Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include "e1000.h"
  30#include <net/ip6_checksum.h>
  31#include <linux/io.h>
  32#include <linux/prefetch.h>
  33#include <linux/bitops.h>
  34#include <linux/if_vlan.h>
  35
  36/* Intel Media SOC GbE MDIO physical base address */
  37static unsigned long ce4100_gbe_mdio_base_phy;
  38/* Intel Media SOC GbE MDIO virtual base address */
  39void __iomem *ce4100_gbe_mdio_base_virt;
  40
  41char e1000_driver_name[] = "e1000";
  42static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  43#define DRV_VERSION "7.3.21-k8-NAPI"
  44const char e1000_driver_version[] = DRV_VERSION;
  45static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  46
  47/* e1000_pci_tbl - PCI Device ID Table
  48 *
  49 * Last entry must be all 0s
  50 *
  51 * Macro expands to...
  52 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  53 */
  54static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
  55	INTEL_E1000_ETHERNET_DEVICE(0x1000),
  56	INTEL_E1000_ETHERNET_DEVICE(0x1001),
  57	INTEL_E1000_ETHERNET_DEVICE(0x1004),
  58	INTEL_E1000_ETHERNET_DEVICE(0x1008),
  59	INTEL_E1000_ETHERNET_DEVICE(0x1009),
  60	INTEL_E1000_ETHERNET_DEVICE(0x100C),
  61	INTEL_E1000_ETHERNET_DEVICE(0x100D),
  62	INTEL_E1000_ETHERNET_DEVICE(0x100E),
  63	INTEL_E1000_ETHERNET_DEVICE(0x100F),
  64	INTEL_E1000_ETHERNET_DEVICE(0x1010),
  65	INTEL_E1000_ETHERNET_DEVICE(0x1011),
  66	INTEL_E1000_ETHERNET_DEVICE(0x1012),
  67	INTEL_E1000_ETHERNET_DEVICE(0x1013),
  68	INTEL_E1000_ETHERNET_DEVICE(0x1014),
  69	INTEL_E1000_ETHERNET_DEVICE(0x1015),
  70	INTEL_E1000_ETHERNET_DEVICE(0x1016),
  71	INTEL_E1000_ETHERNET_DEVICE(0x1017),
  72	INTEL_E1000_ETHERNET_DEVICE(0x1018),
  73	INTEL_E1000_ETHERNET_DEVICE(0x1019),
  74	INTEL_E1000_ETHERNET_DEVICE(0x101A),
  75	INTEL_E1000_ETHERNET_DEVICE(0x101D),
  76	INTEL_E1000_ETHERNET_DEVICE(0x101E),
  77	INTEL_E1000_ETHERNET_DEVICE(0x1026),
  78	INTEL_E1000_ETHERNET_DEVICE(0x1027),
  79	INTEL_E1000_ETHERNET_DEVICE(0x1028),
  80	INTEL_E1000_ETHERNET_DEVICE(0x1075),
  81	INTEL_E1000_ETHERNET_DEVICE(0x1076),
  82	INTEL_E1000_ETHERNET_DEVICE(0x1077),
  83	INTEL_E1000_ETHERNET_DEVICE(0x1078),
  84	INTEL_E1000_ETHERNET_DEVICE(0x1079),
  85	INTEL_E1000_ETHERNET_DEVICE(0x107A),
  86	INTEL_E1000_ETHERNET_DEVICE(0x107B),
  87	INTEL_E1000_ETHERNET_DEVICE(0x107C),
  88	INTEL_E1000_ETHERNET_DEVICE(0x108A),
  89	INTEL_E1000_ETHERNET_DEVICE(0x1099),
  90	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  91	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
  92	/* required last entry */
  93	{0,}
  94};
  95
  96MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  97
  98int e1000_up(struct e1000_adapter *adapter);
  99void e1000_down(struct e1000_adapter *adapter);
 100void e1000_reinit_locked(struct e1000_adapter *adapter);
 101void e1000_reset(struct e1000_adapter *adapter);
 102int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
 103int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
 104void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
 105void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
 106static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
 107                             struct e1000_tx_ring *txdr);
 108static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
 109                             struct e1000_rx_ring *rxdr);
 110static void e1000_free_tx_resources(struct e1000_adapter *adapter,
 111                             struct e1000_tx_ring *tx_ring);
 112static void e1000_free_rx_resources(struct e1000_adapter *adapter,
 113                             struct e1000_rx_ring *rx_ring);
 114void e1000_update_stats(struct e1000_adapter *adapter);
 115
 116static int e1000_init_module(void);
 117static void e1000_exit_module(void);
 118static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
 119static void __devexit e1000_remove(struct pci_dev *pdev);
 120static int e1000_alloc_queues(struct e1000_adapter *adapter);
 121static int e1000_sw_init(struct e1000_adapter *adapter);
 122static int e1000_open(struct net_device *netdev);
 123static int e1000_close(struct net_device *netdev);
 124static void e1000_configure_tx(struct e1000_adapter *adapter);
 125static void e1000_configure_rx(struct e1000_adapter *adapter);
 126static void e1000_setup_rctl(struct e1000_adapter *adapter);
 127static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
 128static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
 129static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
 130                                struct e1000_tx_ring *tx_ring);
 131static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 132                                struct e1000_rx_ring *rx_ring);
 133static void e1000_set_rx_mode(struct net_device *netdev);
 134static void e1000_update_phy_info(unsigned long data);
 135static void e1000_update_phy_info_task(struct work_struct *work);
 136static void e1000_watchdog(unsigned long data);
 137static void e1000_82547_tx_fifo_stall(unsigned long data);
 138static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 139static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 140				    struct net_device *netdev);
 141static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
 142static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 143static int e1000_set_mac(struct net_device *netdev, void *p);
 144static irqreturn_t e1000_intr(int irq, void *data);
 145static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 146			       struct e1000_tx_ring *tx_ring);
 147static int e1000_clean(struct napi_struct *napi, int budget);
 148static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 149			       struct e1000_rx_ring *rx_ring,
 150			       int *work_done, int work_to_do);
 151static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 152				     struct e1000_rx_ring *rx_ring,
 153				     int *work_done, int work_to_do);
 154static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 155				   struct e1000_rx_ring *rx_ring,
 156				   int cleaned_count);
 157static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 158					 struct e1000_rx_ring *rx_ring,
 159					 int cleaned_count);
 160static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 161static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 162			   int cmd);
 163static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 164static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 165static void e1000_tx_timeout(struct net_device *dev);
 166static void e1000_reset_task(struct work_struct *work);
 167static void e1000_smartspeed(struct e1000_adapter *adapter);
 168static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 169                                       struct sk_buff *skb);
 170
 171static bool e1000_vlan_used(struct e1000_adapter *adapter);
 172static void e1000_vlan_mode(struct net_device *netdev, u32 features);
 173static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
 174static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
 175static void e1000_restore_vlan(struct e1000_adapter *adapter);
 176
 177#ifdef CONFIG_PM
 178static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
 179static int e1000_resume(struct pci_dev *pdev);
 180#endif
 181static void e1000_shutdown(struct pci_dev *pdev);
 182
 183#ifdef CONFIG_NET_POLL_CONTROLLER
 184/* for netdump / net console */
 185static void e1000_netpoll (struct net_device *netdev);
 186#endif
 187
 188#define COPYBREAK_DEFAULT 256
 189static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 190module_param(copybreak, uint, 0644);
 191MODULE_PARM_DESC(copybreak,
 192	"Maximum size of packet that is copied to a new buffer on receive");
 193
 194static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 195                     pci_channel_state_t state);
 196static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 197static void e1000_io_resume(struct pci_dev *pdev);
 198
 199static struct pci_error_handlers e1000_err_handler = {
 200	.error_detected = e1000_io_error_detected,
 201	.slot_reset = e1000_io_slot_reset,
 202	.resume = e1000_io_resume,
 203};
 204
 205static struct pci_driver e1000_driver = {
 206	.name     = e1000_driver_name,
 207	.id_table = e1000_pci_tbl,
 208	.probe    = e1000_probe,
 209	.remove   = __devexit_p(e1000_remove),
 210#ifdef CONFIG_PM
 211	/* Power Management Hooks */
 212	.suspend  = e1000_suspend,
 213	.resume   = e1000_resume,
 214#endif
 215	.shutdown = e1000_shutdown,
 216	.err_handler = &e1000_err_handler
 217};
 218
 219MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
 220MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 221MODULE_LICENSE("GPL");
 222MODULE_VERSION(DRV_VERSION);
 223
 224static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
 225module_param(debug, int, 0);
 226MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 227
 228/**
 229 * e1000_get_hw_dev - return device
 230 * used by hardware layer to print debugging information
 231 *
 232 **/
 233struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 234{
 235	struct e1000_adapter *adapter = hw->back;
 236	return adapter->netdev;
 237}
 238
 239/**
 240 * e1000_init_module - Driver Registration Routine
 241 *
 242 * e1000_init_module is the first routine called when the driver is
 243 * loaded. All it does is register with the PCI subsystem.
 244 **/
 245
 246static int __init e1000_init_module(void)
 247{
 248	int ret;
 249	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
 250
 251	pr_info("%s\n", e1000_copyright);
 252
 253	ret = pci_register_driver(&e1000_driver);
 254	if (copybreak != COPYBREAK_DEFAULT) {
 255		if (copybreak == 0)
 256			pr_info("copybreak disabled\n");
 257		else
 258			pr_info("copybreak enabled for "
 259				   "packets <= %u bytes\n", copybreak);
 260	}
 261	return ret;
 262}
 263
 264module_init(e1000_init_module);
 265
 266/**
 267 * e1000_exit_module - Driver Exit Cleanup Routine
 268 *
 269 * e1000_exit_module is called just before the driver is removed
 270 * from memory.
 271 **/
 272
 273static void __exit e1000_exit_module(void)
 274{
 275	pci_unregister_driver(&e1000_driver);
 276}
 277
 278module_exit(e1000_exit_module);
 279
 280static int e1000_request_irq(struct e1000_adapter *adapter)
 281{
 282	struct net_device *netdev = adapter->netdev;
 283	irq_handler_t handler = e1000_intr;
 284	int irq_flags = IRQF_SHARED;
 285	int err;
 286
 287	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 288	                  netdev);
 289	if (err) {
 290		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 291	}
 292
 293	return err;
 294}
 295
 296static void e1000_free_irq(struct e1000_adapter *adapter)
 297{
 298	struct net_device *netdev = adapter->netdev;
 299
 300	free_irq(adapter->pdev->irq, netdev);
 301}
 302
 303/**
 304 * e1000_irq_disable - Mask off interrupt generation on the NIC
 305 * @adapter: board private structure
 306 **/
 307
 308static void e1000_irq_disable(struct e1000_adapter *adapter)
 309{
 310	struct e1000_hw *hw = &adapter->hw;
 311
 312	ew32(IMC, ~0);
 313	E1000_WRITE_FLUSH();
 314	synchronize_irq(adapter->pdev->irq);
 315}
 316
 317/**
 318 * e1000_irq_enable - Enable default interrupt generation settings
 319 * @adapter: board private structure
 320 **/
 321
 322static void e1000_irq_enable(struct e1000_adapter *adapter)
 323{
 324	struct e1000_hw *hw = &adapter->hw;
 325
 326	ew32(IMS, IMS_ENABLE_MASK);
 327	E1000_WRITE_FLUSH();
 328}
 329
 330static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 331{
 332	struct e1000_hw *hw = &adapter->hw;
 333	struct net_device *netdev = adapter->netdev;
 334	u16 vid = hw->mng_cookie.vlan_id;
 335	u16 old_vid = adapter->mng_vlan_id;
 336
 337	if (!e1000_vlan_used(adapter))
 338		return;
 339
 340	if (!test_bit(vid, adapter->active_vlans)) {
 341		if (hw->mng_cookie.status &
 342		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 343			e1000_vlan_rx_add_vid(netdev, vid);
 344			adapter->mng_vlan_id = vid;
 345		} else {
 346			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 347		}
 348		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 349		    (vid != old_vid) &&
 350		    !test_bit(old_vid, adapter->active_vlans))
 351			e1000_vlan_rx_kill_vid(netdev, old_vid);
 352	} else {
 353		adapter->mng_vlan_id = vid;
 354	}
 355}
 356
 357static void e1000_init_manageability(struct e1000_adapter *adapter)
 358{
 359	struct e1000_hw *hw = &adapter->hw;
 360
 361	if (adapter->en_mng_pt) {
 362		u32 manc = er32(MANC);
 363
 364		/* disable hardware interception of ARP */
 365		manc &= ~(E1000_MANC_ARP_EN);
 366
 367		ew32(MANC, manc);
 368	}
 369}
 370
 371static void e1000_release_manageability(struct e1000_adapter *adapter)
 372{
 373	struct e1000_hw *hw = &adapter->hw;
 374
 375	if (adapter->en_mng_pt) {
 376		u32 manc = er32(MANC);
 377
 378		/* re-enable hardware interception of ARP */
 379		manc |= E1000_MANC_ARP_EN;
 380
 381		ew32(MANC, manc);
 382	}
 383}
 384
 385/**
 386 * e1000_configure - configure the hardware for RX and TX
 387 * @adapter = private board structure
 388 **/
 389static void e1000_configure(struct e1000_adapter *adapter)
 390{
 391	struct net_device *netdev = adapter->netdev;
 392	int i;
 393
 394	e1000_set_rx_mode(netdev);
 395
 396	e1000_restore_vlan(adapter);
 397	e1000_init_manageability(adapter);
 398
 399	e1000_configure_tx(adapter);
 400	e1000_setup_rctl(adapter);
 401	e1000_configure_rx(adapter);
 402	/* call E1000_DESC_UNUSED which always leaves
 403	 * at least 1 descriptor unused to make sure
 404	 * next_to_use != next_to_clean */
 405	for (i = 0; i < adapter->num_rx_queues; i++) {
 406		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 407		adapter->alloc_rx_buf(adapter, ring,
 408		                      E1000_DESC_UNUSED(ring));
 409	}
 410}
 411
 412int e1000_up(struct e1000_adapter *adapter)
 413{
 414	struct e1000_hw *hw = &adapter->hw;
 415
 416	/* hardware has been reset, we need to reload some things */
 417	e1000_configure(adapter);
 418
 419	clear_bit(__E1000_DOWN, &adapter->flags);
 420
 421	napi_enable(&adapter->napi);
 422
 423	e1000_irq_enable(adapter);
 424
 425	netif_wake_queue(adapter->netdev);
 426
 427	/* fire a link change interrupt to start the watchdog */
 428	ew32(ICS, E1000_ICS_LSC);
 429	return 0;
 430}
 431
 432/**
 433 * e1000_power_up_phy - restore link in case the phy was powered down
 434 * @adapter: address of board private structure
 435 *
 436 * The phy may be powered down to save power and turn off link when the
 437 * driver is unloaded and wake on lan is not enabled (among others)
 438 * *** this routine MUST be followed by a call to e1000_reset ***
 439 *
 440 **/
 441
 442void e1000_power_up_phy(struct e1000_adapter *adapter)
 443{
 444	struct e1000_hw *hw = &adapter->hw;
 445	u16 mii_reg = 0;
 446
 447	/* Just clear the power down bit to wake the phy back up */
 448	if (hw->media_type == e1000_media_type_copper) {
 449		/* according to the manual, the phy will retain its
 450		 * settings across a power-down/up cycle */
 451		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 452		mii_reg &= ~MII_CR_POWER_DOWN;
 453		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 454	}
 455}
 456
 457static void e1000_power_down_phy(struct e1000_adapter *adapter)
 458{
 459	struct e1000_hw *hw = &adapter->hw;
 460
 461	/* Power down the PHY so no link is implied when interface is down *
 462	 * The PHY cannot be powered down if any of the following is true *
 463	 * (a) WoL is enabled
 464	 * (b) AMT is active
 465	 * (c) SoL/IDER session is active */
 466	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 467	   hw->media_type == e1000_media_type_copper) {
 468		u16 mii_reg = 0;
 469
 470		switch (hw->mac_type) {
 471		case e1000_82540:
 472		case e1000_82545:
 473		case e1000_82545_rev_3:
 474		case e1000_82546:
 475		case e1000_ce4100:
 476		case e1000_82546_rev_3:
 477		case e1000_82541:
 478		case e1000_82541_rev_2:
 479		case e1000_82547:
 480		case e1000_82547_rev_2:
 481			if (er32(MANC) & E1000_MANC_SMBUS_EN)
 482				goto out;
 483			break;
 484		default:
 485			goto out;
 486		}
 487		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 488		mii_reg |= MII_CR_POWER_DOWN;
 489		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 490		mdelay(1);
 491	}
 492out:
 493	return;
 494}
 495
 496void e1000_down(struct e1000_adapter *adapter)
 497{
 498	struct e1000_hw *hw = &adapter->hw;
 499	struct net_device *netdev = adapter->netdev;
 500	u32 rctl, tctl;
 501
 502
 503	/* disable receives in the hardware */
 504	rctl = er32(RCTL);
 505	ew32(RCTL, rctl & ~E1000_RCTL_EN);
 506	/* flush and sleep below */
 507
 508	netif_tx_disable(netdev);
 509
 510	/* disable transmits in the hardware */
 511	tctl = er32(TCTL);
 512	tctl &= ~E1000_TCTL_EN;
 513	ew32(TCTL, tctl);
 514	/* flush both disables and wait for them to finish */
 515	E1000_WRITE_FLUSH();
 516	msleep(10);
 517
 518	napi_disable(&adapter->napi);
 519
 520	e1000_irq_disable(adapter);
 521
 522	/*
 523	 * Setting DOWN must be after irq_disable to prevent
 524	 * a screaming interrupt.  Setting DOWN also prevents
 525	 * timers and tasks from rescheduling.
 526	 */
 527	set_bit(__E1000_DOWN, &adapter->flags);
 528
 529	del_timer_sync(&adapter->tx_fifo_stall_timer);
 530	del_timer_sync(&adapter->watchdog_timer);
 531	del_timer_sync(&adapter->phy_info_timer);
 532
 533	adapter->link_speed = 0;
 534	adapter->link_duplex = 0;
 535	netif_carrier_off(netdev);
 536
 537	e1000_reset(adapter);
 538	e1000_clean_all_tx_rings(adapter);
 539	e1000_clean_all_rx_rings(adapter);
 540}
 541
 542static void e1000_reinit_safe(struct e1000_adapter *adapter)
 543{
 544	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 545		msleep(1);
 546	rtnl_lock();
 547	e1000_down(adapter);
 548	e1000_up(adapter);
 549	rtnl_unlock();
 550	clear_bit(__E1000_RESETTING, &adapter->flags);
 551}
 552
 553void e1000_reinit_locked(struct e1000_adapter *adapter)
 554{
 555	/* if rtnl_lock is not held the call path is bogus */
 556	ASSERT_RTNL();
 557	WARN_ON(in_interrupt());
 558	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 559		msleep(1);
 560	e1000_down(adapter);
 561	e1000_up(adapter);
 562	clear_bit(__E1000_RESETTING, &adapter->flags);
 563}
 564
 565void e1000_reset(struct e1000_adapter *adapter)
 566{
 567	struct e1000_hw *hw = &adapter->hw;
 568	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 569	bool legacy_pba_adjust = false;
 570	u16 hwm;
 571
 572	/* Repartition Pba for greater than 9k mtu
 573	 * To take effect CTRL.RST is required.
 574	 */
 575
 576	switch (hw->mac_type) {
 577	case e1000_82542_rev2_0:
 578	case e1000_82542_rev2_1:
 579	case e1000_82543:
 580	case e1000_82544:
 581	case e1000_82540:
 582	case e1000_82541:
 583	case e1000_82541_rev_2:
 584		legacy_pba_adjust = true;
 585		pba = E1000_PBA_48K;
 586		break;
 587	case e1000_82545:
 588	case e1000_82545_rev_3:
 589	case e1000_82546:
 590	case e1000_ce4100:
 591	case e1000_82546_rev_3:
 592		pba = E1000_PBA_48K;
 593		break;
 594	case e1000_82547:
 595	case e1000_82547_rev_2:
 596		legacy_pba_adjust = true;
 597		pba = E1000_PBA_30K;
 598		break;
 599	case e1000_undefined:
 600	case e1000_num_macs:
 601		break;
 602	}
 603
 604	if (legacy_pba_adjust) {
 605		if (hw->max_frame_size > E1000_RXBUFFER_8192)
 606			pba -= 8; /* allocate more FIFO for Tx */
 607
 608		if (hw->mac_type == e1000_82547) {
 609			adapter->tx_fifo_head = 0;
 610			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 611			adapter->tx_fifo_size =
 612				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 613			atomic_set(&adapter->tx_fifo_stall, 0);
 614		}
 615	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 616		/* adjust PBA for jumbo frames */
 617		ew32(PBA, pba);
 618
 619		/* To maintain wire speed transmits, the Tx FIFO should be
 620		 * large enough to accommodate two full transmit packets,
 621		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 622		 * the Rx FIFO should be large enough to accommodate at least
 623		 * one full receive packet and is similarly rounded up and
 624		 * expressed in KB. */
 625		pba = er32(PBA);
 626		/* upper 16 bits has Tx packet buffer allocation size in KB */
 627		tx_space = pba >> 16;
 628		/* lower 16 bits has Rx packet buffer allocation size in KB */
 629		pba &= 0xffff;
 630		/*
 631		 * the tx fifo also stores 16 bytes of information about the tx
 632		 * but don't include ethernet FCS because hardware appends it
 633		 */
 634		min_tx_space = (hw->max_frame_size +
 635		                sizeof(struct e1000_tx_desc) -
 636		                ETH_FCS_LEN) * 2;
 637		min_tx_space = ALIGN(min_tx_space, 1024);
 638		min_tx_space >>= 10;
 639		/* software strips receive CRC, so leave room for it */
 640		min_rx_space = hw->max_frame_size;
 641		min_rx_space = ALIGN(min_rx_space, 1024);
 642		min_rx_space >>= 10;
 643
 644		/* If current Tx allocation is less than the min Tx FIFO size,
 645		 * and the min Tx FIFO size is less than the current Rx FIFO
 646		 * allocation, take space away from current Rx allocation */
 647		if (tx_space < min_tx_space &&
 648		    ((min_tx_space - tx_space) < pba)) {
 649			pba = pba - (min_tx_space - tx_space);
 650
 651			/* PCI/PCIx hardware has PBA alignment constraints */
 652			switch (hw->mac_type) {
 653			case e1000_82545 ... e1000_82546_rev_3:
 654				pba &= ~(E1000_PBA_8K - 1);
 655				break;
 656			default:
 657				break;
 658			}
 659
 660			/* if short on rx space, rx wins and must trump tx
 661			 * adjustment or use Early Receive if available */
 662			if (pba < min_rx_space)
 663				pba = min_rx_space;
 664		}
 665	}
 666
 667	ew32(PBA, pba);
 668
 669	/*
 670	 * flow control settings:
 671	 * The high water mark must be low enough to fit one full frame
 672	 * (or the size used for early receive) above it in the Rx FIFO.
 673	 * Set it to the lower of:
 674	 * - 90% of the Rx FIFO size, and
 675	 * - the full Rx FIFO size minus the early receive size (for parts
 676	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
 677	 * - the full Rx FIFO size minus one full frame
 678	 */
 679	hwm = min(((pba << 10) * 9 / 10),
 680		  ((pba << 10) - hw->max_frame_size));
 681
 682	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
 683	hw->fc_low_water = hw->fc_high_water - 8;
 684	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 685	hw->fc_send_xon = 1;
 686	hw->fc = hw->original_fc;
 687
 688	/* Allow time for pending master requests to run */
 689	e1000_reset_hw(hw);
 690	if (hw->mac_type >= e1000_82544)
 691		ew32(WUC, 0);
 692
 693	if (e1000_init_hw(hw))
 694		e_dev_err("Hardware Error\n");
 695	e1000_update_mng_vlan(adapter);
 696
 697	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 698	if (hw->mac_type >= e1000_82544 &&
 699	    hw->autoneg == 1 &&
 700	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 701		u32 ctrl = er32(CTRL);
 702		/* clear phy power management bit if we are in gig only mode,
 703		 * which if enabled will attempt negotiation to 100Mb, which
 704		 * can cause a loss of link at power off or driver unload */
 705		ctrl &= ~E1000_CTRL_SWDPIN3;
 706		ew32(CTRL, ctrl);
 707	}
 708
 709	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 710	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 711
 712	e1000_reset_adaptive(hw);
 713	e1000_phy_get_info(hw, &adapter->phy_info);
 714
 715	e1000_release_manageability(adapter);
 716}
 717
 718/**
 719 *  Dump the eeprom for users having checksum issues
 720 **/
 721static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 722{
 723	struct net_device *netdev = adapter->netdev;
 724	struct ethtool_eeprom eeprom;
 725	const struct ethtool_ops *ops = netdev->ethtool_ops;
 726	u8 *data;
 727	int i;
 728	u16 csum_old, csum_new = 0;
 729
 730	eeprom.len = ops->get_eeprom_len(netdev);
 731	eeprom.offset = 0;
 732
 733	data = kmalloc(eeprom.len, GFP_KERNEL);
 734	if (!data) {
 735		pr_err("Unable to allocate memory to dump EEPROM data\n");
 736		return;
 737	}
 738
 739	ops->get_eeprom(netdev, &eeprom, data);
 740
 741	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 742		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 743	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 744		csum_new += data[i] + (data[i + 1] << 8);
 745	csum_new = EEPROM_SUM - csum_new;
 746
 747	pr_err("/*********************/\n");
 748	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 749	pr_err("Calculated              : 0x%04x\n", csum_new);
 750
 751	pr_err("Offset    Values\n");
 752	pr_err("========  ======\n");
 753	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 754
 755	pr_err("Include this output when contacting your support provider.\n");
 756	pr_err("This is not a software error! Something bad happened to\n");
 757	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 758	pr_err("result in further problems, possibly loss of data,\n");
 759	pr_err("corruption or system hangs!\n");
 760	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 761	pr_err("which is invalid and requires you to set the proper MAC\n");
 762	pr_err("address manually before continuing to enable this network\n");
 763	pr_err("device. Please inspect the EEPROM dump and report the\n");
 764	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 765	pr_err("/*********************/\n");
 766
 767	kfree(data);
 768}
 769
 770/**
 771 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 772 * @pdev: PCI device information struct
 773 *
 774 * Return true if an adapter needs ioport resources
 775 **/
 776static int e1000_is_need_ioport(struct pci_dev *pdev)
 777{
 778	switch (pdev->device) {
 779	case E1000_DEV_ID_82540EM:
 780	case E1000_DEV_ID_82540EM_LOM:
 781	case E1000_DEV_ID_82540EP:
 782	case E1000_DEV_ID_82540EP_LOM:
 783	case E1000_DEV_ID_82540EP_LP:
 784	case E1000_DEV_ID_82541EI:
 785	case E1000_DEV_ID_82541EI_MOBILE:
 786	case E1000_DEV_ID_82541ER:
 787	case E1000_DEV_ID_82541ER_LOM:
 788	case E1000_DEV_ID_82541GI:
 789	case E1000_DEV_ID_82541GI_LF:
 790	case E1000_DEV_ID_82541GI_MOBILE:
 791	case E1000_DEV_ID_82544EI_COPPER:
 792	case E1000_DEV_ID_82544EI_FIBER:
 793	case E1000_DEV_ID_82544GC_COPPER:
 794	case E1000_DEV_ID_82544GC_LOM:
 795	case E1000_DEV_ID_82545EM_COPPER:
 796	case E1000_DEV_ID_82545EM_FIBER:
 797	case E1000_DEV_ID_82546EB_COPPER:
 798	case E1000_DEV_ID_82546EB_FIBER:
 799	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 800		return true;
 801	default:
 802		return false;
 803	}
 804}
 805
 806static u32 e1000_fix_features(struct net_device *netdev, u32 features)
 807{
 808	/*
 809	 * Since there is no support for separate rx/tx vlan accel
 810	 * enable/disable make sure tx flag is always in same state as rx.
 811	 */
 812	if (features & NETIF_F_HW_VLAN_RX)
 813		features |= NETIF_F_HW_VLAN_TX;
 814	else
 815		features &= ~NETIF_F_HW_VLAN_TX;
 816
 817	return features;
 818}
 819
 820static int e1000_set_features(struct net_device *netdev, u32 features)
 821{
 822	struct e1000_adapter *adapter = netdev_priv(netdev);
 823	u32 changed = features ^ netdev->features;
 824
 825	if (changed & NETIF_F_HW_VLAN_RX)
 826		e1000_vlan_mode(netdev, features);
 827
 828	if (!(changed & NETIF_F_RXCSUM))
 829		return 0;
 830
 831	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
 832
 833	if (netif_running(netdev))
 834		e1000_reinit_locked(adapter);
 835	else
 836		e1000_reset(adapter);
 837
 838	return 0;
 839}
 840
 841static const struct net_device_ops e1000_netdev_ops = {
 842	.ndo_open		= e1000_open,
 843	.ndo_stop		= e1000_close,
 844	.ndo_start_xmit		= e1000_xmit_frame,
 845	.ndo_get_stats		= e1000_get_stats,
 846	.ndo_set_rx_mode	= e1000_set_rx_mode,
 847	.ndo_set_mac_address	= e1000_set_mac,
 848	.ndo_tx_timeout		= e1000_tx_timeout,
 849	.ndo_change_mtu		= e1000_change_mtu,
 850	.ndo_do_ioctl		= e1000_ioctl,
 851	.ndo_validate_addr	= eth_validate_addr,
 852	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
 853	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
 854#ifdef CONFIG_NET_POLL_CONTROLLER
 855	.ndo_poll_controller	= e1000_netpoll,
 856#endif
 857	.ndo_fix_features	= e1000_fix_features,
 858	.ndo_set_features	= e1000_set_features,
 859};
 860
 861/**
 862 * e1000_init_hw_struct - initialize members of hw struct
 863 * @adapter: board private struct
 864 * @hw: structure used by e1000_hw.c
 865 *
 866 * Factors out initialization of the e1000_hw struct to its own function
 867 * that can be called very early at init (just after struct allocation).
 868 * Fields are initialized based on PCI device information and
 869 * OS network device settings (MTU size).
 870 * Returns negative error codes if MAC type setup fails.
 871 */
 872static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 873				struct e1000_hw *hw)
 874{
 875	struct pci_dev *pdev = adapter->pdev;
 876
 877	/* PCI config space info */
 878	hw->vendor_id = pdev->vendor;
 879	hw->device_id = pdev->device;
 880	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 881	hw->subsystem_id = pdev->subsystem_device;
 882	hw->revision_id = pdev->revision;
 883
 884	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 885
 886	hw->max_frame_size = adapter->netdev->mtu +
 887			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 888	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 889
 890	/* identify the MAC */
 891	if (e1000_set_mac_type(hw)) {
 892		e_err(probe, "Unknown MAC Type\n");
 893		return -EIO;
 894	}
 895
 896	switch (hw->mac_type) {
 897	default:
 898		break;
 899	case e1000_82541:
 900	case e1000_82547:
 901	case e1000_82541_rev_2:
 902	case e1000_82547_rev_2:
 903		hw->phy_init_script = 1;
 904		break;
 905	}
 906
 907	e1000_set_media_type(hw);
 908	e1000_get_bus_info(hw);
 909
 910	hw->wait_autoneg_complete = false;
 911	hw->tbi_compatibility_en = true;
 912	hw->adaptive_ifs = true;
 913
 914	/* Copper options */
 915
 916	if (hw->media_type == e1000_media_type_copper) {
 917		hw->mdix = AUTO_ALL_MODES;
 918		hw->disable_polarity_correction = false;
 919		hw->master_slave = E1000_MASTER_SLAVE;
 920	}
 921
 922	return 0;
 923}
 924
 925/**
 926 * e1000_probe - Device Initialization Routine
 927 * @pdev: PCI device information struct
 928 * @ent: entry in e1000_pci_tbl
 929 *
 930 * Returns 0 on success, negative on failure
 931 *
 932 * e1000_probe initializes an adapter identified by a pci_dev structure.
 933 * The OS initialization, configuring of the adapter private structure,
 934 * and a hardware reset occur.
 935 **/
 936static int __devinit e1000_probe(struct pci_dev *pdev,
 937				 const struct pci_device_id *ent)
 938{
 939	struct net_device *netdev;
 940	struct e1000_adapter *adapter;
 941	struct e1000_hw *hw;
 942
 943	static int cards_found = 0;
 944	static int global_quad_port_a = 0; /* global ksp3 port a indication */
 945	int i, err, pci_using_dac;
 946	u16 eeprom_data = 0;
 947	u16 tmp = 0;
 948	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 949	int bars, need_ioport;
 950
 951	/* do not allocate ioport bars when not needed */
 952	need_ioport = e1000_is_need_ioport(pdev);
 953	if (need_ioport) {
 954		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 955		err = pci_enable_device(pdev);
 956	} else {
 957		bars = pci_select_bars(pdev, IORESOURCE_MEM);
 958		err = pci_enable_device_mem(pdev);
 959	}
 960	if (err)
 961		return err;
 962
 963	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 964	if (err)
 965		goto err_pci_reg;
 966
 967	pci_set_master(pdev);
 968	err = pci_save_state(pdev);
 969	if (err)
 970		goto err_alloc_etherdev;
 971
 972	err = -ENOMEM;
 973	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 974	if (!netdev)
 975		goto err_alloc_etherdev;
 976
 977	SET_NETDEV_DEV(netdev, &pdev->dev);
 978
 979	pci_set_drvdata(pdev, netdev);
 980	adapter = netdev_priv(netdev);
 981	adapter->netdev = netdev;
 982	adapter->pdev = pdev;
 983	adapter->msg_enable = (1 << debug) - 1;
 984	adapter->bars = bars;
 985	adapter->need_ioport = need_ioport;
 986
 987	hw = &adapter->hw;
 988	hw->back = adapter;
 989
 990	err = -EIO;
 991	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
 992	if (!hw->hw_addr)
 993		goto err_ioremap;
 994
 995	if (adapter->need_ioport) {
 996		for (i = BAR_1; i <= BAR_5; i++) {
 997			if (pci_resource_len(pdev, i) == 0)
 998				continue;
 999			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1000				hw->io_base = pci_resource_start(pdev, i);
1001				break;
1002			}
1003		}
1004	}
1005
1006	/* make ready for any if (hw->...) below */
1007	err = e1000_init_hw_struct(adapter, hw);
1008	if (err)
1009		goto err_sw_init;
1010
1011	/*
1012	 * there is a workaround being applied below that limits
1013	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1014	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1015	 */
1016	pci_using_dac = 0;
1017	if ((hw->bus_type == e1000_bus_type_pcix) &&
1018	    !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1019		/*
1020		 * according to DMA-API-HOWTO, coherent calls will always
1021		 * succeed if the set call did
1022		 */
1023		dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1024		pci_using_dac = 1;
1025	} else {
1026		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1027		if (err) {
1028			pr_err("No usable DMA config, aborting\n");
1029			goto err_dma;
1030		}
1031		dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1032	}
1033
1034	netdev->netdev_ops = &e1000_netdev_ops;
1035	e1000_set_ethtool_ops(netdev);
1036	netdev->watchdog_timeo = 5 * HZ;
1037	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1038
1039	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1040
1041	adapter->bd_number = cards_found;
1042
1043	/* setup the private structure */
1044
1045	err = e1000_sw_init(adapter);
1046	if (err)
1047		goto err_sw_init;
1048
1049	err = -EIO;
1050	if (hw->mac_type == e1000_ce4100) {
1051		ce4100_gbe_mdio_base_phy = pci_resource_start(pdev, BAR_1);
1052		ce4100_gbe_mdio_base_virt = ioremap(ce4100_gbe_mdio_base_phy,
1053		                                pci_resource_len(pdev, BAR_1));
1054
1055		if (!ce4100_gbe_mdio_base_virt)
1056			goto err_mdio_ioremap;
1057	}
1058
1059	if (hw->mac_type >= e1000_82543) {
1060		netdev->hw_features = NETIF_F_SG |
1061				   NETIF_F_HW_CSUM |
1062				   NETIF_F_HW_VLAN_RX;
1063		netdev->features = NETIF_F_HW_VLAN_TX |
1064				   NETIF_F_HW_VLAN_FILTER;
1065	}
1066
1067	if ((hw->mac_type >= e1000_82544) &&
1068	   (hw->mac_type != e1000_82547))
1069		netdev->hw_features |= NETIF_F_TSO;
1070
1071	netdev->features |= netdev->hw_features;
1072	netdev->hw_features |= NETIF_F_RXCSUM;
1073
1074	if (pci_using_dac) {
1075		netdev->features |= NETIF_F_HIGHDMA;
1076		netdev->vlan_features |= NETIF_F_HIGHDMA;
1077	}
1078
1079	netdev->vlan_features |= NETIF_F_TSO;
1080	netdev->vlan_features |= NETIF_F_HW_CSUM;
1081	netdev->vlan_features |= NETIF_F_SG;
1082
1083	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1084
1085	/* initialize eeprom parameters */
1086	if (e1000_init_eeprom_params(hw)) {
1087		e_err(probe, "EEPROM initialization failed\n");
1088		goto err_eeprom;
1089	}
1090
1091	/* before reading the EEPROM, reset the controller to
1092	 * put the device in a known good starting state */
1093
1094	e1000_reset_hw(hw);
1095
1096	/* make sure the EEPROM is good */
1097	if (e1000_validate_eeprom_checksum(hw) < 0) {
1098		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1099		e1000_dump_eeprom(adapter);
1100		/*
1101		 * set MAC address to all zeroes to invalidate and temporary
1102		 * disable this device for the user. This blocks regular
1103		 * traffic while still permitting ethtool ioctls from reaching
1104		 * the hardware as well as allowing the user to run the
1105		 * interface after manually setting a hw addr using
1106		 * `ip set address`
1107		 */
1108		memset(hw->mac_addr, 0, netdev->addr_len);
1109	} else {
1110		/* copy the MAC address out of the EEPROM */
1111		if (e1000_read_mac_addr(hw))
1112			e_err(probe, "EEPROM Read Error\n");
1113	}
1114	/* don't block initalization here due to bad MAC address */
1115	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1116	memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1117
1118	if (!is_valid_ether_addr(netdev->perm_addr))
1119		e_err(probe, "Invalid MAC Address\n");
1120
1121	init_timer(&adapter->tx_fifo_stall_timer);
1122	adapter->tx_fifo_stall_timer.function = e1000_82547_tx_fifo_stall;
1123	adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1124
1125	init_timer(&adapter->watchdog_timer);
1126	adapter->watchdog_timer.function = e1000_watchdog;
1127	adapter->watchdog_timer.data = (unsigned long) adapter;
1128
1129	init_timer(&adapter->phy_info_timer);
1130	adapter->phy_info_timer.function = e1000_update_phy_info;
1131	adapter->phy_info_timer.data = (unsigned long)adapter;
1132
1133	INIT_WORK(&adapter->fifo_stall_task, e1000_82547_tx_fifo_stall_task);
1134	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1135	INIT_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1136
1137	e1000_check_options(adapter);
1138
1139	/* Initial Wake on LAN setting
1140	 * If APM wake is enabled in the EEPROM,
1141	 * enable the ACPI Magic Packet filter
1142	 */
1143
1144	switch (hw->mac_type) {
1145	case e1000_82542_rev2_0:
1146	case e1000_82542_rev2_1:
1147	case e1000_82543:
1148		break;
1149	case e1000_82544:
1150		e1000_read_eeprom(hw,
1151			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1152		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1153		break;
1154	case e1000_82546:
1155	case e1000_82546_rev_3:
1156		if (er32(STATUS) & E1000_STATUS_FUNC_1){
1157			e1000_read_eeprom(hw,
1158				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1159			break;
1160		}
1161		/* Fall Through */
1162	default:
1163		e1000_read_eeprom(hw,
1164			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1165		break;
1166	}
1167	if (eeprom_data & eeprom_apme_mask)
1168		adapter->eeprom_wol |= E1000_WUFC_MAG;
1169
1170	/* now that we have the eeprom settings, apply the special cases
1171	 * where the eeprom may be wrong or the board simply won't support
1172	 * wake on lan on a particular port */
1173	switch (pdev->device) {
1174	case E1000_DEV_ID_82546GB_PCIE:
1175		adapter->eeprom_wol = 0;
1176		break;
1177	case E1000_DEV_ID_82546EB_FIBER:
1178	case E1000_DEV_ID_82546GB_FIBER:
1179		/* Wake events only supported on port A for dual fiber
1180		 * regardless of eeprom setting */
1181		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1182			adapter->eeprom_wol = 0;
1183		break;
1184	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1185		/* if quad port adapter, disable WoL on all but port A */
1186		if (global_quad_port_a != 0)
1187			adapter->eeprom_wol = 0;
1188		else
1189			adapter->quad_port_a = 1;
1190		/* Reset for multiple quad port adapters */
1191		if (++global_quad_port_a == 4)
1192			global_quad_port_a = 0;
1193		break;
1194	}
1195
1196	/* initialize the wol settings based on the eeprom settings */
1197	adapter->wol = adapter->eeprom_wol;
1198	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1199
1200	/* Auto detect PHY address */
1201	if (hw->mac_type == e1000_ce4100) {
1202		for (i = 0; i < 32; i++) {
1203			hw->phy_addr = i;
1204			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1205			if (tmp == 0 || tmp == 0xFF) {
1206				if (i == 31)
1207					goto err_eeprom;
1208				continue;
1209			} else
1210				break;
1211		}
1212	}
1213
1214	/* reset the hardware with the new settings */
1215	e1000_reset(adapter);
1216
1217	strcpy(netdev->name, "eth%d");
1218	err = register_netdev(netdev);
1219	if (err)
1220		goto err_register;
1221
1222	e1000_vlan_mode(netdev, netdev->features);
1223
1224	/* print bus type/speed/width info */
1225	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1226	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1227	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1228		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1229		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1230		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1231	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1232	       netdev->dev_addr);
1233
1234	/* carrier off reporting is important to ethtool even BEFORE open */
1235	netif_carrier_off(netdev);
1236
1237	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1238
1239	cards_found++;
1240	return 0;
1241
1242err_register:
1243err_eeprom:
1244	e1000_phy_hw_reset(hw);
1245
1246	if (hw->flash_address)
1247		iounmap(hw->flash_address);
1248	kfree(adapter->tx_ring);
1249	kfree(adapter->rx_ring);
1250err_dma:
1251err_sw_init:
1252err_mdio_ioremap:
1253	iounmap(ce4100_gbe_mdio_base_virt);
1254	iounmap(hw->hw_addr);
1255err_ioremap:
1256	free_netdev(netdev);
1257err_alloc_etherdev:
1258	pci_release_selected_regions(pdev, bars);
1259err_pci_reg:
1260	pci_disable_device(pdev);
1261	return err;
1262}
1263
1264/**
1265 * e1000_remove - Device Removal Routine
1266 * @pdev: PCI device information struct
1267 *
1268 * e1000_remove is called by the PCI subsystem to alert the driver
1269 * that it should release a PCI device.  The could be caused by a
1270 * Hot-Plug event, or because the driver is going to be removed from
1271 * memory.
1272 **/
1273
1274static void __devexit e1000_remove(struct pci_dev *pdev)
1275{
1276	struct net_device *netdev = pci_get_drvdata(pdev);
1277	struct e1000_adapter *adapter = netdev_priv(netdev);
1278	struct e1000_hw *hw = &adapter->hw;
1279
1280	set_bit(__E1000_DOWN, &adapter->flags);
1281	del_timer_sync(&adapter->tx_fifo_stall_timer);
1282	del_timer_sync(&adapter->watchdog_timer);
1283	del_timer_sync(&adapter->phy_info_timer);
1284
1285	cancel_work_sync(&adapter->reset_task);
1286
1287	e1000_release_manageability(adapter);
1288
1289	unregister_netdev(netdev);
1290
1291	e1000_phy_hw_reset(hw);
1292
1293	kfree(adapter->tx_ring);
1294	kfree(adapter->rx_ring);
1295
1296	iounmap(hw->hw_addr);
1297	if (hw->flash_address)
1298		iounmap(hw->flash_address);
1299	pci_release_selected_regions(pdev, adapter->bars);
1300
1301	free_netdev(netdev);
1302
1303	pci_disable_device(pdev);
1304}
1305
1306/**
1307 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1308 * @adapter: board private structure to initialize
1309 *
1310 * e1000_sw_init initializes the Adapter private data structure.
1311 * e1000_init_hw_struct MUST be called before this function
1312 **/
1313
1314static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1315{
1316	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1317
1318	adapter->num_tx_queues = 1;
1319	adapter->num_rx_queues = 1;
1320
1321	if (e1000_alloc_queues(adapter)) {
1322		e_err(probe, "Unable to allocate memory for queues\n");
1323		return -ENOMEM;
1324	}
1325
1326	/* Explicitly disable IRQ since the NIC can be in any state. */
1327	e1000_irq_disable(adapter);
1328
1329	spin_lock_init(&adapter->stats_lock);
1330
1331	set_bit(__E1000_DOWN, &adapter->flags);
1332
1333	return 0;
1334}
1335
1336/**
1337 * e1000_alloc_queues - Allocate memory for all rings
1338 * @adapter: board private structure to initialize
1339 *
1340 * We allocate one ring per queue at run-time since we don't know the
1341 * number of queues at compile-time.
1342 **/
1343
1344static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1345{
1346	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1347	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
1348	if (!adapter->tx_ring)
1349		return -ENOMEM;
1350
1351	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1352	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
1353	if (!adapter->rx_ring) {
1354		kfree(adapter->tx_ring);
1355		return -ENOMEM;
1356	}
1357
1358	return E1000_SUCCESS;
1359}
1360
1361/**
1362 * e1000_open - Called when a network interface is made active
1363 * @netdev: network interface device structure
1364 *
1365 * Returns 0 on success, negative value on failure
1366 *
1367 * The open entry point is called when a network interface is made
1368 * active by the system (IFF_UP).  At this point all resources needed
1369 * for transmit and receive operations are allocated, the interrupt
1370 * handler is registered with the OS, the watchdog timer is started,
1371 * and the stack is notified that the interface is ready.
1372 **/
1373
1374static int e1000_open(struct net_device *netdev)
1375{
1376	struct e1000_adapter *adapter = netdev_priv(netdev);
1377	struct e1000_hw *hw = &adapter->hw;
1378	int err;
1379
1380	/* disallow open during test */
1381	if (test_bit(__E1000_TESTING, &adapter->flags))
1382		return -EBUSY;
1383
1384	netif_carrier_off(netdev);
1385
1386	/* allocate transmit descriptors */
1387	err = e1000_setup_all_tx_resources(adapter);
1388	if (err)
1389		goto err_setup_tx;
1390
1391	/* allocate receive descriptors */
1392	err = e1000_setup_all_rx_resources(adapter);
1393	if (err)
1394		goto err_setup_rx;
1395
1396	e1000_power_up_phy(adapter);
1397
1398	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1399	if ((hw->mng_cookie.status &
1400			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1401		e1000_update_mng_vlan(adapter);
1402	}
1403
1404	/* before we allocate an interrupt, we must be ready to handle it.
1405	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1406	 * as soon as we call pci_request_irq, so we have to setup our
1407	 * clean_rx handler before we do so.  */
1408	e1000_configure(adapter);
1409
1410	err = e1000_request_irq(adapter);
1411	if (err)
1412		goto err_req_irq;
1413
1414	/* From here on the code is the same as e1000_up() */
1415	clear_bit(__E1000_DOWN, &adapter->flags);
1416
1417	napi_enable(&adapter->napi);
1418
1419	e1000_irq_enable(adapter);
1420
1421	netif_start_queue(netdev);
1422
1423	/* fire a link status change interrupt to start the watchdog */
1424	ew32(ICS, E1000_ICS_LSC);
1425
1426	return E1000_SUCCESS;
1427
1428err_req_irq:
1429	e1000_power_down_phy(adapter);
1430	e1000_free_all_rx_resources(adapter);
1431err_setup_rx:
1432	e1000_free_all_tx_resources(adapter);
1433err_setup_tx:
1434	e1000_reset(adapter);
1435
1436	return err;
1437}
1438
1439/**
1440 * e1000_close - Disables a network interface
1441 * @netdev: network interface device structure
1442 *
1443 * Returns 0, this is not allowed to fail
1444 *
1445 * The close entry point is called when an interface is de-activated
1446 * by the OS.  The hardware is still under the drivers control, but
1447 * needs to be disabled.  A global MAC reset is issued to stop the
1448 * hardware, and all transmit and receive resources are freed.
1449 **/
1450
1451static int e1000_close(struct net_device *netdev)
1452{
1453	struct e1000_adapter *adapter = netdev_priv(netdev);
1454	struct e1000_hw *hw = &adapter->hw;
1455
1456	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1457	e1000_down(adapter);
1458	e1000_power_down_phy(adapter);
1459	e1000_free_irq(adapter);
1460
1461	e1000_free_all_tx_resources(adapter);
1462	e1000_free_all_rx_resources(adapter);
1463
1464	/* kill manageability vlan ID if supported, but not if a vlan with
1465	 * the same ID is registered on the host OS (let 8021q kill it) */
1466	if ((hw->mng_cookie.status &
1467			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1468	     !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1469		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1470	}
1471
1472	return 0;
1473}
1474
1475/**
1476 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1477 * @adapter: address of board private structure
1478 * @start: address of beginning of memory
1479 * @len: length of memory
1480 **/
1481static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1482				  unsigned long len)
1483{
1484	struct e1000_hw *hw = &adapter->hw;
1485	unsigned long begin = (unsigned long)start;
1486	unsigned long end = begin + len;
1487
1488	/* First rev 82545 and 82546 need to not allow any memory
1489	 * write location to cross 64k boundary due to errata 23 */
1490	if (hw->mac_type == e1000_82545 ||
1491	    hw->mac_type == e1000_ce4100 ||
1492	    hw->mac_type == e1000_82546) {
1493		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1494	}
1495
1496	return true;
1497}
1498
1499/**
1500 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1501 * @adapter: board private structure
1502 * @txdr:    tx descriptor ring (for a specific queue) to setup
1503 *
1504 * Return 0 on success, negative on failure
1505 **/
1506
1507static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1508				    struct e1000_tx_ring *txdr)
1509{
1510	struct pci_dev *pdev = adapter->pdev;
1511	int size;
1512
1513	size = sizeof(struct e1000_buffer) * txdr->count;
1514	txdr->buffer_info = vzalloc(size);
1515	if (!txdr->buffer_info) {
1516		e_err(probe, "Unable to allocate memory for the Tx descriptor "
1517		      "ring\n");
1518		return -ENOMEM;
1519	}
1520
1521	/* round up to nearest 4K */
1522
1523	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1524	txdr->size = ALIGN(txdr->size, 4096);
1525
1526	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1527					GFP_KERNEL);
1528	if (!txdr->desc) {
1529setup_tx_desc_die:
1530		vfree(txdr->buffer_info);
1531		e_err(probe, "Unable to allocate memory for the Tx descriptor "
1532		      "ring\n");
1533		return -ENOMEM;
1534	}
1535
1536	/* Fix for errata 23, can't cross 64kB boundary */
1537	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1538		void *olddesc = txdr->desc;
1539		dma_addr_t olddma = txdr->dma;
1540		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1541		      txdr->size, txdr->desc);
1542		/* Try again, without freeing the previous */
1543		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1544						&txdr->dma, GFP_KERNEL);
1545		/* Failed allocation, critical failure */
1546		if (!txdr->desc) {
1547			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1548					  olddma);
1549			goto setup_tx_desc_die;
1550		}
1551
1552		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1553			/* give up */
1554			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1555					  txdr->dma);
1556			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1557					  olddma);
1558			e_err(probe, "Unable to allocate aligned memory "
1559			      "for the transmit descriptor ring\n");
1560			vfree(txdr->buffer_info);
1561			return -ENOMEM;
1562		} else {
1563			/* Free old allocation, new allocation was successful */
1564			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1565					  olddma);
1566		}
1567	}
1568	memset(txdr->desc, 0, txdr->size);
1569
1570	txdr->next_to_use = 0;
1571	txdr->next_to_clean = 0;
1572
1573	return 0;
1574}
1575
1576/**
1577 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1578 * 				  (Descriptors) for all queues
1579 * @adapter: board private structure
1580 *
1581 * Return 0 on success, negative on failure
1582 **/
1583
1584int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1585{
1586	int i, err = 0;
1587
1588	for (i = 0; i < adapter->num_tx_queues; i++) {
1589		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1590		if (err) {
1591			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1592			for (i-- ; i >= 0; i--)
1593				e1000_free_tx_resources(adapter,
1594							&adapter->tx_ring[i]);
1595			break;
1596		}
1597	}
1598
1599	return err;
1600}
1601
1602/**
1603 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1604 * @adapter: board private structure
1605 *
1606 * Configure the Tx unit of the MAC after a reset.
1607 **/
1608
1609static void e1000_configure_tx(struct e1000_adapter *adapter)
1610{
1611	u64 tdba;
1612	struct e1000_hw *hw = &adapter->hw;
1613	u32 tdlen, tctl, tipg;
1614	u32 ipgr1, ipgr2;
1615
1616	/* Setup the HW Tx Head and Tail descriptor pointers */
1617
1618	switch (adapter->num_tx_queues) {
1619	case 1:
1620	default:
1621		tdba = adapter->tx_ring[0].dma;
1622		tdlen = adapter->tx_ring[0].count *
1623			sizeof(struct e1000_tx_desc);
1624		ew32(TDLEN, tdlen);
1625		ew32(TDBAH, (tdba >> 32));
1626		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1627		ew32(TDT, 0);
1628		ew32(TDH, 0);
1629		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1630		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1631		break;
1632	}
1633
1634	/* Set the default values for the Tx Inter Packet Gap timer */
1635	if ((hw->media_type == e1000_media_type_fiber ||
1636	     hw->media_type == e1000_media_type_internal_serdes))
1637		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1638	else
1639		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1640
1641	switch (hw->mac_type) {
1642	case e1000_82542_rev2_0:
1643	case e1000_82542_rev2_1:
1644		tipg = DEFAULT_82542_TIPG_IPGT;
1645		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1646		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1647		break;
1648	default:
1649		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1650		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1651		break;
1652	}
1653	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1654	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1655	ew32(TIPG, tipg);
1656
1657	/* Set the Tx Interrupt Delay register */
1658
1659	ew32(TIDV, adapter->tx_int_delay);
1660	if (hw->mac_type >= e1000_82540)
1661		ew32(TADV, adapter->tx_abs_int_delay);
1662
1663	/* Program the Transmit Control Register */
1664
1665	tctl = er32(TCTL);
1666	tctl &= ~E1000_TCTL_CT;
1667	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1668		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1669
1670	e1000_config_collision_dist(hw);
1671
1672	/* Setup Transmit Descriptor Settings for eop descriptor */
1673	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1674
1675	/* only set IDE if we are delaying interrupts using the timers */
1676	if (adapter->tx_int_delay)
1677		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1678
1679	if (hw->mac_type < e1000_82543)
1680		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1681	else
1682		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1683
1684	/* Cache if we're 82544 running in PCI-X because we'll
1685	 * need this to apply a workaround later in the send path. */
1686	if (hw->mac_type == e1000_82544 &&
1687	    hw->bus_type == e1000_bus_type_pcix)
1688		adapter->pcix_82544 = 1;
1689
1690	ew32(TCTL, tctl);
1691
1692}
1693
1694/**
1695 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1696 * @adapter: board private structure
1697 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1698 *
1699 * Returns 0 on success, negative on failure
1700 **/
1701
1702static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1703				    struct e1000_rx_ring *rxdr)
1704{
1705	struct pci_dev *pdev = adapter->pdev;
1706	int size, desc_len;
1707
1708	size = sizeof(struct e1000_buffer) * rxdr->count;
1709	rxdr->buffer_info = vzalloc(size);
1710	if (!rxdr->buffer_info) {
1711		e_err(probe, "Unable to allocate memory for the Rx descriptor "
1712		      "ring\n");
1713		return -ENOMEM;
1714	}
1715
1716	desc_len = sizeof(struct e1000_rx_desc);
1717
1718	/* Round up to nearest 4K */
1719
1720	rxdr->size = rxdr->count * desc_len;
1721	rxdr->size = ALIGN(rxdr->size, 4096);
1722
1723	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1724					GFP_KERNEL);
1725
1726	if (!rxdr->desc) {
1727		e_err(probe, "Unable to allocate memory for the Rx descriptor "
1728		      "ring\n");
1729setup_rx_desc_die:
1730		vfree(rxdr->buffer_info);
1731		return -ENOMEM;
1732	}
1733
1734	/* Fix for errata 23, can't cross 64kB boundary */
1735	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1736		void *olddesc = rxdr->desc;
1737		dma_addr_t olddma = rxdr->dma;
1738		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1739		      rxdr->size, rxdr->desc);
1740		/* Try again, without freeing the previous */
1741		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1742						&rxdr->dma, GFP_KERNEL);
1743		/* Failed allocation, critical failure */
1744		if (!rxdr->desc) {
1745			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746					  olddma);
1747			e_err(probe, "Unable to allocate memory for the Rx "
1748			      "descriptor ring\n");
1749			goto setup_rx_desc_die;
1750		}
1751
1752		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1753			/* give up */
1754			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1755					  rxdr->dma);
1756			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1757					  olddma);
1758			e_err(probe, "Unable to allocate aligned memory for "
1759			      "the Rx descriptor ring\n");
1760			goto setup_rx_desc_die;
1761		} else {
1762			/* Free old allocation, new allocation was successful */
1763			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1764					  olddma);
1765		}
1766	}
1767	memset(rxdr->desc, 0, rxdr->size);
1768
1769	rxdr->next_to_clean = 0;
1770	rxdr->next_to_use = 0;
1771	rxdr->rx_skb_top = NULL;
1772
1773	return 0;
1774}
1775
1776/**
1777 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1778 * 				  (Descriptors) for all queues
1779 * @adapter: board private structure
1780 *
1781 * Return 0 on success, negative on failure
1782 **/
1783
1784int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1785{
1786	int i, err = 0;
1787
1788	for (i = 0; i < adapter->num_rx_queues; i++) {
1789		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1790		if (err) {
1791			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1792			for (i-- ; i >= 0; i--)
1793				e1000_free_rx_resources(adapter,
1794							&adapter->rx_ring[i]);
1795			break;
1796		}
1797	}
1798
1799	return err;
1800}
1801
1802/**
1803 * e1000_setup_rctl - configure the receive control registers
1804 * @adapter: Board private structure
1805 **/
1806static void e1000_setup_rctl(struct e1000_adapter *adapter)
1807{
1808	struct e1000_hw *hw = &adapter->hw;
1809	u32 rctl;
1810
1811	rctl = er32(RCTL);
1812
1813	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1814
1815	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1816		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1817		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1818
1819	if (hw->tbi_compatibility_on == 1)
1820		rctl |= E1000_RCTL_SBP;
1821	else
1822		rctl &= ~E1000_RCTL_SBP;
1823
1824	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1825		rctl &= ~E1000_RCTL_LPE;
1826	else
1827		rctl |= E1000_RCTL_LPE;
1828
1829	/* Setup buffer sizes */
1830	rctl &= ~E1000_RCTL_SZ_4096;
1831	rctl |= E1000_RCTL_BSEX;
1832	switch (adapter->rx_buffer_len) {
1833		case E1000_RXBUFFER_2048:
1834		default:
1835			rctl |= E1000_RCTL_SZ_2048;
1836			rctl &= ~E1000_RCTL_BSEX;
1837			break;
1838		case E1000_RXBUFFER_4096:
1839			rctl |= E1000_RCTL_SZ_4096;
1840			break;
1841		case E1000_RXBUFFER_8192:
1842			rctl |= E1000_RCTL_SZ_8192;
1843			break;
1844		case E1000_RXBUFFER_16384:
1845			rctl |= E1000_RCTL_SZ_16384;
1846			break;
1847	}
1848
1849	ew32(RCTL, rctl);
1850}
1851
1852/**
1853 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1854 * @adapter: board private structure
1855 *
1856 * Configure the Rx unit of the MAC after a reset.
1857 **/
1858
1859static void e1000_configure_rx(struct e1000_adapter *adapter)
1860{
1861	u64 rdba;
1862	struct e1000_hw *hw = &adapter->hw;
1863	u32 rdlen, rctl, rxcsum;
1864
1865	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1866		rdlen = adapter->rx_ring[0].count *
1867		        sizeof(struct e1000_rx_desc);
1868		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1869		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1870	} else {
1871		rdlen = adapter->rx_ring[0].count *
1872		        sizeof(struct e1000_rx_desc);
1873		adapter->clean_rx = e1000_clean_rx_irq;
1874		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1875	}
1876
1877	/* disable receives while setting up the descriptors */
1878	rctl = er32(RCTL);
1879	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1880
1881	/* set the Receive Delay Timer Register */
1882	ew32(RDTR, adapter->rx_int_delay);
1883
1884	if (hw->mac_type >= e1000_82540) {
1885		ew32(RADV, adapter->rx_abs_int_delay);
1886		if (adapter->itr_setting != 0)
1887			ew32(ITR, 1000000000 / (adapter->itr * 256));
1888	}
1889
1890	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1891	 * the Base and Length of the Rx Descriptor Ring */
1892	switch (adapter->num_rx_queues) {
1893	case 1:
1894	default:
1895		rdba = adapter->rx_ring[0].dma;
1896		ew32(RDLEN, rdlen);
1897		ew32(RDBAH, (rdba >> 32));
1898		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1899		ew32(RDT, 0);
1900		ew32(RDH, 0);
1901		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1902		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1903		break;
1904	}
1905
1906	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1907	if (hw->mac_type >= e1000_82543) {
1908		rxcsum = er32(RXCSUM);
1909		if (adapter->rx_csum)
1910			rxcsum |= E1000_RXCSUM_TUOFL;
1911		else
1912			/* don't need to clear IPPCSE as it defaults to 0 */
1913			rxcsum &= ~E1000_RXCSUM_TUOFL;
1914		ew32(RXCSUM, rxcsum);
1915	}
1916
1917	/* Enable Receives */
1918	ew32(RCTL, rctl);
1919}
1920
1921/**
1922 * e1000_free_tx_resources - Free Tx Resources per Queue
1923 * @adapter: board private structure
1924 * @tx_ring: Tx descriptor ring for a specific queue
1925 *
1926 * Free all transmit software resources
1927 **/
1928
1929static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1930				    struct e1000_tx_ring *tx_ring)
1931{
1932	struct pci_dev *pdev = adapter->pdev;
1933
1934	e1000_clean_tx_ring(adapter, tx_ring);
1935
1936	vfree(tx_ring->buffer_info);
1937	tx_ring->buffer_info = NULL;
1938
1939	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1940			  tx_ring->dma);
1941
1942	tx_ring->desc = NULL;
1943}
1944
1945/**
1946 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1947 * @adapter: board private structure
1948 *
1949 * Free all transmit software resources
1950 **/
1951
1952void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1953{
1954	int i;
1955
1956	for (i = 0; i < adapter->num_tx_queues; i++)
1957		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1958}
1959
1960static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1961					     struct e1000_buffer *buffer_info)
1962{
1963	if (buffer_info->dma) {
1964		if (buffer_info->mapped_as_page)
1965			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1966				       buffer_info->length, DMA_TO_DEVICE);
1967		else
1968			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1969					 buffer_info->length,
1970					 DMA_TO_DEVICE);
1971		buffer_info->dma = 0;
1972	}
1973	if (buffer_info->skb) {
1974		dev_kfree_skb_any(buffer_info->skb);
1975		buffer_info->skb = NULL;
1976	}
1977	buffer_info->time_stamp = 0;
1978	/* buffer_info must be completely set up in the transmit path */
1979}
1980
1981/**
1982 * e1000_clean_tx_ring - Free Tx Buffers
1983 * @adapter: board private structure
1984 * @tx_ring: ring to be cleaned
1985 **/
1986
1987static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1988				struct e1000_tx_ring *tx_ring)
1989{
1990	struct e1000_hw *hw = &adapter->hw;
1991	struct e1000_buffer *buffer_info;
1992	unsigned long size;
1993	unsigned int i;
1994
1995	/* Free all the Tx ring sk_buffs */
1996
1997	for (i = 0; i < tx_ring->count; i++) {
1998		buffer_info = &tx_ring->buffer_info[i];
1999		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2000	}
2001
2002	size = sizeof(struct e1000_buffer) * tx_ring->count;
2003	memset(tx_ring->buffer_info, 0, size);
2004
2005	/* Zero out the descriptor ring */
2006
2007	memset(tx_ring->desc, 0, tx_ring->size);
2008
2009	tx_ring->next_to_use = 0;
2010	tx_ring->next_to_clean = 0;
2011	tx_ring->last_tx_tso = 0;
2012
2013	writel(0, hw->hw_addr + tx_ring->tdh);
2014	writel(0, hw->hw_addr + tx_ring->tdt);
2015}
2016
2017/**
2018 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2019 * @adapter: board private structure
2020 **/
2021
2022static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2023{
2024	int i;
2025
2026	for (i = 0; i < adapter->num_tx_queues; i++)
2027		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2028}
2029
2030/**
2031 * e1000_free_rx_resources - Free Rx Resources
2032 * @adapter: board private structure
2033 * @rx_ring: ring to clean the resources from
2034 *
2035 * Free all receive software resources
2036 **/
2037
2038static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2039				    struct e1000_rx_ring *rx_ring)
2040{
2041	struct pci_dev *pdev = adapter->pdev;
2042
2043	e1000_clean_rx_ring(adapter, rx_ring);
2044
2045	vfree(rx_ring->buffer_info);
2046	rx_ring->buffer_info = NULL;
2047
2048	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2049			  rx_ring->dma);
2050
2051	rx_ring->desc = NULL;
2052}
2053
2054/**
2055 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2056 * @adapter: board private structure
2057 *
2058 * Free all receive software resources
2059 **/
2060
2061void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2062{
2063	int i;
2064
2065	for (i = 0; i < adapter->num_rx_queues; i++)
2066		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2067}
2068
2069/**
2070 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2071 * @adapter: board private structure
2072 * @rx_ring: ring to free buffers from
2073 **/
2074
2075static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2076				struct e1000_rx_ring *rx_ring)
2077{
2078	struct e1000_hw *hw = &adapter->hw;
2079	struct e1000_buffer *buffer_info;
2080	struct pci_dev *pdev = adapter->pdev;
2081	unsigned long size;
2082	unsigned int i;
2083
2084	/* Free all the Rx ring sk_buffs */
2085	for (i = 0; i < rx_ring->count; i++) {
2086		buffer_info = &rx_ring->buffer_info[i];
2087		if (buffer_info->dma &&
2088		    adapter->clean_rx == e1000_clean_rx_irq) {
2089			dma_unmap_single(&pdev->dev, buffer_info->dma,
2090			                 buffer_info->length,
2091					 DMA_FROM_DEVICE);
2092		} else if (buffer_info->dma &&
2093		           adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2094			dma_unmap_page(&pdev->dev, buffer_info->dma,
2095				       buffer_info->length,
2096				       DMA_FROM_DEVICE);
2097		}
2098
2099		buffer_info->dma = 0;
2100		if (buffer_info->page) {
2101			put_page(buffer_info->page);
2102			buffer_info->page = NULL;
2103		}
2104		if (buffer_info->skb) {
2105			dev_kfree_skb(buffer_info->skb);
2106			buffer_info->skb = NULL;
2107		}
2108	}
2109
2110	/* there also may be some cached data from a chained receive */
2111	if (rx_ring->rx_skb_top) {
2112		dev_kfree_skb(rx_ring->rx_skb_top);
2113		rx_ring->rx_skb_top = NULL;
2114	}
2115
2116	size = sizeof(struct e1000_buffer) * rx_ring->count;
2117	memset(rx_ring->buffer_info, 0, size);
2118
2119	/* Zero out the descriptor ring */
2120	memset(rx_ring->desc, 0, rx_ring->size);
2121
2122	rx_ring->next_to_clean = 0;
2123	rx_ring->next_to_use = 0;
2124
2125	writel(0, hw->hw_addr + rx_ring->rdh);
2126	writel(0, hw->hw_addr + rx_ring->rdt);
2127}
2128
2129/**
2130 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2131 * @adapter: board private structure
2132 **/
2133
2134static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2135{
2136	int i;
2137
2138	for (i = 0; i < adapter->num_rx_queues; i++)
2139		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2140}
2141
2142/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2143 * and memory write and invalidate disabled for certain operations
2144 */
2145static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2146{
2147	struct e1000_hw *hw = &adapter->hw;
2148	struct net_device *netdev = adapter->netdev;
2149	u32 rctl;
2150
2151	e1000_pci_clear_mwi(hw);
2152
2153	rctl = er32(RCTL);
2154	rctl |= E1000_RCTL_RST;
2155	ew32(RCTL, rctl);
2156	E1000_WRITE_FLUSH();
2157	mdelay(5);
2158
2159	if (netif_running(netdev))
2160		e1000_clean_all_rx_rings(adapter);
2161}
2162
2163static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2164{
2165	struct e1000_hw *hw = &adapter->hw;
2166	struct net_device *netdev = adapter->netdev;
2167	u32 rctl;
2168
2169	rctl = er32(RCTL);
2170	rctl &= ~E1000_RCTL_RST;
2171	ew32(RCTL, rctl);
2172	E1000_WRITE_FLUSH();
2173	mdelay(5);
2174
2175	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2176		e1000_pci_set_mwi(hw);
2177
2178	if (netif_running(netdev)) {
2179		/* No need to loop, because 82542 supports only 1 queue */
2180		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2181		e1000_configure_rx(adapter);
2182		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2183	}
2184}
2185
2186/**
2187 * e1000_set_mac - Change the Ethernet Address of the NIC
2188 * @netdev: network interface device structure
2189 * @p: pointer to an address structure
2190 *
2191 * Returns 0 on success, negative on failure
2192 **/
2193
2194static int e1000_set_mac(struct net_device *netdev, void *p)
2195{
2196	struct e1000_adapter *adapter = netdev_priv(netdev);
2197	struct e1000_hw *hw = &adapter->hw;
2198	struct sockaddr *addr = p;
2199
2200	if (!is_valid_ether_addr(addr->sa_data))
2201		return -EADDRNOTAVAIL;
2202
2203	/* 82542 2.0 needs to be in reset to write receive address registers */
2204
2205	if (hw->mac_type == e1000_82542_rev2_0)
2206		e1000_enter_82542_rst(adapter);
2207
2208	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2209	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2210
2211	e1000_rar_set(hw, hw->mac_addr, 0);
2212
2213	if (hw->mac_type == e1000_82542_rev2_0)
2214		e1000_leave_82542_rst(adapter);
2215
2216	return 0;
2217}
2218
2219/**
2220 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2221 * @netdev: network interface device structure
2222 *
2223 * The set_rx_mode entry point is called whenever the unicast or multicast
2224 * address lists or the network interface flags are updated. This routine is
2225 * responsible for configuring the hardware for proper unicast, multicast,
2226 * promiscuous mode, and all-multi behavior.
2227 **/
2228
2229static void e1000_set_rx_mode(struct net_device *netdev)
2230{
2231	struct e1000_adapter *adapter = netdev_priv(netdev);
2232	struct e1000_hw *hw = &adapter->hw;
2233	struct netdev_hw_addr *ha;
2234	bool use_uc = false;
2235	u32 rctl;
2236	u32 hash_value;
2237	int i, rar_entries = E1000_RAR_ENTRIES;
2238	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2239	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2240
2241	if (!mcarray) {
2242		e_err(probe, "memory allocation failed\n");
2243		return;
2244	}
2245
2246	/* Check for Promiscuous and All Multicast modes */
2247
2248	rctl = er32(RCTL);
2249
2250	if (netdev->flags & IFF_PROMISC) {
2251		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2252		rctl &= ~E1000_RCTL_VFE;
2253	} else {
2254		if (netdev->flags & IFF_ALLMULTI)
2255			rctl |= E1000_RCTL_MPE;
2256		else
2257			rctl &= ~E1000_RCTL_MPE;
2258		/* Enable VLAN filter if there is a VLAN */
2259		if (e1000_vlan_used(adapter))
2260			rctl |= E1000_RCTL_VFE;
2261	}
2262
2263	if (netdev_uc_count(netdev) > rar_entries - 1) {
2264		rctl |= E1000_RCTL_UPE;
2265	} else if (!(netdev->flags & IFF_PROMISC)) {
2266		rctl &= ~E1000_RCTL_UPE;
2267		use_uc = true;
2268	}
2269
2270	ew32(RCTL, rctl);
2271
2272	/* 82542 2.0 needs to be in reset to write receive address registers */
2273
2274	if (hw->mac_type == e1000_82542_rev2_0)
2275		e1000_enter_82542_rst(adapter);
2276
2277	/* load the first 14 addresses into the exact filters 1-14. Unicast
2278	 * addresses take precedence to avoid disabling unicast filtering
2279	 * when possible.
2280	 *
2281	 * RAR 0 is used for the station MAC address
2282	 * if there are not 14 addresses, go ahead and clear the filters
2283	 */
2284	i = 1;
2285	if (use_uc)
2286		netdev_for_each_uc_addr(ha, netdev) {
2287			if (i == rar_entries)
2288				break;
2289			e1000_rar_set(hw, ha->addr, i++);
2290		}
2291
2292	netdev_for_each_mc_addr(ha, netdev) {
2293		if (i == rar_entries) {
2294			/* load any remaining addresses into the hash table */
2295			u32 hash_reg, hash_bit, mta;
2296			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2297			hash_reg = (hash_value >> 5) & 0x7F;
2298			hash_bit = hash_value & 0x1F;
2299			mta = (1 << hash_bit);
2300			mcarray[hash_reg] |= mta;
2301		} else {
2302			e1000_rar_set(hw, ha->addr, i++);
2303		}
2304	}
2305
2306	for (; i < rar_entries; i++) {
2307		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2308		E1000_WRITE_FLUSH();
2309		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2310		E1000_WRITE_FLUSH();
2311	}
2312
2313	/* write the hash table completely, write from bottom to avoid
2314	 * both stupid write combining chipsets, and flushing each write */
2315	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2316		/*
2317		 * If we are on an 82544 has an errata where writing odd
2318		 * offsets overwrites the previous even offset, but writing
2319		 * backwards over the range solves the issue by always
2320		 * writing the odd offset first
2321		 */
2322		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2323	}
2324	E1000_WRITE_FLUSH();
2325
2326	if (hw->mac_type == e1000_82542_rev2_0)
2327		e1000_leave_82542_rst(adapter);
2328
2329	kfree(mcarray);
2330}
2331
2332/* Need to wait a few seconds after link up to get diagnostic information from
2333 * the phy */
2334
2335static void e1000_update_phy_info(unsigned long data)
2336{
2337	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2338	schedule_work(&adapter->phy_info_task);
2339}
2340
2341static void e1000_update_phy_info_task(struct work_struct *work)
2342{
2343	struct e1000_adapter *adapter = container_of(work,
2344	                                             struct e1000_adapter,
2345	                                             phy_info_task);
2346	struct e1000_hw *hw = &adapter->hw;
2347
2348	rtnl_lock();
2349	e1000_phy_get_info(hw, &adapter->phy_info);
2350	rtnl_unlock();
2351}
2352
2353/**
2354 * e1000_82547_tx_fifo_stall - Timer Call-back
2355 * @data: pointer to adapter cast into an unsigned long
2356 **/
2357static void e1000_82547_tx_fifo_stall(unsigned long data)
2358{
2359	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2360	schedule_work(&adapter->fifo_stall_task);
2361}
2362
2363/**
2364 * e1000_82547_tx_fifo_stall_task - task to complete work
2365 * @work: work struct contained inside adapter struct
2366 **/
2367static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2368{
2369	struct e1000_adapter *adapter = container_of(work,
2370	                                             struct e1000_adapter,
2371	                                             fifo_stall_task);
2372	struct e1000_hw *hw = &adapter->hw;
2373	struct net_device *netdev = adapter->netdev;
2374	u32 tctl;
2375
2376	rtnl_lock();
2377	if (atomic_read(&adapter->tx_fifo_stall)) {
2378		if ((er32(TDT) == er32(TDH)) &&
2379		   (er32(TDFT) == er32(TDFH)) &&
2380		   (er32(TDFTS) == er32(TDFHS))) {
2381			tctl = er32(TCTL);
2382			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2383			ew32(TDFT, adapter->tx_head_addr);
2384			ew32(TDFH, adapter->tx_head_addr);
2385			ew32(TDFTS, adapter->tx_head_addr);
2386			ew32(TDFHS, adapter->tx_head_addr);
2387			ew32(TCTL, tctl);
2388			E1000_WRITE_FLUSH();
2389
2390			adapter->tx_fifo_head = 0;
2391			atomic_set(&adapter->tx_fifo_stall, 0);
2392			netif_wake_queue(netdev);
2393		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2394			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2395		}
2396	}
2397	rtnl_unlock();
2398}
2399
2400bool e1000_has_link(struct e1000_adapter *adapter)
2401{
2402	struct e1000_hw *hw = &adapter->hw;
2403	bool link_active = false;
2404
2405	/* get_link_status is set on LSC (link status) interrupt or rx
2406	 * sequence error interrupt (except on intel ce4100).
2407	 * get_link_status will stay false until the
2408	 * e1000_check_for_link establishes link for copper adapters
2409	 * ONLY
2410	 */
2411	switch (hw->media_type) {
2412	case e1000_media_type_copper:
2413		if (hw->mac_type == e1000_ce4100)
2414			hw->get_link_status = 1;
2415		if (hw->get_link_status) {
2416			e1000_check_for_link(hw);
2417			link_active = !hw->get_link_status;
2418		} else {
2419			link_active = true;
2420		}
2421		break;
2422	case e1000_media_type_fiber:
2423		e1000_check_for_link(hw);
2424		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2425		break;
2426	case e1000_media_type_internal_serdes:
2427		e1000_check_for_link(hw);
2428		link_active = hw->serdes_has_link;
2429		break;
2430	default:
2431		break;
2432	}
2433
2434	return link_active;
2435}
2436
2437/**
2438 * e1000_watchdog - Timer Call-back
2439 * @data: pointer to adapter cast into an unsigned long
2440 **/
2441static void e1000_watchdog(unsigned long data)
2442{
2443	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2444	struct e1000_hw *hw = &adapter->hw;
2445	struct net_device *netdev = adapter->netdev;
2446	struct e1000_tx_ring *txdr = adapter->tx_ring;
2447	u32 link, tctl;
2448
2449	link = e1000_has_link(adapter);
2450	if ((netif_carrier_ok(netdev)) && link)
2451		goto link_up;
2452
2453	if (link) {
2454		if (!netif_carrier_ok(netdev)) {
2455			u32 ctrl;
2456			bool txb2b = true;
2457			/* update snapshot of PHY registers on LSC */
2458			e1000_get_speed_and_duplex(hw,
2459			                           &adapter->link_speed,
2460			                           &adapter->link_duplex);
2461
2462			ctrl = er32(CTRL);
2463			pr_info("%s NIC Link is Up %d Mbps %s, "
2464				"Flow Control: %s\n",
2465				netdev->name,
2466				adapter->link_speed,
2467				adapter->link_duplex == FULL_DUPLEX ?
2468				"Full Duplex" : "Half Duplex",
2469				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2470				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2471				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2472				E1000_CTRL_TFCE) ? "TX" : "None")));
2473
2474			/* adjust timeout factor according to speed/duplex */
2475			adapter->tx_timeout_factor = 1;
2476			switch (adapter->link_speed) {
2477			case SPEED_10:
2478				txb2b = false;
2479				adapter->tx_timeout_factor = 16;
2480				break;
2481			case SPEED_100:
2482				txb2b = false;
2483				/* maybe add some timeout factor ? */
2484				break;
2485			}
2486
2487			/* enable transmits in the hardware */
2488			tctl = er32(TCTL);
2489			tctl |= E1000_TCTL_EN;
2490			ew32(TCTL, tctl);
2491
2492			netif_carrier_on(netdev);
2493			if (!test_bit(__E1000_DOWN, &adapter->flags))
2494				mod_timer(&adapter->phy_info_timer,
2495				          round_jiffies(jiffies + 2 * HZ));
2496			adapter->smartspeed = 0;
2497		}
2498	} else {
2499		if (netif_carrier_ok(netdev)) {
2500			adapter->link_speed = 0;
2501			adapter->link_duplex = 0;
2502			pr_info("%s NIC Link is Down\n",
2503				netdev->name);
2504			netif_carrier_off(netdev);
2505
2506			if (!test_bit(__E1000_DOWN, &adapter->flags))
2507				mod_timer(&adapter->phy_info_timer,
2508				          round_jiffies(jiffies + 2 * HZ));
2509		}
2510
2511		e1000_smartspeed(adapter);
2512	}
2513
2514link_up:
2515	e1000_update_stats(adapter);
2516
2517	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2518	adapter->tpt_old = adapter->stats.tpt;
2519	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2520	adapter->colc_old = adapter->stats.colc;
2521
2522	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2523	adapter->gorcl_old = adapter->stats.gorcl;
2524	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2525	adapter->gotcl_old = adapter->stats.gotcl;
2526
2527	e1000_update_adaptive(hw);
2528
2529	if (!netif_carrier_ok(netdev)) {
2530		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2531			/* We've lost link, so the controller stops DMA,
2532			 * but we've got queued Tx work that's never going
2533			 * to get done, so reset controller to flush Tx.
2534			 * (Do the reset outside of interrupt context). */
2535			adapter->tx_timeout_count++;
2536			schedule_work(&adapter->reset_task);
2537			/* return immediately since reset is imminent */
2538			return;
2539		}
2540	}
2541
2542	/* Simple mode for Interrupt Throttle Rate (ITR) */
2543	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2544		/*
2545		 * Symmetric Tx/Rx gets a reduced ITR=2000;
2546		 * Total asymmetrical Tx or Rx gets ITR=8000;
2547		 * everyone else is between 2000-8000.
2548		 */
2549		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2550		u32 dif = (adapter->gotcl > adapter->gorcl ?
2551			    adapter->gotcl - adapter->gorcl :
2552			    adapter->gorcl - adapter->gotcl) / 10000;
2553		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2554
2555		ew32(ITR, 1000000000 / (itr * 256));
2556	}
2557
2558	/* Cause software interrupt to ensure rx ring is cleaned */
2559	ew32(ICS, E1000_ICS_RXDMT0);
2560
2561	/* Force detection of hung controller every watchdog period */
2562	adapter->detect_tx_hung = true;
2563
2564	/* Reset the timer */
2565	if (!test_bit(__E1000_DOWN, &adapter->flags))
2566		mod_timer(&adapter->watchdog_timer,
2567		          round_jiffies(jiffies + 2 * HZ));
2568}
2569
2570enum latency_range {
2571	lowest_latency = 0,
2572	low_latency = 1,
2573	bulk_latency = 2,
2574	latency_invalid = 255
2575};
2576
2577/**
2578 * e1000_update_itr - update the dynamic ITR value based on statistics
2579 * @adapter: pointer to adapter
2580 * @itr_setting: current adapter->itr
2581 * @packets: the number of packets during this measurement interval
2582 * @bytes: the number of bytes during this measurement interval
2583 *
2584 *      Stores a new ITR value based on packets and byte
2585 *      counts during the last interrupt.  The advantage of per interrupt
2586 *      computation is faster updates and more accurate ITR for the current
2587 *      traffic pattern.  Constants in this function were computed
2588 *      based on theoretical maximum wire speed and thresholds were set based
2589 *      on testing data as well as attempting to minimize response time
2590 *      while increasing bulk throughput.
2591 *      this functionality is controlled by the InterruptThrottleRate module
2592 *      parameter (see e1000_param.c)
2593 **/
2594static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2595				     u16 itr_setting, int packets, int bytes)
2596{
2597	unsigned int retval = itr_setting;
2598	struct e1000_hw *hw = &adapter->hw;
2599
2600	if (unlikely(hw->mac_type < e1000_82540))
2601		goto update_itr_done;
2602
2603	if (packets == 0)
2604		goto update_itr_done;
2605
2606	switch (itr_setting) {
2607	case lowest_latency:
2608		/* jumbo frames get bulk treatment*/
2609		if (bytes/packets > 8000)
2610			retval = bulk_latency;
2611		else if ((packets < 5) && (bytes > 512))
2612			retval = low_latency;
2613		break;
2614	case low_latency:  /* 50 usec aka 20000 ints/s */
2615		if (bytes > 10000) {
2616			/* jumbo frames need bulk latency setting */
2617			if (bytes/packets > 8000)
2618				retval = bulk_latency;
2619			else if ((packets < 10) || ((bytes/packets) > 1200))
2620				retval = bulk_latency;
2621			else if ((packets > 35))
2622				retval = lowest_latency;
2623		} else if (bytes/packets > 2000)
2624			retval = bulk_latency;
2625		else if (packets <= 2 && bytes < 512)
2626			retval = lowest_latency;
2627		break;
2628	case bulk_latency: /* 250 usec aka 4000 ints/s */
2629		if (bytes > 25000) {
2630			if (packets > 35)
2631				retval = low_latency;
2632		} else if (bytes < 6000) {
2633			retval = low_latency;
2634		}
2635		break;
2636	}
2637
2638update_itr_done:
2639	return retval;
2640}
2641
2642static void e1000_set_itr(struct e1000_adapter *adapter)
2643{
2644	struct e1000_hw *hw = &adapter->hw;
2645	u16 current_itr;
2646	u32 new_itr = adapter->itr;
2647
2648	if (unlikely(hw->mac_type < e1000_82540))
2649		return;
2650
2651	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2652	if (unlikely(adapter->link_speed != SPEED_1000)) {
2653		current_itr = 0;
2654		new_itr = 4000;
2655		goto set_itr_now;
2656	}
2657
2658	adapter->tx_itr = e1000_update_itr(adapter,
2659	                            adapter->tx_itr,
2660	                            adapter->total_tx_packets,
2661	                            adapter->total_tx_bytes);
2662	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2663	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2664		adapter->tx_itr = low_latency;
2665
2666	adapter->rx_itr = e1000_update_itr(adapter,
2667	                            adapter->rx_itr,
2668	                            adapter->total_rx_packets,
2669	                            adapter->total_rx_bytes);
2670	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2671	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2672		adapter->rx_itr = low_latency;
2673
2674	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2675
2676	switch (current_itr) {
2677	/* counts and packets in update_itr are dependent on these numbers */
2678	case lowest_latency:
2679		new_itr = 70000;
2680		break;
2681	case low_latency:
2682		new_itr = 20000; /* aka hwitr = ~200 */
2683		break;
2684	case bulk_latency:
2685		new_itr = 4000;
2686		break;
2687	default:
2688		break;
2689	}
2690
2691set_itr_now:
2692	if (new_itr != adapter->itr) {
2693		/* this attempts to bias the interrupt rate towards Bulk
2694		 * by adding intermediate steps when interrupt rate is
2695		 * increasing */
2696		new_itr = new_itr > adapter->itr ?
2697		             min(adapter->itr + (new_itr >> 2), new_itr) :
2698		             new_itr;
2699		adapter->itr = new_itr;
2700		ew32(ITR, 1000000000 / (new_itr * 256));
2701	}
2702}
2703
2704#define E1000_TX_FLAGS_CSUM		0x00000001
2705#define E1000_TX_FLAGS_VLAN		0x00000002
2706#define E1000_TX_FLAGS_TSO		0x00000004
2707#define E1000_TX_FLAGS_IPV4		0x00000008
2708#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2709#define E1000_TX_FLAGS_VLAN_SHIFT	16
2710
2711static int e1000_tso(struct e1000_adapter *adapter,
2712		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2713{
2714	struct e1000_context_desc *context_desc;
2715	struct e1000_buffer *buffer_info;
2716	unsigned int i;
2717	u32 cmd_length = 0;
2718	u16 ipcse = 0, tucse, mss;
2719	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2720	int err;
2721
2722	if (skb_is_gso(skb)) {
2723		if (skb_header_cloned(skb)) {
2724			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2725			if (err)
2726				return err;
2727		}
2728
2729		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2730		mss = skb_shinfo(skb)->gso_size;
2731		if (skb->protocol == htons(ETH_P_IP)) {
2732			struct iphdr *iph = ip_hdr(skb);
2733			iph->tot_len = 0;
2734			iph->check = 0;
2735			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2736								 iph->daddr, 0,
2737								 IPPROTO_TCP,
2738								 0);
2739			cmd_length = E1000_TXD_CMD_IP;
2740			ipcse = skb_transport_offset(skb) - 1;
2741		} else if (skb->protocol == htons(ETH_P_IPV6)) {
2742			ipv6_hdr(skb)->payload_len = 0;
2743			tcp_hdr(skb)->check =
2744				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2745						 &ipv6_hdr(skb)->daddr,
2746						 0, IPPROTO_TCP, 0);
2747			ipcse = 0;
2748		}
2749		ipcss = skb_network_offset(skb);
2750		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2751		tucss = skb_transport_offset(skb);
2752		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2753		tucse = 0;
2754
2755		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2756			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2757
2758		i = tx_ring->next_to_use;
2759		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2760		buffer_info = &tx_ring->buffer_info[i];
2761
2762		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2763		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2764		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2765		context_desc->upper_setup.tcp_fields.tucss = tucss;
2766		context_desc->upper_setup.tcp_fields.tucso = tucso;
2767		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2768		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2769		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2770		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2771
2772		buffer_info->time_stamp = jiffies;
2773		buffer_info->next_to_watch = i;
2774
2775		if (++i == tx_ring->count) i = 0;
2776		tx_ring->next_to_use = i;
2777
2778		return true;
2779	}
2780	return false;
2781}
2782
2783static bool e1000_tx_csum(struct e1000_adapter *adapter,
2784			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2785{
2786	struct e1000_context_desc *context_desc;
2787	struct e1000_buffer *buffer_info;
2788	unsigned int i;
2789	u8 css;
2790	u32 cmd_len = E1000_TXD_CMD_DEXT;
2791
2792	if (skb->ip_summed != CHECKSUM_PARTIAL)
2793		return false;
2794
2795	switch (skb->protocol) {
2796	case cpu_to_be16(ETH_P_IP):
2797		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2798			cmd_len |= E1000_TXD_CMD_TCP;
2799		break;
2800	case cpu_to_be16(ETH_P_IPV6):
2801		/* XXX not handling all IPV6 headers */
2802		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2803			cmd_len |= E1000_TXD_CMD_TCP;
2804		break;
2805	default:
2806		if (unlikely(net_ratelimit()))
2807			e_warn(drv, "checksum_partial proto=%x!\n",
2808			       skb->protocol);
2809		break;
2810	}
2811
2812	css = skb_checksum_start_offset(skb);
2813
2814	i = tx_ring->next_to_use;
2815	buffer_info = &tx_ring->buffer_info[i];
2816	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2817
2818	context_desc->lower_setup.ip_config = 0;
2819	context_desc->upper_setup.tcp_fields.tucss = css;
2820	context_desc->upper_setup.tcp_fields.tucso =
2821		css + skb->csum_offset;
2822	context_desc->upper_setup.tcp_fields.tucse = 0;
2823	context_desc->tcp_seg_setup.data = 0;
2824	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2825
2826	buffer_info->time_stamp = jiffies;
2827	buffer_info->next_to_watch = i;
2828
2829	if (unlikely(++i == tx_ring->count)) i = 0;
2830	tx_ring->next_to_use = i;
2831
2832	return true;
2833}
2834
2835#define E1000_MAX_TXD_PWR	12
2836#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2837
2838static int e1000_tx_map(struct e1000_adapter *adapter,
2839			struct e1000_tx_ring *tx_ring,
2840			struct sk_buff *skb, unsigned int first,
2841			unsigned int max_per_txd, unsigned int nr_frags,
2842			unsigned int mss)
2843{
2844	struct e1000_hw *hw = &adapter->hw;
2845	struct pci_dev *pdev = adapter->pdev;
2846	struct e1000_buffer *buffer_info;
2847	unsigned int len = skb_headlen(skb);
2848	unsigned int offset = 0, size, count = 0, i;
2849	unsigned int f;
2850
2851	i = tx_ring->next_to_use;
2852
2853	while (len) {
2854		buffer_info = &tx_ring->buffer_info[i];
2855		size = min(len, max_per_txd);
2856		/* Workaround for Controller erratum --
2857		 * descriptor for non-tso packet in a linear SKB that follows a
2858		 * tso gets written back prematurely before the data is fully
2859		 * DMA'd to the controller */
2860		if (!skb->data_len && tx_ring->last_tx_tso &&
2861		    !skb_is_gso(skb)) {
2862			tx_ring->last_tx_tso = 0;
2863			size -= 4;
2864		}
2865
2866		/* Workaround for premature desc write-backs
2867		 * in TSO mode.  Append 4-byte sentinel desc */
2868		if (unlikely(mss && !nr_frags && size == len && size > 8))
2869			size -= 4;
2870		/* work-around for errata 10 and it applies
2871		 * to all controllers in PCI-X mode
2872		 * The fix is to make sure that the first descriptor of a
2873		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2874		 */
2875		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2876		                (size > 2015) && count == 0))
2877		        size = 2015;
2878
2879		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2880		 * terminating buffers within evenly-aligned dwords. */
2881		if (unlikely(adapter->pcix_82544 &&
2882		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2883		   size > 4))
2884			size -= 4;
2885
2886		buffer_info->length = size;
2887		/* set time_stamp *before* dma to help avoid a possible race */
2888		buffer_info->time_stamp = jiffies;
2889		buffer_info->mapped_as_page = false;
2890		buffer_info->dma = dma_map_single(&pdev->dev,
2891						  skb->data + offset,
2892						  size,	DMA_TO_DEVICE);
2893		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2894			goto dma_error;
2895		buffer_info->next_to_watch = i;
2896
2897		len -= size;
2898		offset += size;
2899		count++;
2900		if (len) {
2901			i++;
2902			if (unlikely(i == tx_ring->count))
2903				i = 0;
2904		}
2905	}
2906
2907	for (f = 0; f < nr_frags; f++) {
2908		struct skb_frag_struct *frag;
2909
2910		frag = &skb_shinfo(skb)->frags[f];
2911		len = frag->size;
2912		offset = frag->page_offset;
2913
2914		while (len) {
2915			i++;
2916			if (unlikely(i == tx_ring->count))
2917				i = 0;
2918
2919			buffer_info = &tx_ring->buffer_info[i];
2920			size = min(len, max_per_txd);
2921			/* Workaround for premature desc write-backs
2922			 * in TSO mode.  Append 4-byte sentinel desc */
2923			if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2924				size -= 4;
2925			/* Workaround for potential 82544 hang in PCI-X.
2926			 * Avoid terminating buffers within evenly-aligned
2927			 * dwords. */
2928			if (unlikely(adapter->pcix_82544 &&
2929			    !((unsigned long)(page_to_phys(frag->page) + offset
2930			                      + size - 1) & 4) &&
2931			    size > 4))
2932				size -= 4;
2933
2934			buffer_info->length = size;
2935			buffer_info->time_stamp = jiffies;
2936			buffer_info->mapped_as_page = true;
2937			buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
2938							offset,	size,
2939							DMA_TO_DEVICE);
2940			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2941				goto dma_error;
2942			buffer_info->next_to_watch = i;
2943
2944			len -= size;
2945			offset += size;
2946			count++;
2947		}
2948	}
2949
2950	tx_ring->buffer_info[i].skb = skb;
2951	tx_ring->buffer_info[first].next_to_watch = i;
2952
2953	return count;
2954
2955dma_error:
2956	dev_err(&pdev->dev, "TX DMA map failed\n");
2957	buffer_info->dma = 0;
2958	if (count)
2959		count--;
2960
2961	while (count--) {
2962		if (i==0)
2963			i += tx_ring->count;
2964		i--;
2965		buffer_info = &tx_ring->buffer_info[i];
2966		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2967	}
2968
2969	return 0;
2970}
2971
2972static void e1000_tx_queue(struct e1000_adapter *adapter,
2973			   struct e1000_tx_ring *tx_ring, int tx_flags,
2974			   int count)
2975{
2976	struct e1000_hw *hw = &adapter->hw;
2977	struct e1000_tx_desc *tx_desc = NULL;
2978	struct e1000_buffer *buffer_info;
2979	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2980	unsigned int i;
2981
2982	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2983		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2984		             E1000_TXD_CMD_TSE;
2985		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2986
2987		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2988			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2989	}
2990
2991	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2992		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2993		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2994	}
2995
2996	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2997		txd_lower |= E1000_TXD_CMD_VLE;
2998		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2999	}
3000
3001	i = tx_ring->next_to_use;
3002
3003	while (count--) {
3004		buffer_info = &tx_ring->buffer_info[i];
3005		tx_desc = E1000_TX_DESC(*tx_ring, i);
3006		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3007		tx_desc->lower.data =
3008			cpu_to_le32(txd_lower | buffer_info->length);
3009		tx_desc->upper.data = cpu_to_le32(txd_upper);
3010		if (unlikely(++i == tx_ring->count)) i = 0;
3011	}
3012
3013	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3014
3015	/* Force memory writes to complete before letting h/w
3016	 * know there are new descriptors to fetch.  (Only
3017	 * applicable for weak-ordered memory model archs,
3018	 * such as IA-64). */
3019	wmb();
3020
3021	tx_ring->next_to_use = i;
3022	writel(i, hw->hw_addr + tx_ring->tdt);
3023	/* we need this if more than one processor can write to our tail
3024	 * at a time, it syncronizes IO on IA64/Altix systems */
3025	mmiowb();
3026}
3027
3028/**
3029 * 82547 workaround to avoid controller hang in half-duplex environment.
3030 * The workaround is to avoid queuing a large packet that would span
3031 * the internal Tx FIFO ring boundary by notifying the stack to resend
3032 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3033 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3034 * to the beginning of the Tx FIFO.
3035 **/
3036
3037#define E1000_FIFO_HDR			0x10
3038#define E1000_82547_PAD_LEN		0x3E0
3039
3040static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3041				       struct sk_buff *skb)
3042{
3043	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3044	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3045
3046	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3047
3048	if (adapter->link_duplex != HALF_DUPLEX)
3049		goto no_fifo_stall_required;
3050
3051	if (atomic_read(&adapter->tx_fifo_stall))
3052		return 1;
3053
3054	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3055		atomic_set(&adapter->tx_fifo_stall, 1);
3056		return 1;
3057	}
3058
3059no_fifo_stall_required:
3060	adapter->tx_fifo_head += skb_fifo_len;
3061	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3062		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3063	return 0;
3064}
3065
3066static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3067{
3068	struct e1000_adapter *adapter = netdev_priv(netdev);
3069	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3070
3071	netif_stop_queue(netdev);
3072	/* Herbert's original patch had:
3073	 *  smp_mb__after_netif_stop_queue();
3074	 * but since that doesn't exist yet, just open code it. */
3075	smp_mb();
3076
3077	/* We need to check again in a case another CPU has just
3078	 * made room available. */
3079	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3080		return -EBUSY;
3081
3082	/* A reprieve! */
3083	netif_start_queue(netdev);
3084	++adapter->restart_queue;
3085	return 0;
3086}
3087
3088static int e1000_maybe_stop_tx(struct net_device *netdev,
3089                               struct e1000_tx_ring *tx_ring, int size)
3090{
3091	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3092		return 0;
3093	return __e1000_maybe_stop_tx(netdev, size);
3094}
3095
3096#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3097static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3098				    struct net_device *netdev)
3099{
3100	struct e1000_adapter *adapter = netdev_priv(netdev);
3101	struct e1000_hw *hw = &adapter->hw;
3102	struct e1000_tx_ring *tx_ring;
3103	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3104	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3105	unsigned int tx_flags = 0;
3106	unsigned int len = skb_headlen(skb);
3107	unsigned int nr_frags;
3108	unsigned int mss;
3109	int count = 0;
3110	int tso;
3111	unsigned int f;
3112
3113	/* This goes back to the question of how to logically map a tx queue
3114	 * to a flow.  Right now, performance is impacted slightly negatively
3115	 * if using multiple tx queues.  If the stack breaks away from a
3116	 * single qdisc implementation, we can look at this again. */
3117	tx_ring = adapter->tx_ring;
3118
3119	if (unlikely(skb->len <= 0)) {
3120		dev_kfree_skb_any(skb);
3121		return NETDEV_TX_OK;
3122	}
3123
3124	mss = skb_shinfo(skb)->gso_size;
3125	/* The controller does a simple calculation to
3126	 * make sure there is enough room in the FIFO before
3127	 * initiating the DMA for each buffer.  The calc is:
3128	 * 4 = ceil(buffer len/mss).  To make sure we don't
3129	 * overrun the FIFO, adjust the max buffer len if mss
3130	 * drops. */
3131	if (mss) {
3132		u8 hdr_len;
3133		max_per_txd = min(mss << 2, max_per_txd);
3134		max_txd_pwr = fls(max_per_txd) - 1;
3135
3136		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3137		if (skb->data_len && hdr_len == len) {
3138			switch (hw->mac_type) {
3139				unsigned int pull_size;
3140			case e1000_82544:
3141				/* Make sure we have room to chop off 4 bytes,
3142				 * and that the end alignment will work out to
3143				 * this hardware's requirements
3144				 * NOTE: this is a TSO only workaround
3145				 * if end byte alignment not correct move us
3146				 * into the next dword */
3147				if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3148					break;
3149				/* fall through */
3150				pull_size = min((unsigned int)4, skb->data_len);
3151				if (!__pskb_pull_tail(skb, pull_size)) {
3152					e_err(drv, "__pskb_pull_tail "
3153					      "failed.\n");
3154					dev_kfree_skb_any(skb);
3155					return NETDEV_TX_OK;
3156				}
3157				len = skb_headlen(skb);
3158				break;
3159			default:
3160				/* do nothing */
3161				break;
3162			}
3163		}
3164	}
3165
3166	/* reserve a descriptor for the offload context */
3167	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3168		count++;
3169	count++;
3170
3171	/* Controller Erratum workaround */
3172	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3173		count++;
3174
3175	count += TXD_USE_COUNT(len, max_txd_pwr);
3176
3177	if (adapter->pcix_82544)
3178		count++;
3179
3180	/* work-around for errata 10 and it applies to all controllers
3181	 * in PCI-X mode, so add one more descriptor to the count
3182	 */
3183	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3184			(len > 2015)))
3185		count++;
3186
3187	nr_frags = skb_shinfo(skb)->nr_frags;
3188	for (f = 0; f < nr_frags; f++)
3189		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3190				       max_txd_pwr);
3191	if (adapter->pcix_82544)
3192		count += nr_frags;
3193
3194	/* need: count + 2 desc gap to keep tail from touching
3195	 * head, otherwise try next time */
3196	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3197		return NETDEV_TX_BUSY;
3198
3199	if (unlikely(hw->mac_type == e1000_82547)) {
3200		if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3201			netif_stop_queue(netdev);
3202			if (!test_bit(__E1000_DOWN, &adapter->flags))
3203				mod_timer(&adapter->tx_fifo_stall_timer,
3204				          jiffies + 1);
3205			return NETDEV_TX_BUSY;
3206		}
3207	}
3208
3209	if (vlan_tx_tag_present(skb)) {
3210		tx_flags |= E1000_TX_FLAGS_VLAN;
3211		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3212	}
3213
3214	first = tx_ring->next_to_use;
3215
3216	tso = e1000_tso(adapter, tx_ring, skb);
3217	if (tso < 0) {
3218		dev_kfree_skb_any(skb);
3219		return NETDEV_TX_OK;
3220	}
3221
3222	if (likely(tso)) {
3223		if (likely(hw->mac_type != e1000_82544))
3224			tx_ring->last_tx_tso = 1;
3225		tx_flags |= E1000_TX_FLAGS_TSO;
3226	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3227		tx_flags |= E1000_TX_FLAGS_CSUM;
3228
3229	if (likely(skb->protocol == htons(ETH_P_IP)))
3230		tx_flags |= E1000_TX_FLAGS_IPV4;
3231
3232	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3233	                     nr_frags, mss);
3234
3235	if (count) {
3236		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3237		/* Make sure there is space in the ring for the next send. */
3238		e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3239
3240	} else {
3241		dev_kfree_skb_any(skb);
3242		tx_ring->buffer_info[first].time_stamp = 0;
3243		tx_ring->next_to_use = first;
3244	}
3245
3246	return NETDEV_TX_OK;
3247}
3248
3249/**
3250 * e1000_tx_timeout - Respond to a Tx Hang
3251 * @netdev: network interface device structure
3252 **/
3253
3254static void e1000_tx_timeout(struct net_device *netdev)
3255{
3256	struct e1000_adapter *adapter = netdev_priv(netdev);
3257
3258	/* Do the reset outside of interrupt context */
3259	adapter->tx_timeout_count++;
3260	schedule_work(&adapter->reset_task);
3261}
3262
3263static void e1000_reset_task(struct work_struct *work)
3264{
3265	struct e1000_adapter *adapter =
3266		container_of(work, struct e1000_adapter, reset_task);
3267
3268	e1000_reinit_safe(adapter);
3269}
3270
3271/**
3272 * e1000_get_stats - Get System Network Statistics
3273 * @netdev: network interface device structure
3274 *
3275 * Returns the address of the device statistics structure.
3276 * The statistics are actually updated from the timer callback.
3277 **/
3278
3279static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3280{
3281	/* only return the current stats */
3282	return &netdev->stats;
3283}
3284
3285/**
3286 * e1000_change_mtu - Change the Maximum Transfer Unit
3287 * @netdev: network interface device structure
3288 * @new_mtu: new value for maximum frame size
3289 *
3290 * Returns 0 on success, negative on failure
3291 **/
3292
3293static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3294{
3295	struct e1000_adapter *adapter = netdev_priv(netdev);
3296	struct e1000_hw *hw = &adapter->hw;
3297	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3298
3299	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3300	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3301		e_err(probe, "Invalid MTU setting\n");
3302		return -EINVAL;
3303	}
3304
3305	/* Adapter-specific max frame size limits. */
3306	switch (hw->mac_type) {
3307	case e1000_undefined ... e1000_82542_rev2_1:
3308		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3309			e_err(probe, "Jumbo Frames not supported.\n");
3310			return -EINVAL;
3311		}
3312		break;
3313	default:
3314		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3315		break;
3316	}
3317
3318	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3319		msleep(1);
3320	/* e1000_down has a dependency on max_frame_size */
3321	hw->max_frame_size = max_frame;
3322	if (netif_running(netdev))
3323		e1000_down(adapter);
3324
3325	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3326	 * means we reserve 2 more, this pushes us to allocate from the next
3327	 * larger slab size.
3328	 * i.e. RXBUFFER_2048 --> size-4096 slab
3329	 *  however with the new *_jumbo_rx* routines, jumbo receives will use
3330	 *  fragmented skbs */
3331
3332	if (max_frame <= E1000_RXBUFFER_2048)
3333		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3334	else
3335#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3336		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3337#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3338		adapter->rx_buffer_len = PAGE_SIZE;
3339#endif
3340
3341	/* adjust allocation if LPE protects us, and we aren't using SBP */
3342	if (!hw->tbi_compatibility_on &&
3343	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3344	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3345		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3346
3347	pr_info("%s changing MTU from %d to %d\n",
3348		netdev->name, netdev->mtu, new_mtu);
3349	netdev->mtu = new_mtu;
3350
3351	if (netif_running(netdev))
3352		e1000_up(adapter);
3353	else
3354		e1000_reset(adapter);
3355
3356	clear_bit(__E1000_RESETTING, &adapter->flags);
3357
3358	return 0;
3359}
3360
3361/**
3362 * e1000_update_stats - Update the board statistics counters
3363 * @adapter: board private structure
3364 **/
3365
3366void e1000_update_stats(struct e1000_adapter *adapter)
3367{
3368	struct net_device *netdev = adapter->netdev;
3369	struct e1000_hw *hw = &adapter->hw;
3370	struct pci_dev *pdev = adapter->pdev;
3371	unsigned long flags;
3372	u16 phy_tmp;
3373
3374#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3375
3376	/*
3377	 * Prevent stats update while adapter is being reset, or if the pci
3378	 * connection is down.
3379	 */
3380	if (adapter->link_speed == 0)
3381		return;
3382	if (pci_channel_offline(pdev))
3383		return;
3384
3385	spin_lock_irqsave(&adapter->stats_lock, flags);
3386
3387	/* these counters are modified from e1000_tbi_adjust_stats,
3388	 * called from the interrupt context, so they must only
3389	 * be written while holding adapter->stats_lock
3390	 */
3391
3392	adapter->stats.crcerrs += er32(CRCERRS);
3393	adapter->stats.gprc += er32(GPRC);
3394	adapter->stats.gorcl += er32(GORCL);
3395	adapter->stats.gorch += er32(GORCH);
3396	adapter->stats.bprc += er32(BPRC);
3397	adapter->stats.mprc += er32(MPRC);
3398	adapter->stats.roc += er32(ROC);
3399
3400	adapter->stats.prc64 += er32(PRC64);
3401	adapter->stats.prc127 += er32(PRC127);
3402	adapter->stats.prc255 += er32(PRC255);
3403	adapter->stats.prc511 += er32(PRC511);
3404	adapter->stats.prc1023 += er32(PRC1023);
3405	adapter->stats.prc1522 += er32(PRC1522);
3406
3407	adapter->stats.symerrs += er32(SYMERRS);
3408	adapter->stats.mpc += er32(MPC);
3409	adapter->stats.scc += er32(SCC);
3410	adapter->stats.ecol += er32(ECOL);
3411	adapter->stats.mcc += er32(MCC);
3412	adapter->stats.latecol += er32(LATECOL);
3413	adapter->stats.dc += er32(DC);
3414	adapter->stats.sec += er32(SEC);
3415	adapter->stats.rlec += er32(RLEC);
3416	adapter->stats.xonrxc += er32(XONRXC);
3417	adapter->stats.xontxc += er32(XONTXC);
3418	adapter->stats.xoffrxc += er32(XOFFRXC);
3419	adapter->stats.xofftxc += er32(XOFFTXC);
3420	adapter->stats.fcruc += er32(FCRUC);
3421	adapter->stats.gptc += er32(GPTC);
3422	adapter->stats.gotcl += er32(GOTCL);
3423	adapter->stats.gotch += er32(GOTCH);
3424	adapter->stats.rnbc += er32(RNBC);
3425	adapter->stats.ruc += er32(RUC);
3426	adapter->stats.rfc += er32(RFC);
3427	adapter->stats.rjc += er32(RJC);
3428	adapter->stats.torl += er32(TORL);
3429	adapter->stats.torh += er32(TORH);
3430	adapter->stats.totl += er32(TOTL);
3431	adapter->stats.toth += er32(TOTH);
3432	adapter->stats.tpr += er32(TPR);
3433
3434	adapter->stats.ptc64 += er32(PTC64);
3435	adapter->stats.ptc127 += er32(PTC127);
3436	adapter->stats.ptc255 += er32(PTC255);
3437	adapter->stats.ptc511 += er32(PTC511);
3438	adapter->stats.ptc1023 += er32(PTC1023);
3439	adapter->stats.ptc1522 += er32(PTC1522);
3440
3441	adapter->stats.mptc += er32(MPTC);
3442	adapter->stats.bptc += er32(BPTC);
3443
3444	/* used for adaptive IFS */
3445
3446	hw->tx_packet_delta = er32(TPT);
3447	adapter->stats.tpt += hw->tx_packet_delta;
3448	hw->collision_delta = er32(COLC);
3449	adapter->stats.colc += hw->collision_delta;
3450
3451	if (hw->mac_type >= e1000_82543) {
3452		adapter->stats.algnerrc += er32(ALGNERRC);
3453		adapter->stats.rxerrc += er32(RXERRC);
3454		adapter->stats.tncrs += er32(TNCRS);
3455		adapter->stats.cexterr += er32(CEXTERR);
3456		adapter->stats.tsctc += er32(TSCTC);
3457		adapter->stats.tsctfc += er32(TSCTFC);
3458	}
3459
3460	/* Fill out the OS statistics structure */
3461	netdev->stats.multicast = adapter->stats.mprc;
3462	netdev->stats.collisions = adapter->stats.colc;
3463
3464	/* Rx Errors */
3465
3466	/* RLEC on some newer hardware can be incorrect so build
3467	* our own version based on RUC and ROC */
3468	netdev->stats.rx_errors = adapter->stats.rxerrc +
3469		adapter->stats.crcerrs + adapter->stats.algnerrc +
3470		adapter->stats.ruc + adapter->stats.roc +
3471		adapter->stats.cexterr;
3472	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3473	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3474	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3475	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3476	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3477
3478	/* Tx Errors */
3479	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3480	netdev->stats.tx_errors = adapter->stats.txerrc;
3481	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3482	netdev->stats.tx_window_errors = adapter->stats.latecol;
3483	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3484	if (hw->bad_tx_carr_stats_fd &&
3485	    adapter->link_duplex == FULL_DUPLEX) {
3486		netdev->stats.tx_carrier_errors = 0;
3487		adapter->stats.tncrs = 0;
3488	}
3489
3490	/* Tx Dropped needs to be maintained elsewhere */
3491
3492	/* Phy Stats */
3493	if (hw->media_type == e1000_media_type_copper) {
3494		if ((adapter->link_speed == SPEED_1000) &&
3495		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3496			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3497			adapter->phy_stats.idle_errors += phy_tmp;
3498		}
3499
3500		if ((hw->mac_type <= e1000_82546) &&
3501		   (hw->phy_type == e1000_phy_m88) &&
3502		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3503			adapter->phy_stats.receive_errors += phy_tmp;
3504	}
3505
3506	/* Management Stats */
3507	if (hw->has_smbus) {
3508		adapter->stats.mgptc += er32(MGTPTC);
3509		adapter->stats.mgprc += er32(MGTPRC);
3510		adapter->stats.mgpdc += er32(MGTPDC);
3511	}
3512
3513	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3514}
3515
3516/**
3517 * e1000_intr - Interrupt Handler
3518 * @irq: interrupt number
3519 * @data: pointer to a network interface device structure
3520 **/
3521
3522static irqreturn_t e1000_intr(int irq, void *data)
3523{
3524	struct net_device *netdev = data;
3525	struct e1000_adapter *adapter = netdev_priv(netdev);
3526	struct e1000_hw *hw = &adapter->hw;
3527	u32 icr = er32(ICR);
3528
3529	if (unlikely((!icr)))
3530		return IRQ_NONE;  /* Not our interrupt */
3531
3532	/*
3533	 * we might have caused the interrupt, but the above
3534	 * read cleared it, and just in case the driver is
3535	 * down there is nothing to do so return handled
3536	 */
3537	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3538		return IRQ_HANDLED;
3539
3540	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3541		hw->get_link_status = 1;
3542		/* guard against interrupt when we're going down */
3543		if (!test_bit(__E1000_DOWN, &adapter->flags))
3544			mod_timer(&adapter->watchdog_timer, jiffies + 1);
3545	}
3546
3547	/* disable interrupts, without the synchronize_irq bit */
3548	ew32(IMC, ~0);
3549	E1000_WRITE_FLUSH();
3550
3551	if (likely(napi_schedule_prep(&adapter->napi))) {
3552		adapter->total_tx_bytes = 0;
3553		adapter->total_tx_packets = 0;
3554		adapter->total_rx_bytes = 0;
3555		adapter->total_rx_packets = 0;
3556		__napi_schedule(&adapter->napi);
3557	} else {
3558		/* this really should not happen! if it does it is basically a
3559		 * bug, but not a hard error, so enable ints and continue */
3560		if (!test_bit(__E1000_DOWN, &adapter->flags))
3561			e1000_irq_enable(adapter);
3562	}
3563
3564	return IRQ_HANDLED;
3565}
3566
3567/**
3568 * e1000_clean - NAPI Rx polling callback
3569 * @adapter: board private structure
3570 **/
3571static int e1000_clean(struct napi_struct *napi, int budget)
3572{
3573	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3574	int tx_clean_complete = 0, work_done = 0;
3575
3576	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3577
3578	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3579
3580	if (!tx_clean_complete)
3581		work_done = budget;
3582
3583	/* If budget not fully consumed, exit the polling mode */
3584	if (work_done < budget) {
3585		if (likely(adapter->itr_setting & 3))
3586			e1000_set_itr(adapter);
3587		napi_complete(napi);
3588		if (!test_bit(__E1000_DOWN, &adapter->flags))
3589			e1000_irq_enable(adapter);
3590	}
3591
3592	return work_done;
3593}
3594
3595/**
3596 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3597 * @adapter: board private structure
3598 **/
3599static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3600			       struct e1000_tx_ring *tx_ring)
3601{
3602	struct e1000_hw *hw = &adapter->hw;
3603	struct net_device *netdev = adapter->netdev;
3604	struct e1000_tx_desc *tx_desc, *eop_desc;
3605	struct e1000_buffer *buffer_info;
3606	unsigned int i, eop;
3607	unsigned int count = 0;
3608	unsigned int total_tx_bytes=0, total_tx_packets=0;
3609
3610	i = tx_ring->next_to_clean;
3611	eop = tx_ring->buffer_info[i].next_to_watch;
3612	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3613
3614	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3615	       (count < tx_ring->count)) {
3616		bool cleaned = false;
3617		rmb();	/* read buffer_info after eop_desc */
3618		for ( ; !cleaned; count++) {
3619			tx_desc = E1000_TX_DESC(*tx_ring, i);
3620			buffer_info = &tx_ring->buffer_info[i];
3621			cleaned = (i == eop);
3622
3623			if (cleaned) {
3624				struct sk_buff *skb = buffer_info->skb;
3625				unsigned int segs, bytecount;
3626				segs = skb_shinfo(skb)->gso_segs ?: 1;
3627				/* multiply data chunks by size of headers */
3628				bytecount = ((segs - 1) * skb_headlen(skb)) +
3629				            skb->len;
3630				total_tx_packets += segs;
3631				total_tx_bytes += bytecount;
3632			}
3633			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3634			tx_desc->upper.data = 0;
3635
3636			if (unlikely(++i == tx_ring->count)) i = 0;
3637		}
3638
3639		eop = tx_ring->buffer_info[i].next_to_watch;
3640		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3641	}
3642
3643	tx_ring->next_to_clean = i;
3644
3645#define TX_WAKE_THRESHOLD 32
3646	if (unlikely(count && netif_carrier_ok(netdev) &&
3647		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3648		/* Make sure that anybody stopping the queue after this
3649		 * sees the new next_to_clean.
3650		 */
3651		smp_mb();
3652
3653		if (netif_queue_stopped(netdev) &&
3654		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3655			netif_wake_queue(netdev);
3656			++adapter->restart_queue;
3657		}
3658	}
3659
3660	if (adapter->detect_tx_hung) {
3661		/* Detect a transmit hang in hardware, this serializes the
3662		 * check with the clearing of time_stamp and movement of i */
3663		adapter->detect_tx_hung = false;
3664		if (tx_ring->buffer_info[eop].time_stamp &&
3665		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3666		               (adapter->tx_timeout_factor * HZ)) &&
3667		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3668
3669			/* detected Tx unit hang */
3670			e_err(drv, "Detected Tx Unit Hang\n"
3671			      "  Tx Queue             <%lu>\n"
3672			      "  TDH                  <%x>\n"
3673			      "  TDT                  <%x>\n"
3674			      "  next_to_use          <%x>\n"
3675			      "  next_to_clean        <%x>\n"
3676			      "buffer_info[next_to_clean]\n"
3677			      "  time_stamp           <%lx>\n"
3678			      "  next_to_watch        <%x>\n"
3679			      "  jiffies              <%lx>\n"
3680			      "  next_to_watch.status <%x>\n",
3681				(unsigned long)((tx_ring - adapter->tx_ring) /
3682					sizeof(struct e1000_tx_ring)),
3683				readl(hw->hw_addr + tx_ring->tdh),
3684				readl(hw->hw_addr + tx_ring->tdt),
3685				tx_ring->next_to_use,
3686				tx_ring->next_to_clean,
3687				tx_ring->buffer_info[eop].time_stamp,
3688				eop,
3689				jiffies,
3690				eop_desc->upper.fields.status);
3691			netif_stop_queue(netdev);
3692		}
3693	}
3694	adapter->total_tx_bytes += total_tx_bytes;
3695	adapter->total_tx_packets += total_tx_packets;
3696	netdev->stats.tx_bytes += total_tx_bytes;
3697	netdev->stats.tx_packets += total_tx_packets;
3698	return count < tx_ring->count;
3699}
3700
3701/**
3702 * e1000_rx_checksum - Receive Checksum Offload for 82543
3703 * @adapter:     board private structure
3704 * @status_err:  receive descriptor status and error fields
3705 * @csum:        receive descriptor csum field
3706 * @sk_buff:     socket buffer with received data
3707 **/
3708
3709static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3710			      u32 csum, struct sk_buff *skb)
3711{
3712	struct e1000_hw *hw = &adapter->hw;
3713	u16 status = (u16)status_err;
3714	u8 errors = (u8)(status_err >> 24);
3715
3716	skb_checksum_none_assert(skb);
3717
3718	/* 82543 or newer only */
3719	if (unlikely(hw->mac_type < e1000_82543)) return;
3720	/* Ignore Checksum bit is set */
3721	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3722	/* TCP/UDP checksum error bit is set */
3723	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3724		/* let the stack verify checksum errors */
3725		adapter->hw_csum_err++;
3726		return;
3727	}
3728	/* TCP/UDP Checksum has not been calculated */
3729	if (!(status & E1000_RXD_STAT_TCPCS))
3730		return;
3731
3732	/* It must be a TCP or UDP packet with a valid checksum */
3733	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3734		/* TCP checksum is good */
3735		skb->ip_summed = CHECKSUM_UNNECESSARY;
3736	}
3737	adapter->hw_csum_good++;
3738}
3739
3740/**
3741 * e1000_consume_page - helper function
3742 **/
3743static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3744                               u16 length)
3745{
3746	bi->page = NULL;
3747	skb->len += length;
3748	skb->data_len += length;
3749	skb->truesize += length;
3750}
3751
3752/**
3753 * e1000_receive_skb - helper function to handle rx indications
3754 * @adapter: board private structure
3755 * @status: descriptor status field as written by hardware
3756 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3757 * @skb: pointer to sk_buff to be indicated to stack
3758 */
3759static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3760			      __le16 vlan, struct sk_buff *skb)
3761{
3762	skb->protocol = eth_type_trans(skb, adapter->netdev);
3763
3764	if (status & E1000_RXD_STAT_VP) {
3765		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3766
3767		__vlan_hwaccel_put_tag(skb, vid);
3768	}
3769	napi_gro_receive(&adapter->napi, skb);
3770}
3771
3772/**
3773 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3774 * @adapter: board private structure
3775 * @rx_ring: ring to clean
3776 * @work_done: amount of napi work completed this call
3777 * @work_to_do: max amount of work allowed for this call to do
3778 *
3779 * the return value indicates whether actual cleaning was done, there
3780 * is no guarantee that everything was cleaned
3781 */
3782static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3783				     struct e1000_rx_ring *rx_ring,
3784				     int *work_done, int work_to_do)
3785{
3786	struct e1000_hw *hw = &adapter->hw;
3787	struct net_device *netdev = adapter->netdev;
3788	struct pci_dev *pdev = adapter->pdev;
3789	struct e1000_rx_desc *rx_desc, *next_rxd;
3790	struct e1000_buffer *buffer_info, *next_buffer;
3791	unsigned long irq_flags;
3792	u32 length;
3793	unsigned int i;
3794	int cleaned_count = 0;
3795	bool cleaned = false;
3796	unsigned int total_rx_bytes=0, total_rx_packets=0;
3797
3798	i = rx_ring->next_to_clean;
3799	rx_desc = E1000_RX_DESC(*rx_ring, i);
3800	buffer_info = &rx_ring->buffer_info[i];
3801
3802	while (rx_desc->status & E1000_RXD_STAT_DD) {
3803		struct sk_buff *skb;
3804		u8 status;
3805
3806		if (*work_done >= work_to_do)
3807			break;
3808		(*work_done)++;
3809		rmb(); /* read descriptor and rx_buffer_info after status DD */
3810
3811		status = rx_desc->status;
3812		skb = buffer_info->skb;
3813		buffer_info->skb = NULL;
3814
3815		if (++i == rx_ring->count) i = 0;
3816		next_rxd = E1000_RX_DESC(*rx_ring, i);
3817		prefetch(next_rxd);
3818
3819		next_buffer = &rx_ring->buffer_info[i];
3820
3821		cleaned = true;
3822		cleaned_count++;
3823		dma_unmap_page(&pdev->dev, buffer_info->dma,
3824			       buffer_info->length, DMA_FROM_DEVICE);
3825		buffer_info->dma = 0;
3826
3827		length = le16_to_cpu(rx_desc->length);
3828
3829		/* errors is only valid for DD + EOP descriptors */
3830		if (unlikely((status & E1000_RXD_STAT_EOP) &&
3831		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3832			u8 last_byte = *(skb->data + length - 1);
3833			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3834				       last_byte)) {
3835				spin_lock_irqsave(&adapter->stats_lock,
3836				                  irq_flags);
3837				e1000_tbi_adjust_stats(hw, &adapter->stats,
3838				                       length, skb->data);
3839				spin_unlock_irqrestore(&adapter->stats_lock,
3840				                       irq_flags);
3841				length--;
3842			} else {
3843				/* recycle both page and skb */
3844				buffer_info->skb = skb;
3845				/* an error means any chain goes out the window
3846				 * too */
3847				if (rx_ring->rx_skb_top)
3848					dev_kfree_skb(rx_ring->rx_skb_top);
3849				rx_ring->rx_skb_top = NULL;
3850				goto next_desc;
3851			}
3852		}
3853
3854#define rxtop rx_ring->rx_skb_top
3855		if (!(status & E1000_RXD_STAT_EOP)) {
3856			/* this descriptor is only the beginning (or middle) */
3857			if (!rxtop) {
3858				/* this is the beginning of a chain */
3859				rxtop = skb;
3860				skb_fill_page_desc(rxtop, 0, buffer_info->page,
3861				                   0, length);
3862			} else {
3863				/* this is the middle of a chain */
3864				skb_fill_page_desc(rxtop,
3865				    skb_shinfo(rxtop)->nr_frags,
3866				    buffer_info->page, 0, length);
3867				/* re-use the skb, only consumed the page */
3868				buffer_info->skb = skb;
3869			}
3870			e1000_consume_page(buffer_info, rxtop, length);
3871			goto next_desc;
3872		} else {
3873			if (rxtop) {
3874				/* end of the chain */
3875				skb_fill_page_desc(rxtop,
3876				    skb_shinfo(rxtop)->nr_frags,
3877				    buffer_info->page, 0, length);
3878				/* re-use the current skb, we only consumed the
3879				 * page */
3880				buffer_info->skb = skb;
3881				skb = rxtop;
3882				rxtop = NULL;
3883				e1000_consume_page(buffer_info, skb, length);
3884			} else {
3885				/* no chain, got EOP, this buf is the packet
3886				 * copybreak to save the put_page/alloc_page */
3887				if (length <= copybreak &&
3888				    skb_tailroom(skb) >= length) {
3889					u8 *vaddr;
3890					vaddr = kmap_atomic(buffer_info->page,
3891					                    KM_SKB_DATA_SOFTIRQ);
3892					memcpy(skb_tail_pointer(skb), vaddr, length);
3893					kunmap_atomic(vaddr,
3894					              KM_SKB_DATA_SOFTIRQ);
3895					/* re-use the page, so don't erase
3896					 * buffer_info->page */
3897					skb_put(skb, length);
3898				} else {
3899					skb_fill_page_desc(skb, 0,
3900					                   buffer_info->page, 0,
3901				                           length);
3902					e1000_consume_page(buffer_info, skb,
3903					                   length);
3904				}
3905			}
3906		}
3907
3908		/* Receive Checksum Offload XXX recompute due to CRC strip? */
3909		e1000_rx_checksum(adapter,
3910		                  (u32)(status) |
3911		                  ((u32)(rx_desc->errors) << 24),
3912		                  le16_to_cpu(rx_desc->csum), skb);
3913
3914		pskb_trim(skb, skb->len - 4);
3915
3916		/* probably a little skewed due to removing CRC */
3917		total_rx_bytes += skb->len;
3918		total_rx_packets++;
3919
3920		/* eth type trans needs skb->data to point to something */
3921		if (!pskb_may_pull(skb, ETH_HLEN)) {
3922			e_err(drv, "pskb_may_pull failed.\n");
3923			dev_kfree_skb(skb);
3924			goto next_desc;
3925		}
3926
3927		e1000_receive_skb(adapter, status, rx_desc->special, skb);
3928
3929next_desc:
3930		rx_desc->status = 0;
3931
3932		/* return some buffers to hardware, one at a time is too slow */
3933		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3934			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3935			cleaned_count = 0;
3936		}
3937
3938		/* use prefetched values */
3939		rx_desc = next_rxd;
3940		buffer_info = next_buffer;
3941	}
3942	rx_ring->next_to_clean = i;
3943
3944	cleaned_count = E1000_DESC_UNUSED(rx_ring);
3945	if (cleaned_count)
3946		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3947
3948	adapter->total_rx_packets += total_rx_packets;
3949	adapter->total_rx_bytes += total_rx_bytes;
3950	netdev->stats.rx_bytes += total_rx_bytes;
3951	netdev->stats.rx_packets += total_rx_packets;
3952	return cleaned;
3953}
3954
3955/*
3956 * this should improve performance for small packets with large amounts
3957 * of reassembly being done in the stack
3958 */
3959static void e1000_check_copybreak(struct net_device *netdev,
3960				 struct e1000_buffer *buffer_info,
3961				 u32 length, struct sk_buff **skb)
3962{
3963	struct sk_buff *new_skb;
3964
3965	if (length > copybreak)
3966		return;
3967
3968	new_skb = netdev_alloc_skb_ip_align(netdev, length);
3969	if (!new_skb)
3970		return;
3971
3972	skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
3973				       (*skb)->data - NET_IP_ALIGN,
3974				       length + NET_IP_ALIGN);
3975	/* save the skb in buffer_info as good */
3976	buffer_info->skb = *skb;
3977	*skb = new_skb;
3978}
3979
3980/**
3981 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3982 * @adapter: board private structure
3983 * @rx_ring: ring to clean
3984 * @work_done: amount of napi work completed this call
3985 * @work_to_do: max amount of work allowed for this call to do
3986 */
3987static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3988			       struct e1000_rx_ring *rx_ring,
3989			       int *work_done, int work_to_do)
3990{
3991	struct e1000_hw *hw = &adapter->hw;
3992	struct net_device *netdev = adapter->netdev;
3993	struct pci_dev *pdev = adapter->pdev;
3994	struct e1000_rx_desc *rx_desc, *next_rxd;
3995	struct e1000_buffer *buffer_info, *next_buffer;
3996	unsigned long flags;
3997	u32 length;
3998	unsigned int i;
3999	int cleaned_count = 0;
4000	bool cleaned = false;
4001	unsigned int total_rx_bytes=0, total_rx_packets=0;
4002
4003	i = rx_ring->next_to_clean;
4004	rx_desc = E1000_RX_DESC(*rx_ring, i);
4005	buffer_info = &rx_ring->buffer_info[i];
4006
4007	while (rx_desc->status & E1000_RXD_STAT_DD) {
4008		struct sk_buff *skb;
4009		u8 status;
4010
4011		if (*work_done >= work_to_do)
4012			break;
4013		(*work_done)++;
4014		rmb(); /* read descriptor and rx_buffer_info after status DD */
4015
4016		status = rx_desc->status;
4017		skb = buffer_info->skb;
4018		buffer_info->skb = NULL;
4019
4020		prefetch(skb->data - NET_IP_ALIGN);
4021
4022		if (++i == rx_ring->count) i = 0;
4023		next_rxd = E1000_RX_DESC(*rx_ring, i);
4024		prefetch(next_rxd);
4025
4026		next_buffer = &rx_ring->buffer_info[i];
4027
4028		cleaned = true;
4029		cleaned_count++;
4030		dma_unmap_single(&pdev->dev, buffer_info->dma,
4031				 buffer_info->length, DMA_FROM_DEVICE);
4032		buffer_info->dma = 0;
4033
4034		length = le16_to_cpu(rx_desc->length);
4035		/* !EOP means multiple descriptors were used to store a single
4036		 * packet, if thats the case we need to toss it.  In fact, we
4037		 * to toss every packet with the EOP bit clear and the next
4038		 * frame that _does_ have the EOP bit set, as it is by
4039		 * definition only a frame fragment
4040		 */
4041		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4042			adapter->discarding = true;
4043
4044		if (adapter->discarding) {
4045			/* All receives must fit into a single buffer */
4046			e_dbg("Receive packet consumed multiple buffers\n");
4047			/* recycle */
4048			buffer_info->skb = skb;
4049			if (status & E1000_RXD_STAT_EOP)
4050				adapter->discarding = false;
4051			goto next_desc;
4052		}
4053
4054		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4055			u8 last_byte = *(skb->data + length - 1);
4056			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4057				       last_byte)) {
4058				spin_lock_irqsave(&adapter->stats_lock, flags);
4059				e1000_tbi_adjust_stats(hw, &adapter->stats,
4060				                       length, skb->data);
4061				spin_unlock_irqrestore(&adapter->stats_lock,
4062				                       flags);
4063				length--;
4064			} else {
4065				/* recycle */
4066				buffer_info->skb = skb;
4067				goto next_desc;
4068			}
4069		}
4070
4071		/* adjust length to remove Ethernet CRC, this must be
4072		 * done after the TBI_ACCEPT workaround above */
4073		length -= 4;
4074
4075		/* probably a little skewed due to removing CRC */
4076		total_rx_bytes += length;
4077		total_rx_packets++;
4078
4079		e1000_check_copybreak(netdev, buffer_info, length, &skb);
4080
4081		skb_put(skb, length);
4082
4083		/* Receive Checksum Offload */
4084		e1000_rx_checksum(adapter,
4085				  (u32)(status) |
4086				  ((u32)(rx_desc->errors) << 24),
4087				  le16_to_cpu(rx_desc->csum), skb);
4088
4089		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4090
4091next_desc:
4092		rx_desc->status = 0;
4093
4094		/* return some buffers to hardware, one at a time is too slow */
4095		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4096			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4097			cleaned_count = 0;
4098		}
4099
4100		/* use prefetched values */
4101		rx_desc = next_rxd;
4102		buffer_info = next_buffer;
4103	}
4104	rx_ring->next_to_clean = i;
4105
4106	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4107	if (cleaned_count)
4108		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4109
4110	adapter->total_rx_packets += total_rx_packets;
4111	adapter->total_rx_bytes += total_rx_bytes;
4112	netdev->stats.rx_bytes += total_rx_bytes;
4113	netdev->stats.rx_packets += total_rx_packets;
4114	return cleaned;
4115}
4116
4117/**
4118 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4119 * @adapter: address of board private structure
4120 * @rx_ring: pointer to receive ring structure
4121 * @cleaned_count: number of buffers to allocate this pass
4122 **/
4123
4124static void
4125e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4126                             struct e1000_rx_ring *rx_ring, int cleaned_count)
4127{
4128	struct net_device *netdev = adapter->netdev;
4129	struct pci_dev *pdev = adapter->pdev;
4130	struct e1000_rx_desc *rx_desc;
4131	struct e1000_buffer *buffer_info;
4132	struct sk_buff *skb;
4133	unsigned int i;
4134	unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4135
4136	i = rx_ring->next_to_use;
4137	buffer_info = &rx_ring->buffer_info[i];
4138
4139	while (cleaned_count--) {
4140		skb = buffer_info->skb;
4141		if (skb) {
4142			skb_trim(skb, 0);
4143			goto check_page;
4144		}
4145
4146		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4147		if (unlikely(!skb)) {
4148			/* Better luck next round */
4149			adapter->alloc_rx_buff_failed++;
4150			break;
4151		}
4152
4153		/* Fix for errata 23, can't cross 64kB boundary */
4154		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4155			struct sk_buff *oldskb = skb;
4156			e_err(rx_err, "skb align check failed: %u bytes at "
4157			      "%p\n", bufsz, skb->data);
4158			/* Try again, without freeing the previous */
4159			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4160			/* Failed allocation, critical failure */
4161			if (!skb) {
4162				dev_kfree_skb(oldskb);
4163				adapter->alloc_rx_buff_failed++;
4164				break;
4165			}
4166
4167			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4168				/* give up */
4169				dev_kfree_skb(skb);
4170				dev_kfree_skb(oldskb);
4171				break; /* while (cleaned_count--) */
4172			}
4173
4174			/* Use new allocation */
4175			dev_kfree_skb(oldskb);
4176		}
4177		buffer_info->skb = skb;
4178		buffer_info->length = adapter->rx_buffer_len;
4179check_page:
4180		/* allocate a new page if necessary */
4181		if (!buffer_info->page) {
4182			buffer_info->page = alloc_page(GFP_ATOMIC);
4183			if (unlikely(!buffer_info->page)) {
4184				adapter->alloc_rx_buff_failed++;
4185				break;
4186			}
4187		}
4188
4189		if (!buffer_info->dma) {
4190			buffer_info->dma = dma_map_page(&pdev->dev,
4191			                                buffer_info->page, 0,
4192							buffer_info->length,
4193							DMA_FROM_DEVICE);
4194			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4195				put_page(buffer_info->page);
4196				dev_kfree_skb(skb);
4197				buffer_info->page = NULL;
4198				buffer_info->skb = NULL;
4199				buffer_info->dma = 0;
4200				adapter->alloc_rx_buff_failed++;
4201				break; /* while !buffer_info->skb */
4202			}
4203		}
4204
4205		rx_desc = E1000_RX_DESC(*rx_ring, i);
4206		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4207
4208		if (unlikely(++i == rx_ring->count))
4209			i = 0;
4210		buffer_info = &rx_ring->buffer_info[i];
4211	}
4212
4213	if (likely(rx_ring->next_to_use != i)) {
4214		rx_ring->next_to_use = i;
4215		if (unlikely(i-- == 0))
4216			i = (rx_ring->count - 1);
4217
4218		/* Force memory writes to complete before letting h/w
4219		 * know there are new descriptors to fetch.  (Only
4220		 * applicable for weak-ordered memory model archs,
4221		 * such as IA-64). */
4222		wmb();
4223		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4224	}
4225}
4226
4227/**
4228 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4229 * @adapter: address of board private structure
4230 **/
4231
4232static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4233				   struct e1000_rx_ring *rx_ring,
4234				   int cleaned_count)
4235{
4236	struct e1000_hw *hw = &adapter->hw;
4237	struct net_device *netdev = adapter->netdev;
4238	struct pci_dev *pdev = adapter->pdev;
4239	struct e1000_rx_desc *rx_desc;
4240	struct e1000_buffer *buffer_info;
4241	struct sk_buff *skb;
4242	unsigned int i;
4243	unsigned int bufsz = adapter->rx_buffer_len;
4244
4245	i = rx_ring->next_to_use;
4246	buffer_info = &rx_ring->buffer_info[i];
4247
4248	while (cleaned_count--) {
4249		skb = buffer_info->skb;
4250		if (skb) {
4251			skb_trim(skb, 0);
4252			goto map_skb;
4253		}
4254
4255		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4256		if (unlikely(!skb)) {
4257			/* Better luck next round */
4258			adapter->alloc_rx_buff_failed++;
4259			break;
4260		}
4261
4262		/* Fix for errata 23, can't cross 64kB boundary */
4263		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4264			struct sk_buff *oldskb = skb;
4265			e_err(rx_err, "skb align check failed: %u bytes at "
4266			      "%p\n", bufsz, skb->data);
4267			/* Try again, without freeing the previous */
4268			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4269			/* Failed allocation, critical failure */
4270			if (!skb) {
4271				dev_kfree_skb(oldskb);
4272				adapter->alloc_rx_buff_failed++;
4273				break;
4274			}
4275
4276			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4277				/* give up */
4278				dev_kfree_skb(skb);
4279				dev_kfree_skb(oldskb);
4280				adapter->alloc_rx_buff_failed++;
4281				break; /* while !buffer_info->skb */
4282			}
4283
4284			/* Use new allocation */
4285			dev_kfree_skb(oldskb);
4286		}
4287		buffer_info->skb = skb;
4288		buffer_info->length = adapter->rx_buffer_len;
4289map_skb:
4290		buffer_info->dma = dma_map_single(&pdev->dev,
4291						  skb->data,
4292						  buffer_info->length,
4293						  DMA_FROM_DEVICE);
4294		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4295			dev_kfree_skb(skb);
4296			buffer_info->skb = NULL;
4297			buffer_info->dma = 0;
4298			adapter->alloc_rx_buff_failed++;
4299			break; /* while !buffer_info->skb */
4300		}
4301
4302		/*
4303		 * XXX if it was allocated cleanly it will never map to a
4304		 * boundary crossing
4305		 */
4306
4307		/* Fix for errata 23, can't cross 64kB boundary */
4308		if (!e1000_check_64k_bound(adapter,
4309					(void *)(unsigned long)buffer_info->dma,
4310					adapter->rx_buffer_len)) {
4311			e_err(rx_err, "dma align check failed: %u bytes at "
4312			      "%p\n", adapter->rx_buffer_len,
4313			      (void *)(unsigned long)buffer_info->dma);
4314			dev_kfree_skb(skb);
4315			buffer_info->skb = NULL;
4316
4317			dma_unmap_single(&pdev->dev, buffer_info->dma,
4318					 adapter->rx_buffer_len,
4319					 DMA_FROM_DEVICE);
4320			buffer_info->dma = 0;
4321
4322			adapter->alloc_rx_buff_failed++;
4323			break; /* while !buffer_info->skb */
4324		}
4325		rx_desc = E1000_RX_DESC(*rx_ring, i);
4326		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4327
4328		if (unlikely(++i == rx_ring->count))
4329			i = 0;
4330		buffer_info = &rx_ring->buffer_info[i];
4331	}
4332
4333	if (likely(rx_ring->next_to_use != i)) {
4334		rx_ring->next_to_use = i;
4335		if (unlikely(i-- == 0))
4336			i = (rx_ring->count - 1);
4337
4338		/* Force memory writes to complete before letting h/w
4339		 * know there are new descriptors to fetch.  (Only
4340		 * applicable for weak-ordered memory model archs,
4341		 * such as IA-64). */
4342		wmb();
4343		writel(i, hw->hw_addr + rx_ring->rdt);
4344	}
4345}
4346
4347/**
4348 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4349 * @adapter:
4350 **/
4351
4352static void e1000_smartspeed(struct e1000_adapter *adapter)
4353{
4354	struct e1000_hw *hw = &adapter->hw;
4355	u16 phy_status;
4356	u16 phy_ctrl;
4357
4358	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4359	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4360		return;
4361
4362	if (adapter->smartspeed == 0) {
4363		/* If Master/Slave config fault is asserted twice,
4364		 * we assume back-to-back */
4365		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4366		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4367		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4368		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4369		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4370		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4371			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4372			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4373					    phy_ctrl);
4374			adapter->smartspeed++;
4375			if (!e1000_phy_setup_autoneg(hw) &&
4376			   !e1000_read_phy_reg(hw, PHY_CTRL,
4377				   	       &phy_ctrl)) {
4378				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4379					     MII_CR_RESTART_AUTO_NEG);
4380				e1000_write_phy_reg(hw, PHY_CTRL,
4381						    phy_ctrl);
4382			}
4383		}
4384		return;
4385	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4386		/* If still no link, perhaps using 2/3 pair cable */
4387		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4388		phy_ctrl |= CR_1000T_MS_ENABLE;
4389		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4390		if (!e1000_phy_setup_autoneg(hw) &&
4391		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4392			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4393				     MII_CR_RESTART_AUTO_NEG);
4394			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4395		}
4396	}
4397	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4398	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4399		adapter->smartspeed = 0;
4400}
4401
4402/**
4403 * e1000_ioctl -
4404 * @netdev:
4405 * @ifreq:
4406 * @cmd:
4407 **/
4408
4409static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4410{
4411	switch (cmd) {
4412	case SIOCGMIIPHY:
4413	case SIOCGMIIREG:
4414	case SIOCSMIIREG:
4415		return e1000_mii_ioctl(netdev, ifr, cmd);
4416	default:
4417		return -EOPNOTSUPP;
4418	}
4419}
4420
4421/**
4422 * e1000_mii_ioctl -
4423 * @netdev:
4424 * @ifreq:
4425 * @cmd:
4426 **/
4427
4428static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4429			   int cmd)
4430{
4431	struct e1000_adapter *adapter = netdev_priv(netdev);
4432	struct e1000_hw *hw = &adapter->hw;
4433	struct mii_ioctl_data *data = if_mii(ifr);
4434	int retval;
4435	u16 mii_reg;
4436	unsigned long flags;
4437
4438	if (hw->media_type != e1000_media_type_copper)
4439		return -EOPNOTSUPP;
4440
4441	switch (cmd) {
4442	case SIOCGMIIPHY:
4443		data->phy_id = hw->phy_addr;
4444		break;
4445	case SIOCGMIIREG:
4446		spin_lock_irqsave(&adapter->stats_lock, flags);
4447		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4448				   &data->val_out)) {
4449			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4450			return -EIO;
4451		}
4452		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4453		break;
4454	case SIOCSMIIREG:
4455		if (data->reg_num & ~(0x1F))
4456			return -EFAULT;
4457		mii_reg = data->val_in;
4458		spin_lock_irqsave(&adapter->stats_lock, flags);
4459		if (e1000_write_phy_reg(hw, data->reg_num,
4460					mii_reg)) {
4461			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4462			return -EIO;
4463		}
4464		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4465		if (hw->media_type == e1000_media_type_copper) {
4466			switch (data->reg_num) {
4467			case PHY_CTRL:
4468				if (mii_reg & MII_CR_POWER_DOWN)
4469					break;
4470				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4471					hw->autoneg = 1;
4472					hw->autoneg_advertised = 0x2F;
4473				} else {
4474					u32 speed;
4475					if (mii_reg & 0x40)
4476						speed = SPEED_1000;
4477					else if (mii_reg & 0x2000)
4478						speed = SPEED_100;
4479					else
4480						speed = SPEED_10;
4481					retval = e1000_set_spd_dplx(
4482						adapter, speed,
4483						((mii_reg & 0x100)
4484						 ? DUPLEX_FULL :
4485						 DUPLEX_HALF));
4486					if (retval)
4487						return retval;
4488				}
4489				if (netif_running(adapter->netdev))
4490					e1000_reinit_locked(adapter);
4491				else
4492					e1000_reset(adapter);
4493				break;
4494			case M88E1000_PHY_SPEC_CTRL:
4495			case M88E1000_EXT_PHY_SPEC_CTRL:
4496				if (e1000_phy_reset(hw))
4497					return -EIO;
4498				break;
4499			}
4500		} else {
4501			switch (data->reg_num) {
4502			case PHY_CTRL:
4503				if (mii_reg & MII_CR_POWER_DOWN)
4504					break;
4505				if (netif_running(adapter->netdev))
4506					e1000_reinit_locked(adapter);
4507				else
4508					e1000_reset(adapter);
4509				break;
4510			}
4511		}
4512		break;
4513	default:
4514		return -EOPNOTSUPP;
4515	}
4516	return E1000_SUCCESS;
4517}
4518
4519void e1000_pci_set_mwi(struct e1000_hw *hw)
4520{
4521	struct e1000_adapter *adapter = hw->back;
4522	int ret_val = pci_set_mwi(adapter->pdev);
4523
4524	if (ret_val)
4525		e_err(probe, "Error in setting MWI\n");
4526}
4527
4528void e1000_pci_clear_mwi(struct e1000_hw *hw)
4529{
4530	struct e1000_adapter *adapter = hw->back;
4531
4532	pci_clear_mwi(adapter->pdev);
4533}
4534
4535int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4536{
4537	struct e1000_adapter *adapter = hw->back;
4538	return pcix_get_mmrbc(adapter->pdev);
4539}
4540
4541void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4542{
4543	struct e1000_adapter *adapter = hw->back;
4544	pcix_set_mmrbc(adapter->pdev, mmrbc);
4545}
4546
4547void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4548{
4549	outl(value, port);
4550}
4551
4552static bool e1000_vlan_used(struct e1000_adapter *adapter)
4553{
4554	u16 vid;
4555
4556	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4557		return true;
4558	return false;
4559}
4560
4561static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4562				     bool filter_on)
4563{
4564	struct e1000_hw *hw = &adapter->hw;
4565	u32 rctl;
4566
4567	if (!test_bit(__E1000_DOWN, &adapter->flags))
4568		e1000_irq_disable(adapter);
4569
4570	if (filter_on) {
4571		/* enable VLAN receive filtering */
4572		rctl = er32(RCTL);
4573		rctl &= ~E1000_RCTL_CFIEN;
4574		if (!(adapter->netdev->flags & IFF_PROMISC))
4575			rctl |= E1000_RCTL_VFE;
4576		ew32(RCTL, rctl);
4577		e1000_update_mng_vlan(adapter);
4578	} else {
4579		/* disable VLAN receive filtering */
4580		rctl = er32(RCTL);
4581		rctl &= ~E1000_RCTL_VFE;
4582		ew32(RCTL, rctl);
4583	}
4584
4585	if (!test_bit(__E1000_DOWN, &adapter->flags))
4586		e1000_irq_enable(adapter);
4587}
4588
4589static void e1000_vlan_mode(struct net_device *netdev, u32 features)
4590{
4591	struct e1000_adapter *adapter = netdev_priv(netdev);
4592	struct e1000_hw *hw = &adapter->hw;
4593	u32 ctrl;
4594
4595	if (!test_bit(__E1000_DOWN, &adapter->flags))
4596		e1000_irq_disable(adapter);
4597
4598	ctrl = er32(CTRL);
4599	if (features & NETIF_F_HW_VLAN_RX) {
4600		/* enable VLAN tag insert/strip */
4601		ctrl |= E1000_CTRL_VME;
4602	} else {
4603		/* disable VLAN tag insert/strip */
4604		ctrl &= ~E1000_CTRL_VME;
4605	}
4606	ew32(CTRL, ctrl);
4607
4608	if (!test_bit(__E1000_DOWN, &adapter->flags))
4609		e1000_irq_enable(adapter);
4610}
4611
4612static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4613{
4614	struct e1000_adapter *adapter = netdev_priv(netdev);
4615	struct e1000_hw *hw = &adapter->hw;
4616	u32 vfta, index;
4617
4618	if ((hw->mng_cookie.status &
4619	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4620	    (vid == adapter->mng_vlan_id))
4621		return;
4622
4623	if (!e1000_vlan_used(adapter))
4624		e1000_vlan_filter_on_off(adapter, true);
4625
4626	/* add VID to filter table */
4627	index = (vid >> 5) & 0x7F;
4628	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4629	vfta |= (1 << (vid & 0x1F));
4630	e1000_write_vfta(hw, index, vfta);
4631
4632	set_bit(vid, adapter->active_vlans);
4633}
4634
4635static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4636{
4637	struct e1000_adapter *adapter = netdev_priv(netdev);
4638	struct e1000_hw *hw = &adapter->hw;
4639	u32 vfta, index;
4640
4641	if (!test_bit(__E1000_DOWN, &adapter->flags))
4642		e1000_irq_disable(adapter);
4643	if (!test_bit(__E1000_DOWN, &adapter->flags))
4644		e1000_irq_enable(adapter);
4645
4646	/* remove VID from filter table */
4647	index = (vid >> 5) & 0x7F;
4648	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4649	vfta &= ~(1 << (vid & 0x1F));
4650	e1000_write_vfta(hw, index, vfta);
4651
4652	clear_bit(vid, adapter->active_vlans);
4653
4654	if (!e1000_vlan_used(adapter))
4655		e1000_vlan_filter_on_off(adapter, false);
4656}
4657
4658static void e1000_restore_vlan(struct e1000_adapter *adapter)
4659{
4660	u16 vid;
4661
4662	if (!e1000_vlan_used(adapter))
4663		return;
4664
4665	e1000_vlan_filter_on_off(adapter, true);
4666	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4667		e1000_vlan_rx_add_vid(adapter->netdev, vid);
4668}
4669
4670int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4671{
4672	struct e1000_hw *hw = &adapter->hw;
4673
4674	hw->autoneg = 0;
4675
4676	/* Make sure dplx is at most 1 bit and lsb of speed is not set
4677	 * for the switch() below to work */
4678	if ((spd & 1) || (dplx & ~1))
4679		goto err_inval;
4680
4681	/* Fiber NICs only allow 1000 gbps Full duplex */
4682	if ((hw->media_type == e1000_media_type_fiber) &&
4683	    spd != SPEED_1000 &&
4684	    dplx != DUPLEX_FULL)
4685		goto err_inval;
4686
4687	switch (spd + dplx) {
4688	case SPEED_10 + DUPLEX_HALF:
4689		hw->forced_speed_duplex = e1000_10_half;
4690		break;
4691	case SPEED_10 + DUPLEX_FULL:
4692		hw->forced_speed_duplex = e1000_10_full;
4693		break;
4694	case SPEED_100 + DUPLEX_HALF:
4695		hw->forced_speed_duplex = e1000_100_half;
4696		break;
4697	case SPEED_100 + DUPLEX_FULL:
4698		hw->forced_speed_duplex = e1000_100_full;
4699		break;
4700	case SPEED_1000 + DUPLEX_FULL:
4701		hw->autoneg = 1;
4702		hw->autoneg_advertised = ADVERTISE_1000_FULL;
4703		break;
4704	case SPEED_1000 + DUPLEX_HALF: /* not supported */
4705	default:
4706		goto err_inval;
4707	}
4708	return 0;
4709
4710err_inval:
4711	e_err(probe, "Unsupported Speed/Duplex configuration\n");
4712	return -EINVAL;
4713}
4714
4715static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4716{
4717	struct net_device *netdev = pci_get_drvdata(pdev);
4718	struct e1000_adapter *adapter = netdev_priv(netdev);
4719	struct e1000_hw *hw = &adapter->hw;
4720	u32 ctrl, ctrl_ext, rctl, status;
4721	u32 wufc = adapter->wol;
4722#ifdef CONFIG_PM
4723	int retval = 0;
4724#endif
4725
4726	netif_device_detach(netdev);
4727
4728	if (netif_running(netdev)) {
4729		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4730		e1000_down(adapter);
4731	}
4732
4733#ifdef CONFIG_PM
4734	retval = pci_save_state(pdev);
4735	if (retval)
4736		return retval;
4737#endif
4738
4739	status = er32(STATUS);
4740	if (status & E1000_STATUS_LU)
4741		wufc &= ~E1000_WUFC_LNKC;
4742
4743	if (wufc) {
4744		e1000_setup_rctl(adapter);
4745		e1000_set_rx_mode(netdev);
4746
4747		/* turn on all-multi mode if wake on multicast is enabled */
4748		if (wufc & E1000_WUFC_MC) {
4749			rctl = er32(RCTL);
4750			rctl |= E1000_RCTL_MPE;
4751			ew32(RCTL, rctl);
4752		}
4753
4754		if (hw->mac_type >= e1000_82540) {
4755			ctrl = er32(CTRL);
4756			/* advertise wake from D3Cold */
4757			#define E1000_CTRL_ADVD3WUC 0x00100000
4758			/* phy power management enable */
4759			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4760			ctrl |= E1000_CTRL_ADVD3WUC |
4761				E1000_CTRL_EN_PHY_PWR_MGMT;
4762			ew32(CTRL, ctrl);
4763		}
4764
4765		if (hw->media_type == e1000_media_type_fiber ||
4766		    hw->media_type == e1000_media_type_internal_serdes) {
4767			/* keep the laser running in D3 */
4768			ctrl_ext = er32(CTRL_EXT);
4769			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4770			ew32(CTRL_EXT, ctrl_ext);
4771		}
4772
4773		ew32(WUC, E1000_WUC_PME_EN);
4774		ew32(WUFC, wufc);
4775	} else {
4776		ew32(WUC, 0);
4777		ew32(WUFC, 0);
4778	}
4779
4780	e1000_release_manageability(adapter);
4781
4782	*enable_wake = !!wufc;
4783
4784	/* make sure adapter isn't asleep if manageability is enabled */
4785	if (adapter->en_mng_pt)
4786		*enable_wake = true;
4787
4788	if (netif_running(netdev))
4789		e1000_free_irq(adapter);
4790
4791	pci_disable_device(pdev);
4792
4793	return 0;
4794}
4795
4796#ifdef CONFIG_PM
4797static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4798{
4799	int retval;
4800	bool wake;
4801
4802	retval = __e1000_shutdown(pdev, &wake);
4803	if (retval)
4804		return retval;
4805
4806	if (wake) {
4807		pci_prepare_to_sleep(pdev);
4808	} else {
4809		pci_wake_from_d3(pdev, false);
4810		pci_set_power_state(pdev, PCI_D3hot);
4811	}
4812
4813	return 0;
4814}
4815
4816static int e1000_resume(struct pci_dev *pdev)
4817{
4818	struct net_device *netdev = pci_get_drvdata(pdev);
4819	struct e1000_adapter *adapter = netdev_priv(netdev);
4820	struct e1000_hw *hw = &adapter->hw;
4821	u32 err;
4822
4823	pci_set_power_state(pdev, PCI_D0);
4824	pci_restore_state(pdev);
4825	pci_save_state(pdev);
4826
4827	if (adapter->need_ioport)
4828		err = pci_enable_device(pdev);
4829	else
4830		err = pci_enable_device_mem(pdev);
4831	if (err) {
4832		pr_err("Cannot enable PCI device from suspend\n");
4833		return err;
4834	}
4835	pci_set_master(pdev);
4836
4837	pci_enable_wake(pdev, PCI_D3hot, 0);
4838	pci_enable_wake(pdev, PCI_D3cold, 0);
4839
4840	if (netif_running(netdev)) {
4841		err = e1000_request_irq(adapter);
4842		if (err)
4843			return err;
4844	}
4845
4846	e1000_power_up_phy(adapter);
4847	e1000_reset(adapter);
4848	ew32(WUS, ~0);
4849
4850	e1000_init_manageability(adapter);
4851
4852	if (netif_running(netdev))
4853		e1000_up(adapter);
4854
4855	netif_device_attach(netdev);
4856
4857	return 0;
4858}
4859#endif
4860
4861static void e1000_shutdown(struct pci_dev *pdev)
4862{
4863	bool wake;
4864
4865	__e1000_shutdown(pdev, &wake);
4866
4867	if (system_state == SYSTEM_POWER_OFF) {
4868		pci_wake_from_d3(pdev, wake);
4869		pci_set_power_state(pdev, PCI_D3hot);
4870	}
4871}
4872
4873#ifdef CONFIG_NET_POLL_CONTROLLER
4874/*
4875 * Polling 'interrupt' - used by things like netconsole to send skbs
4876 * without having to re-enable interrupts. It's not called while
4877 * the interrupt routine is executing.
4878 */
4879static void e1000_netpoll(struct net_device *netdev)
4880{
4881	struct e1000_adapter *adapter = netdev_priv(netdev);
4882
4883	disable_irq(adapter->pdev->irq);
4884	e1000_intr(adapter->pdev->irq, netdev);
4885	enable_irq(adapter->pdev->irq);
4886}
4887#endif
4888
4889/**
4890 * e1000_io_error_detected - called when PCI error is detected
4891 * @pdev: Pointer to PCI device
4892 * @state: The current pci connection state
4893 *
4894 * This function is called after a PCI bus error affecting
4895 * this device has been detected.
4896 */
4897static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4898						pci_channel_state_t state)
4899{
4900	struct net_device *netdev = pci_get_drvdata(pdev);
4901	struct e1000_adapter *adapter = netdev_priv(netdev);
4902
4903	netif_device_detach(netdev);
4904
4905	if (state == pci_channel_io_perm_failure)
4906		return PCI_ERS_RESULT_DISCONNECT;
4907
4908	if (netif_running(netdev))
4909		e1000_down(adapter);
4910	pci_disable_device(pdev);
4911
4912	/* Request a slot slot reset. */
4913	return PCI_ERS_RESULT_NEED_RESET;
4914}
4915
4916/**
4917 * e1000_io_slot_reset - called after the pci bus has been reset.
4918 * @pdev: Pointer to PCI device
4919 *
4920 * Restart the card from scratch, as if from a cold-boot. Implementation
4921 * resembles the first-half of the e1000_resume routine.
4922 */
4923static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4924{
4925	struct net_device *netdev = pci_get_drvdata(pdev);
4926	struct e1000_adapter *adapter = netdev_priv(netdev);
4927	struct e1000_hw *hw = &adapter->hw;
4928	int err;
4929
4930	if (adapter->need_ioport)
4931		err = pci_enable_device(pdev);
4932	else
4933		err = pci_enable_device_mem(pdev);
4934	if (err) {
4935		pr_err("Cannot re-enable PCI device after reset.\n");
4936		return PCI_ERS_RESULT_DISCONNECT;
4937	}
4938	pci_set_master(pdev);
4939
4940	pci_enable_wake(pdev, PCI_D3hot, 0);
4941	pci_enable_wake(pdev, PCI_D3cold, 0);
4942
4943	e1000_reset(adapter);
4944	ew32(WUS, ~0);
4945
4946	return PCI_ERS_RESULT_RECOVERED;
4947}
4948
4949/**
4950 * e1000_io_resume - called when traffic can start flowing again.
4951 * @pdev: Pointer to PCI device
4952 *
4953 * This callback is called when the error recovery driver tells us that
4954 * its OK to resume normal operation. Implementation resembles the
4955 * second-half of the e1000_resume routine.
4956 */
4957static void e1000_io_resume(struct pci_dev *pdev)
4958{
4959	struct net_device *netdev = pci_get_drvdata(pdev);
4960	struct e1000_adapter *adapter = netdev_priv(netdev);
4961
4962	e1000_init_manageability(adapter);
4963
4964	if (netif_running(netdev)) {
4965		if (e1000_up(adapter)) {
4966			pr_info("can't bring device back up after reset\n");
4967			return;
4968		}
4969	}
4970
4971	netif_device_attach(netdev);
4972}
4973
4974/* e1000_main.c */