831
1832	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
1833	data = 0;
1834
1835	for (i = 0; i < count; i++) {
1836		data <<= 1;
1837		e1000_raise_eec_clk(hw, &eecd);
1838
1839		eecd = er32(EECD);
1840
1841		eecd &= ~E1000_EECD_DI;
1842		if (eecd & E1000_EECD_DO)
1843			data |= 1;
1844
1845		e1000_lower_eec_clk(hw, &eecd);
1846	}
1847
1848	return data;
1849}
1850
1851/**
1852 *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
1853 *  @hw: pointer to the HW structure
1854 *  @ee_reg: EEPROM flag for polling
1855 *
1856 *  Polls the EEPROM status bit for either read or write completion based
1857 *  upon the value of 'ee_reg'.
1858 **/
1859s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
1860{
1861	u32 attempts = 100000;
1862	u32 i, reg = 0;
1863
1864	for (i = 0; i < attempts; i++) {
1865		if (ee_reg == E1000_NVM_POLL_READ)
1866			reg = er32(EERD);
1867		else
1868			reg = er32(EEWR);
1869
1870		if (reg & E1000_NVM_RW_REG_DONE)
1871			return 0;
1872
1873		udelay(5);
1874	}
1875
1876	return -E1000_ERR_NVM;
1877}
1878
1879/**
1880 *  e1000e_acquire_nvm - Generic request for access to EEPROM
1881 *  @hw: pointer to the HW structure
1882 *
1883 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1884 *  Return successful if access grant bit set, else clear the request for
1885 *  EEPROM access and return -E1000_ERR_NVM (-1).
1886 **/
1887s32 e1000e_acquire_nvm(struct e1000_hw *hw)
1888{
1889	u32 eecd = er32(EECD);
1890	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
1891
1892	ew32(EECD, eecd | E1000_EECD_REQ);
1893	eecd = er32(EECD);
1894
1895	while (timeout) {
1896		if (eecd & E1000_EECD_GNT)
1897			break;
1898		udelay(5);
1899		eecd = er32(EECD);
1900		timeout--;
1901	}
1902
1903	if (!timeout) {
1904		eecd &= ~E1000_EECD_REQ;
1905		ew32(EECD, eecd);
1906		e_dbg("Could not acquire NVM grant\n");
1907		return -E1000_ERR_NVM;
1908	}
1909
1910	return 0;
1911}
1912
1913/**
1914 *  e1000_standby_nvm - Return EEPROM to standby state
1915 *  @hw: pointer to the HW structure
1916 *
1917 *  Return the EEPROM to a standby state.
1918 **/
1919static void e1000_standby_nvm(struct e1000_hw *hw)
1920{
1921	struct e1000_nvm_info *nvm = &hw->nvm;
1922	u32 eecd = er32(EECD);
1923
1924	if (nvm->type == e1000_nvm_eeprom_spi) {
1925		/* Toggle CS to flush commands */
1926		eecd |= E1000_EECD_CS;
1927		ew32(EECD, eecd);
1928		e1e_flush();
1929		udelay(nvm->delay_usec);
1930		eecd &= ~E1000_EECD_CS;
1931		ew32(EECD, eecd);
1932		e1e_flush();
1933		udelay(nvm->delay_usec);
1934	}
1935}
1936
1937/**
1938 *  e1000_stop_nvm - Terminate EEPROM command
1939 *  @hw: pointer to the HW structure
1940 *
1941 *  Terminates the current command by inverting the EEPROM's chip select pin.
1942 **/
1943static void e1000_stop_nvm(struct e1000_hw *hw)
1944{
1945	u32 eecd;
1946
1947	eecd = er32(EECD);
1948	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
1949		/* Pull CS high */
1950		eecd |= E1000_EECD_CS;
1951		e1000_lower_eec_clk(hw, &eecd);
1952	}
1953}
1954
1955/**
1956 *  e1000e_release_nvm - Release exclusive access to EEPROM
1957 *  @hw: pointer to the HW structure
1958 *
1959 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
1960 **/
1961void e1000e_release_nvm(struct e1000_hw *hw)
1962{
1963	u32 eecd;
1964
1965	e1000_stop_nvm(hw);
1966
1967	eecd = er32(EECD);
1968	eecd &= ~E1000_EECD_REQ;
1969	ew32(EECD, eecd);
1970}
1971
1972/**
1973 *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
1974 *  @hw: pointer to the HW structure
1975 *
1976 *  Setups the EEPROM for reading and writing.
1977 **/
1978static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
1979{
1980	struct e1000_nvm_info *nvm = &hw->nvm;
1981	u32 eecd = er32(EECD);
1982	u8 spi_stat_reg;
1983
1984	if (nvm->type == e1000_nvm_eeprom_spi) {
1985		u16 timeout = NVM_MAX_RETRY_SPI;
1986
1987		/* Clear SK and CS */
1988		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
1989		ew32(EECD, eecd);
1990		e1e_flush();
1991		udelay(1);
1992
1993		/*
1994		 * Read "Status Register" repeatedly until the LSB is cleared.
1995		 * The EEPROM will signal that the command has been completed
1996		 * by clearing bit 0 of the internal status register.  If it's
1997		 * not cleared within 'timeout', then error out.
1998		 */
1999		while (timeout) {
2000			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
2001						 hw->nvm.opcode_bits);
2002			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
2003			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
2004				break;
2005
2006			udelay(5);
2007			e1000_standby_nvm(hw);
2008			timeout--;
2009		}
2010
2011		if (!timeout) {
2012			e_dbg("SPI NVM Status error\n");
2013			return -E1000_ERR_NVM;
2014		}
2015	}
2016
2017	return 0;
2018}
2019
2020/**
2021 *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
2022 *  @hw: pointer to the HW structure
2023 *  @offset: offset of word in the EEPROM to read
2024 *  @words: number of words to read
2025 *  @data: word read from the EEPROM
2026 *
2027 *  Reads a 16 bit word from the EEPROM using the EERD register.
2028 **/
2029s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
2030{
2031	struct e1000_nvm_info *nvm = &hw->nvm;
2032	u32 i, eerd = 0;
2033	s32 ret_val = 0;
2034
2035	/*
2036	 * A check for invalid values:  offset too large, too many words,
2037	 * too many words for the offset, and not enough words.
2038	 */
2039	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
2040	    (words == 0)) {
2041		e_dbg("nvm parameter(s) out of bounds\n");
2042		return -E1000_ERR_NVM;
2043	}
2044
2045	for (i = 0; i < words; i++) {
2046		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
2047		       E1000_NVM_RW_REG_START;
2048
2049		ew32(EERD, eerd);
2050		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
2051		if (ret_val)
2052			break;
2053
2054		data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
2055	}
2056
2057	return ret_val;
2058}
2059
2060/**
2061 *  e1000e_write_nvm_spi - Write to EEPROM using SPI
2062 *  @hw: pointer to the HW structure
2063 *  @offset: offset within the EEPROM to be written to
2064 *  @words: number of words to write
2065 *  @data: 16 bit word(s) to be written to the EEPROM
2066 *
2067 *  Writes data to EEPROM at offset using SPI interface.
2068 *
2069 *  If e1000e_update_nvm_checksum is not called after this function , the
2070 *  EEPROM will most likely contain an invalid checksum.
2071 **/
2072s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
2073{
2074	struct e1000_nvm_info *nvm = &hw->nvm;
2075	s32 ret_val;
2076	u16 widx = 0;
2077
2078	/*
2079	 * A check for invalid values:  offset too large, too many words,
2080	 * and not enough words.
2081	 */
2082	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
2083	    (words == 0)) {
2084		e_dbg("nvm parameter(s) out of bounds\n");
2085		return -E1000_ERR_NVM;
2086	}
2087
2088	ret_val = nvm->ops.acquire(hw);
2089	if (ret_val)
2090		return ret_val;
2091
2092	while (widx < words) {
2093		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
2094
2095		ret_val = e1000_ready_nvm_eeprom(hw);
2096		if (ret_val) {
2097			nvm->ops.release(hw);
2098			return ret_val;
2099		}
2100
2101		e1000_standby_nvm(hw);
2102
2103		/* Send the WRITE ENABLE command (8 bit opcode) */
2104		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
2105					 nvm->opcode_bits);
2106
2107		e1000_standby_nvm(hw);
2108
2109		/*
2110		 * Some SPI eeproms use the 8th address bit embedded in the
2111		 * opcode
2112		 */
2113		if ((nvm->address_bits == 8) && (offset >= 128))
2114			write_opcode |= NVM_A8_OPCODE_SPI;
2115
2116		/* Send the Write command (8-bit opcode + addr) */
2117		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
2118		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
2119					 nvm->address_bits);
2120
2121		/* Loop to allow for up to whole page write of eeprom */
2122		while (widx < words) {
2123			u16 word_out = data[widx];
2124			word_out = (word_out >> 8) | (word_out << 8);
2125			e1000_shift_out_eec_bits(hw, word_out, 16);
2126			widx++;
2127
2128			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
2129				e1000_standby_nvm(hw);
2130				break;
2131			}
2132		}
2133	}
2134
2135	usleep_range(10000, 20000);
2136	nvm->ops.release(hw);
2137	return 0;
2138}
2139
2140/**
2141 *  e1000_read_pba_string_generic - Read device part number
2142 *  @hw: pointer to the HW structure
2143 *  @pba_num: pointer to device part number
2144 *  @pba_num_size: size of part number buffer
2145 *
2146 *  Reads the product board assembly (PBA) number from the EEPROM and stores
2147 *  the value in pba_num.
2148 **/
2149s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
2150				  u32 pba_num_size)
2151{
2152	s32 ret_val;
2153	u16 nvm_data;
2154	u16 pba_ptr;
2155	u16 offset;
2156	u16 length;
2157
2158	if (pba_num == NULL) {
2159		e_dbg("PBA string buffer was null\n");
2160		ret_val = E1000_ERR_INVALID_ARGUMENT;
2161		goto out;
2162	}
2163
2164	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
2165	if (ret_val) {
2166		e_dbg("NVM Read Error\n");
2167		goto out;
2168	}
2169
2170	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
2171	if (ret_val) {
2172		e_dbg("NVM Read Error\n");
2173		goto out;
2174	}
2175
2176	/*
2177	 * if nvm_data is not ptr guard the PBA must be in legacy format which
2178	 * means pba_ptr is actually our second data word for the PBA number
2179	 * and we can decode it into an ascii string
2180	 */
2181	if (nvm_data != NVM_PBA_PTR_GUARD) {
2182		e_dbg("NVM PBA number is not stored as string\n");
2183
2184		/* we will need 11 characters to store the PBA */
2185		if (pba_num_size < 11) {
2186			e_dbg("PBA string buffer too small\n");
2187			return E1000_ERR_NO_SPACE;
2188		}
2189
2190		/* extract hex string from data and pba_ptr */
2191		pba_num[0] = (nvm_data >> 12) & 0xF;
2192		pba_num[1] = (nvm_data >> 8) & 0xF;
2193		pba_num[2] = (nvm_data >> 4) & 0xF;
2194		pba_num[3] = nvm_data & 0xF;
2195		pba_num[4] = (pba_ptr >> 12) & 0xF;
2196		pba_num[5] = (pba_ptr >> 8) & 0xF;
2197		pba_num[6] = '-';
2198		pba_num[7] = 0;
2199		pba_num[8] = (pba_ptr >> 4) & 0xF;
2200		pba_num[9] = pba_ptr & 0xF;
2201
2202		/* put a null character on the end of our string */
2203		pba_num[10] = '\0';
2204
2205		/* switch all the data but the '-' to hex char */
2206		for (offset = 0; offset < 10; offset++) {
2207			if (pba_num[offset] < 0xA)
2208				pba_num[offset] += '0';
2209			else if (pba_num[offset] < 0x10)
2210				pba_num[offset] += 'A' - 0xA;
2211		}
2212
2213		goto out;
2214	}
2215
2216	ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
2217	if (ret_val) {
2218		e_dbg("NVM Read Error\n");
2219		goto out;
2220	}
2221
2222	if (length == 0xFFFF || length == 0) {
2223		e_dbg("NVM PBA number section invalid length\n");
2224		ret_val = E1000_ERR_NVM_PBA_SECTION;
2225		goto out;
2226	}
2227	/* check if pba_num buffer is big enough */
2228	if (pba_num_size < (((u32)length * 2) - 1)) {
2229		e_dbg("PBA string buffer too small\n");
2230		ret_val = E1000_ERR_NO_SPACE;
2231		goto out;
2232	}
2233
2234	/* trim pba length from start of string */
2235	pba_ptr++;
2236	length--;
2237
2238	for (offset = 0; offset < length; offset++) {
2239		ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
2240		if (ret_val) {
2241			e_dbg("NVM Read Error\n");
2242			goto out;
2243		}
2244		pba_num[offset * 2] = (u8)(nvm_data >> 8);
2245		pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
2246	}
2247	pba_num[offset * 2] = '\0';
2248
2249out:
2250	return ret_val;
2251}
2252
2253/**
2254 *  e1000_read_mac_addr_generic - Read device MAC address
2255 *  @hw: pointer to the HW structure
2256 *
2257 *  Reads the device MAC address from the EEPROM and stores the value.
2258 *  Since devices with two ports use the same EEPROM, we increment the
2259 *  last bit in the MAC address for the second port.
2260 **/
2261s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
2262{
2263	u32 rar_high;
2264	u32 rar_low;
2265	u16 i;
2266
2267	rar_high = er32(RAH(0));
2268	rar_low = er32(RAL(0));
2269
2270	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
2271		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
2272
2273	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
2274		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
2275
2276	for (i = 0; i < ETH_ALEN; i++)
2277		hw->mac.addr[i] = hw->mac.perm_addr[i];
2278
2279	return 0;
2280}
2281
2282/**
2283 *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
2284 *  @hw: pointer to the HW structure
2285 *
2286 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2287 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2288 **/
2289s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
2290{
2291	s32 ret_val;
2292	u16 checksum = 0;
2293	u16 i, nvm_data;
2294
2295	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
2296		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
2297		if (ret_val) {
2298			e_dbg("NVM Read Error\n");
2299			return ret_val;
2300		}
2301		checksum += nvm_data;
2302	}
2303
2304	if (checksum != (u16) NVM_SUM) {
2305		e_dbg("NVM Checksum Invalid\n");
2306		return -E1000_ERR_NVM;
2307	}
2308
2309	return 0;
2310}
2311
2312/**
2313 *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
2314 *  @hw: pointer to the HW structure
2315 *
2316 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2317 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2318 *  value to the EEPROM.
2319 **/
2320s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
2321{
2322	s32 ret_val;
2323	u16 checksum = 0;
2324	u16 i, nvm_data;
2325
2326	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
2327		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
2328		if (ret_val) {
2329			e_dbg("NVM Read Error while updating checksum.\n");
2330			return ret_val;
2331		}
2332		checksum += nvm_data;
2333	}
2334	checksum = (u16) NVM_SUM - checksum;
2335	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
2336	if (ret_val)
2337		e_dbg("NVM Write Error while updating checksum.\n");
2338
2339	return ret_val;
2340}
2341
2342/**
2343 *  e1000e_reload_nvm - Reloads EEPROM
2344 *  @hw: pointer to the HW structure
2345 *
2346 *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
2347 *  extended control register.
2348 **/
2349void e1000e_reload_nvm(struct e1000_hw *hw)
2350{
2351	u32 ctrl_ext;
2352
2353	udelay(10);
2354	ctrl_ext = er32(CTRL_EXT);
2355	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
2356	ew32(CTRL_EXT, ctrl_ext);
2357	e1e_flush();
2358}
2359
2360/**
2361 *  e1000_calculate_checksum - Calculate checksum for buffer
2362 *  @buffer: pointer to EEPROM
2363 *  @length: size of EEPROM to calculate a checksum for
2364 *
2365 *  Calculates the checksum for some buffer on a specified length.  The
2366 *  checksum calculated is returned.
2367 **/
2368static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
2369{
2370	u32 i;
2371	u8  sum = 0;
2372
2373	if (!buffer)
2374		return 0;
2375
2376	for (i = 0; i < length; i++)
2377		sum += buffer[i];
2378
2379	return (u8) (0 - sum);
2380}
2381
2382/**
2383 *  e1000_mng_enable_host_if - Checks host interface is enabled
2384 *  @hw: pointer to the HW structure
2385 *
2386 *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
2387 *
2388 *  This function checks whether the HOST IF is enabled for command operation
2389 *  and also checks whether the previous command is completed.  It busy waits
2390 *  in case of previous command is not completed.
2391 **/
2392static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
2393{
2394	u32 hicr;
2395	u8 i;
2396
2397	if (!(hw->mac.arc_subsystem_valid)) {
2398		e_dbg("ARC subsystem not valid.\n");
2399		return -E1000_ERR_HOST_INTERFACE_COMMAND;
2400	}
2401
2402	/* Check that the host interface is enabled. */
2403	hicr = er32(HICR);
2404	if ((hicr & E1000_HICR_EN) == 0) {
2405		e_dbg("E1000_HOST_EN bit disabled.\n");
2406		return -E1000_ERR_HOST_INTERFACE_COMMAND;
2407	}
2408	/* check the previous command is completed */
2409	for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
2410		hicr = er32(HICR);
2411		if (!(hicr & E1000_HICR_C))
2412			break;
2413		mdelay(1);
2414	}
2415
2416	if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
2417		e_dbg("Previous command timeout failed .\n");
2418		return -E1000_ERR_HOST_INTERFACE_COMMAND;
2419	}
2420
2421	return 0;
2422}
2423
2424/**
2425 *  e1000e_check_mng_mode_generic - check management mode
2426 *  @hw: pointer to the HW structure
2427 *
2428 *  Reads the firmware semaphore register and returns true (>0) if
2429 *  manageability is enabled, else false (0).
2430 **/
2431bool e1000e_check_mng_mode_generic(struct e1000_hw *hw)
2432{
2433	u32 fwsm = er32(FWSM);
2434
2435	return (fwsm & E1000_FWSM_MODE_MASK) ==
2436		(E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
2437}
2438
2439/**
2440 *  e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
2441 *  @hw: pointer to the HW structure
2442 *
2443 *  Enables packet filtering on transmit packets if manageability is enabled
2444 *  and host interface is enabled.
2445 **/
2446bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
2447{
2448	struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
2449	u32 *buffer = (u32 *)&hw->mng_cookie;
2450	u32 offset;
2451	s32 ret_val, hdr_csum, csum;
2452	u8 i, len;
2453
2454	hw->mac.tx_pkt_filtering = true;
2455
2456	/* No manageability, no filtering */
2457	if (!e1000e_check_mng_mode(hw)) {
2458		hw->mac.tx_pkt_filtering = false;
2459		goto out;
2460	}
2461
2462	/*
2463	 * If we can't read from the host interface for whatever
2464	 * reason, disable filtering.
2465	 */
2466	ret_val = e1000_mng_enable_host_if(hw);
2467	if (ret_val) {
2468		hw->mac.tx_pkt_filtering = false;
2469		goto out;
2470	}
2471
2472	/* Read in the header.  Length and offset are in dwords. */
2473	len    = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
2474	offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
2475	for (i = 0; i < len; i++)
2476		*(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
2477	hdr_csum = hdr->checksum;
2478	hdr->checksum = 0;
2479	csum = e1000_calculate_checksum((u8 *)hdr,
2480					E1000_MNG_DHCP_COOKIE_LENGTH);
2481	/*
2482	 * If either the checksums or signature don't match, then
2483	 * the cookie area isn't considered valid, in which case we
2484	 * take the safe route of assuming Tx filtering is enabled.
2485	 */
2486	if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
2487		hw->mac.tx_pkt_filtering = true;
2488		goto out;
2489	}
2490
2491	/* Cookie area is valid, make the final check for filtering. */
2492	if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
2493		hw->mac.tx_pkt_filtering = false;
2494		goto out;
2495	}
2496
2497out:
2498	return hw->mac.tx_pkt_filtering;
2499}
2500
2501/**
2502 *  e1000_mng_write_cmd_header - Writes manageability command header
2503 *  @hw: pointer to the HW structure
2504 *  @hdr: pointer to the host interface command header
2505 *
2506 *  Writes the command header after does the checksum calculation.
2507 **/
2508static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
2509				  struct e1000_host_mng_command_header *hdr)
2510{
2511	u16 i, length = sizeof(struct e1000_host_mng_command_header);
2512
2513	/* Write the whole command header structure with new checksum. */
2514
2515	hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
2516
2517	length >>= 2;
2518	/* Write the relevant command block into the ram area. */
2519	for (i = 0; i < length; i++) {
2520		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
2521					    *((u32 *) hdr + i));
2522		e1e_flush();
2523	}
2524
2525	return 0;
2526}
2527
2528/**
2529 *  e1000_mng_host_if_write - Write to the manageability host interface
2530 *  @hw: pointer to the HW structure
2531 *  @buffer: pointer to the host interface buffer
2532 *  @length: size of the buffer
2533 *  @offset: location in the buffer to write to
2534 *  @sum: sum of the data (not checksum)
2535 *
2536 *  This function writes the buffer content at the offset given on the host if.
2537 *  It also does alignment considerations to do the writes in most efficient
2538 *  way.  Also fills up the sum of the buffer in *buffer parameter.
2539 **/
2540static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
2541				   u16 length, u16 offset, u8 *sum)
2542{
2543	u8 *tmp;
2544	u8 *bufptr = buffer;
2545	u32 data = 0;
2546	u16 remaining, i, j, prev_bytes;
2547
2548	/* sum = only sum of the data and it is not checksum */
2549
2550	if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
2551		return -E1000_ERR_PARAM;
2552
2553	tmp = (u8 *)&data;
2554	prev_bytes = offset & 0x3;
2555	offset >>= 2;
2556
2557	if (prev_bytes) {
2558		data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
2559		for (j = prev_bytes; j < sizeof(u32); j++) {
2560			*(tmp + j) = *bufptr++;
2561			*sum += *(tmp + j);
2562		}
2563		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
2564		length -= j - prev_bytes;
2565		offset++;
2566	}
2567
2568	remaining = length & 0x3;
2569	length -= remaining;
2570
2571	/* Calculate length in DWORDs */
2572	length >>= 2;
2573
2574	/*
2575	 * The device driver writes the relevant command block into the
2576	 * ram area.
2577	 */
2578	for (i = 0; i < length; i++) {
2579		for (j = 0; j < sizeof(u32); j++) {
2580			*(tmp + j) = *bufptr++;
2581			*sum += *(tmp + j);
2582		}
2583
2584		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
2585	}
2586	if (remaining) {
2587		for (j = 0; j < sizeof(u32); j++) {
2588			if (j < remaining)
2589				*(tmp + j) = *bufptr++;
2590			else
2591				*(tmp + j) = 0;
2592
2593			*sum += *(tmp + j);
2594		}
2595		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
2596	}
2597
2598	return 0;
2599}
2600
2601/**
2602 *  e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
2603 *  @hw: pointer to the HW structure
2604 *  @buffer: pointer to the host interface
2605 *  @length: size of the buffer
2606 *
2607 *  Writes the DHCP information to the host interface.
2608 **/
2609s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
2610{
2611	struct e1000_host_mng_command_header hdr;
2612	s32 ret_val;
2613	u32 hicr;
2614
2615	hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
2616	hdr.command_length = length;
2617	hdr.reserved1 = 0;
2618	hdr.reserved2 = 0;
2619	hdr.checksum = 0;
2620
2621	/* Enable the host interface */
2622	ret_val = e1000_mng_enable_host_if(hw);
2623	if (ret_val)
2624		return ret_val;
2625
2626	/* Populate the host interface with the contents of "buffer". */
2627	ret_val = e1000_mng_host_if_write(hw, buffer, length,
2628					  sizeof(hdr), &(hdr.checksum));
2629	if (ret_val)
2630		return ret_val;
2631
2632	/* Write the manageability command header */
2633	ret_val = e1000_mng_write_cmd_header(hw, &hdr);
2634	if (ret_val)
2635		return ret_val;
2636
2637	/* Tell the ARC a new command is pending. */
2638	hicr = er32(HICR);
2639	ew32(HICR, hicr | E1000_HICR_C);
2640
2641	return 0;
2642}
2643
2644/**
2645 *  e1000e_enable_mng_pass_thru - Check if management passthrough is needed
2646 *  @hw: pointer to the HW structure
2647 *
2648 *  Verifies the hardware needs to leave interface enabled so that frames can
2649 *  be directed to and from the management interface.
2650 **/
2651bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw)
2652{
2653	u32 manc;
2654	u32 fwsm, factps;
2655	bool ret_val = false;
2656
2657	manc = er32(MANC);
2658
2659	if (!(manc & E1000_MANC_RCV_TCO_EN))
2660		goto out;
2661
2662	if (hw->mac.has_fwsm) {
2663		fwsm = er32(FWSM);
2664		factps = er32(FACTPS);
2665
2666		if (!(factps & E1000_FACTPS_MNGCG) &&
2667		    ((fwsm & E1000_FWSM_MODE_MASK) ==
2668		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
2669			ret_val = true;
2670			goto out;
2671		}
2672	} else if ((hw->mac.type == e1000_82574) ||
2673		   (hw->mac.type == e1000_82583)) {
2674		u16 data;
2675
2676		factps = er32(FACTPS);
2677		e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
2678
2679		if (!(factps & E1000_FACTPS_MNGCG) &&
2680		    ((data & E1000_NVM_INIT_CTRL2_MNGM) ==
2681		     (e1000_mng_mode_pt << 13))) {
2682			ret_val = true;
2683			goto out;
2684		}
2685	} else if ((manc & E1000_MANC_SMBUS_EN) &&
2686		    !(manc & E1000_MANC_ASF_EN)) {
2687			ret_val = true;
2688			goto out;
2689	}
2690
2691out:
2692	return ret_val;
2693}