Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2011 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29/* ethtool support for e1000 */
  30
  31#include <linux/netdevice.h>
  32#include <linux/interrupt.h>
  33#include <linux/ethtool.h>
  34#include <linux/pci.h>
  35#include <linux/slab.h>
  36#include <linux/delay.h>
  37
  38#include "e1000.h"
  39
  40enum {NETDEV_STATS, E1000_STATS};
  41
  42struct e1000_stats {
  43	char stat_string[ETH_GSTRING_LEN];
  44	int type;
  45	int sizeof_stat;
  46	int stat_offset;
  47};
  48
  49#define E1000_STAT(str, m) { \
  50		.stat_string = str, \
  51		.type = E1000_STATS, \
  52		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
  53		.stat_offset = offsetof(struct e1000_adapter, m) }
  54#define E1000_NETDEV_STAT(str, m) { \
  55		.stat_string = str, \
  56		.type = NETDEV_STATS, \
  57		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
  58		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
  59
  60static const struct e1000_stats e1000_gstrings_stats[] = {
  61	E1000_STAT("rx_packets", stats.gprc),
  62	E1000_STAT("tx_packets", stats.gptc),
  63	E1000_STAT("rx_bytes", stats.gorc),
  64	E1000_STAT("tx_bytes", stats.gotc),
  65	E1000_STAT("rx_broadcast", stats.bprc),
  66	E1000_STAT("tx_broadcast", stats.bptc),
  67	E1000_STAT("rx_multicast", stats.mprc),
  68	E1000_STAT("tx_multicast", stats.mptc),
  69	E1000_NETDEV_STAT("rx_errors", rx_errors),
  70	E1000_NETDEV_STAT("tx_errors", tx_errors),
  71	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
  72	E1000_STAT("multicast", stats.mprc),
  73	E1000_STAT("collisions", stats.colc),
  74	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
  75	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
  76	E1000_STAT("rx_crc_errors", stats.crcerrs),
  77	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
  78	E1000_STAT("rx_no_buffer_count", stats.rnbc),
  79	E1000_STAT("rx_missed_errors", stats.mpc),
  80	E1000_STAT("tx_aborted_errors", stats.ecol),
  81	E1000_STAT("tx_carrier_errors", stats.tncrs),
  82	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
  83	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
  84	E1000_STAT("tx_window_errors", stats.latecol),
  85	E1000_STAT("tx_abort_late_coll", stats.latecol),
  86	E1000_STAT("tx_deferred_ok", stats.dc),
  87	E1000_STAT("tx_single_coll_ok", stats.scc),
  88	E1000_STAT("tx_multi_coll_ok", stats.mcc),
  89	E1000_STAT("tx_timeout_count", tx_timeout_count),
  90	E1000_STAT("tx_restart_queue", restart_queue),
  91	E1000_STAT("rx_long_length_errors", stats.roc),
  92	E1000_STAT("rx_short_length_errors", stats.ruc),
  93	E1000_STAT("rx_align_errors", stats.algnerrc),
  94	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
  95	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
  96	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
  97	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
  98	E1000_STAT("tx_flow_control_xon", stats.xontxc),
  99	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
 100	E1000_STAT("rx_long_byte_count", stats.gorc),
 101	E1000_STAT("rx_csum_offload_good", hw_csum_good),
 102	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
 103	E1000_STAT("rx_header_split", rx_hdr_split),
 104	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
 105	E1000_STAT("tx_smbus", stats.mgptc),
 106	E1000_STAT("rx_smbus", stats.mgprc),
 107	E1000_STAT("dropped_smbus", stats.mgpdc),
 108	E1000_STAT("rx_dma_failed", rx_dma_failed),
 109	E1000_STAT("tx_dma_failed", tx_dma_failed),
 110};
 111
 112#define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
 113#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
 114static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
 115	"Register test  (offline)", "Eeprom test    (offline)",
 116	"Interrupt test (offline)", "Loopback test  (offline)",
 117	"Link test   (on/offline)"
 118};
 119#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
 120
 121static int e1000_get_settings(struct net_device *netdev,
 122			      struct ethtool_cmd *ecmd)
 123{
 124	struct e1000_adapter *adapter = netdev_priv(netdev);
 125	struct e1000_hw *hw = &adapter->hw;
 126	u32 speed;
 127
 128	if (hw->phy.media_type == e1000_media_type_copper) {
 129
 130		ecmd->supported = (SUPPORTED_10baseT_Half |
 131				   SUPPORTED_10baseT_Full |
 132				   SUPPORTED_100baseT_Half |
 133				   SUPPORTED_100baseT_Full |
 134				   SUPPORTED_1000baseT_Full |
 135				   SUPPORTED_Autoneg |
 136				   SUPPORTED_TP);
 137		if (hw->phy.type == e1000_phy_ife)
 138			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
 139		ecmd->advertising = ADVERTISED_TP;
 140
 141		if (hw->mac.autoneg == 1) {
 142			ecmd->advertising |= ADVERTISED_Autoneg;
 143			/* the e1000 autoneg seems to match ethtool nicely */
 144			ecmd->advertising |= hw->phy.autoneg_advertised;
 145		}
 146
 147		ecmd->port = PORT_TP;
 148		ecmd->phy_address = hw->phy.addr;
 149		ecmd->transceiver = XCVR_INTERNAL;
 150
 151	} else {
 152		ecmd->supported   = (SUPPORTED_1000baseT_Full |
 153				     SUPPORTED_FIBRE |
 154				     SUPPORTED_Autoneg);
 155
 156		ecmd->advertising = (ADVERTISED_1000baseT_Full |
 157				     ADVERTISED_FIBRE |
 158				     ADVERTISED_Autoneg);
 159
 160		ecmd->port = PORT_FIBRE;
 161		ecmd->transceiver = XCVR_EXTERNAL;
 162	}
 163
 164	speed = -1;
 165	ecmd->duplex = -1;
 166
 167	if (netif_running(netdev)) {
 168		if (netif_carrier_ok(netdev)) {
 169			speed = adapter->link_speed;
 170			ecmd->duplex = adapter->link_duplex - 1;
 171		}
 172	} else {
 173		u32 status = er32(STATUS);
 174		if (status & E1000_STATUS_LU) {
 175			if (status & E1000_STATUS_SPEED_1000)
 176				speed = SPEED_1000;
 177			else if (status & E1000_STATUS_SPEED_100)
 178				speed = SPEED_100;
 179			else
 180				speed = SPEED_10;
 181
 182			if (status & E1000_STATUS_FD)
 183				ecmd->duplex = DUPLEX_FULL;
 184			else
 185				ecmd->duplex = DUPLEX_HALF;
 186		}
 187	}
 188
 189	ethtool_cmd_speed_set(ecmd, speed);
 190	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
 191			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
 192
 193	/* MDI-X => 2; MDI =>1; Invalid =>0 */
 194	if ((hw->phy.media_type == e1000_media_type_copper) &&
 195	    netif_carrier_ok(netdev))
 196		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
 197		                                      ETH_TP_MDI;
 198	else
 199		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
 200
 201	return 0;
 202}
 203
 204static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
 205{
 206	struct e1000_mac_info *mac = &adapter->hw.mac;
 207
 208	mac->autoneg = 0;
 209
 210	/* Make sure dplx is at most 1 bit and lsb of speed is not set
 211	 * for the switch() below to work */
 212	if ((spd & 1) || (dplx & ~1))
 213		goto err_inval;
 214
 215	/* Fiber NICs only allow 1000 gbps Full duplex */
 216	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
 217	    spd != SPEED_1000 &&
 218	    dplx != DUPLEX_FULL) {
 219		goto err_inval;
 220	}
 221
 222	switch (spd + dplx) {
 223	case SPEED_10 + DUPLEX_HALF:
 224		mac->forced_speed_duplex = ADVERTISE_10_HALF;
 225		break;
 226	case SPEED_10 + DUPLEX_FULL:
 227		mac->forced_speed_duplex = ADVERTISE_10_FULL;
 228		break;
 229	case SPEED_100 + DUPLEX_HALF:
 230		mac->forced_speed_duplex = ADVERTISE_100_HALF;
 231		break;
 232	case SPEED_100 + DUPLEX_FULL:
 233		mac->forced_speed_duplex = ADVERTISE_100_FULL;
 234		break;
 235	case SPEED_1000 + DUPLEX_FULL:
 236		mac->autoneg = 1;
 237		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
 238		break;
 239	case SPEED_1000 + DUPLEX_HALF: /* not supported */
 240	default:
 241		goto err_inval;
 242	}
 243	return 0;
 244
 245err_inval:
 246	e_err("Unsupported Speed/Duplex configuration\n");
 247	return -EINVAL;
 248}
 249
 250static int e1000_set_settings(struct net_device *netdev,
 251			      struct ethtool_cmd *ecmd)
 252{
 253	struct e1000_adapter *adapter = netdev_priv(netdev);
 254	struct e1000_hw *hw = &adapter->hw;
 255
 256	/*
 257	 * When SoL/IDER sessions are active, autoneg/speed/duplex
 258	 * cannot be changed
 259	 */
 260	if (e1000_check_reset_block(hw)) {
 261		e_err("Cannot change link characteristics when SoL/IDER is "
 262		      "active.\n");
 263		return -EINVAL;
 264	}
 265
 266	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 267		usleep_range(1000, 2000);
 268
 269	if (ecmd->autoneg == AUTONEG_ENABLE) {
 270		hw->mac.autoneg = 1;
 271		if (hw->phy.media_type == e1000_media_type_fiber)
 272			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
 273						     ADVERTISED_FIBRE |
 274						     ADVERTISED_Autoneg;
 275		else
 276			hw->phy.autoneg_advertised = ecmd->advertising |
 277						     ADVERTISED_TP |
 278						     ADVERTISED_Autoneg;
 279		ecmd->advertising = hw->phy.autoneg_advertised;
 280		if (adapter->fc_autoneg)
 281			hw->fc.requested_mode = e1000_fc_default;
 282	} else {
 283		u32 speed = ethtool_cmd_speed(ecmd);
 284		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
 285			clear_bit(__E1000_RESETTING, &adapter->state);
 286			return -EINVAL;
 287		}
 288	}
 289
 290	/* reset the link */
 291
 292	if (netif_running(adapter->netdev)) {
 293		e1000e_down(adapter);
 294		e1000e_up(adapter);
 295	} else {
 296		e1000e_reset(adapter);
 297	}
 298
 299	clear_bit(__E1000_RESETTING, &adapter->state);
 300	return 0;
 301}
 302
 303static void e1000_get_pauseparam(struct net_device *netdev,
 304				 struct ethtool_pauseparam *pause)
 305{
 306	struct e1000_adapter *adapter = netdev_priv(netdev);
 307	struct e1000_hw *hw = &adapter->hw;
 308
 309	pause->autoneg =
 310		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 311
 312	if (hw->fc.current_mode == e1000_fc_rx_pause) {
 313		pause->rx_pause = 1;
 314	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
 315		pause->tx_pause = 1;
 316	} else if (hw->fc.current_mode == e1000_fc_full) {
 317		pause->rx_pause = 1;
 318		pause->tx_pause = 1;
 319	}
 320}
 321
 322static int e1000_set_pauseparam(struct net_device *netdev,
 323				struct ethtool_pauseparam *pause)
 324{
 325	struct e1000_adapter *adapter = netdev_priv(netdev);
 326	struct e1000_hw *hw = &adapter->hw;
 327	int retval = 0;
 328
 329	adapter->fc_autoneg = pause->autoneg;
 330
 331	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 332		usleep_range(1000, 2000);
 333
 334	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 335		hw->fc.requested_mode = e1000_fc_default;
 336		if (netif_running(adapter->netdev)) {
 337			e1000e_down(adapter);
 338			e1000e_up(adapter);
 339		} else {
 340			e1000e_reset(adapter);
 341		}
 342	} else {
 343		if (pause->rx_pause && pause->tx_pause)
 344			hw->fc.requested_mode = e1000_fc_full;
 345		else if (pause->rx_pause && !pause->tx_pause)
 346			hw->fc.requested_mode = e1000_fc_rx_pause;
 347		else if (!pause->rx_pause && pause->tx_pause)
 348			hw->fc.requested_mode = e1000_fc_tx_pause;
 349		else if (!pause->rx_pause && !pause->tx_pause)
 350			hw->fc.requested_mode = e1000_fc_none;
 351
 352		hw->fc.current_mode = hw->fc.requested_mode;
 353
 354		if (hw->phy.media_type == e1000_media_type_fiber) {
 355			retval = hw->mac.ops.setup_link(hw);
 356			/* implicit goto out */
 357		} else {
 358			retval = e1000e_force_mac_fc(hw);
 359			if (retval)
 360				goto out;
 361			e1000e_set_fc_watermarks(hw);
 362		}
 363	}
 364
 365out:
 366	clear_bit(__E1000_RESETTING, &adapter->state);
 367	return retval;
 368}
 369
 370static u32 e1000_get_rx_csum(struct net_device *netdev)
 371{
 372	struct e1000_adapter *adapter = netdev_priv(netdev);
 373	return adapter->flags & FLAG_RX_CSUM_ENABLED;
 374}
 375
 376static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
 377{
 378	struct e1000_adapter *adapter = netdev_priv(netdev);
 379
 380	if (data)
 381		adapter->flags |= FLAG_RX_CSUM_ENABLED;
 382	else
 383		adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
 384
 385	if (netif_running(netdev))
 386		e1000e_reinit_locked(adapter);
 387	else
 388		e1000e_reset(adapter);
 389	return 0;
 390}
 391
 392static u32 e1000_get_tx_csum(struct net_device *netdev)
 393{
 394	return (netdev->features & NETIF_F_HW_CSUM) != 0;
 395}
 396
 397static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
 398{
 399	if (data)
 400		netdev->features |= NETIF_F_HW_CSUM;
 401	else
 402		netdev->features &= ~NETIF_F_HW_CSUM;
 403
 404	return 0;
 405}
 406
 407static int e1000_set_tso(struct net_device *netdev, u32 data)
 408{
 409	struct e1000_adapter *adapter = netdev_priv(netdev);
 410
 411	if (data) {
 412		netdev->features |= NETIF_F_TSO;
 413		netdev->features |= NETIF_F_TSO6;
 414	} else {
 415		netdev->features &= ~NETIF_F_TSO;
 416		netdev->features &= ~NETIF_F_TSO6;
 417	}
 418
 419	adapter->flags |= FLAG_TSO_FORCE;
 420	return 0;
 421}
 422
 423static u32 e1000_get_msglevel(struct net_device *netdev)
 424{
 425	struct e1000_adapter *adapter = netdev_priv(netdev);
 426	return adapter->msg_enable;
 427}
 428
 429static void e1000_set_msglevel(struct net_device *netdev, u32 data)
 430{
 431	struct e1000_adapter *adapter = netdev_priv(netdev);
 432	adapter->msg_enable = data;
 433}
 434
 435static int e1000_get_regs_len(struct net_device *netdev)
 436{
 437#define E1000_REGS_LEN 32 /* overestimate */
 438	return E1000_REGS_LEN * sizeof(u32);
 439}
 440
 441static void e1000_get_regs(struct net_device *netdev,
 442			   struct ethtool_regs *regs, void *p)
 443{
 444	struct e1000_adapter *adapter = netdev_priv(netdev);
 445	struct e1000_hw *hw = &adapter->hw;
 446	u32 *regs_buff = p;
 447	u16 phy_data;
 448
 449	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
 450
 451	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
 452			adapter->pdev->device;
 453
 454	regs_buff[0]  = er32(CTRL);
 455	regs_buff[1]  = er32(STATUS);
 456
 457	regs_buff[2]  = er32(RCTL);
 458	regs_buff[3]  = er32(RDLEN);
 459	regs_buff[4]  = er32(RDH);
 460	regs_buff[5]  = er32(RDT);
 461	regs_buff[6]  = er32(RDTR);
 462
 463	regs_buff[7]  = er32(TCTL);
 464	regs_buff[8]  = er32(TDLEN);
 465	regs_buff[9]  = er32(TDH);
 466	regs_buff[10] = er32(TDT);
 467	regs_buff[11] = er32(TIDV);
 468
 469	regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
 470
 471	/* ethtool doesn't use anything past this point, so all this
 472	 * code is likely legacy junk for apps that may or may not
 473	 * exist */
 474	if (hw->phy.type == e1000_phy_m88) {
 475		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
 476		regs_buff[13] = (u32)phy_data; /* cable length */
 477		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 478		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 479		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 480		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 481		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
 482		regs_buff[18] = regs_buff[13]; /* cable polarity */
 483		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 484		regs_buff[20] = regs_buff[17]; /* polarity correction */
 485		/* phy receive errors */
 486		regs_buff[22] = adapter->phy_stats.receive_errors;
 487		regs_buff[23] = regs_buff[13]; /* mdix mode */
 488	}
 489	regs_buff[21] = 0; /* was idle_errors */
 490	e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
 491	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
 492	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
 493}
 494
 495static int e1000_get_eeprom_len(struct net_device *netdev)
 496{
 497	struct e1000_adapter *adapter = netdev_priv(netdev);
 498	return adapter->hw.nvm.word_size * 2;
 499}
 500
 501static int e1000_get_eeprom(struct net_device *netdev,
 502			    struct ethtool_eeprom *eeprom, u8 *bytes)
 503{
 504	struct e1000_adapter *adapter = netdev_priv(netdev);
 505	struct e1000_hw *hw = &adapter->hw;
 506	u16 *eeprom_buff;
 507	int first_word;
 508	int last_word;
 509	int ret_val = 0;
 510	u16 i;
 511
 512	if (eeprom->len == 0)
 513		return -EINVAL;
 514
 515	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
 516
 517	first_word = eeprom->offset >> 1;
 518	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 519
 520	eeprom_buff = kmalloc(sizeof(u16) *
 521			(last_word - first_word + 1), GFP_KERNEL);
 522	if (!eeprom_buff)
 523		return -ENOMEM;
 524
 525	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
 526		ret_val = e1000_read_nvm(hw, first_word,
 527					 last_word - first_word + 1,
 528					 eeprom_buff);
 529	} else {
 530		for (i = 0; i < last_word - first_word + 1; i++) {
 531			ret_val = e1000_read_nvm(hw, first_word + i, 1,
 532						      &eeprom_buff[i]);
 533			if (ret_val)
 534				break;
 535		}
 536	}
 537
 538	if (ret_val) {
 539		/* a read error occurred, throw away the result */
 540		memset(eeprom_buff, 0xff, sizeof(u16) *
 541		       (last_word - first_word + 1));
 542	} else {
 543		/* Device's eeprom is always little-endian, word addressable */
 544		for (i = 0; i < last_word - first_word + 1; i++)
 545			le16_to_cpus(&eeprom_buff[i]);
 546	}
 547
 548	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
 549	kfree(eeprom_buff);
 550
 551	return ret_val;
 552}
 553
 554static int e1000_set_eeprom(struct net_device *netdev,
 555			    struct ethtool_eeprom *eeprom, u8 *bytes)
 556{
 557	struct e1000_adapter *adapter = netdev_priv(netdev);
 558	struct e1000_hw *hw = &adapter->hw;
 559	u16 *eeprom_buff;
 560	void *ptr;
 561	int max_len;
 562	int first_word;
 563	int last_word;
 564	int ret_val = 0;
 565	u16 i;
 566
 567	if (eeprom->len == 0)
 568		return -EOPNOTSUPP;
 569
 570	if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
 571		return -EFAULT;
 572
 573	if (adapter->flags & FLAG_READ_ONLY_NVM)
 574		return -EINVAL;
 575
 576	max_len = hw->nvm.word_size * 2;
 577
 578	first_word = eeprom->offset >> 1;
 579	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 580	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 581	if (!eeprom_buff)
 582		return -ENOMEM;
 583
 584	ptr = (void *)eeprom_buff;
 585
 586	if (eeprom->offset & 1) {
 587		/* need read/modify/write of first changed EEPROM word */
 588		/* only the second byte of the word is being modified */
 589		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
 590		ptr++;
 591	}
 592	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
 593		/* need read/modify/write of last changed EEPROM word */
 594		/* only the first byte of the word is being modified */
 595		ret_val = e1000_read_nvm(hw, last_word, 1,
 596				  &eeprom_buff[last_word - first_word]);
 597
 598	if (ret_val)
 599		goto out;
 600
 601	/* Device's eeprom is always little-endian, word addressable */
 602	for (i = 0; i < last_word - first_word + 1; i++)
 603		le16_to_cpus(&eeprom_buff[i]);
 604
 605	memcpy(ptr, bytes, eeprom->len);
 606
 607	for (i = 0; i < last_word - first_word + 1; i++)
 608		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
 609
 610	ret_val = e1000_write_nvm(hw, first_word,
 611				  last_word - first_word + 1, eeprom_buff);
 612
 613	if (ret_val)
 614		goto out;
 615
 616	/*
 617	 * Update the checksum over the first part of the EEPROM if needed
 618	 * and flush shadow RAM for applicable controllers
 619	 */
 620	if ((first_word <= NVM_CHECKSUM_REG) ||
 621	    (hw->mac.type == e1000_82583) ||
 622	    (hw->mac.type == e1000_82574) ||
 623	    (hw->mac.type == e1000_82573))
 624		ret_val = e1000e_update_nvm_checksum(hw);
 625
 626out:
 627	kfree(eeprom_buff);
 628	return ret_val;
 629}
 630
 631static void e1000_get_drvinfo(struct net_device *netdev,
 632			      struct ethtool_drvinfo *drvinfo)
 633{
 634	struct e1000_adapter *adapter = netdev_priv(netdev);
 635	char firmware_version[32];
 636
 637	strncpy(drvinfo->driver,  e1000e_driver_name,
 638		sizeof(drvinfo->driver) - 1);
 639	strncpy(drvinfo->version, e1000e_driver_version,
 640		sizeof(drvinfo->version) - 1);
 641
 642	/*
 643	 * EEPROM image version # is reported as firmware version # for
 644	 * PCI-E controllers
 645	 */
 646	snprintf(firmware_version, sizeof(firmware_version), "%d.%d-%d",
 647		(adapter->eeprom_vers & 0xF000) >> 12,
 648		(adapter->eeprom_vers & 0x0FF0) >> 4,
 649		(adapter->eeprom_vers & 0x000F));
 650
 651	strncpy(drvinfo->fw_version, firmware_version,
 652		sizeof(drvinfo->fw_version) - 1);
 653	strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
 654		sizeof(drvinfo->bus_info) - 1);
 655	drvinfo->regdump_len = e1000_get_regs_len(netdev);
 656	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
 657}
 658
 659static void e1000_get_ringparam(struct net_device *netdev,
 660				struct ethtool_ringparam *ring)
 661{
 662	struct e1000_adapter *adapter = netdev_priv(netdev);
 663	struct e1000_ring *tx_ring = adapter->tx_ring;
 664	struct e1000_ring *rx_ring = adapter->rx_ring;
 665
 666	ring->rx_max_pending = E1000_MAX_RXD;
 667	ring->tx_max_pending = E1000_MAX_TXD;
 668	ring->rx_mini_max_pending = 0;
 669	ring->rx_jumbo_max_pending = 0;
 670	ring->rx_pending = rx_ring->count;
 671	ring->tx_pending = tx_ring->count;
 672	ring->rx_mini_pending = 0;
 673	ring->rx_jumbo_pending = 0;
 674}
 675
 676static int e1000_set_ringparam(struct net_device *netdev,
 677			       struct ethtool_ringparam *ring)
 678{
 679	struct e1000_adapter *adapter = netdev_priv(netdev);
 680	struct e1000_ring *tx_ring, *tx_old;
 681	struct e1000_ring *rx_ring, *rx_old;
 682	int err;
 683
 684	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 685		return -EINVAL;
 686
 687	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 688		usleep_range(1000, 2000);
 689
 690	if (netif_running(adapter->netdev))
 691		e1000e_down(adapter);
 692
 693	tx_old = adapter->tx_ring;
 694	rx_old = adapter->rx_ring;
 695
 696	err = -ENOMEM;
 697	tx_ring = kmemdup(tx_old, sizeof(struct e1000_ring), GFP_KERNEL);
 698	if (!tx_ring)
 699		goto err_alloc_tx;
 700
 701	rx_ring = kmemdup(rx_old, sizeof(struct e1000_ring), GFP_KERNEL);
 702	if (!rx_ring)
 703		goto err_alloc_rx;
 704
 705	adapter->tx_ring = tx_ring;
 706	adapter->rx_ring = rx_ring;
 707
 708	rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
 709	rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
 710	rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
 711
 712	tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
 713	tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
 714	tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
 715
 716	if (netif_running(adapter->netdev)) {
 717		/* Try to get new resources before deleting old */
 718		err = e1000e_setup_rx_resources(adapter);
 719		if (err)
 720			goto err_setup_rx;
 721		err = e1000e_setup_tx_resources(adapter);
 722		if (err)
 723			goto err_setup_tx;
 724
 725		/*
 726		 * restore the old in order to free it,
 727		 * then add in the new
 728		 */
 729		adapter->rx_ring = rx_old;
 730		adapter->tx_ring = tx_old;
 731		e1000e_free_rx_resources(adapter);
 732		e1000e_free_tx_resources(adapter);
 733		kfree(tx_old);
 734		kfree(rx_old);
 735		adapter->rx_ring = rx_ring;
 736		adapter->tx_ring = tx_ring;
 737		err = e1000e_up(adapter);
 738		if (err)
 739			goto err_setup;
 740	}
 741
 742	clear_bit(__E1000_RESETTING, &adapter->state);
 743	return 0;
 744err_setup_tx:
 745	e1000e_free_rx_resources(adapter);
 746err_setup_rx:
 747	adapter->rx_ring = rx_old;
 748	adapter->tx_ring = tx_old;
 749	kfree(rx_ring);
 750err_alloc_rx:
 751	kfree(tx_ring);
 752err_alloc_tx:
 753	e1000e_up(adapter);
 754err_setup:
 755	clear_bit(__E1000_RESETTING, &adapter->state);
 756	return err;
 757}
 758
 759static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
 760			     int reg, int offset, u32 mask, u32 write)
 761{
 762	u32 pat, val;
 763	static const u32 test[] = {
 764		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
 765	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
 766		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
 767				      (test[pat] & write));
 768		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
 769		if (val != (test[pat] & write & mask)) {
 770			e_err("pattern test reg %04X failed: got 0x%08X "
 771			      "expected 0x%08X\n", reg + offset, val,
 772			      (test[pat] & write & mask));
 773			*data = reg;
 774			return 1;
 775		}
 776	}
 777	return 0;
 778}
 779
 780static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
 781			      int reg, u32 mask, u32 write)
 782{
 783	u32 val;
 784	__ew32(&adapter->hw, reg, write & mask);
 785	val = __er32(&adapter->hw, reg);
 786	if ((write & mask) != (val & mask)) {
 787		e_err("set/check reg %04X test failed: got 0x%08X "
 788		      "expected 0x%08X\n", reg, (val & mask), (write & mask));
 789		*data = reg;
 790		return 1;
 791	}
 792	return 0;
 793}
 794#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
 795	do {                                                                   \
 796		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
 797			return 1;                                              \
 798	} while (0)
 799#define REG_PATTERN_TEST(reg, mask, write)                                     \
 800	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
 801
 802#define REG_SET_AND_CHECK(reg, mask, write)                                    \
 803	do {                                                                   \
 804		if (reg_set_and_check(adapter, data, reg, mask, write))        \
 805			return 1;                                              \
 806	} while (0)
 807
 808static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 809{
 810	struct e1000_hw *hw = &adapter->hw;
 811	struct e1000_mac_info *mac = &adapter->hw.mac;
 812	u32 value;
 813	u32 before;
 814	u32 after;
 815	u32 i;
 816	u32 toggle;
 817	u32 mask;
 818
 819	/*
 820	 * The status register is Read Only, so a write should fail.
 821	 * Some bits that get toggled are ignored.
 822	 */
 823	switch (mac->type) {
 824	/* there are several bits on newer hardware that are r/w */
 825	case e1000_82571:
 826	case e1000_82572:
 827	case e1000_80003es2lan:
 828		toggle = 0x7FFFF3FF;
 829		break;
 830        default:
 831		toggle = 0x7FFFF033;
 832		break;
 833	}
 834
 835	before = er32(STATUS);
 836	value = (er32(STATUS) & toggle);
 837	ew32(STATUS, toggle);
 838	after = er32(STATUS) & toggle;
 839	if (value != after) {
 840		e_err("failed STATUS register test got: 0x%08X expected: "
 841		      "0x%08X\n", after, value);
 842		*data = 1;
 843		return 1;
 844	}
 845	/* restore previous status */
 846	ew32(STATUS, before);
 847
 848	if (!(adapter->flags & FLAG_IS_ICH)) {
 849		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
 850		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
 851		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
 852		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
 853	}
 854
 855	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
 856	REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
 857	REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
 858	REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
 859	REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
 860	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
 861	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
 862	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
 863	REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
 864	REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
 865
 866	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
 867
 868	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
 869	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
 870	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
 871
 872	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
 873	REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
 874	if (!(adapter->flags & FLAG_IS_ICH))
 875		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
 876	REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
 877	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
 878	mask = 0x8003FFFF;
 879	switch (mac->type) {
 880	case e1000_ich10lan:
 881	case e1000_pchlan:
 882	case e1000_pch2lan:
 883		mask |= (1 << 18);
 884		break;
 885	default:
 886		break;
 887	}
 888	for (i = 0; i < mac->rar_entry_count; i++)
 889		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
 890		                       mask, 0xFFFFFFFF);
 891
 892	for (i = 0; i < mac->mta_reg_count; i++)
 893		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
 894
 895	*data = 0;
 896	return 0;
 897}
 898
 899static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
 900{
 901	u16 temp;
 902	u16 checksum = 0;
 903	u16 i;
 904
 905	*data = 0;
 906	/* Read and add up the contents of the EEPROM */
 907	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
 908		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
 909			*data = 1;
 910			return *data;
 911		}
 912		checksum += temp;
 913	}
 914
 915	/* If Checksum is not Correct return error else test passed */
 916	if ((checksum != (u16) NVM_SUM) && !(*data))
 917		*data = 2;
 918
 919	return *data;
 920}
 921
 922static irqreturn_t e1000_test_intr(int irq, void *data)
 923{
 924	struct net_device *netdev = (struct net_device *) data;
 925	struct e1000_adapter *adapter = netdev_priv(netdev);
 926	struct e1000_hw *hw = &adapter->hw;
 927
 928	adapter->test_icr |= er32(ICR);
 929
 930	return IRQ_HANDLED;
 931}
 932
 933static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
 934{
 935	struct net_device *netdev = adapter->netdev;
 936	struct e1000_hw *hw = &adapter->hw;
 937	u32 mask;
 938	u32 shared_int = 1;
 939	u32 irq = adapter->pdev->irq;
 940	int i;
 941	int ret_val = 0;
 942	int int_mode = E1000E_INT_MODE_LEGACY;
 943
 944	*data = 0;
 945
 946	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
 947	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
 948		int_mode = adapter->int_mode;
 949		e1000e_reset_interrupt_capability(adapter);
 950		adapter->int_mode = E1000E_INT_MODE_LEGACY;
 951		e1000e_set_interrupt_capability(adapter);
 952	}
 953	/* Hook up test interrupt handler just for this test */
 954	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
 955			 netdev)) {
 956		shared_int = 0;
 957	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
 958		 netdev->name, netdev)) {
 959		*data = 1;
 960		ret_val = -1;
 961		goto out;
 962	}
 963	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
 964
 965	/* Disable all the interrupts */
 966	ew32(IMC, 0xFFFFFFFF);
 967	e1e_flush();
 968	usleep_range(10000, 20000);
 969
 970	/* Test each interrupt */
 971	for (i = 0; i < 10; i++) {
 972		/* Interrupt to test */
 973		mask = 1 << i;
 974
 975		if (adapter->flags & FLAG_IS_ICH) {
 976			switch (mask) {
 977			case E1000_ICR_RXSEQ:
 978				continue;
 979			case 0x00000100:
 980				if (adapter->hw.mac.type == e1000_ich8lan ||
 981				    adapter->hw.mac.type == e1000_ich9lan)
 982					continue;
 983				break;
 984			default:
 985				break;
 986			}
 987		}
 988
 989		if (!shared_int) {
 990			/*
 991			 * Disable the interrupt to be reported in
 992			 * the cause register and then force the same
 993			 * interrupt and see if one gets posted.  If
 994			 * an interrupt was posted to the bus, the
 995			 * test failed.
 996			 */
 997			adapter->test_icr = 0;
 998			ew32(IMC, mask);
 999			ew32(ICS, mask);
1000			e1e_flush();
1001			usleep_range(10000, 20000);
1002
1003			if (adapter->test_icr & mask) {
1004				*data = 3;
1005				break;
1006			}
1007		}
1008
1009		/*
1010		 * Enable the interrupt to be reported in
1011		 * the cause register and then force the same
1012		 * interrupt and see if one gets posted.  If
1013		 * an interrupt was not posted to the bus, the
1014		 * test failed.
1015		 */
1016		adapter->test_icr = 0;
1017		ew32(IMS, mask);
1018		ew32(ICS, mask);
1019		e1e_flush();
1020		usleep_range(10000, 20000);
1021
1022		if (!(adapter->test_icr & mask)) {
1023			*data = 4;
1024			break;
1025		}
1026
1027		if (!shared_int) {
1028			/*
1029			 * Disable the other interrupts to be reported in
1030			 * the cause register and then force the other
1031			 * interrupts and see if any get posted.  If
1032			 * an interrupt was posted to the bus, the
1033			 * test failed.
1034			 */
1035			adapter->test_icr = 0;
1036			ew32(IMC, ~mask & 0x00007FFF);
1037			ew32(ICS, ~mask & 0x00007FFF);
1038			e1e_flush();
1039			usleep_range(10000, 20000);
1040
1041			if (adapter->test_icr) {
1042				*data = 5;
1043				break;
1044			}
1045		}
1046	}
1047
1048	/* Disable all the interrupts */
1049	ew32(IMC, 0xFFFFFFFF);
1050	e1e_flush();
1051	usleep_range(10000, 20000);
1052
1053	/* Unhook test interrupt handler */
1054	free_irq(irq, netdev);
1055
1056out:
1057	if (int_mode == E1000E_INT_MODE_MSIX) {
1058		e1000e_reset_interrupt_capability(adapter);
1059		adapter->int_mode = int_mode;
1060		e1000e_set_interrupt_capability(adapter);
1061	}
1062
1063	return ret_val;
1064}
1065
1066static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1067{
1068	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1069	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1070	struct pci_dev *pdev = adapter->pdev;
1071	int i;
1072
1073	if (tx_ring->desc && tx_ring->buffer_info) {
1074		for (i = 0; i < tx_ring->count; i++) {
1075			if (tx_ring->buffer_info[i].dma)
1076				dma_unmap_single(&pdev->dev,
1077					tx_ring->buffer_info[i].dma,
1078					tx_ring->buffer_info[i].length,
1079					DMA_TO_DEVICE);
1080			if (tx_ring->buffer_info[i].skb)
1081				dev_kfree_skb(tx_ring->buffer_info[i].skb);
1082		}
1083	}
1084
1085	if (rx_ring->desc && rx_ring->buffer_info) {
1086		for (i = 0; i < rx_ring->count; i++) {
1087			if (rx_ring->buffer_info[i].dma)
1088				dma_unmap_single(&pdev->dev,
1089					rx_ring->buffer_info[i].dma,
1090					2048, DMA_FROM_DEVICE);
1091			if (rx_ring->buffer_info[i].skb)
1092				dev_kfree_skb(rx_ring->buffer_info[i].skb);
1093		}
1094	}
1095
1096	if (tx_ring->desc) {
1097		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1098				  tx_ring->dma);
1099		tx_ring->desc = NULL;
1100	}
1101	if (rx_ring->desc) {
1102		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1103				  rx_ring->dma);
1104		rx_ring->desc = NULL;
1105	}
1106
1107	kfree(tx_ring->buffer_info);
1108	tx_ring->buffer_info = NULL;
1109	kfree(rx_ring->buffer_info);
1110	rx_ring->buffer_info = NULL;
1111}
1112
1113static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1114{
1115	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1116	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1117	struct pci_dev *pdev = adapter->pdev;
1118	struct e1000_hw *hw = &adapter->hw;
1119	u32 rctl;
1120	int i;
1121	int ret_val;
1122
1123	/* Setup Tx descriptor ring and Tx buffers */
1124
1125	if (!tx_ring->count)
1126		tx_ring->count = E1000_DEFAULT_TXD;
1127
1128	tx_ring->buffer_info = kcalloc(tx_ring->count,
1129				       sizeof(struct e1000_buffer),
1130				       GFP_KERNEL);
1131	if (!(tx_ring->buffer_info)) {
1132		ret_val = 1;
1133		goto err_nomem;
1134	}
1135
1136	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1137	tx_ring->size = ALIGN(tx_ring->size, 4096);
1138	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1139					   &tx_ring->dma, GFP_KERNEL);
1140	if (!tx_ring->desc) {
1141		ret_val = 2;
1142		goto err_nomem;
1143	}
1144	tx_ring->next_to_use = 0;
1145	tx_ring->next_to_clean = 0;
1146
1147	ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1148	ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1149	ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1150	ew32(TDH, 0);
1151	ew32(TDT, 0);
1152	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1153	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1154	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1155
1156	for (i = 0; i < tx_ring->count; i++) {
1157		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1158		struct sk_buff *skb;
1159		unsigned int skb_size = 1024;
1160
1161		skb = alloc_skb(skb_size, GFP_KERNEL);
1162		if (!skb) {
1163			ret_val = 3;
1164			goto err_nomem;
1165		}
1166		skb_put(skb, skb_size);
1167		tx_ring->buffer_info[i].skb = skb;
1168		tx_ring->buffer_info[i].length = skb->len;
1169		tx_ring->buffer_info[i].dma =
1170			dma_map_single(&pdev->dev, skb->data, skb->len,
1171				       DMA_TO_DEVICE);
1172		if (dma_mapping_error(&pdev->dev,
1173				      tx_ring->buffer_info[i].dma)) {
1174			ret_val = 4;
1175			goto err_nomem;
1176		}
1177		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1178		tx_desc->lower.data = cpu_to_le32(skb->len);
1179		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1180						   E1000_TXD_CMD_IFCS |
1181						   E1000_TXD_CMD_RS);
1182		tx_desc->upper.data = 0;
1183	}
1184
1185	/* Setup Rx descriptor ring and Rx buffers */
1186
1187	if (!rx_ring->count)
1188		rx_ring->count = E1000_DEFAULT_RXD;
1189
1190	rx_ring->buffer_info = kcalloc(rx_ring->count,
1191				       sizeof(struct e1000_buffer),
1192				       GFP_KERNEL);
1193	if (!(rx_ring->buffer_info)) {
1194		ret_val = 5;
1195		goto err_nomem;
1196	}
1197
1198	rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1199	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1200					   &rx_ring->dma, GFP_KERNEL);
1201	if (!rx_ring->desc) {
1202		ret_val = 6;
1203		goto err_nomem;
1204	}
1205	rx_ring->next_to_use = 0;
1206	rx_ring->next_to_clean = 0;
1207
1208	rctl = er32(RCTL);
1209	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1210		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1211	ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1212	ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1213	ew32(RDLEN, rx_ring->size);
1214	ew32(RDH, 0);
1215	ew32(RDT, 0);
1216	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1217		E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1218		E1000_RCTL_SBP | E1000_RCTL_SECRC |
1219		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1220		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1221	ew32(RCTL, rctl);
1222
1223	for (i = 0; i < rx_ring->count; i++) {
1224		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1225		struct sk_buff *skb;
1226
1227		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1228		if (!skb) {
1229			ret_val = 7;
1230			goto err_nomem;
1231		}
1232		skb_reserve(skb, NET_IP_ALIGN);
1233		rx_ring->buffer_info[i].skb = skb;
1234		rx_ring->buffer_info[i].dma =
1235			dma_map_single(&pdev->dev, skb->data, 2048,
1236				       DMA_FROM_DEVICE);
1237		if (dma_mapping_error(&pdev->dev,
1238				      rx_ring->buffer_info[i].dma)) {
1239			ret_val = 8;
1240			goto err_nomem;
1241		}
1242		rx_desc->buffer_addr =
1243			cpu_to_le64(rx_ring->buffer_info[i].dma);
1244		memset(skb->data, 0x00, skb->len);
1245	}
1246
1247	return 0;
1248
1249err_nomem:
1250	e1000_free_desc_rings(adapter);
1251	return ret_val;
1252}
1253
1254static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1255{
1256	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1257	e1e_wphy(&adapter->hw, 29, 0x001F);
1258	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1259	e1e_wphy(&adapter->hw, 29, 0x001A);
1260	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1261}
1262
1263static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1264{
1265	struct e1000_hw *hw = &adapter->hw;
1266	u32 ctrl_reg = 0;
1267	u16 phy_reg = 0;
1268	s32 ret_val = 0;
1269
1270	hw->mac.autoneg = 0;
1271
1272	if (hw->phy.type == e1000_phy_ife) {
1273		/* force 100, set loopback */
1274		e1e_wphy(hw, PHY_CONTROL, 0x6100);
1275
1276		/* Now set up the MAC to the same speed/duplex as the PHY. */
1277		ctrl_reg = er32(CTRL);
1278		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1279		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1280			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1281			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1282			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1283
1284		ew32(CTRL, ctrl_reg);
1285		e1e_flush();
1286		udelay(500);
1287
1288		return 0;
1289	}
1290
1291	/* Specific PHY configuration for loopback */
1292	switch (hw->phy.type) {
1293	case e1000_phy_m88:
1294		/* Auto-MDI/MDIX Off */
1295		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1296		/* reset to update Auto-MDI/MDIX */
1297		e1e_wphy(hw, PHY_CONTROL, 0x9140);
1298		/* autoneg off */
1299		e1e_wphy(hw, PHY_CONTROL, 0x8140);
1300		break;
1301	case e1000_phy_gg82563:
1302		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1303		break;
1304	case e1000_phy_bm:
1305		/* Set Default MAC Interface speed to 1GB */
1306		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1307		phy_reg &= ~0x0007;
1308		phy_reg |= 0x006;
1309		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1310		/* Assert SW reset for above settings to take effect */
1311		e1000e_commit_phy(hw);
1312		mdelay(1);
1313		/* Force Full Duplex */
1314		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1315		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1316		/* Set Link Up (in force link) */
1317		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1318		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1319		/* Force Link */
1320		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1321		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1322		/* Set Early Link Enable */
1323		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1324		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1325		break;
1326	case e1000_phy_82577:
1327	case e1000_phy_82578:
1328		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1329		ret_val = hw->phy.ops.acquire(hw);
1330		if (ret_val) {
1331			e_err("Cannot setup 1Gbps loopback.\n");
1332			return ret_val;
1333		}
1334		e1000_configure_k1_ich8lan(hw, false);
1335		hw->phy.ops.release(hw);
1336		break;
1337	case e1000_phy_82579:
1338		/* Disable PHY energy detect power down */
1339		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1340		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1341		/* Disable full chip energy detect */
1342		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1343		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1344		/* Enable loopback on the PHY */
1345#define I82577_PHY_LBK_CTRL          19
1346		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1347		break;
1348	default:
1349		break;
1350	}
1351
1352	/* force 1000, set loopback */
1353	e1e_wphy(hw, PHY_CONTROL, 0x4140);
1354	mdelay(250);
1355
1356	/* Now set up the MAC to the same speed/duplex as the PHY. */
1357	ctrl_reg = er32(CTRL);
1358	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1359	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1360		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1361		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1362		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1363
1364	if (adapter->flags & FLAG_IS_ICH)
1365		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1366
1367	if (hw->phy.media_type == e1000_media_type_copper &&
1368	    hw->phy.type == e1000_phy_m88) {
1369		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1370	} else {
1371		/*
1372		 * Set the ILOS bit on the fiber Nic if half duplex link is
1373		 * detected.
1374		 */
1375		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1376			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1377	}
1378
1379	ew32(CTRL, ctrl_reg);
1380
1381	/*
1382	 * Disable the receiver on the PHY so when a cable is plugged in, the
1383	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1384	 */
1385	if (hw->phy.type == e1000_phy_m88)
1386		e1000_phy_disable_receiver(adapter);
1387
1388	udelay(500);
1389
1390	return 0;
1391}
1392
1393static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1394{
1395	struct e1000_hw *hw = &adapter->hw;
1396	u32 ctrl = er32(CTRL);
1397	int link = 0;
1398
1399	/* special requirements for 82571/82572 fiber adapters */
1400
1401	/*
1402	 * jump through hoops to make sure link is up because serdes
1403	 * link is hardwired up
1404	 */
1405	ctrl |= E1000_CTRL_SLU;
1406	ew32(CTRL, ctrl);
1407
1408	/* disable autoneg */
1409	ctrl = er32(TXCW);
1410	ctrl &= ~(1 << 31);
1411	ew32(TXCW, ctrl);
1412
1413	link = (er32(STATUS) & E1000_STATUS_LU);
1414
1415	if (!link) {
1416		/* set invert loss of signal */
1417		ctrl = er32(CTRL);
1418		ctrl |= E1000_CTRL_ILOS;
1419		ew32(CTRL, ctrl);
1420	}
1421
1422	/*
1423	 * special write to serdes control register to enable SerDes analog
1424	 * loopback
1425	 */
1426#define E1000_SERDES_LB_ON 0x410
1427	ew32(SCTL, E1000_SERDES_LB_ON);
1428	e1e_flush();
1429	usleep_range(10000, 20000);
1430
1431	return 0;
1432}
1433
1434/* only call this for fiber/serdes connections to es2lan */
1435static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1436{
1437	struct e1000_hw *hw = &adapter->hw;
1438	u32 ctrlext = er32(CTRL_EXT);
1439	u32 ctrl = er32(CTRL);
1440
1441	/*
1442	 * save CTRL_EXT to restore later, reuse an empty variable (unused
1443	 * on mac_type 80003es2lan)
1444	 */
1445	adapter->tx_fifo_head = ctrlext;
1446
1447	/* clear the serdes mode bits, putting the device into mac loopback */
1448	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1449	ew32(CTRL_EXT, ctrlext);
1450
1451	/* force speed to 1000/FD, link up */
1452	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1453	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1454		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1455	ew32(CTRL, ctrl);
1456
1457	/* set mac loopback */
1458	ctrl = er32(RCTL);
1459	ctrl |= E1000_RCTL_LBM_MAC;
1460	ew32(RCTL, ctrl);
1461
1462	/* set testing mode parameters (no need to reset later) */
1463#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1464#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1465	ew32(KMRNCTRLSTA,
1466	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1467
1468	return 0;
1469}
1470
1471static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1472{
1473	struct e1000_hw *hw = &adapter->hw;
1474	u32 rctl;
1475
1476	if (hw->phy.media_type == e1000_media_type_fiber ||
1477	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1478		switch (hw->mac.type) {
1479		case e1000_80003es2lan:
1480			return e1000_set_es2lan_mac_loopback(adapter);
1481			break;
1482		case e1000_82571:
1483		case e1000_82572:
1484			return e1000_set_82571_fiber_loopback(adapter);
1485			break;
1486		default:
1487			rctl = er32(RCTL);
1488			rctl |= E1000_RCTL_LBM_TCVR;
1489			ew32(RCTL, rctl);
1490			return 0;
1491		}
1492	} else if (hw->phy.media_type == e1000_media_type_copper) {
1493		return e1000_integrated_phy_loopback(adapter);
1494	}
1495
1496	return 7;
1497}
1498
1499static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1500{
1501	struct e1000_hw *hw = &adapter->hw;
1502	u32 rctl;
1503	u16 phy_reg;
1504
1505	rctl = er32(RCTL);
1506	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1507	ew32(RCTL, rctl);
1508
1509	switch (hw->mac.type) {
1510	case e1000_80003es2lan:
1511		if (hw->phy.media_type == e1000_media_type_fiber ||
1512		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1513			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1514			ew32(CTRL_EXT, adapter->tx_fifo_head);
1515			adapter->tx_fifo_head = 0;
1516		}
1517		/* fall through */
1518	case e1000_82571:
1519	case e1000_82572:
1520		if (hw->phy.media_type == e1000_media_type_fiber ||
1521		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1522#define E1000_SERDES_LB_OFF 0x400
1523			ew32(SCTL, E1000_SERDES_LB_OFF);
1524			e1e_flush();
1525			usleep_range(10000, 20000);
1526			break;
1527		}
1528		/* Fall Through */
1529	default:
1530		hw->mac.autoneg = 1;
1531		if (hw->phy.type == e1000_phy_gg82563)
1532			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1533		e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1534		if (phy_reg & MII_CR_LOOPBACK) {
1535			phy_reg &= ~MII_CR_LOOPBACK;
1536			e1e_wphy(hw, PHY_CONTROL, phy_reg);
1537			e1000e_commit_phy(hw);
1538		}
1539		break;
1540	}
1541}
1542
1543static void e1000_create_lbtest_frame(struct sk_buff *skb,
1544				      unsigned int frame_size)
1545{
1546	memset(skb->data, 0xFF, frame_size);
1547	frame_size &= ~1;
1548	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1549	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1550	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1551}
1552
1553static int e1000_check_lbtest_frame(struct sk_buff *skb,
1554				    unsigned int frame_size)
1555{
1556	frame_size &= ~1;
1557	if (*(skb->data + 3) == 0xFF)
1558		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1559		   (*(skb->data + frame_size / 2 + 12) == 0xAF))
1560			return 0;
1561	return 13;
1562}
1563
1564static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1565{
1566	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1567	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1568	struct pci_dev *pdev = adapter->pdev;
1569	struct e1000_hw *hw = &adapter->hw;
1570	int i, j, k, l;
1571	int lc;
1572	int good_cnt;
1573	int ret_val = 0;
1574	unsigned long time;
1575
1576	ew32(RDT, rx_ring->count - 1);
1577
1578	/*
1579	 * Calculate the loop count based on the largest descriptor ring
1580	 * The idea is to wrap the largest ring a number of times using 64
1581	 * send/receive pairs during each loop
1582	 */
1583
1584	if (rx_ring->count <= tx_ring->count)
1585		lc = ((tx_ring->count / 64) * 2) + 1;
1586	else
1587		lc = ((rx_ring->count / 64) * 2) + 1;
1588
1589	k = 0;
1590	l = 0;
1591	for (j = 0; j <= lc; j++) { /* loop count loop */
1592		for (i = 0; i < 64; i++) { /* send the packets */
1593			e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1594						  1024);
1595			dma_sync_single_for_device(&pdev->dev,
1596					tx_ring->buffer_info[k].dma,
1597					tx_ring->buffer_info[k].length,
1598					DMA_TO_DEVICE);
1599			k++;
1600			if (k == tx_ring->count)
1601				k = 0;
1602		}
1603		ew32(TDT, k);
1604		e1e_flush();
1605		msleep(200);
1606		time = jiffies; /* set the start time for the receive */
1607		good_cnt = 0;
1608		do { /* receive the sent packets */
1609			dma_sync_single_for_cpu(&pdev->dev,
1610					rx_ring->buffer_info[l].dma, 2048,
1611					DMA_FROM_DEVICE);
1612
1613			ret_val = e1000_check_lbtest_frame(
1614					rx_ring->buffer_info[l].skb, 1024);
1615			if (!ret_val)
1616				good_cnt++;
1617			l++;
1618			if (l == rx_ring->count)
1619				l = 0;
1620			/*
1621			 * time + 20 msecs (200 msecs on 2.4) is more than
1622			 * enough time to complete the receives, if it's
1623			 * exceeded, break and error off
1624			 */
1625		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1626		if (good_cnt != 64) {
1627			ret_val = 13; /* ret_val is the same as mis-compare */
1628			break;
1629		}
1630		if (jiffies >= (time + 20)) {
1631			ret_val = 14; /* error code for time out error */
1632			break;
1633		}
1634	} /* end loop count loop */
1635	return ret_val;
1636}
1637
1638static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1639{
1640	/*
1641	 * PHY loopback cannot be performed if SoL/IDER
1642	 * sessions are active
1643	 */
1644	if (e1000_check_reset_block(&adapter->hw)) {
1645		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1646		*data = 0;
1647		goto out;
1648	}
1649
1650	*data = e1000_setup_desc_rings(adapter);
1651	if (*data)
1652		goto out;
1653
1654	*data = e1000_setup_loopback_test(adapter);
1655	if (*data)
1656		goto err_loopback;
1657
1658	*data = e1000_run_loopback_test(adapter);
1659	e1000_loopback_cleanup(adapter);
1660
1661err_loopback:
1662	e1000_free_desc_rings(adapter);
1663out:
1664	return *data;
1665}
1666
1667static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1668{
1669	struct e1000_hw *hw = &adapter->hw;
1670
1671	*data = 0;
1672	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1673		int i = 0;
1674		hw->mac.serdes_has_link = false;
1675
1676		/*
1677		 * On some blade server designs, link establishment
1678		 * could take as long as 2-3 minutes
1679		 */
1680		do {
1681			hw->mac.ops.check_for_link(hw);
1682			if (hw->mac.serdes_has_link)
1683				return *data;
1684			msleep(20);
1685		} while (i++ < 3750);
1686
1687		*data = 1;
1688	} else {
1689		hw->mac.ops.check_for_link(hw);
1690		if (hw->mac.autoneg)
1691			/*
1692			 * On some Phy/switch combinations, link establishment
1693			 * can take a few seconds more than expected.
1694			 */
1695			msleep(5000);
1696
1697		if (!(er32(STATUS) & E1000_STATUS_LU))
1698			*data = 1;
1699	}
1700	return *data;
1701}
1702
1703static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1704{
1705	switch (sset) {
1706	case ETH_SS_TEST:
1707		return E1000_TEST_LEN;
1708	case ETH_SS_STATS:
1709		return E1000_STATS_LEN;
1710	default:
1711		return -EOPNOTSUPP;
1712	}
1713}
1714
1715static void e1000_diag_test(struct net_device *netdev,
1716			    struct ethtool_test *eth_test, u64 *data)
1717{
1718	struct e1000_adapter *adapter = netdev_priv(netdev);
1719	u16 autoneg_advertised;
1720	u8 forced_speed_duplex;
1721	u8 autoneg;
1722	bool if_running = netif_running(netdev);
1723
1724	set_bit(__E1000_TESTING, &adapter->state);
1725
1726	if (!if_running) {
1727		/* Get control of and reset hardware */
1728		if (adapter->flags & FLAG_HAS_AMT)
1729			e1000e_get_hw_control(adapter);
1730
1731		e1000e_power_up_phy(adapter);
1732
1733		adapter->hw.phy.autoneg_wait_to_complete = 1;
1734		e1000e_reset(adapter);
1735		adapter->hw.phy.autoneg_wait_to_complete = 0;
1736	}
1737
1738	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1739		/* Offline tests */
1740
1741		/* save speed, duplex, autoneg settings */
1742		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1743		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1744		autoneg = adapter->hw.mac.autoneg;
1745
1746		e_info("offline testing starting\n");
1747
1748		if (if_running)
1749			/* indicate we're in test mode */
1750			dev_close(netdev);
1751
1752		if (e1000_reg_test(adapter, &data[0]))
1753			eth_test->flags |= ETH_TEST_FL_FAILED;
1754
1755		e1000e_reset(adapter);
1756		if (e1000_eeprom_test(adapter, &data[1]))
1757			eth_test->flags |= ETH_TEST_FL_FAILED;
1758
1759		e1000e_reset(adapter);
1760		if (e1000_intr_test(adapter, &data[2]))
1761			eth_test->flags |= ETH_TEST_FL_FAILED;
1762
1763		e1000e_reset(adapter);
1764		if (e1000_loopback_test(adapter, &data[3]))
1765			eth_test->flags |= ETH_TEST_FL_FAILED;
1766
1767		/* force this routine to wait until autoneg complete/timeout */
1768		adapter->hw.phy.autoneg_wait_to_complete = 1;
1769		e1000e_reset(adapter);
1770		adapter->hw.phy.autoneg_wait_to_complete = 0;
1771
1772		if (e1000_link_test(adapter, &data[4]))
1773			eth_test->flags |= ETH_TEST_FL_FAILED;
1774
1775		/* restore speed, duplex, autoneg settings */
1776		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1777		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1778		adapter->hw.mac.autoneg = autoneg;
1779		e1000e_reset(adapter);
1780
1781		clear_bit(__E1000_TESTING, &adapter->state);
1782		if (if_running)
1783			dev_open(netdev);
1784	} else {
1785		/* Online tests */
1786
1787		e_info("online testing starting\n");
1788
1789		/* register, eeprom, intr and loopback tests not run online */
1790		data[0] = 0;
1791		data[1] = 0;
1792		data[2] = 0;
1793		data[3] = 0;
1794
1795		if (e1000_link_test(adapter, &data[4]))
1796			eth_test->flags |= ETH_TEST_FL_FAILED;
1797
1798		clear_bit(__E1000_TESTING, &adapter->state);
1799	}
1800
1801	if (!if_running) {
1802		e1000e_reset(adapter);
1803
1804		if (adapter->flags & FLAG_HAS_AMT)
1805			e1000e_release_hw_control(adapter);
1806	}
1807
1808	msleep_interruptible(4 * 1000);
1809}
1810
1811static void e1000_get_wol(struct net_device *netdev,
1812			  struct ethtool_wolinfo *wol)
1813{
1814	struct e1000_adapter *adapter = netdev_priv(netdev);
1815
1816	wol->supported = 0;
1817	wol->wolopts = 0;
1818
1819	if (!(adapter->flags & FLAG_HAS_WOL) ||
1820	    !device_can_wakeup(&adapter->pdev->dev))
1821		return;
1822
1823	wol->supported = WAKE_UCAST | WAKE_MCAST |
1824	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1825
1826	/* apply any specific unsupported masks here */
1827	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1828		wol->supported &= ~WAKE_UCAST;
1829
1830		if (adapter->wol & E1000_WUFC_EX)
1831			e_err("Interface does not support directed (unicast) "
1832			      "frame wake-up packets\n");
1833	}
1834
1835	if (adapter->wol & E1000_WUFC_EX)
1836		wol->wolopts |= WAKE_UCAST;
1837	if (adapter->wol & E1000_WUFC_MC)
1838		wol->wolopts |= WAKE_MCAST;
1839	if (adapter->wol & E1000_WUFC_BC)
1840		wol->wolopts |= WAKE_BCAST;
1841	if (adapter->wol & E1000_WUFC_MAG)
1842		wol->wolopts |= WAKE_MAGIC;
1843	if (adapter->wol & E1000_WUFC_LNKC)
1844		wol->wolopts |= WAKE_PHY;
1845}
1846
1847static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1848{
1849	struct e1000_adapter *adapter = netdev_priv(netdev);
1850
1851	if (!(adapter->flags & FLAG_HAS_WOL) ||
1852	    !device_can_wakeup(&adapter->pdev->dev) ||
1853	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1854			      WAKE_MAGIC | WAKE_PHY)))
1855		return -EOPNOTSUPP;
1856
1857	/* these settings will always override what we currently have */
1858	adapter->wol = 0;
1859
1860	if (wol->wolopts & WAKE_UCAST)
1861		adapter->wol |= E1000_WUFC_EX;
1862	if (wol->wolopts & WAKE_MCAST)
1863		adapter->wol |= E1000_WUFC_MC;
1864	if (wol->wolopts & WAKE_BCAST)
1865		adapter->wol |= E1000_WUFC_BC;
1866	if (wol->wolopts & WAKE_MAGIC)
1867		adapter->wol |= E1000_WUFC_MAG;
1868	if (wol->wolopts & WAKE_PHY)
1869		adapter->wol |= E1000_WUFC_LNKC;
1870
1871	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1872
1873	return 0;
1874}
1875
1876static int e1000_set_phys_id(struct net_device *netdev,
1877			     enum ethtool_phys_id_state state)
1878{
1879	struct e1000_adapter *adapter = netdev_priv(netdev);
1880	struct e1000_hw *hw = &adapter->hw;
1881
1882	switch (state) {
1883	case ETHTOOL_ID_ACTIVE:
1884		if (!hw->mac.ops.blink_led)
1885			return 2;	/* cycle on/off twice per second */
1886
1887		hw->mac.ops.blink_led(hw);
1888		break;
1889
1890	case ETHTOOL_ID_INACTIVE:
1891		if (hw->phy.type == e1000_phy_ife)
1892			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1893		hw->mac.ops.led_off(hw);
1894		hw->mac.ops.cleanup_led(hw);
1895		break;
1896
1897	case ETHTOOL_ID_ON:
1898		adapter->hw.mac.ops.led_on(&adapter->hw);
1899		break;
1900
1901	case ETHTOOL_ID_OFF:
1902		adapter->hw.mac.ops.led_off(&adapter->hw);
1903		break;
1904	}
1905	return 0;
1906}
1907
1908static int e1000_get_coalesce(struct net_device *netdev,
1909			      struct ethtool_coalesce *ec)
1910{
1911	struct e1000_adapter *adapter = netdev_priv(netdev);
1912
1913	if (adapter->itr_setting <= 4)
1914		ec->rx_coalesce_usecs = adapter->itr_setting;
1915	else
1916		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1917
1918	return 0;
1919}
1920
1921static int e1000_set_coalesce(struct net_device *netdev,
1922			      struct ethtool_coalesce *ec)
1923{
1924	struct e1000_adapter *adapter = netdev_priv(netdev);
1925	struct e1000_hw *hw = &adapter->hw;
1926
1927	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1928	    ((ec->rx_coalesce_usecs > 4) &&
1929	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1930	    (ec->rx_coalesce_usecs == 2))
1931		return -EINVAL;
1932
1933	if (ec->rx_coalesce_usecs == 4) {
1934		adapter->itr = adapter->itr_setting = 4;
1935	} else if (ec->rx_coalesce_usecs <= 3) {
1936		adapter->itr = 20000;
1937		adapter->itr_setting = ec->rx_coalesce_usecs;
1938	} else {
1939		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1940		adapter->itr_setting = adapter->itr & ~3;
1941	}
1942
1943	if (adapter->itr_setting != 0)
1944		ew32(ITR, 1000000000 / (adapter->itr * 256));
1945	else
1946		ew32(ITR, 0);
1947
1948	return 0;
1949}
1950
1951static int e1000_nway_reset(struct net_device *netdev)
1952{
1953	struct e1000_adapter *adapter = netdev_priv(netdev);
1954
1955	if (!netif_running(netdev))
1956		return -EAGAIN;
1957
1958	if (!adapter->hw.mac.autoneg)
1959		return -EINVAL;
1960
1961	e1000e_reinit_locked(adapter);
1962
1963	return 0;
1964}
1965
1966static void e1000_get_ethtool_stats(struct net_device *netdev,
1967				    struct ethtool_stats *stats,
1968				    u64 *data)
1969{
1970	struct e1000_adapter *adapter = netdev_priv(netdev);
1971	struct rtnl_link_stats64 net_stats;
1972	int i;
1973	char *p = NULL;
1974
1975	e1000e_get_stats64(netdev, &net_stats);
1976	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1977		switch (e1000_gstrings_stats[i].type) {
1978		case NETDEV_STATS:
1979			p = (char *) &net_stats +
1980					e1000_gstrings_stats[i].stat_offset;
1981			break;
1982		case E1000_STATS:
1983			p = (char *) adapter +
1984					e1000_gstrings_stats[i].stat_offset;
1985			break;
1986		default:
1987			data[i] = 0;
1988			continue;
1989		}
1990
1991		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1992			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1993	}
1994}
1995
1996static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1997			      u8 *data)
1998{
1999	u8 *p = data;
2000	int i;
2001
2002	switch (stringset) {
2003	case ETH_SS_TEST:
2004		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2005		break;
2006	case ETH_SS_STATS:
2007		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2008			memcpy(p, e1000_gstrings_stats[i].stat_string,
2009			       ETH_GSTRING_LEN);
2010			p += ETH_GSTRING_LEN;
2011		}
2012		break;
2013	}
2014}
2015
2016static int e1000e_set_flags(struct net_device *netdev, u32 data)
2017{
2018	struct e1000_adapter *adapter = netdev_priv(netdev);
2019	bool need_reset = false;
2020	int rc;
2021
2022	need_reset = (data & ETH_FLAG_RXVLAN) !=
2023		     (netdev->features & NETIF_F_HW_VLAN_RX);
2024
2025	rc = ethtool_op_set_flags(netdev, data, ETH_FLAG_RXVLAN |
2026				  ETH_FLAG_TXVLAN);
2027
2028	if (rc)
2029		return rc;
2030
2031	if (need_reset) {
2032		if (netif_running(netdev))
2033			e1000e_reinit_locked(adapter);
2034		else
2035			e1000e_reset(adapter);
2036	}
2037
2038	return 0;
2039}
2040
2041static const struct ethtool_ops e1000_ethtool_ops = {
2042	.get_settings		= e1000_get_settings,
2043	.set_settings		= e1000_set_settings,
2044	.get_drvinfo		= e1000_get_drvinfo,
2045	.get_regs_len		= e1000_get_regs_len,
2046	.get_regs		= e1000_get_regs,
2047	.get_wol		= e1000_get_wol,
2048	.set_wol		= e1000_set_wol,
2049	.get_msglevel		= e1000_get_msglevel,
2050	.set_msglevel		= e1000_set_msglevel,
2051	.nway_reset		= e1000_nway_reset,
2052	.get_link		= ethtool_op_get_link,
2053	.get_eeprom_len		= e1000_get_eeprom_len,
2054	.get_eeprom		= e1000_get_eeprom,
2055	.set_eeprom		= e1000_set_eeprom,
2056	.get_ringparam		= e1000_get_ringparam,
2057	.set_ringparam		= e1000_set_ringparam,
2058	.get_pauseparam		= e1000_get_pauseparam,
2059	.set_pauseparam		= e1000_set_pauseparam,
2060	.get_rx_csum		= e1000_get_rx_csum,
2061	.set_rx_csum		= e1000_set_rx_csum,
2062	.get_tx_csum		= e1000_get_tx_csum,
2063	.set_tx_csum		= e1000_set_tx_csum,
2064	.get_sg			= ethtool_op_get_sg,
2065	.set_sg			= ethtool_op_set_sg,
2066	.get_tso		= ethtool_op_get_tso,
2067	.set_tso		= e1000_set_tso,
2068	.self_test		= e1000_diag_test,
2069	.get_strings		= e1000_get_strings,
2070	.set_phys_id		= e1000_set_phys_id,
2071	.get_ethtool_stats	= e1000_get_ethtool_stats,
2072	.get_sset_count		= e1000e_get_sset_count,
2073	.get_coalesce		= e1000_get_coalesce,
2074	.set_coalesce		= e1000_set_coalesce,
2075	.get_flags		= ethtool_op_get_flags,
2076	.set_flags		= e1000e_set_flags,
2077};
2078
2079void e1000e_set_ethtool_ops(struct net_device *netdev)
2080{
2081	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2082}