Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * Copyright (C) 2006, 2007 Eugene Konev
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18
  19#include <linux/module.h>
  20#include <linux/init.h>
  21#include <linux/interrupt.h>
  22#include <linux/moduleparam.h>
  23
  24#include <linux/sched.h>
  25#include <linux/kernel.h>
  26#include <linux/slab.h>
  27#include <linux/errno.h>
  28#include <linux/types.h>
  29#include <linux/delay.h>
  30
  31#include <linux/netdevice.h>
  32#include <linux/if_vlan.h>
  33#include <linux/etherdevice.h>
  34#include <linux/ethtool.h>
  35#include <linux/skbuff.h>
  36#include <linux/mii.h>
  37#include <linux/phy.h>
  38#include <linux/phy_fixed.h>
  39#include <linux/platform_device.h>
  40#include <linux/dma-mapping.h>
  41#include <linux/clk.h>
  42#include <linux/gpio.h>
  43#include <linux/atomic.h>
  44
  45MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
  46MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
  47MODULE_LICENSE("GPL");
  48MODULE_ALIAS("platform:cpmac");
  49
  50static int debug_level = 8;
  51static int dumb_switch;
  52
  53/* Next 2 are only used in cpmac_probe, so it's pointless to change them */
  54module_param(debug_level, int, 0444);
  55module_param(dumb_switch, int, 0444);
  56
  57MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
  58MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
  59
  60#define CPMAC_VERSION "0.5.2"
  61/* frame size + 802.1q tag + FCS size */
  62#define CPMAC_SKB_SIZE		(ETH_FRAME_LEN + ETH_FCS_LEN + VLAN_HLEN)
  63#define CPMAC_QUEUES	8
  64
  65/* Ethernet registers */
  66#define CPMAC_TX_CONTROL		0x0004
  67#define CPMAC_TX_TEARDOWN		0x0008
  68#define CPMAC_RX_CONTROL		0x0014
  69#define CPMAC_RX_TEARDOWN		0x0018
  70#define CPMAC_MBP			0x0100
  71# define MBP_RXPASSCRC			0x40000000
  72# define MBP_RXQOS			0x20000000
  73# define MBP_RXNOCHAIN			0x10000000
  74# define MBP_RXCMF			0x01000000
  75# define MBP_RXSHORT			0x00800000
  76# define MBP_RXCEF			0x00400000
  77# define MBP_RXPROMISC			0x00200000
  78# define MBP_PROMISCCHAN(channel)	(((channel) & 0x7) << 16)
  79# define MBP_RXBCAST			0x00002000
  80# define MBP_BCASTCHAN(channel)		(((channel) & 0x7) << 8)
  81# define MBP_RXMCAST			0x00000020
  82# define MBP_MCASTCHAN(channel)		((channel) & 0x7)
  83#define CPMAC_UNICAST_ENABLE		0x0104
  84#define CPMAC_UNICAST_CLEAR		0x0108
  85#define CPMAC_MAX_LENGTH		0x010c
  86#define CPMAC_BUFFER_OFFSET		0x0110
  87#define CPMAC_MAC_CONTROL		0x0160
  88# define MAC_TXPTYPE			0x00000200
  89# define MAC_TXPACE			0x00000040
  90# define MAC_MII			0x00000020
  91# define MAC_TXFLOW			0x00000010
  92# define MAC_RXFLOW			0x00000008
  93# define MAC_MTEST			0x00000004
  94# define MAC_LOOPBACK			0x00000002
  95# define MAC_FDX			0x00000001
  96#define CPMAC_MAC_STATUS		0x0164
  97# define MAC_STATUS_QOS			0x00000004
  98# define MAC_STATUS_RXFLOW		0x00000002
  99# define MAC_STATUS_TXFLOW		0x00000001
 100#define CPMAC_TX_INT_ENABLE		0x0178
 101#define CPMAC_TX_INT_CLEAR		0x017c
 102#define CPMAC_MAC_INT_VECTOR		0x0180
 103# define MAC_INT_STATUS			0x00080000
 104# define MAC_INT_HOST			0x00040000
 105# define MAC_INT_RX			0x00020000
 106# define MAC_INT_TX			0x00010000
 107#define CPMAC_MAC_EOI_VECTOR		0x0184
 108#define CPMAC_RX_INT_ENABLE		0x0198
 109#define CPMAC_RX_INT_CLEAR		0x019c
 110#define CPMAC_MAC_INT_ENABLE		0x01a8
 111#define CPMAC_MAC_INT_CLEAR		0x01ac
 112#define CPMAC_MAC_ADDR_LO(channel)	(0x01b0 + (channel) * 4)
 113#define CPMAC_MAC_ADDR_MID		0x01d0
 114#define CPMAC_MAC_ADDR_HI		0x01d4
 115#define CPMAC_MAC_HASH_LO		0x01d8
 116#define CPMAC_MAC_HASH_HI		0x01dc
 117#define CPMAC_TX_PTR(channel)		(0x0600 + (channel) * 4)
 118#define CPMAC_RX_PTR(channel)		(0x0620 + (channel) * 4)
 119#define CPMAC_TX_ACK(channel)		(0x0640 + (channel) * 4)
 120#define CPMAC_RX_ACK(channel)		(0x0660 + (channel) * 4)
 121#define CPMAC_REG_END			0x0680
 122/*
 123 * Rx/Tx statistics
 124 * TODO: use some of them to fill stats in cpmac_stats()
 125 */
 126#define CPMAC_STATS_RX_GOOD		0x0200
 127#define CPMAC_STATS_RX_BCAST		0x0204
 128#define CPMAC_STATS_RX_MCAST		0x0208
 129#define CPMAC_STATS_RX_PAUSE		0x020c
 130#define CPMAC_STATS_RX_CRC		0x0210
 131#define CPMAC_STATS_RX_ALIGN		0x0214
 132#define CPMAC_STATS_RX_OVER		0x0218
 133#define CPMAC_STATS_RX_JABBER		0x021c
 134#define CPMAC_STATS_RX_UNDER		0x0220
 135#define CPMAC_STATS_RX_FRAG		0x0224
 136#define CPMAC_STATS_RX_FILTER		0x0228
 137#define CPMAC_STATS_RX_QOSFILTER	0x022c
 138#define CPMAC_STATS_RX_OCTETS		0x0230
 139
 140#define CPMAC_STATS_TX_GOOD		0x0234
 141#define CPMAC_STATS_TX_BCAST		0x0238
 142#define CPMAC_STATS_TX_MCAST		0x023c
 143#define CPMAC_STATS_TX_PAUSE		0x0240
 144#define CPMAC_STATS_TX_DEFER		0x0244
 145#define CPMAC_STATS_TX_COLLISION	0x0248
 146#define CPMAC_STATS_TX_SINGLECOLL	0x024c
 147#define CPMAC_STATS_TX_MULTICOLL	0x0250
 148#define CPMAC_STATS_TX_EXCESSCOLL	0x0254
 149#define CPMAC_STATS_TX_LATECOLL		0x0258
 150#define CPMAC_STATS_TX_UNDERRUN		0x025c
 151#define CPMAC_STATS_TX_CARRIERSENSE	0x0260
 152#define CPMAC_STATS_TX_OCTETS		0x0264
 153
 154#define cpmac_read(base, reg)		(readl((void __iomem *)(base) + (reg)))
 155#define cpmac_write(base, reg, val)	(writel(val, (void __iomem *)(base) + \
 156						(reg)))
 157
 158/* MDIO bus */
 159#define CPMAC_MDIO_VERSION		0x0000
 160#define CPMAC_MDIO_CONTROL		0x0004
 161# define MDIOC_IDLE			0x80000000
 162# define MDIOC_ENABLE			0x40000000
 163# define MDIOC_PREAMBLE			0x00100000
 164# define MDIOC_FAULT			0x00080000
 165# define MDIOC_FAULTDETECT		0x00040000
 166# define MDIOC_INTTEST			0x00020000
 167# define MDIOC_CLKDIV(div)		((div) & 0xff)
 168#define CPMAC_MDIO_ALIVE		0x0008
 169#define CPMAC_MDIO_LINK			0x000c
 170#define CPMAC_MDIO_ACCESS(channel)	(0x0080 + (channel) * 8)
 171# define MDIO_BUSY			0x80000000
 172# define MDIO_WRITE			0x40000000
 173# define MDIO_REG(reg)			(((reg) & 0x1f) << 21)
 174# define MDIO_PHY(phy)			(((phy) & 0x1f) << 16)
 175# define MDIO_DATA(data)		((data) & 0xffff)
 176#define CPMAC_MDIO_PHYSEL(channel)	(0x0084 + (channel) * 8)
 177# define PHYSEL_LINKSEL			0x00000040
 178# define PHYSEL_LINKINT			0x00000020
 179
 180struct cpmac_desc {
 181	u32 hw_next;
 182	u32 hw_data;
 183	u16 buflen;
 184	u16 bufflags;
 185	u16 datalen;
 186	u16 dataflags;
 187#define CPMAC_SOP			0x8000
 188#define CPMAC_EOP			0x4000
 189#define CPMAC_OWN			0x2000
 190#define CPMAC_EOQ			0x1000
 191	struct sk_buff *skb;
 192	struct cpmac_desc *next;
 193	struct cpmac_desc *prev;
 194	dma_addr_t mapping;
 195	dma_addr_t data_mapping;
 196};
 197
 198struct cpmac_priv {
 199	spinlock_t lock;
 200	spinlock_t rx_lock;
 201	struct cpmac_desc *rx_head;
 202	int ring_size;
 203	struct cpmac_desc *desc_ring;
 204	dma_addr_t dma_ring;
 205	void __iomem *regs;
 206	struct mii_bus *mii_bus;
 207	struct phy_device *phy;
 208	char phy_name[MII_BUS_ID_SIZE + 3];
 209	int oldlink, oldspeed, oldduplex;
 210	u32 msg_enable;
 211	struct net_device *dev;
 212	struct work_struct reset_work;
 213	struct platform_device *pdev;
 214	struct napi_struct napi;
 215	atomic_t reset_pending;
 216};
 217
 218static irqreturn_t cpmac_irq(int, void *);
 219static void cpmac_hw_start(struct net_device *dev);
 220static void cpmac_hw_stop(struct net_device *dev);
 221static int cpmac_stop(struct net_device *dev);
 222static int cpmac_open(struct net_device *dev);
 223
 224static void cpmac_dump_regs(struct net_device *dev)
 225{
 226	int i;
 227	struct cpmac_priv *priv = netdev_priv(dev);
 228	for (i = 0; i < CPMAC_REG_END; i += 4) {
 229		if (i % 16 == 0) {
 230			if (i)
 231				pr_cont("\n");
 232			printk(KERN_DEBUG "%s: reg[%p]:", dev->name,
 233			       priv->regs + i);
 234		}
 235		printk(" %08x", cpmac_read(priv->regs, i));
 236	}
 237	printk("\n");
 238}
 239
 240static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
 241{
 242	int i;
 243	printk(KERN_DEBUG "%s: desc[%p]:", dev->name, desc);
 244	for (i = 0; i < sizeof(*desc) / 4; i++)
 245		printk(" %08x", ((u32 *)desc)[i]);
 246	printk("\n");
 247}
 248
 249static void cpmac_dump_all_desc(struct net_device *dev)
 250{
 251	struct cpmac_priv *priv = netdev_priv(dev);
 252	struct cpmac_desc *dump = priv->rx_head;
 253	do {
 254		cpmac_dump_desc(dev, dump);
 255		dump = dump->next;
 256	} while (dump != priv->rx_head);
 257}
 258
 259static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
 260{
 261	int i;
 262	printk(KERN_DEBUG "%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
 263	for (i = 0; i < skb->len; i++) {
 264		if (i % 16 == 0) {
 265			if (i)
 266				pr_cont("\n");
 267			printk(KERN_DEBUG "%s: data[%p]:", dev->name,
 268			       skb->data + i);
 269		}
 270		printk(" %02x", ((u8 *)skb->data)[i]);
 271	}
 272	printk("\n");
 273}
 274
 275static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
 276{
 277	u32 val;
 278
 279	while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
 280		cpu_relax();
 281	cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
 282		    MDIO_PHY(phy_id));
 283	while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
 284		cpu_relax();
 285	return MDIO_DATA(val);
 286}
 287
 288static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
 289			    int reg, u16 val)
 290{
 291	while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
 292		cpu_relax();
 293	cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
 294		    MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
 295	return 0;
 296}
 297
 298static int cpmac_mdio_reset(struct mii_bus *bus)
 299{
 300	struct clk *cpmac_clk;
 301
 302	cpmac_clk = clk_get(&bus->dev, "cpmac");
 303	if (IS_ERR(cpmac_clk)) {
 304		printk(KERN_ERR "unable to get cpmac clock\n");
 305		return -1;
 306	}
 307	ar7_device_reset(AR7_RESET_BIT_MDIO);
 308	cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
 309		    MDIOC_CLKDIV(clk_get_rate(cpmac_clk) / 2200000 - 1));
 310	return 0;
 311}
 312
 313static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
 314
 315static struct mii_bus *cpmac_mii;
 316
 317static int cpmac_config(struct net_device *dev, struct ifmap *map)
 318{
 319	if (dev->flags & IFF_UP)
 320		return -EBUSY;
 321
 322	/* Don't allow changing the I/O address */
 323	if (map->base_addr != dev->base_addr)
 324		return -EOPNOTSUPP;
 325
 326	/* ignore other fields */
 327	return 0;
 328}
 329
 330static void cpmac_set_multicast_list(struct net_device *dev)
 331{
 332	struct netdev_hw_addr *ha;
 333	u8 tmp;
 334	u32 mbp, bit, hash[2] = { 0, };
 335	struct cpmac_priv *priv = netdev_priv(dev);
 336
 337	mbp = cpmac_read(priv->regs, CPMAC_MBP);
 338	if (dev->flags & IFF_PROMISC) {
 339		cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
 340			    MBP_RXPROMISC);
 341	} else {
 342		cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
 343		if (dev->flags & IFF_ALLMULTI) {
 344			/* enable all multicast mode */
 345			cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
 346			cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
 347		} else {
 348			/*
 349			 * cpmac uses some strange mac address hashing
 350			 * (not crc32)
 351			 */
 352			netdev_for_each_mc_addr(ha, dev) {
 353				bit = 0;
 354				tmp = ha->addr[0];
 355				bit  ^= (tmp >> 2) ^ (tmp << 4);
 356				tmp = ha->addr[1];
 357				bit  ^= (tmp >> 4) ^ (tmp << 2);
 358				tmp = ha->addr[2];
 359				bit  ^= (tmp >> 6) ^ tmp;
 360				tmp = ha->addr[3];
 361				bit  ^= (tmp >> 2) ^ (tmp << 4);
 362				tmp = ha->addr[4];
 363				bit  ^= (tmp >> 4) ^ (tmp << 2);
 364				tmp = ha->addr[5];
 365				bit  ^= (tmp >> 6) ^ tmp;
 366				bit &= 0x3f;
 367				hash[bit / 32] |= 1 << (bit % 32);
 368			}
 369
 370			cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
 371			cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
 372		}
 373	}
 374}
 375
 376static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv,
 377				    struct cpmac_desc *desc)
 378{
 379	struct sk_buff *skb, *result = NULL;
 380
 381	if (unlikely(netif_msg_hw(priv)))
 382		cpmac_dump_desc(priv->dev, desc);
 383	cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
 384	if (unlikely(!desc->datalen)) {
 385		if (netif_msg_rx_err(priv) && net_ratelimit())
 386			printk(KERN_WARNING "%s: rx: spurious interrupt\n",
 387			       priv->dev->name);
 388		return NULL;
 389	}
 390
 391	skb = netdev_alloc_skb_ip_align(priv->dev, CPMAC_SKB_SIZE);
 392	if (likely(skb)) {
 393		skb_put(desc->skb, desc->datalen);
 394		desc->skb->protocol = eth_type_trans(desc->skb, priv->dev);
 395		skb_checksum_none_assert(desc->skb);
 396		priv->dev->stats.rx_packets++;
 397		priv->dev->stats.rx_bytes += desc->datalen;
 398		result = desc->skb;
 399		dma_unmap_single(&priv->dev->dev, desc->data_mapping,
 400				 CPMAC_SKB_SIZE, DMA_FROM_DEVICE);
 401		desc->skb = skb;
 402		desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data,
 403						    CPMAC_SKB_SIZE,
 404						    DMA_FROM_DEVICE);
 405		desc->hw_data = (u32)desc->data_mapping;
 406		if (unlikely(netif_msg_pktdata(priv))) {
 407			printk(KERN_DEBUG "%s: received packet:\n",
 408			       priv->dev->name);
 409			cpmac_dump_skb(priv->dev, result);
 410		}
 411	} else {
 412		if (netif_msg_rx_err(priv) && net_ratelimit())
 413			printk(KERN_WARNING
 414			       "%s: low on skbs, dropping packet\n",
 415			       priv->dev->name);
 416		priv->dev->stats.rx_dropped++;
 417	}
 418
 419	desc->buflen = CPMAC_SKB_SIZE;
 420	desc->dataflags = CPMAC_OWN;
 421
 422	return result;
 423}
 424
 425static int cpmac_poll(struct napi_struct *napi, int budget)
 426{
 427	struct sk_buff *skb;
 428	struct cpmac_desc *desc, *restart;
 429	struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi);
 430	int received = 0, processed = 0;
 431
 432	spin_lock(&priv->rx_lock);
 433	if (unlikely(!priv->rx_head)) {
 434		if (netif_msg_rx_err(priv) && net_ratelimit())
 435			printk(KERN_WARNING "%s: rx: polling, but no queue\n",
 436			       priv->dev->name);
 437		spin_unlock(&priv->rx_lock);
 438		napi_complete(napi);
 439		return 0;
 440	}
 441
 442	desc = priv->rx_head;
 443	restart = NULL;
 444	while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) {
 445		processed++;
 446
 447		if ((desc->dataflags & CPMAC_EOQ) != 0) {
 448			/* The last update to eoq->hw_next didn't happen
 449			* soon enough, and the receiver stopped here.
 450			*Remember this descriptor so we can restart
 451			* the receiver after freeing some space.
 452			*/
 453			if (unlikely(restart)) {
 454				if (netif_msg_rx_err(priv))
 455					printk(KERN_ERR "%s: poll found a"
 456						" duplicate EOQ: %p and %p\n",
 457						priv->dev->name, restart, desc);
 458				goto fatal_error;
 459			}
 460
 461			restart = desc->next;
 462		}
 463
 464		skb = cpmac_rx_one(priv, desc);
 465		if (likely(skb)) {
 466			netif_receive_skb(skb);
 467			received++;
 468		}
 469		desc = desc->next;
 470	}
 471
 472	if (desc != priv->rx_head) {
 473		/* We freed some buffers, but not the whole ring,
 474		 * add what we did free to the rx list */
 475		desc->prev->hw_next = (u32)0;
 476		priv->rx_head->prev->hw_next = priv->rx_head->mapping;
 477	}
 478
 479	/* Optimization: If we did not actually process an EOQ (perhaps because
 480	 * of quota limits), check to see if the tail of the queue has EOQ set.
 481	* We should immediately restart in that case so that the receiver can
 482	* restart and run in parallel with more packet processing.
 483	* This lets us handle slightly larger bursts before running
 484	* out of ring space (assuming dev->weight < ring_size) */
 485
 486	if (!restart &&
 487	     (priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ))
 488		    == CPMAC_EOQ &&
 489	     (priv->rx_head->dataflags & CPMAC_OWN) != 0) {
 490		/* reset EOQ so the poll loop (above) doesn't try to
 491		* restart this when it eventually gets to this descriptor.
 492		*/
 493		priv->rx_head->prev->dataflags &= ~CPMAC_EOQ;
 494		restart = priv->rx_head;
 495	}
 496
 497	if (restart) {
 498		priv->dev->stats.rx_errors++;
 499		priv->dev->stats.rx_fifo_errors++;
 500		if (netif_msg_rx_err(priv) && net_ratelimit())
 501			printk(KERN_WARNING "%s: rx dma ring overrun\n",
 502			       priv->dev->name);
 503
 504		if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) {
 505			if (netif_msg_drv(priv))
 506				printk(KERN_ERR "%s: cpmac_poll is trying to "
 507					"restart rx from a descriptor that's "
 508					"not free: %p\n",
 509					priv->dev->name, restart);
 510			goto fatal_error;
 511		}
 512
 513		cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping);
 514	}
 515
 516	priv->rx_head = desc;
 517	spin_unlock(&priv->rx_lock);
 518	if (unlikely(netif_msg_rx_status(priv)))
 519		printk(KERN_DEBUG "%s: poll processed %d packets\n",
 520		       priv->dev->name, received);
 521	if (processed == 0) {
 522		/* we ran out of packets to read,
 523		 * revert to interrupt-driven mode */
 524		napi_complete(napi);
 525		cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
 526		return 0;
 527	}
 528
 529	return 1;
 530
 531fatal_error:
 532	/* Something went horribly wrong.
 533	 * Reset hardware to try to recover rather than wedging. */
 534
 535	if (netif_msg_drv(priv)) {
 536		printk(KERN_ERR "%s: cpmac_poll is confused. "
 537				"Resetting hardware\n", priv->dev->name);
 538		cpmac_dump_all_desc(priv->dev);
 539		printk(KERN_DEBUG "%s: RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n",
 540			priv->dev->name,
 541			cpmac_read(priv->regs, CPMAC_RX_PTR(0)),
 542			cpmac_read(priv->regs, CPMAC_RX_ACK(0)));
 543	}
 544
 545	spin_unlock(&priv->rx_lock);
 546	napi_complete(napi);
 547	netif_tx_stop_all_queues(priv->dev);
 548	napi_disable(&priv->napi);
 549
 550	atomic_inc(&priv->reset_pending);
 551	cpmac_hw_stop(priv->dev);
 552	if (!schedule_work(&priv->reset_work))
 553		atomic_dec(&priv->reset_pending);
 554	return 0;
 555
 556}
 557
 558static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
 559{
 560	int queue, len;
 561	struct cpmac_desc *desc;
 562	struct cpmac_priv *priv = netdev_priv(dev);
 563
 564	if (unlikely(atomic_read(&priv->reset_pending)))
 565		return NETDEV_TX_BUSY;
 566
 567	if (unlikely(skb_padto(skb, ETH_ZLEN)))
 568		return NETDEV_TX_OK;
 569
 570	len = max(skb->len, ETH_ZLEN);
 571	queue = skb_get_queue_mapping(skb);
 572	netif_stop_subqueue(dev, queue);
 573
 574	desc = &priv->desc_ring[queue];
 575	if (unlikely(desc->dataflags & CPMAC_OWN)) {
 576		if (netif_msg_tx_err(priv) && net_ratelimit())
 577			printk(KERN_WARNING "%s: tx dma ring full\n",
 578			       dev->name);
 579		return NETDEV_TX_BUSY;
 580	}
 581
 582	spin_lock(&priv->lock);
 583	spin_unlock(&priv->lock);
 584	desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
 585	desc->skb = skb;
 586	desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
 587					    DMA_TO_DEVICE);
 588	desc->hw_data = (u32)desc->data_mapping;
 589	desc->datalen = len;
 590	desc->buflen = len;
 591	if (unlikely(netif_msg_tx_queued(priv)))
 592		printk(KERN_DEBUG "%s: sending 0x%p, len=%d\n", dev->name, skb,
 593		       skb->len);
 594	if (unlikely(netif_msg_hw(priv)))
 595		cpmac_dump_desc(dev, desc);
 596	if (unlikely(netif_msg_pktdata(priv)))
 597		cpmac_dump_skb(dev, skb);
 598	cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
 599
 600	return NETDEV_TX_OK;
 601}
 602
 603static void cpmac_end_xmit(struct net_device *dev, int queue)
 604{
 605	struct cpmac_desc *desc;
 606	struct cpmac_priv *priv = netdev_priv(dev);
 607
 608	desc = &priv->desc_ring[queue];
 609	cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
 610	if (likely(desc->skb)) {
 611		spin_lock(&priv->lock);
 612		dev->stats.tx_packets++;
 613		dev->stats.tx_bytes += desc->skb->len;
 614		spin_unlock(&priv->lock);
 615		dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
 616				 DMA_TO_DEVICE);
 617
 618		if (unlikely(netif_msg_tx_done(priv)))
 619			printk(KERN_DEBUG "%s: sent 0x%p, len=%d\n", dev->name,
 620			       desc->skb, desc->skb->len);
 621
 622		dev_kfree_skb_irq(desc->skb);
 623		desc->skb = NULL;
 624		if (__netif_subqueue_stopped(dev, queue))
 625			netif_wake_subqueue(dev, queue);
 626	} else {
 627		if (netif_msg_tx_err(priv) && net_ratelimit())
 628			printk(KERN_WARNING
 629			       "%s: end_xmit: spurious interrupt\n", dev->name);
 630		if (__netif_subqueue_stopped(dev, queue))
 631			netif_wake_subqueue(dev, queue);
 632	}
 633}
 634
 635static void cpmac_hw_stop(struct net_device *dev)
 636{
 637	int i;
 638	struct cpmac_priv *priv = netdev_priv(dev);
 639	struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
 640
 641	ar7_device_reset(pdata->reset_bit);
 642	cpmac_write(priv->regs, CPMAC_RX_CONTROL,
 643		    cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
 644	cpmac_write(priv->regs, CPMAC_TX_CONTROL,
 645		    cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
 646	for (i = 0; i < 8; i++) {
 647		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
 648		cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
 649	}
 650	cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
 651	cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
 652	cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
 653	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
 654	cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
 655		    cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
 656}
 657
 658static void cpmac_hw_start(struct net_device *dev)
 659{
 660	int i;
 661	struct cpmac_priv *priv = netdev_priv(dev);
 662	struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
 663
 664	ar7_device_reset(pdata->reset_bit);
 665	for (i = 0; i < 8; i++) {
 666		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
 667		cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
 668	}
 669	cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
 670
 671	cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
 672		    MBP_RXMCAST);
 673	cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
 674	for (i = 0; i < 8; i++)
 675		cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
 676	cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
 677	cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
 678		    (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
 679		    (dev->dev_addr[3] << 24));
 680	cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
 681	cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
 682	cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
 683	cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
 684	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
 685	cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
 686	cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
 687	cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
 688	cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
 689
 690	cpmac_write(priv->regs, CPMAC_RX_CONTROL,
 691		    cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
 692	cpmac_write(priv->regs, CPMAC_TX_CONTROL,
 693		    cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
 694	cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
 695		    cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
 696		    MAC_FDX);
 697}
 698
 699static void cpmac_clear_rx(struct net_device *dev)
 700{
 701	struct cpmac_priv *priv = netdev_priv(dev);
 702	struct cpmac_desc *desc;
 703	int i;
 704	if (unlikely(!priv->rx_head))
 705		return;
 706	desc = priv->rx_head;
 707	for (i = 0; i < priv->ring_size; i++) {
 708		if ((desc->dataflags & CPMAC_OWN) == 0) {
 709			if (netif_msg_rx_err(priv) && net_ratelimit())
 710				printk(KERN_WARNING "%s: packet dropped\n",
 711				       dev->name);
 712			if (unlikely(netif_msg_hw(priv)))
 713				cpmac_dump_desc(dev, desc);
 714			desc->dataflags = CPMAC_OWN;
 715			dev->stats.rx_dropped++;
 716		}
 717		desc->hw_next = desc->next->mapping;
 718		desc = desc->next;
 719	}
 720	priv->rx_head->prev->hw_next = 0;
 721}
 722
 723static void cpmac_clear_tx(struct net_device *dev)
 724{
 725	struct cpmac_priv *priv = netdev_priv(dev);
 726	int i;
 727	if (unlikely(!priv->desc_ring))
 728		return;
 729	for (i = 0; i < CPMAC_QUEUES; i++) {
 730		priv->desc_ring[i].dataflags = 0;
 731		if (priv->desc_ring[i].skb) {
 732			dev_kfree_skb_any(priv->desc_ring[i].skb);
 733			priv->desc_ring[i].skb = NULL;
 734		}
 735	}
 736}
 737
 738static void cpmac_hw_error(struct work_struct *work)
 739{
 740	struct cpmac_priv *priv =
 741		container_of(work, struct cpmac_priv, reset_work);
 742
 743	spin_lock(&priv->rx_lock);
 744	cpmac_clear_rx(priv->dev);
 745	spin_unlock(&priv->rx_lock);
 746	cpmac_clear_tx(priv->dev);
 747	cpmac_hw_start(priv->dev);
 748	barrier();
 749	atomic_dec(&priv->reset_pending);
 750
 751	netif_tx_wake_all_queues(priv->dev);
 752	cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
 753}
 754
 755static void cpmac_check_status(struct net_device *dev)
 756{
 757	struct cpmac_priv *priv = netdev_priv(dev);
 758
 759	u32 macstatus = cpmac_read(priv->regs, CPMAC_MAC_STATUS);
 760	int rx_channel = (macstatus >> 8) & 7;
 761	int rx_code = (macstatus >> 12) & 15;
 762	int tx_channel = (macstatus >> 16) & 7;
 763	int tx_code = (macstatus >> 20) & 15;
 764
 765	if (rx_code || tx_code) {
 766		if (netif_msg_drv(priv) && net_ratelimit()) {
 767			/* Can't find any documentation on what these
 768			 *error codes actually are. So just log them and hope..
 769			 */
 770			if (rx_code)
 771				printk(KERN_WARNING "%s: host error %d on rx "
 772				     "channel %d (macstatus %08x), resetting\n",
 773				     dev->name, rx_code, rx_channel, macstatus);
 774			if (tx_code)
 775				printk(KERN_WARNING "%s: host error %d on tx "
 776				     "channel %d (macstatus %08x), resetting\n",
 777				     dev->name, tx_code, tx_channel, macstatus);
 778		}
 779
 780		netif_tx_stop_all_queues(dev);
 781		cpmac_hw_stop(dev);
 782		if (schedule_work(&priv->reset_work))
 783			atomic_inc(&priv->reset_pending);
 784		if (unlikely(netif_msg_hw(priv)))
 785			cpmac_dump_regs(dev);
 786	}
 787	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
 788}
 789
 790static irqreturn_t cpmac_irq(int irq, void *dev_id)
 791{
 792	struct net_device *dev = dev_id;
 793	struct cpmac_priv *priv;
 794	int queue;
 795	u32 status;
 796
 797	priv = netdev_priv(dev);
 798
 799	status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
 800
 801	if (unlikely(netif_msg_intr(priv)))
 802		printk(KERN_DEBUG "%s: interrupt status: 0x%08x\n", dev->name,
 803		       status);
 804
 805	if (status & MAC_INT_TX)
 806		cpmac_end_xmit(dev, (status & 7));
 807
 808	if (status & MAC_INT_RX) {
 809		queue = (status >> 8) & 7;
 810		if (napi_schedule_prep(&priv->napi)) {
 811			cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
 812			__napi_schedule(&priv->napi);
 813		}
 814	}
 815
 816	cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
 817
 818	if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS)))
 819		cpmac_check_status(dev);
 820
 821	return IRQ_HANDLED;
 822}
 823
 824static void cpmac_tx_timeout(struct net_device *dev)
 825{
 826	struct cpmac_priv *priv = netdev_priv(dev);
 827
 828	spin_lock(&priv->lock);
 829	dev->stats.tx_errors++;
 830	spin_unlock(&priv->lock);
 831	if (netif_msg_tx_err(priv) && net_ratelimit())
 832		printk(KERN_WARNING "%s: transmit timeout\n", dev->name);
 833
 834	atomic_inc(&priv->reset_pending);
 835	barrier();
 836	cpmac_clear_tx(dev);
 837	barrier();
 838	atomic_dec(&priv->reset_pending);
 839
 840	netif_tx_wake_all_queues(priv->dev);
 841}
 842
 843static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
 844{
 845	struct cpmac_priv *priv = netdev_priv(dev);
 846	if (!(netif_running(dev)))
 847		return -EINVAL;
 848	if (!priv->phy)
 849		return -EINVAL;
 850
 851	return phy_mii_ioctl(priv->phy, ifr, cmd);
 852}
 853
 854static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 855{
 856	struct cpmac_priv *priv = netdev_priv(dev);
 857
 858	if (priv->phy)
 859		return phy_ethtool_gset(priv->phy, cmd);
 860
 861	return -EINVAL;
 862}
 863
 864static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 865{
 866	struct cpmac_priv *priv = netdev_priv(dev);
 867
 868	if (!capable(CAP_NET_ADMIN))
 869		return -EPERM;
 870
 871	if (priv->phy)
 872		return phy_ethtool_sset(priv->phy, cmd);
 873
 874	return -EINVAL;
 875}
 876
 877static void cpmac_get_ringparam(struct net_device *dev,
 878						struct ethtool_ringparam *ring)
 879{
 880	struct cpmac_priv *priv = netdev_priv(dev);
 881
 882	ring->rx_max_pending = 1024;
 883	ring->rx_mini_max_pending = 1;
 884	ring->rx_jumbo_max_pending = 1;
 885	ring->tx_max_pending = 1;
 886
 887	ring->rx_pending = priv->ring_size;
 888	ring->rx_mini_pending = 1;
 889	ring->rx_jumbo_pending = 1;
 890	ring->tx_pending = 1;
 891}
 892
 893static int cpmac_set_ringparam(struct net_device *dev,
 894						struct ethtool_ringparam *ring)
 895{
 896	struct cpmac_priv *priv = netdev_priv(dev);
 897
 898	if (netif_running(dev))
 899		return -EBUSY;
 900	priv->ring_size = ring->rx_pending;
 901	return 0;
 902}
 903
 904static void cpmac_get_drvinfo(struct net_device *dev,
 905			      struct ethtool_drvinfo *info)
 906{
 907	strcpy(info->driver, "cpmac");
 908	strcpy(info->version, CPMAC_VERSION);
 909	info->fw_version[0] = '\0';
 910	sprintf(info->bus_info, "%s", "cpmac");
 911	info->regdump_len = 0;
 912}
 913
 914static const struct ethtool_ops cpmac_ethtool_ops = {
 915	.get_settings = cpmac_get_settings,
 916	.set_settings = cpmac_set_settings,
 917	.get_drvinfo = cpmac_get_drvinfo,
 918	.get_link = ethtool_op_get_link,
 919	.get_ringparam = cpmac_get_ringparam,
 920	.set_ringparam = cpmac_set_ringparam,
 921};
 922
 923static void cpmac_adjust_link(struct net_device *dev)
 924{
 925	struct cpmac_priv *priv = netdev_priv(dev);
 926	int new_state = 0;
 927
 928	spin_lock(&priv->lock);
 929	if (priv->phy->link) {
 930		netif_tx_start_all_queues(dev);
 931		if (priv->phy->duplex != priv->oldduplex) {
 932			new_state = 1;
 933			priv->oldduplex = priv->phy->duplex;
 934		}
 935
 936		if (priv->phy->speed != priv->oldspeed) {
 937			new_state = 1;
 938			priv->oldspeed = priv->phy->speed;
 939		}
 940
 941		if (!priv->oldlink) {
 942			new_state = 1;
 943			priv->oldlink = 1;
 944		}
 945	} else if (priv->oldlink) {
 946		new_state = 1;
 947		priv->oldlink = 0;
 948		priv->oldspeed = 0;
 949		priv->oldduplex = -1;
 950	}
 951
 952	if (new_state && netif_msg_link(priv) && net_ratelimit())
 953		phy_print_status(priv->phy);
 954
 955	spin_unlock(&priv->lock);
 956}
 957
 958static int cpmac_open(struct net_device *dev)
 959{
 960	int i, size, res;
 961	struct cpmac_priv *priv = netdev_priv(dev);
 962	struct resource *mem;
 963	struct cpmac_desc *desc;
 964	struct sk_buff *skb;
 965
 966	mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
 967	if (!request_mem_region(mem->start, resource_size(mem), dev->name)) {
 968		if (netif_msg_drv(priv))
 969			printk(KERN_ERR "%s: failed to request registers\n",
 970			       dev->name);
 971		res = -ENXIO;
 972		goto fail_reserve;
 973	}
 974
 975	priv->regs = ioremap(mem->start, resource_size(mem));
 976	if (!priv->regs) {
 977		if (netif_msg_drv(priv))
 978			printk(KERN_ERR "%s: failed to remap registers\n",
 979			       dev->name);
 980		res = -ENXIO;
 981		goto fail_remap;
 982	}
 983
 984	size = priv->ring_size + CPMAC_QUEUES;
 985	priv->desc_ring = dma_alloc_coherent(&dev->dev,
 986					     sizeof(struct cpmac_desc) * size,
 987					     &priv->dma_ring,
 988					     GFP_KERNEL);
 989	if (!priv->desc_ring) {
 990		res = -ENOMEM;
 991		goto fail_alloc;
 992	}
 993
 994	for (i = 0; i < size; i++)
 995		priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
 996
 997	priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
 998	for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
 999		skb = netdev_alloc_skb_ip_align(dev, CPMAC_SKB_SIZE);
1000		if (unlikely(!skb)) {
1001			res = -ENOMEM;
1002			goto fail_desc;
1003		}
1004		desc->skb = skb;
1005		desc->data_mapping = dma_map_single(&dev->dev, skb->data,
1006						    CPMAC_SKB_SIZE,
1007						    DMA_FROM_DEVICE);
1008		desc->hw_data = (u32)desc->data_mapping;
1009		desc->buflen = CPMAC_SKB_SIZE;
1010		desc->dataflags = CPMAC_OWN;
1011		desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
1012		desc->next->prev = desc;
1013		desc->hw_next = (u32)desc->next->mapping;
1014	}
1015
1016	priv->rx_head->prev->hw_next = (u32)0;
1017
1018	res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED, dev->name, dev);
1019	if (res) {
1020		if (netif_msg_drv(priv))
1021			printk(KERN_ERR "%s: failed to obtain irq\n",
1022			       dev->name);
1023		goto fail_irq;
1024	}
1025
1026	atomic_set(&priv->reset_pending, 0);
1027	INIT_WORK(&priv->reset_work, cpmac_hw_error);
1028	cpmac_hw_start(dev);
1029
1030	napi_enable(&priv->napi);
1031	priv->phy->state = PHY_CHANGELINK;
1032	phy_start(priv->phy);
1033
1034	return 0;
1035
1036fail_irq:
1037fail_desc:
1038	for (i = 0; i < priv->ring_size; i++) {
1039		if (priv->rx_head[i].skb) {
1040			dma_unmap_single(&dev->dev,
1041					 priv->rx_head[i].data_mapping,
1042					 CPMAC_SKB_SIZE,
1043					 DMA_FROM_DEVICE);
1044			kfree_skb(priv->rx_head[i].skb);
1045		}
1046	}
1047fail_alloc:
1048	kfree(priv->desc_ring);
1049	iounmap(priv->regs);
1050
1051fail_remap:
1052	release_mem_region(mem->start, resource_size(mem));
1053
1054fail_reserve:
1055	return res;
1056}
1057
1058static int cpmac_stop(struct net_device *dev)
1059{
1060	int i;
1061	struct cpmac_priv *priv = netdev_priv(dev);
1062	struct resource *mem;
1063
1064	netif_tx_stop_all_queues(dev);
1065
1066	cancel_work_sync(&priv->reset_work);
1067	napi_disable(&priv->napi);
1068	phy_stop(priv->phy);
1069
1070	cpmac_hw_stop(dev);
1071
1072	for (i = 0; i < 8; i++)
1073		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
1074	cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
1075	cpmac_write(priv->regs, CPMAC_MBP, 0);
1076
1077	free_irq(dev->irq, dev);
1078	iounmap(priv->regs);
1079	mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
1080	release_mem_region(mem->start, resource_size(mem));
1081	priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
1082	for (i = 0; i < priv->ring_size; i++) {
1083		if (priv->rx_head[i].skb) {
1084			dma_unmap_single(&dev->dev,
1085					 priv->rx_head[i].data_mapping,
1086					 CPMAC_SKB_SIZE,
1087					 DMA_FROM_DEVICE);
1088			kfree_skb(priv->rx_head[i].skb);
1089		}
1090	}
1091
1092	dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
1093			  (CPMAC_QUEUES + priv->ring_size),
1094			  priv->desc_ring, priv->dma_ring);
1095	return 0;
1096}
1097
1098static const struct net_device_ops cpmac_netdev_ops = {
1099	.ndo_open		= cpmac_open,
1100	.ndo_stop		= cpmac_stop,
1101	.ndo_start_xmit		= cpmac_start_xmit,
1102	.ndo_tx_timeout		= cpmac_tx_timeout,
1103	.ndo_set_multicast_list	= cpmac_set_multicast_list,
1104	.ndo_do_ioctl		= cpmac_ioctl,
1105	.ndo_set_config		= cpmac_config,
1106	.ndo_change_mtu		= eth_change_mtu,
1107	.ndo_validate_addr	= eth_validate_addr,
1108	.ndo_set_mac_address	= eth_mac_addr,
1109};
1110
1111static int external_switch;
1112
1113static int __devinit cpmac_probe(struct platform_device *pdev)
1114{
1115	int rc, phy_id;
1116	char mdio_bus_id[MII_BUS_ID_SIZE];
1117	struct resource *mem;
1118	struct cpmac_priv *priv;
1119	struct net_device *dev;
1120	struct plat_cpmac_data *pdata;
1121
1122	pdata = pdev->dev.platform_data;
1123
1124	if (external_switch || dumb_switch) {
1125		strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE); /* fixed phys bus */
1126		phy_id = pdev->id;
1127	} else {
1128		for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
1129			if (!(pdata->phy_mask & (1 << phy_id)))
1130				continue;
1131			if (!cpmac_mii->phy_map[phy_id])
1132				continue;
1133			strncpy(mdio_bus_id, cpmac_mii->id, MII_BUS_ID_SIZE);
1134			break;
1135		}
1136	}
1137
1138	if (phy_id == PHY_MAX_ADDR) {
1139		dev_err(&pdev->dev, "no PHY present, falling back "
1140					"to switch on MDIO bus 0\n");
1141		strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE); /* fixed phys bus */
1142		phy_id = pdev->id;
1143	}
1144
1145	dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
1146
1147	if (!dev) {
1148		printk(KERN_ERR "cpmac: Unable to allocate net_device\n");
1149		return -ENOMEM;
1150	}
1151
1152	platform_set_drvdata(pdev, dev);
1153	priv = netdev_priv(dev);
1154
1155	priv->pdev = pdev;
1156	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1157	if (!mem) {
1158		rc = -ENODEV;
1159		goto fail;
1160	}
1161
1162	dev->irq = platform_get_irq_byname(pdev, "irq");
1163
1164	dev->netdev_ops = &cpmac_netdev_ops;
1165	dev->ethtool_ops = &cpmac_ethtool_ops;
1166
1167	netif_napi_add(dev, &priv->napi, cpmac_poll, 64);
1168
1169	spin_lock_init(&priv->lock);
1170	spin_lock_init(&priv->rx_lock);
1171	priv->dev = dev;
1172	priv->ring_size = 64;
1173	priv->msg_enable = netif_msg_init(debug_level, 0xff);
1174	memcpy(dev->dev_addr, pdata->dev_addr, sizeof(pdata->dev_addr));
1175
1176	snprintf(priv->phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT,
1177						mdio_bus_id, phy_id);
1178
1179	priv->phy = phy_connect(dev, priv->phy_name, cpmac_adjust_link, 0,
1180						PHY_INTERFACE_MODE_MII);
1181
1182	if (IS_ERR(priv->phy)) {
1183		if (netif_msg_drv(priv))
1184			printk(KERN_ERR "%s: Could not attach to PHY\n",
1185			       dev->name);
1186		rc = PTR_ERR(priv->phy);
1187		goto fail;
1188	}
1189
1190	rc = register_netdev(dev);
1191	if (rc) {
1192		printk(KERN_ERR "cpmac: error %i registering device %s\n", rc,
1193		       dev->name);
1194		goto fail;
1195	}
1196
1197	if (netif_msg_probe(priv)) {
1198		printk(KERN_INFO
1199		       "cpmac: device %s (regs: %p, irq: %d, phy: %s, "
1200		       "mac: %pM)\n", dev->name, (void *)mem->start, dev->irq,
1201		       priv->phy_name, dev->dev_addr);
1202	}
1203	return 0;
1204
1205fail:
1206	free_netdev(dev);
1207	return rc;
1208}
1209
1210static int __devexit cpmac_remove(struct platform_device *pdev)
1211{
1212	struct net_device *dev = platform_get_drvdata(pdev);
1213	unregister_netdev(dev);
1214	free_netdev(dev);
1215	return 0;
1216}
1217
1218static struct platform_driver cpmac_driver = {
1219	.driver.name = "cpmac",
1220	.driver.owner = THIS_MODULE,
1221	.probe = cpmac_probe,
1222	.remove = __devexit_p(cpmac_remove),
1223};
1224
1225int __devinit cpmac_init(void)
1226{
1227	u32 mask;
1228	int i, res;
1229
1230	cpmac_mii = mdiobus_alloc();
1231	if (cpmac_mii == NULL)
1232		return -ENOMEM;
1233
1234	cpmac_mii->name = "cpmac-mii";
1235	cpmac_mii->read = cpmac_mdio_read;
1236	cpmac_mii->write = cpmac_mdio_write;
1237	cpmac_mii->reset = cpmac_mdio_reset;
1238	cpmac_mii->irq = mii_irqs;
1239
1240	cpmac_mii->priv = ioremap(AR7_REGS_MDIO, 256);
1241
1242	if (!cpmac_mii->priv) {
1243		printk(KERN_ERR "Can't ioremap mdio registers\n");
1244		res = -ENXIO;
1245		goto fail_alloc;
1246	}
1247
1248#warning FIXME: unhardcode gpio&reset bits
1249	ar7_gpio_disable(26);
1250	ar7_gpio_disable(27);
1251	ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
1252	ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
1253	ar7_device_reset(AR7_RESET_BIT_EPHY);
1254
1255	cpmac_mii->reset(cpmac_mii);
1256
1257	for (i = 0; i < 300; i++) {
1258		mask = cpmac_read(cpmac_mii->priv, CPMAC_MDIO_ALIVE);
1259		if (mask)
1260			break;
1261		else
1262			msleep(10);
1263	}
1264
1265	mask &= 0x7fffffff;
1266	if (mask & (mask - 1)) {
1267		external_switch = 1;
1268		mask = 0;
1269	}
1270
1271	cpmac_mii->phy_mask = ~(mask | 0x80000000);
1272	snprintf(cpmac_mii->id, MII_BUS_ID_SIZE, "1");
1273
1274	res = mdiobus_register(cpmac_mii);
1275	if (res)
1276		goto fail_mii;
1277
1278	res = platform_driver_register(&cpmac_driver);
1279	if (res)
1280		goto fail_cpmac;
1281
1282	return 0;
1283
1284fail_cpmac:
1285	mdiobus_unregister(cpmac_mii);
1286
1287fail_mii:
1288	iounmap(cpmac_mii->priv);
1289
1290fail_alloc:
1291	mdiobus_free(cpmac_mii);
1292
1293	return res;
1294}
1295
1296void __devexit cpmac_exit(void)
1297{
1298	platform_driver_unregister(&cpmac_driver);
1299	mdiobus_unregister(cpmac_mii);
1300	iounmap(cpmac_mii->priv);
1301	mdiobus_free(cpmac_mii);
1302}
1303
1304module_init(cpmac_init);
1305module_exit(cpmac_exit);