Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2011 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29/*
  30 * 80003ES2LAN Gigabit Ethernet Controller (Copper)
  31 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
  32 */
  33
  34#include "e1000.h"
  35
  36#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL	 0x00
  37#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL	 0x02
  38#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL	 0x10
  39#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE	 0x1F
  40
  41#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS	 0x0008
  42#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS	 0x0800
  43#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING	 0x0010
  44
  45#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
  46#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT	 0x0000
  47#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE		 0x2000
  48
  49#define E1000_KMRNCTRLSTA_OPMODE_MASK		 0x000C
  50#define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO	 0x0004
  51
  52#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
  53#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN	 0x00010000
  54
  55#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN	 0x8
  56#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN	 0x9
  57
  58/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
  59#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE	 0x0002 /* 1=Reversal Disab. */
  60#define GG82563_PSCR_CROSSOVER_MODE_MASK	 0x0060
  61#define GG82563_PSCR_CROSSOVER_MODE_MDI		 0x0000 /* 00=Manual MDI */
  62#define GG82563_PSCR_CROSSOVER_MODE_MDIX	 0x0020 /* 01=Manual MDIX */
  63#define GG82563_PSCR_CROSSOVER_MODE_AUTO	 0x0060 /* 11=Auto crossover */
  64
  65/* PHY Specific Control Register 2 (Page 0, Register 26) */
  66#define GG82563_PSCR2_REVERSE_AUTO_NEG		 0x2000
  67						/* 1=Reverse Auto-Negotiation */
  68
  69/* MAC Specific Control Register (Page 2, Register 21) */
  70/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
  71#define GG82563_MSCR_TX_CLK_MASK		 0x0007
  72#define GG82563_MSCR_TX_CLK_10MBPS_2_5		 0x0004
  73#define GG82563_MSCR_TX_CLK_100MBPS_25		 0x0005
  74#define GG82563_MSCR_TX_CLK_1000MBPS_25		 0x0007
  75
  76#define GG82563_MSCR_ASSERT_CRS_ON_TX		 0x0010 /* 1=Assert */
  77
  78/* DSP Distance Register (Page 5, Register 26) */
  79#define GG82563_DSPD_CABLE_LENGTH		 0x0007 /* 0 = <50M
  80							   1 = 50-80M
  81							   2 = 80-110M
  82							   3 = 110-140M
  83							   4 = >140M */
  84
  85/* Kumeran Mode Control Register (Page 193, Register 16) */
  86#define GG82563_KMCR_PASS_FALSE_CARRIER		 0x0800
  87
  88/* Max number of times Kumeran read/write should be validated */
  89#define GG82563_MAX_KMRN_RETRY  0x5
  90
  91/* Power Management Control Register (Page 193, Register 20) */
  92#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE	 0x0001
  93					   /* 1=Enable SERDES Electrical Idle */
  94
  95/* In-Band Control Register (Page 194, Register 18) */
  96#define GG82563_ICR_DIS_PADDING			 0x0010 /* Disable Padding */
  97
  98/*
  99 * A table for the GG82563 cable length where the range is defined
 100 * with a lower bound at "index" and the upper bound at
 101 * "index + 5".
 102 */
 103static const u16 e1000_gg82563_cable_length_table[] = {
 104	 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
 105#define GG82563_CABLE_LENGTH_TABLE_SIZE \
 106		ARRAY_SIZE(e1000_gg82563_cable_length_table)
 107
 108static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
 109static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
 110static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
 111static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
 112static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
 113static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
 114static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
 115static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
 116static s32  e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
 117                                            u16 *data);
 118static s32  e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
 119                                             u16 data);
 120static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
 121
 122/**
 123 *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
 124 *  @hw: pointer to the HW structure
 125 **/
 126static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
 127{
 128	struct e1000_phy_info *phy = &hw->phy;
 129	s32 ret_val;
 130
 131	if (hw->phy.media_type != e1000_media_type_copper) {
 132		phy->type	= e1000_phy_none;
 133		return 0;
 134	} else {
 135		phy->ops.power_up = e1000_power_up_phy_copper;
 136		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
 137	}
 138
 139	phy->addr		= 1;
 140	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
 141	phy->reset_delay_us      = 100;
 142	phy->type		= e1000_phy_gg82563;
 143
 144	/* This can only be done after all function pointers are setup. */
 145	ret_val = e1000e_get_phy_id(hw);
 146
 147	/* Verify phy id */
 148	if (phy->id != GG82563_E_PHY_ID)
 149		return -E1000_ERR_PHY;
 150
 151	return ret_val;
 152}
 153
 154/**
 155 *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
 156 *  @hw: pointer to the HW structure
 157 **/
 158static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
 159{
 160	struct e1000_nvm_info *nvm = &hw->nvm;
 161	u32 eecd = er32(EECD);
 162	u16 size;
 163
 164	nvm->opcode_bits	= 8;
 165	nvm->delay_usec	 = 1;
 166	switch (nvm->override) {
 167	case e1000_nvm_override_spi_large:
 168		nvm->page_size    = 32;
 169		nvm->address_bits = 16;
 170		break;
 171	case e1000_nvm_override_spi_small:
 172		nvm->page_size    = 8;
 173		nvm->address_bits = 8;
 174		break;
 175	default:
 176		nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 177		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
 178		break;
 179	}
 180
 181	nvm->type = e1000_nvm_eeprom_spi;
 182
 183	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 184			  E1000_EECD_SIZE_EX_SHIFT);
 185
 186	/*
 187	 * Added to a constant, "size" becomes the left-shift value
 188	 * for setting word_size.
 189	 */
 190	size += NVM_WORD_SIZE_BASE_SHIFT;
 191
 192	/* EEPROM access above 16k is unsupported */
 193	if (size > 14)
 194		size = 14;
 195	nvm->word_size	= 1 << size;
 196
 197	return 0;
 198}
 199
 200/**
 201 *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
 202 *  @hw: pointer to the HW structure
 203 **/
 204static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
 205{
 206	struct e1000_hw *hw = &adapter->hw;
 207	struct e1000_mac_info *mac = &hw->mac;
 208	struct e1000_mac_operations *func = &mac->ops;
 209
 210	/* Set media type */
 211	switch (adapter->pdev->device) {
 212	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
 213		hw->phy.media_type = e1000_media_type_internal_serdes;
 214		break;
 215	default:
 216		hw->phy.media_type = e1000_media_type_copper;
 217		break;
 218	}
 219
 220	/* Set mta register count */
 221	mac->mta_reg_count = 128;
 222	/* Set rar entry count */
 223	mac->rar_entry_count = E1000_RAR_ENTRIES;
 224	/* FWSM register */
 225	mac->has_fwsm = true;
 226	/* ARC supported; valid only if manageability features are enabled. */
 227	mac->arc_subsystem_valid =
 228	        (er32(FWSM) & E1000_FWSM_MODE_MASK)
 229	                ? true : false;
 230	/* Adaptive IFS not supported */
 231	mac->adaptive_ifs = false;
 232
 233	/* check for link */
 234	switch (hw->phy.media_type) {
 235	case e1000_media_type_copper:
 236		func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
 237		func->check_for_link = e1000e_check_for_copper_link;
 238		break;
 239	case e1000_media_type_fiber:
 240		func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
 241		func->check_for_link = e1000e_check_for_fiber_link;
 242		break;
 243	case e1000_media_type_internal_serdes:
 244		func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
 245		func->check_for_link = e1000e_check_for_serdes_link;
 246		break;
 247	default:
 248		return -E1000_ERR_CONFIG;
 249		break;
 250	}
 251
 252	/* set lan id for port to determine which phy lock to use */
 253	hw->mac.ops.set_lan_id(hw);
 254
 255	return 0;
 256}
 257
 258static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
 259{
 260	struct e1000_hw *hw = &adapter->hw;
 261	s32 rc;
 262
 263	rc = e1000_init_mac_params_80003es2lan(adapter);
 264	if (rc)
 265		return rc;
 266
 267	rc = e1000_init_nvm_params_80003es2lan(hw);
 268	if (rc)
 269		return rc;
 270
 271	rc = e1000_init_phy_params_80003es2lan(hw);
 272	if (rc)
 273		return rc;
 274
 275	return 0;
 276}
 277
 278/**
 279 *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
 280 *  @hw: pointer to the HW structure
 281 *
 282 *  A wrapper to acquire access rights to the correct PHY.
 283 **/
 284static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
 285{
 286	u16 mask;
 287
 288	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 289	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 290}
 291
 292/**
 293 *  e1000_release_phy_80003es2lan - Release rights to access PHY
 294 *  @hw: pointer to the HW structure
 295 *
 296 *  A wrapper to release access rights to the correct PHY.
 297 **/
 298static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
 299{
 300	u16 mask;
 301
 302	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 303	e1000_release_swfw_sync_80003es2lan(hw, mask);
 304}
 305
 306/**
 307 *  e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
 308 *  @hw: pointer to the HW structure
 309 *
 310 *  Acquire the semaphore to access the Kumeran interface.
 311 *
 312 **/
 313static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
 314{
 315	u16 mask;
 316
 317	mask = E1000_SWFW_CSR_SM;
 318
 319	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 320}
 321
 322/**
 323 *  e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
 324 *  @hw: pointer to the HW structure
 325 *
 326 *  Release the semaphore used to access the Kumeran interface
 327 **/
 328static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
 329{
 330	u16 mask;
 331
 332	mask = E1000_SWFW_CSR_SM;
 333
 334	e1000_release_swfw_sync_80003es2lan(hw, mask);
 335}
 336
 337/**
 338 *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
 339 *  @hw: pointer to the HW structure
 340 *
 341 *  Acquire the semaphore to access the EEPROM.
 342 **/
 343static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
 344{
 345	s32 ret_val;
 346
 347	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 348	if (ret_val)
 349		return ret_val;
 350
 351	ret_val = e1000e_acquire_nvm(hw);
 352
 353	if (ret_val)
 354		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 355
 356	return ret_val;
 357}
 358
 359/**
 360 *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
 361 *  @hw: pointer to the HW structure
 362 *
 363 *  Release the semaphore used to access the EEPROM.
 364 **/
 365static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
 366{
 367	e1000e_release_nvm(hw);
 368	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 369}
 370
 371/**
 372 *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
 373 *  @hw: pointer to the HW structure
 374 *  @mask: specifies which semaphore to acquire
 375 *
 376 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 377 *  will also specify which port we're acquiring the lock for.
 378 **/
 379static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 380{
 381	u32 swfw_sync;
 382	u32 swmask = mask;
 383	u32 fwmask = mask << 16;
 384	s32 i = 0;
 385	s32 timeout = 50;
 386
 387	while (i < timeout) {
 388		if (e1000e_get_hw_semaphore(hw))
 389			return -E1000_ERR_SWFW_SYNC;
 390
 391		swfw_sync = er32(SW_FW_SYNC);
 392		if (!(swfw_sync & (fwmask | swmask)))
 393			break;
 394
 395		/*
 396		 * Firmware currently using resource (fwmask)
 397		 * or other software thread using resource (swmask)
 398		 */
 399		e1000e_put_hw_semaphore(hw);
 400		mdelay(5);
 401		i++;
 402	}
 403
 404	if (i == timeout) {
 405		e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
 406		return -E1000_ERR_SWFW_SYNC;
 407	}
 408
 409	swfw_sync |= swmask;
 410	ew32(SW_FW_SYNC, swfw_sync);
 411
 412	e1000e_put_hw_semaphore(hw);
 413
 414	return 0;
 415}
 416
 417/**
 418 *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
 419 *  @hw: pointer to the HW structure
 420 *  @mask: specifies which semaphore to acquire
 421 *
 422 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 423 *  will also specify which port we're releasing the lock for.
 424 **/
 425static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 426{
 427	u32 swfw_sync;
 428
 429	while (e1000e_get_hw_semaphore(hw) != 0)
 430		; /* Empty */
 431
 432	swfw_sync = er32(SW_FW_SYNC);
 433	swfw_sync &= ~mask;
 434	ew32(SW_FW_SYNC, swfw_sync);
 435
 436	e1000e_put_hw_semaphore(hw);
 437}
 438
 439/**
 440 *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
 441 *  @hw: pointer to the HW structure
 442 *  @offset: offset of the register to read
 443 *  @data: pointer to the data returned from the operation
 444 *
 445 *  Read the GG82563 PHY register.
 446 **/
 447static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 448						  u32 offset, u16 *data)
 449{
 450	s32 ret_val;
 451	u32 page_select;
 452	u16 temp;
 453
 454	ret_val = e1000_acquire_phy_80003es2lan(hw);
 455	if (ret_val)
 456		return ret_val;
 457
 458	/* Select Configuration Page */
 459	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 460		page_select = GG82563_PHY_PAGE_SELECT;
 461	} else {
 462		/*
 463		 * Use Alternative Page Select register to access
 464		 * registers 30 and 31
 465		 */
 466		page_select = GG82563_PHY_PAGE_SELECT_ALT;
 467	}
 468
 469	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 470	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 471	if (ret_val) {
 472		e1000_release_phy_80003es2lan(hw);
 473		return ret_val;
 474	}
 475
 476	if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
 477		/*
 478		 * The "ready" bit in the MDIC register may be incorrectly set
 479		 * before the device has completed the "Page Select" MDI
 480		 * transaction.  So we wait 200us after each MDI command...
 481		 */
 482		udelay(200);
 483
 484		/* ...and verify the command was successful. */
 485		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 486
 487		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 488			ret_val = -E1000_ERR_PHY;
 489			e1000_release_phy_80003es2lan(hw);
 490			return ret_val;
 491		}
 492
 493		udelay(200);
 494
 495		ret_val = e1000e_read_phy_reg_mdic(hw,
 496		                                  MAX_PHY_REG_ADDRESS & offset,
 497		                                  data);
 498
 499		udelay(200);
 500	} else {
 501		ret_val = e1000e_read_phy_reg_mdic(hw,
 502		                                  MAX_PHY_REG_ADDRESS & offset,
 503		                                  data);
 504	}
 505
 506	e1000_release_phy_80003es2lan(hw);
 507
 508	return ret_val;
 509}
 510
 511/**
 512 *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
 513 *  @hw: pointer to the HW structure
 514 *  @offset: offset of the register to read
 515 *  @data: value to write to the register
 516 *
 517 *  Write to the GG82563 PHY register.
 518 **/
 519static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 520						   u32 offset, u16 data)
 521{
 522	s32 ret_val;
 523	u32 page_select;
 524	u16 temp;
 525
 526	ret_val = e1000_acquire_phy_80003es2lan(hw);
 527	if (ret_val)
 528		return ret_val;
 529
 530	/* Select Configuration Page */
 531	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 532		page_select = GG82563_PHY_PAGE_SELECT;
 533	} else {
 534		/*
 535		 * Use Alternative Page Select register to access
 536		 * registers 30 and 31
 537		 */
 538		page_select = GG82563_PHY_PAGE_SELECT_ALT;
 539	}
 540
 541	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 542	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 543	if (ret_val) {
 544		e1000_release_phy_80003es2lan(hw);
 545		return ret_val;
 546	}
 547
 548	if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
 549		/*
 550		 * The "ready" bit in the MDIC register may be incorrectly set
 551		 * before the device has completed the "Page Select" MDI
 552		 * transaction.  So we wait 200us after each MDI command...
 553		 */
 554		udelay(200);
 555
 556		/* ...and verify the command was successful. */
 557		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 558
 559		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 560			e1000_release_phy_80003es2lan(hw);
 561			return -E1000_ERR_PHY;
 562		}
 563
 564		udelay(200);
 565
 566		ret_val = e1000e_write_phy_reg_mdic(hw,
 567		                                  MAX_PHY_REG_ADDRESS & offset,
 568		                                  data);
 569
 570		udelay(200);
 571	} else {
 572		ret_val = e1000e_write_phy_reg_mdic(hw,
 573		                                  MAX_PHY_REG_ADDRESS & offset,
 574		                                  data);
 575	}
 576
 577	e1000_release_phy_80003es2lan(hw);
 578
 579	return ret_val;
 580}
 581
 582/**
 583 *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
 584 *  @hw: pointer to the HW structure
 585 *  @offset: offset of the register to read
 586 *  @words: number of words to write
 587 *  @data: buffer of data to write to the NVM
 588 *
 589 *  Write "words" of data to the ESB2 NVM.
 590 **/
 591static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
 592				       u16 words, u16 *data)
 593{
 594	return e1000e_write_nvm_spi(hw, offset, words, data);
 595}
 596
 597/**
 598 *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
 599 *  @hw: pointer to the HW structure
 600 *
 601 *  Wait a specific amount of time for manageability processes to complete.
 602 *  This is a function pointer entry point called by the phy module.
 603 **/
 604static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
 605{
 606	s32 timeout = PHY_CFG_TIMEOUT;
 607	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
 608
 609	if (hw->bus.func == 1)
 610		mask = E1000_NVM_CFG_DONE_PORT_1;
 611
 612	while (timeout) {
 613		if (er32(EEMNGCTL) & mask)
 614			break;
 615		usleep_range(1000, 2000);
 616		timeout--;
 617	}
 618	if (!timeout) {
 619		e_dbg("MNG configuration cycle has not completed.\n");
 620		return -E1000_ERR_RESET;
 621	}
 622
 623	return 0;
 624}
 625
 626/**
 627 *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
 628 *  @hw: pointer to the HW structure
 629 *
 630 *  Force the speed and duplex settings onto the PHY.  This is a
 631 *  function pointer entry point called by the phy module.
 632 **/
 633static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
 634{
 635	s32 ret_val;
 636	u16 phy_data;
 637	bool link;
 638
 639	/*
 640	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
 641	 * forced whenever speed and duplex are forced.
 642	 */
 643	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 644	if (ret_val)
 645		return ret_val;
 646
 647	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
 648	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
 649	if (ret_val)
 650		return ret_val;
 651
 652	e_dbg("GG82563 PSCR: %X\n", phy_data);
 653
 654	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
 655	if (ret_val)
 656		return ret_val;
 657
 658	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
 659
 660	/* Reset the phy to commit changes. */
 661	phy_data |= MII_CR_RESET;
 662
 663	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
 664	if (ret_val)
 665		return ret_val;
 666
 667	udelay(1);
 668
 669	if (hw->phy.autoneg_wait_to_complete) {
 670		e_dbg("Waiting for forced speed/duplex link "
 671			 "on GG82563 phy.\n");
 672
 673		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 674						     100000, &link);
 675		if (ret_val)
 676			return ret_val;
 677
 678		if (!link) {
 679			/*
 680			 * We didn't get link.
 681			 * Reset the DSP and cross our fingers.
 682			 */
 683			ret_val = e1000e_phy_reset_dsp(hw);
 684			if (ret_val)
 685				return ret_val;
 686		}
 687
 688		/* Try once more */
 689		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 690						     100000, &link);
 691		if (ret_val)
 692			return ret_val;
 693	}
 694
 695	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
 696	if (ret_val)
 697		return ret_val;
 698
 699	/*
 700	 * Resetting the phy means we need to verify the TX_CLK corresponds
 701	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
 702	 */
 703	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
 704	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
 705		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
 706	else
 707		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
 708
 709	/*
 710	 * In addition, we must re-enable CRS on Tx for both half and full
 711	 * duplex.
 712	 */
 713	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 714	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
 715
 716	return ret_val;
 717}
 718
 719/**
 720 *  e1000_get_cable_length_80003es2lan - Set approximate cable length
 721 *  @hw: pointer to the HW structure
 722 *
 723 *  Find the approximate cable length as measured by the GG82563 PHY.
 724 *  This is a function pointer entry point called by the phy module.
 725 **/
 726static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
 727{
 728	struct e1000_phy_info *phy = &hw->phy;
 729	s32 ret_val = 0;
 730	u16 phy_data, index;
 731
 732	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
 733	if (ret_val)
 734		goto out;
 735
 736	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
 737
 738	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) {
 739		ret_val = -E1000_ERR_PHY;
 740		goto out;
 741	}
 742
 743	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
 744	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
 745
 746	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
 747
 748out:
 749	return ret_val;
 750}
 751
 752/**
 753 *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
 754 *  @hw: pointer to the HW structure
 755 *  @speed: pointer to speed buffer
 756 *  @duplex: pointer to duplex buffer
 757 *
 758 *  Retrieve the current speed and duplex configuration.
 759 **/
 760static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
 761					      u16 *duplex)
 762{
 763	s32 ret_val;
 764
 765	if (hw->phy.media_type == e1000_media_type_copper) {
 766		ret_val = e1000e_get_speed_and_duplex_copper(hw,
 767								    speed,
 768								    duplex);
 769		hw->phy.ops.cfg_on_link_up(hw);
 770	} else {
 771		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
 772								  speed,
 773								  duplex);
 774	}
 775
 776	return ret_val;
 777}
 778
 779/**
 780 *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
 781 *  @hw: pointer to the HW structure
 782 *
 783 *  Perform a global reset to the ESB2 controller.
 784 **/
 785static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
 786{
 787	u32 ctrl;
 788	s32 ret_val;
 789
 790	/*
 791	 * Prevent the PCI-E bus from sticking if there is no TLP connection
 792	 * on the last TLP read/write transaction when MAC is reset.
 793	 */
 794	ret_val = e1000e_disable_pcie_master(hw);
 795	if (ret_val)
 796		e_dbg("PCI-E Master disable polling has failed.\n");
 797
 798	e_dbg("Masking off all interrupts\n");
 799	ew32(IMC, 0xffffffff);
 800
 801	ew32(RCTL, 0);
 802	ew32(TCTL, E1000_TCTL_PSP);
 803	e1e_flush();
 804
 805	usleep_range(10000, 20000);
 806
 807	ctrl = er32(CTRL);
 808
 809	ret_val = e1000_acquire_phy_80003es2lan(hw);
 810	e_dbg("Issuing a global reset to MAC\n");
 811	ew32(CTRL, ctrl | E1000_CTRL_RST);
 812	e1000_release_phy_80003es2lan(hw);
 813
 814	ret_val = e1000e_get_auto_rd_done(hw);
 815	if (ret_val)
 816		/* We don't want to continue accessing MAC registers. */
 817		return ret_val;
 818
 819	/* Clear any pending interrupt events. */
 820	ew32(IMC, 0xffffffff);
 821	er32(ICR);
 822
 823	ret_val = e1000_check_alt_mac_addr_generic(hw);
 824
 825	return ret_val;
 826}
 827
 828/**
 829 *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
 830 *  @hw: pointer to the HW structure
 831 *
 832 *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
 833 **/
 834static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
 835{
 836	struct e1000_mac_info *mac = &hw->mac;
 837	u32 reg_data;
 838	s32 ret_val;
 839	u16 kum_reg_data;
 840	u16 i;
 841
 842	e1000_initialize_hw_bits_80003es2lan(hw);
 843
 844	/* Initialize identification LED */
 845	ret_val = e1000e_id_led_init(hw);
 846	if (ret_val)
 847		e_dbg("Error initializing identification LED\n");
 848		/* This is not fatal and we should not stop init due to this */
 849
 850	/* Disabling VLAN filtering */
 851	e_dbg("Initializing the IEEE VLAN\n");
 852	mac->ops.clear_vfta(hw);
 853
 854	/* Setup the receive address. */
 855	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
 856
 857	/* Zero out the Multicast HASH table */
 858	e_dbg("Zeroing the MTA\n");
 859	for (i = 0; i < mac->mta_reg_count; i++)
 860		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
 861
 862	/* Setup link and flow control */
 863	ret_val = e1000e_setup_link(hw);
 864
 865	/* Disable IBIST slave mode (far-end loopback) */
 866	e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 867					&kum_reg_data);
 868	kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
 869	e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 870					 kum_reg_data);
 871
 872	/* Set the transmit descriptor write-back policy */
 873	reg_data = er32(TXDCTL(0));
 874	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
 875		   E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
 876	ew32(TXDCTL(0), reg_data);
 877
 878	/* ...for both queues. */
 879	reg_data = er32(TXDCTL(1));
 880	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
 881		   E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
 882	ew32(TXDCTL(1), reg_data);
 883
 884	/* Enable retransmit on late collisions */
 885	reg_data = er32(TCTL);
 886	reg_data |= E1000_TCTL_RTLC;
 887	ew32(TCTL, reg_data);
 888
 889	/* Configure Gigabit Carry Extend Padding */
 890	reg_data = er32(TCTL_EXT);
 891	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
 892	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
 893	ew32(TCTL_EXT, reg_data);
 894
 895	/* Configure Transmit Inter-Packet Gap */
 896	reg_data = er32(TIPG);
 897	reg_data &= ~E1000_TIPG_IPGT_MASK;
 898	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
 899	ew32(TIPG, reg_data);
 900
 901	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
 902	reg_data &= ~0x00100000;
 903	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
 904
 905	/* default to true to enable the MDIC W/A */
 906	hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
 907
 908	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
 909	                              E1000_KMRNCTRLSTA_OFFSET >>
 910	                              E1000_KMRNCTRLSTA_OFFSET_SHIFT,
 911	                              &i);
 912	if (!ret_val) {
 913		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
 914		     E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
 915			hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
 916	}
 917
 918	/*
 919	 * Clear all of the statistics registers (clear on read).  It is
 920	 * important that we do this after we have tried to establish link
 921	 * because the symbol error count will increment wildly if there
 922	 * is no link.
 923	 */
 924	e1000_clear_hw_cntrs_80003es2lan(hw);
 925
 926	return ret_val;
 927}
 928
 929/**
 930 *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
 931 *  @hw: pointer to the HW structure
 932 *
 933 *  Initializes required hardware-dependent bits needed for normal operation.
 934 **/
 935static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
 936{
 937	u32 reg;
 938
 939	/* Transmit Descriptor Control 0 */
 940	reg = er32(TXDCTL(0));
 941	reg |= (1 << 22);
 942	ew32(TXDCTL(0), reg);
 943
 944	/* Transmit Descriptor Control 1 */
 945	reg = er32(TXDCTL(1));
 946	reg |= (1 << 22);
 947	ew32(TXDCTL(1), reg);
 948
 949	/* Transmit Arbitration Control 0 */
 950	reg = er32(TARC(0));
 951	reg &= ~(0xF << 27); /* 30:27 */
 952	if (hw->phy.media_type != e1000_media_type_copper)
 953		reg &= ~(1 << 20);
 954	ew32(TARC(0), reg);
 955
 956	/* Transmit Arbitration Control 1 */
 957	reg = er32(TARC(1));
 958	if (er32(TCTL) & E1000_TCTL_MULR)
 959		reg &= ~(1 << 28);
 960	else
 961		reg |= (1 << 28);
 962	ew32(TARC(1), reg);
 963}
 964
 965/**
 966 *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
 967 *  @hw: pointer to the HW structure
 968 *
 969 *  Setup some GG82563 PHY registers for obtaining link
 970 **/
 971static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
 972{
 973	struct e1000_phy_info *phy = &hw->phy;
 974	s32 ret_val;
 975	u32 ctrl_ext;
 976	u16 data;
 977
 978	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
 979	if (ret_val)
 980		return ret_val;
 981
 982	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 983	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
 984	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
 985
 986	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
 987	if (ret_val)
 988		return ret_val;
 989
 990	/*
 991	 * Options:
 992	 *   MDI/MDI-X = 0 (default)
 993	 *   0 - Auto for all speeds
 994	 *   1 - MDI mode
 995	 *   2 - MDI-X mode
 996	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 997	 */
 998	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
 999	if (ret_val)
1000		return ret_val;
1001
1002	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
1003
1004	switch (phy->mdix) {
1005	case 1:
1006		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
1007		break;
1008	case 2:
1009		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
1010		break;
1011	case 0:
1012	default:
1013		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
1014		break;
1015	}
1016
1017	/*
1018	 * Options:
1019	 *   disable_polarity_correction = 0 (default)
1020	 *       Automatic Correction for Reversed Cable Polarity
1021	 *   0 - Disabled
1022	 *   1 - Enabled
1023	 */
1024	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1025	if (phy->disable_polarity_correction)
1026		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1027
1028	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
1029	if (ret_val)
1030		return ret_val;
1031
1032	/* SW Reset the PHY so all changes take effect */
1033	ret_val = e1000e_commit_phy(hw);
1034	if (ret_val) {
1035		e_dbg("Error Resetting the PHY\n");
1036		return ret_val;
1037	}
1038
1039	/* Bypass Rx and Tx FIFO's */
1040	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1041					E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
1042					E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
1043					E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
1044	if (ret_val)
1045		return ret_val;
1046
1047	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1048				       E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1049				       &data);
1050	if (ret_val)
1051		return ret_val;
1052	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
1053	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1054					E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1055					data);
1056	if (ret_val)
1057		return ret_val;
1058
1059	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
1060	if (ret_val)
1061		return ret_val;
1062
1063	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1064	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
1065	if (ret_val)
1066		return ret_val;
1067
1068	ctrl_ext = er32(CTRL_EXT);
1069	ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1070	ew32(CTRL_EXT, ctrl_ext);
1071
1072	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
1073	if (ret_val)
1074		return ret_val;
1075
1076	/*
1077	 * Do not init these registers when the HW is in IAMT mode, since the
1078	 * firmware will have already initialized them.  We only initialize
1079	 * them if the HW is not in IAMT mode.
1080	 */
1081	if (!e1000e_check_mng_mode(hw)) {
1082		/* Enable Electrical Idle on the PHY */
1083		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1084		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
1085		if (ret_val)
1086			return ret_val;
1087
1088		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
1089		if (ret_val)
1090			return ret_val;
1091
1092		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1093		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1094		if (ret_val)
1095			return ret_val;
1096	}
1097
1098	/*
1099	 * Workaround: Disable padding in Kumeran interface in the MAC
1100	 * and in the PHY to avoid CRC errors.
1101	 */
1102	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1103	if (ret_val)
1104		return ret_val;
1105
1106	data |= GG82563_ICR_DIS_PADDING;
1107	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1108	if (ret_val)
1109		return ret_val;
1110
1111	return 0;
1112}
1113
1114/**
1115 *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1116 *  @hw: pointer to the HW structure
1117 *
1118 *  Essentially a wrapper for setting up all things "copper" related.
1119 *  This is a function pointer entry point called by the mac module.
1120 **/
1121static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1122{
1123	u32 ctrl;
1124	s32 ret_val;
1125	u16 reg_data;
1126
1127	ctrl = er32(CTRL);
1128	ctrl |= E1000_CTRL_SLU;
1129	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1130	ew32(CTRL, ctrl);
1131
1132	/*
1133	 * Set the mac to wait the maximum time between each
1134	 * iteration and increase the max iterations when
1135	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1136	 */
1137	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1138	                                           0xFFFF);
1139	if (ret_val)
1140		return ret_val;
1141	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1142	                                          &reg_data);
1143	if (ret_val)
1144		return ret_val;
1145	reg_data |= 0x3F;
1146	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1147	                                           reg_data);
1148	if (ret_val)
1149		return ret_val;
1150	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1151				      E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1152				      &reg_data);
1153	if (ret_val)
1154		return ret_val;
1155	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1156	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1157					E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1158					reg_data);
1159	if (ret_val)
1160		return ret_val;
1161
1162	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1163	if (ret_val)
1164		return ret_val;
1165
1166	ret_val = e1000e_setup_copper_link(hw);
1167
1168	return 0;
1169}
1170
1171/**
1172 *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1173 *  @hw: pointer to the HW structure
1174 *  @duplex: current duplex setting
1175 *
1176 *  Configure the KMRN interface by applying last minute quirks for
1177 *  10/100 operation.
1178 **/
1179static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1180{
1181	s32 ret_val = 0;
1182	u16 speed;
1183	u16 duplex;
1184
1185	if (hw->phy.media_type == e1000_media_type_copper) {
1186		ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1187		                                             &duplex);
1188		if (ret_val)
1189			return ret_val;
1190
1191		if (speed == SPEED_1000)
1192			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1193		else
1194			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1195	}
1196
1197	return ret_val;
1198}
1199
1200/**
1201 *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1202 *  @hw: pointer to the HW structure
1203 *  @duplex: current duplex setting
1204 *
1205 *  Configure the KMRN interface by applying last minute quirks for
1206 *  10/100 operation.
1207 **/
1208static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1209{
1210	s32 ret_val;
1211	u32 tipg;
1212	u32 i = 0;
1213	u16 reg_data, reg_data2;
1214
1215	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1216	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1217	                               E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1218	                               reg_data);
1219	if (ret_val)
1220		return ret_val;
1221
1222	/* Configure Transmit Inter-Packet Gap */
1223	tipg = er32(TIPG);
1224	tipg &= ~E1000_TIPG_IPGT_MASK;
1225	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1226	ew32(TIPG, tipg);
1227
1228	do {
1229		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1230		if (ret_val)
1231			return ret_val;
1232
1233		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1234		if (ret_val)
1235			return ret_val;
1236		i++;
1237	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1238
1239	if (duplex == HALF_DUPLEX)
1240		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1241	else
1242		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1243
1244	ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1245
1246	return 0;
1247}
1248
1249/**
1250 *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1251 *  @hw: pointer to the HW structure
1252 *
1253 *  Configure the KMRN interface by applying last minute quirks for
1254 *  gigabit operation.
1255 **/
1256static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1257{
1258	s32 ret_val;
1259	u16 reg_data, reg_data2;
1260	u32 tipg;
1261	u32 i = 0;
1262
1263	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1264	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1265	                               E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1266	                               reg_data);
1267	if (ret_val)
1268		return ret_val;
1269
1270	/* Configure Transmit Inter-Packet Gap */
1271	tipg = er32(TIPG);
1272	tipg &= ~E1000_TIPG_IPGT_MASK;
1273	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1274	ew32(TIPG, tipg);
1275
1276	do {
1277		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1278		if (ret_val)
1279			return ret_val;
1280
1281		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1282		if (ret_val)
1283			return ret_val;
1284		i++;
1285	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1286
1287	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1288	ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1289
1290	return ret_val;
1291}
1292
1293/**
1294 *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1295 *  @hw: pointer to the HW structure
1296 *  @offset: register offset to be read
1297 *  @data: pointer to the read data
1298 *
1299 *  Acquire semaphore, then read the PHY register at offset
1300 *  using the kumeran interface.  The information retrieved is stored in data.
1301 *  Release the semaphore before exiting.
1302 **/
1303static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1304					   u16 *data)
1305{
1306	u32 kmrnctrlsta;
1307	s32 ret_val = 0;
1308
1309	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1310	if (ret_val)
1311		return ret_val;
1312
1313	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1314	               E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1315	ew32(KMRNCTRLSTA, kmrnctrlsta);
1316	e1e_flush();
1317
1318	udelay(2);
1319
1320	kmrnctrlsta = er32(KMRNCTRLSTA);
1321	*data = (u16)kmrnctrlsta;
1322
1323	e1000_release_mac_csr_80003es2lan(hw);
1324
1325	return ret_val;
1326}
1327
1328/**
1329 *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1330 *  @hw: pointer to the HW structure
1331 *  @offset: register offset to write to
1332 *  @data: data to write at register offset
1333 *
1334 *  Acquire semaphore, then write the data to PHY register
1335 *  at the offset using the kumeran interface.  Release semaphore
1336 *  before exiting.
1337 **/
1338static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1339					    u16 data)
1340{
1341	u32 kmrnctrlsta;
1342	s32 ret_val = 0;
1343
1344	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1345	if (ret_val)
1346		return ret_val;
1347
1348	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1349	               E1000_KMRNCTRLSTA_OFFSET) | data;
1350	ew32(KMRNCTRLSTA, kmrnctrlsta);
1351	e1e_flush();
1352
1353	udelay(2);
1354
1355	e1000_release_mac_csr_80003es2lan(hw);
1356
1357	return ret_val;
1358}
1359
1360/**
1361 *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1362 *  @hw: pointer to the HW structure
1363 **/
1364static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1365{
1366	s32 ret_val = 0;
1367
1368	/*
1369	 * If there's an alternate MAC address place it in RAR0
1370	 * so that it will override the Si installed default perm
1371	 * address.
1372	 */
1373	ret_val = e1000_check_alt_mac_addr_generic(hw);
1374	if (ret_val)
1375		goto out;
1376
1377	ret_val = e1000_read_mac_addr_generic(hw);
1378
1379out:
1380	return ret_val;
1381}
1382
1383/**
1384 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1385 * @hw: pointer to the HW structure
1386 *
1387 * In the case of a PHY power down to save power, or to turn off link during a
1388 * driver unload, or wake on lan is not enabled, remove the link.
1389 **/
1390static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1391{
1392	/* If the management interface is not enabled, then power down */
1393	if (!(hw->mac.ops.check_mng_mode(hw) ||
1394	      hw->phy.ops.check_reset_block(hw)))
1395		e1000_power_down_phy_copper(hw);
1396}
1397
1398/**
1399 *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1400 *  @hw: pointer to the HW structure
1401 *
1402 *  Clears the hardware counters by reading the counter registers.
1403 **/
1404static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1405{
1406	e1000e_clear_hw_cntrs_base(hw);
1407
1408	er32(PRC64);
1409	er32(PRC127);
1410	er32(PRC255);
1411	er32(PRC511);
1412	er32(PRC1023);
1413	er32(PRC1522);
1414	er32(PTC64);
1415	er32(PTC127);
1416	er32(PTC255);
1417	er32(PTC511);
1418	er32(PTC1023);
1419	er32(PTC1522);
1420
1421	er32(ALGNERRC);
1422	er32(RXERRC);
1423	er32(TNCRS);
1424	er32(CEXTERR);
1425	er32(TSCTC);
1426	er32(TSCTFC);
1427
1428	er32(MGTPRC);
1429	er32(MGTPDC);
1430	er32(MGTPTC);
1431
1432	er32(IAC);
1433	er32(ICRXOC);
1434
1435	er32(ICRXPTC);
1436	er32(ICRXATC);
1437	er32(ICTXPTC);
1438	er32(ICTXATC);
1439	er32(ICTXQEC);
1440	er32(ICTXQMTC);
1441	er32(ICRXDMTC);
1442}
1443
1444static struct e1000_mac_operations es2_mac_ops = {
1445	.read_mac_addr		= e1000_read_mac_addr_80003es2lan,
1446	.id_led_init		= e1000e_id_led_init,
1447	.blink_led		= e1000e_blink_led_generic,
1448	.check_mng_mode		= e1000e_check_mng_mode_generic,
1449	/* check_for_link dependent on media type */
1450	.cleanup_led		= e1000e_cleanup_led_generic,
1451	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
1452	.get_bus_info		= e1000e_get_bus_info_pcie,
1453	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1454	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
1455	.led_on			= e1000e_led_on_generic,
1456	.led_off		= e1000e_led_off_generic,
1457	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1458	.write_vfta		= e1000_write_vfta_generic,
1459	.clear_vfta		= e1000_clear_vfta_generic,
1460	.reset_hw		= e1000_reset_hw_80003es2lan,
1461	.init_hw		= e1000_init_hw_80003es2lan,
1462	.setup_link		= e1000e_setup_link,
1463	/* setup_physical_interface dependent on media type */
1464	.setup_led		= e1000e_setup_led_generic,
1465};
1466
1467static struct e1000_phy_operations es2_phy_ops = {
1468	.acquire		= e1000_acquire_phy_80003es2lan,
1469	.check_polarity		= e1000_check_polarity_m88,
1470	.check_reset_block	= e1000e_check_reset_block_generic,
1471	.commit		 	= e1000e_phy_sw_reset,
1472	.force_speed_duplex 	= e1000_phy_force_speed_duplex_80003es2lan,
1473	.get_cfg_done       	= e1000_get_cfg_done_80003es2lan,
1474	.get_cable_length   	= e1000_get_cable_length_80003es2lan,
1475	.get_info       	= e1000e_get_phy_info_m88,
1476	.read_reg       	= e1000_read_phy_reg_gg82563_80003es2lan,
1477	.release		= e1000_release_phy_80003es2lan,
1478	.reset		  	= e1000e_phy_hw_reset_generic,
1479	.set_d0_lplu_state  	= NULL,
1480	.set_d3_lplu_state  	= e1000e_set_d3_lplu_state,
1481	.write_reg      	= e1000_write_phy_reg_gg82563_80003es2lan,
1482	.cfg_on_link_up      	= e1000_cfg_on_link_up_80003es2lan,
1483};
1484
1485static struct e1000_nvm_operations es2_nvm_ops = {
1486	.acquire		= e1000_acquire_nvm_80003es2lan,
1487	.read			= e1000e_read_nvm_eerd,
1488	.release		= e1000_release_nvm_80003es2lan,
1489	.update			= e1000e_update_nvm_checksum_generic,
1490	.valid_led_default	= e1000e_valid_led_default,
1491	.validate		= e1000e_validate_nvm_checksum_generic,
1492	.write			= e1000_write_nvm_80003es2lan,
1493};
1494
1495struct e1000_info e1000_es2_info = {
1496	.mac			= e1000_80003es2lan,
1497	.flags			= FLAG_HAS_HW_VLAN_FILTER
1498				  | FLAG_HAS_JUMBO_FRAMES
1499				  | FLAG_HAS_WOL
1500				  | FLAG_APME_IN_CTRL3
1501				  | FLAG_RX_CSUM_ENABLED
1502				  | FLAG_HAS_CTRLEXT_ON_LOAD
1503				  | FLAG_RX_NEEDS_RESTART /* errata */
1504				  | FLAG_TARC_SET_BIT_ZERO /* errata */
1505				  | FLAG_APME_CHECK_PORT_B
1506				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
1507				  | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
1508	.flags2			= FLAG2_DMA_BURST,
1509	.pba			= 38,
1510	.max_hw_frame_size	= DEFAULT_JUMBO,
1511	.get_variants		= e1000_get_variants_80003es2lan,
1512	.mac_ops		= &es2_mac_ops,
1513	.phy_ops		= &es2_phy_ops,
1514	.nvm_ops		= &es2_nvm_ops,
1515};
1516