Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
   2 *
   3 * Copyright (C) 2004 Sun Microsystems Inc.
   4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as
   8 * published by the Free Software Foundation; either version 2 of the
   9 * License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
  19 * 02111-1307, USA.
  20 *
  21 * This driver uses the sungem driver (c) David Miller
  22 * (davem@redhat.com) as its basis.
  23 *
  24 * The cassini chip has a number of features that distinguish it from
  25 * the gem chip:
  26 *  4 transmit descriptor rings that are used for either QoS (VLAN) or
  27 *      load balancing (non-VLAN mode)
  28 *  batching of multiple packets
  29 *  multiple CPU dispatching
  30 *  page-based RX descriptor engine with separate completion rings
  31 *  Gigabit support (GMII and PCS interface)
  32 *  MIF link up/down detection works
  33 *
  34 * RX is handled by page sized buffers that are attached as fragments to
  35 * the skb. here's what's done:
  36 *  -- driver allocates pages at a time and keeps reference counts
  37 *     on them.
  38 *  -- the upper protocol layers assume that the header is in the skb
  39 *     itself. as a result, cassini will copy a small amount (64 bytes)
  40 *     to make them happy.
  41 *  -- driver appends the rest of the data pages as frags to skbuffs
  42 *     and increments the reference count
  43 *  -- on page reclamation, the driver swaps the page with a spare page.
  44 *     if that page is still in use, it frees its reference to that page,
  45 *     and allocates a new page for use. otherwise, it just recycles the
  46 *     the page.
  47 *
  48 * NOTE: cassini can parse the header. however, it's not worth it
  49 *       as long as the network stack requires a header copy.
  50 *
  51 * TX has 4 queues. currently these queues are used in a round-robin
  52 * fashion for load balancing. They can also be used for QoS. for that
  53 * to work, however, QoS information needs to be exposed down to the driver
  54 * level so that subqueues get targeted to particular transmit rings.
  55 * alternatively, the queues can be configured via use of the all-purpose
  56 * ioctl.
  57 *
  58 * RX DATA: the rx completion ring has all the info, but the rx desc
  59 * ring has all of the data. RX can conceivably come in under multiple
  60 * interrupts, but the INT# assignment needs to be set up properly by
  61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
  62 * that. also, the two descriptor rings are designed to distinguish between
  63 * encrypted and non-encrypted packets, but we use them for buffering
  64 * instead.
  65 *
  66 * by default, the selective clear mask is set up to process rx packets.
  67 */
  68
  69#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  70
  71#include <linux/module.h>
  72#include <linux/kernel.h>
  73#include <linux/types.h>
  74#include <linux/compiler.h>
  75#include <linux/slab.h>
  76#include <linux/delay.h>
  77#include <linux/init.h>
  78#include <linux/interrupt.h>
  79#include <linux/vmalloc.h>
  80#include <linux/ioport.h>
  81#include <linux/pci.h>
  82#include <linux/mm.h>
  83#include <linux/highmem.h>
  84#include <linux/list.h>
  85#include <linux/dma-mapping.h>
  86
  87#include <linux/netdevice.h>
  88#include <linux/etherdevice.h>
  89#include <linux/skbuff.h>
  90#include <linux/ethtool.h>
  91#include <linux/crc32.h>
  92#include <linux/random.h>
  93#include <linux/mii.h>
  94#include <linux/ip.h>
  95#include <linux/tcp.h>
  96#include <linux/mutex.h>
  97#include <linux/firmware.h>
  98
  99#include <net/checksum.h>
 100
 101#include <linux/atomic.h>
 102#include <asm/system.h>
 103#include <asm/io.h>
 104#include <asm/byteorder.h>
 105#include <asm/uaccess.h>
 106
 107#define cas_page_map(x)      kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
 108#define cas_page_unmap(x)    kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
 109#define CAS_NCPUS            num_online_cpus()
 110
 111#define cas_skb_release(x)  netif_rx(x)
 112
 113/* select which firmware to use */
 114#define USE_HP_WORKAROUND
 115#define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
 116#define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
 117
 118#include "cassini.h"
 119
 120#define USE_TX_COMPWB      /* use completion writeback registers */
 121#define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
 122#define USE_RX_BLANK       /* hw interrupt mitigation */
 123#undef USE_ENTROPY_DEV     /* don't test for entropy device */
 124
 125/* NOTE: these aren't useable unless PCI interrupts can be assigned.
 126 * also, we need to make cp->lock finer-grained.
 127 */
 128#undef  USE_PCI_INTB
 129#undef  USE_PCI_INTC
 130#undef  USE_PCI_INTD
 131#undef  USE_QOS
 132
 133#undef  USE_VPD_DEBUG       /* debug vpd information if defined */
 134
 135/* rx processing options */
 136#define USE_PAGE_ORDER      /* specify to allocate large rx pages */
 137#define RX_DONT_BATCH  0    /* if 1, don't batch flows */
 138#define RX_COPY_ALWAYS 0    /* if 0, use frags */
 139#define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
 140#undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
 141
 142#define DRV_MODULE_NAME		"cassini"
 143#define DRV_MODULE_VERSION	"1.6"
 144#define DRV_MODULE_RELDATE	"21 May 2008"
 145
 146#define CAS_DEF_MSG_ENABLE	  \
 147	(NETIF_MSG_DRV		| \
 148	 NETIF_MSG_PROBE	| \
 149	 NETIF_MSG_LINK		| \
 150	 NETIF_MSG_TIMER	| \
 151	 NETIF_MSG_IFDOWN	| \
 152	 NETIF_MSG_IFUP		| \
 153	 NETIF_MSG_RX_ERR	| \
 154	 NETIF_MSG_TX_ERR)
 155
 156/* length of time before we decide the hardware is borked,
 157 * and dev->tx_timeout() should be called to fix the problem
 158 */
 159#define CAS_TX_TIMEOUT			(HZ)
 160#define CAS_LINK_TIMEOUT                (22*HZ/10)
 161#define CAS_LINK_FAST_TIMEOUT           (1)
 162
 163/* timeout values for state changing. these specify the number
 164 * of 10us delays to be used before giving up.
 165 */
 166#define STOP_TRIES_PHY 1000
 167#define STOP_TRIES     5000
 168
 169/* specify a minimum frame size to deal with some fifo issues
 170 * max mtu == 2 * page size - ethernet header - 64 - swivel =
 171 *            2 * page_size - 0x50
 172 */
 173#define CAS_MIN_FRAME			97
 174#define CAS_1000MB_MIN_FRAME            255
 175#define CAS_MIN_MTU                     60
 176#define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
 177
 178#if 1
 179/*
 180 * Eliminate these and use separate atomic counters for each, to
 181 * avoid a race condition.
 182 */
 183#else
 184#define CAS_RESET_MTU                   1
 185#define CAS_RESET_ALL                   2
 186#define CAS_RESET_SPARE                 3
 187#endif
 188
 189static char version[] __devinitdata =
 190	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
 191
 192static int cassini_debug = -1;	/* -1 == use CAS_DEF_MSG_ENABLE as value */
 193static int link_mode;
 194
 195MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
 196MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
 197MODULE_LICENSE("GPL");
 198MODULE_FIRMWARE("sun/cassini.bin");
 199module_param(cassini_debug, int, 0);
 200MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
 201module_param(link_mode, int, 0);
 202MODULE_PARM_DESC(link_mode, "default link mode");
 203
 204/*
 205 * Work around for a PCS bug in which the link goes down due to the chip
 206 * being confused and never showing a link status of "up."
 207 */
 208#define DEFAULT_LINKDOWN_TIMEOUT 5
 209/*
 210 * Value in seconds, for user input.
 211 */
 212static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
 213module_param(linkdown_timeout, int, 0);
 214MODULE_PARM_DESC(linkdown_timeout,
 215"min reset interval in sec. for PCS linkdown issue; disabled if not positive");
 216
 217/*
 218 * value in 'ticks' (units used by jiffies). Set when we init the
 219 * module because 'HZ' in actually a function call on some flavors of
 220 * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
 221 */
 222static int link_transition_timeout;
 223
 224
 225
 226static u16 link_modes[] __devinitdata = {
 227	BMCR_ANENABLE,			 /* 0 : autoneg */
 228	0,				 /* 1 : 10bt half duplex */
 229	BMCR_SPEED100,			 /* 2 : 100bt half duplex */
 230	BMCR_FULLDPLX,			 /* 3 : 10bt full duplex */
 231	BMCR_SPEED100|BMCR_FULLDPLX,	 /* 4 : 100bt full duplex */
 232	CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
 233};
 234
 235static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl) = {
 236	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
 237	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 238	{ PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
 239	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 240	{ 0, }
 241};
 242
 243MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
 244
 245static void cas_set_link_modes(struct cas *cp);
 246
 247static inline void cas_lock_tx(struct cas *cp)
 248{
 249	int i;
 250
 251	for (i = 0; i < N_TX_RINGS; i++)
 252		spin_lock(&cp->tx_lock[i]);
 253}
 254
 255static inline void cas_lock_all(struct cas *cp)
 256{
 257	spin_lock_irq(&cp->lock);
 258	cas_lock_tx(cp);
 259}
 260
 261/* WTZ: QA was finding deadlock problems with the previous
 262 * versions after long test runs with multiple cards per machine.
 263 * See if replacing cas_lock_all with safer versions helps. The
 264 * symptoms QA is reporting match those we'd expect if interrupts
 265 * aren't being properly restored, and we fixed a previous deadlock
 266 * with similar symptoms by using save/restore versions in other
 267 * places.
 268 */
 269#define cas_lock_all_save(cp, flags) \
 270do { \
 271	struct cas *xxxcp = (cp); \
 272	spin_lock_irqsave(&xxxcp->lock, flags); \
 273	cas_lock_tx(xxxcp); \
 274} while (0)
 275
 276static inline void cas_unlock_tx(struct cas *cp)
 277{
 278	int i;
 279
 280	for (i = N_TX_RINGS; i > 0; i--)
 281		spin_unlock(&cp->tx_lock[i - 1]);
 282}
 283
 284static inline void cas_unlock_all(struct cas *cp)
 285{
 286	cas_unlock_tx(cp);
 287	spin_unlock_irq(&cp->lock);
 288}
 289
 290#define cas_unlock_all_restore(cp, flags) \
 291do { \
 292	struct cas *xxxcp = (cp); \
 293	cas_unlock_tx(xxxcp); \
 294	spin_unlock_irqrestore(&xxxcp->lock, flags); \
 295} while (0)
 296
 297static void cas_disable_irq(struct cas *cp, const int ring)
 298{
 299	/* Make sure we won't get any more interrupts */
 300	if (ring == 0) {
 301		writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
 302		return;
 303	}
 304
 305	/* disable completion interrupts and selectively mask */
 306	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
 307		switch (ring) {
 308#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
 309#ifdef USE_PCI_INTB
 310		case 1:
 311#endif
 312#ifdef USE_PCI_INTC
 313		case 2:
 314#endif
 315#ifdef USE_PCI_INTD
 316		case 3:
 317#endif
 318			writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
 319			       cp->regs + REG_PLUS_INTRN_MASK(ring));
 320			break;
 321#endif
 322		default:
 323			writel(INTRN_MASK_CLEAR_ALL, cp->regs +
 324			       REG_PLUS_INTRN_MASK(ring));
 325			break;
 326		}
 327	}
 328}
 329
 330static inline void cas_mask_intr(struct cas *cp)
 331{
 332	int i;
 333
 334	for (i = 0; i < N_RX_COMP_RINGS; i++)
 335		cas_disable_irq(cp, i);
 336}
 337
 338static void cas_enable_irq(struct cas *cp, const int ring)
 339{
 340	if (ring == 0) { /* all but TX_DONE */
 341		writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
 342		return;
 343	}
 344
 345	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
 346		switch (ring) {
 347#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
 348#ifdef USE_PCI_INTB
 349		case 1:
 350#endif
 351#ifdef USE_PCI_INTC
 352		case 2:
 353#endif
 354#ifdef USE_PCI_INTD
 355		case 3:
 356#endif
 357			writel(INTRN_MASK_RX_EN, cp->regs +
 358			       REG_PLUS_INTRN_MASK(ring));
 359			break;
 360#endif
 361		default:
 362			break;
 363		}
 364	}
 365}
 366
 367static inline void cas_unmask_intr(struct cas *cp)
 368{
 369	int i;
 370
 371	for (i = 0; i < N_RX_COMP_RINGS; i++)
 372		cas_enable_irq(cp, i);
 373}
 374
 375static inline void cas_entropy_gather(struct cas *cp)
 376{
 377#ifdef USE_ENTROPY_DEV
 378	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
 379		return;
 380
 381	batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
 382			    readl(cp->regs + REG_ENTROPY_IV),
 383			    sizeof(uint64_t)*8);
 384#endif
 385}
 386
 387static inline void cas_entropy_reset(struct cas *cp)
 388{
 389#ifdef USE_ENTROPY_DEV
 390	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
 391		return;
 392
 393	writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
 394	       cp->regs + REG_BIM_LOCAL_DEV_EN);
 395	writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
 396	writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
 397
 398	/* if we read back 0x0, we don't have an entropy device */
 399	if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
 400		cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
 401#endif
 402}
 403
 404/* access to the phy. the following assumes that we've initialized the MIF to
 405 * be in frame rather than bit-bang mode
 406 */
 407static u16 cas_phy_read(struct cas *cp, int reg)
 408{
 409	u32 cmd;
 410	int limit = STOP_TRIES_PHY;
 411
 412	cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
 413	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
 414	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
 415	cmd |= MIF_FRAME_TURN_AROUND_MSB;
 416	writel(cmd, cp->regs + REG_MIF_FRAME);
 417
 418	/* poll for completion */
 419	while (limit-- > 0) {
 420		udelay(10);
 421		cmd = readl(cp->regs + REG_MIF_FRAME);
 422		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
 423			return cmd & MIF_FRAME_DATA_MASK;
 424	}
 425	return 0xFFFF; /* -1 */
 426}
 427
 428static int cas_phy_write(struct cas *cp, int reg, u16 val)
 429{
 430	int limit = STOP_TRIES_PHY;
 431	u32 cmd;
 432
 433	cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
 434	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
 435	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
 436	cmd |= MIF_FRAME_TURN_AROUND_MSB;
 437	cmd |= val & MIF_FRAME_DATA_MASK;
 438	writel(cmd, cp->regs + REG_MIF_FRAME);
 439
 440	/* poll for completion */
 441	while (limit-- > 0) {
 442		udelay(10);
 443		cmd = readl(cp->regs + REG_MIF_FRAME);
 444		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
 445			return 0;
 446	}
 447	return -1;
 448}
 449
 450static void cas_phy_powerup(struct cas *cp)
 451{
 452	u16 ctl = cas_phy_read(cp, MII_BMCR);
 453
 454	if ((ctl & BMCR_PDOWN) == 0)
 455		return;
 456	ctl &= ~BMCR_PDOWN;
 457	cas_phy_write(cp, MII_BMCR, ctl);
 458}
 459
 460static void cas_phy_powerdown(struct cas *cp)
 461{
 462	u16 ctl = cas_phy_read(cp, MII_BMCR);
 463
 464	if (ctl & BMCR_PDOWN)
 465		return;
 466	ctl |= BMCR_PDOWN;
 467	cas_phy_write(cp, MII_BMCR, ctl);
 468}
 469
 470/* cp->lock held. note: the last put_page will free the buffer */
 471static int cas_page_free(struct cas *cp, cas_page_t *page)
 472{
 473	pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
 474		       PCI_DMA_FROMDEVICE);
 475	__free_pages(page->buffer, cp->page_order);
 476	kfree(page);
 477	return 0;
 478}
 479
 480#ifdef RX_COUNT_BUFFERS
 481#define RX_USED_ADD(x, y)       ((x)->used += (y))
 482#define RX_USED_SET(x, y)       ((x)->used  = (y))
 483#else
 484#define RX_USED_ADD(x, y)
 485#define RX_USED_SET(x, y)
 486#endif
 487
 488/* local page allocation routines for the receive buffers. jumbo pages
 489 * require at least 8K contiguous and 8K aligned buffers.
 490 */
 491static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
 492{
 493	cas_page_t *page;
 494
 495	page = kmalloc(sizeof(cas_page_t), flags);
 496	if (!page)
 497		return NULL;
 498
 499	INIT_LIST_HEAD(&page->list);
 500	RX_USED_SET(page, 0);
 501	page->buffer = alloc_pages(flags, cp->page_order);
 502	if (!page->buffer)
 503		goto page_err;
 504	page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
 505				      cp->page_size, PCI_DMA_FROMDEVICE);
 506	return page;
 507
 508page_err:
 509	kfree(page);
 510	return NULL;
 511}
 512
 513/* initialize spare pool of rx buffers, but allocate during the open */
 514static void cas_spare_init(struct cas *cp)
 515{
 516  	spin_lock(&cp->rx_inuse_lock);
 517	INIT_LIST_HEAD(&cp->rx_inuse_list);
 518	spin_unlock(&cp->rx_inuse_lock);
 519
 520	spin_lock(&cp->rx_spare_lock);
 521	INIT_LIST_HEAD(&cp->rx_spare_list);
 522	cp->rx_spares_needed = RX_SPARE_COUNT;
 523	spin_unlock(&cp->rx_spare_lock);
 524}
 525
 526/* used on close. free all the spare buffers. */
 527static void cas_spare_free(struct cas *cp)
 528{
 529	struct list_head list, *elem, *tmp;
 530
 531	/* free spare buffers */
 532	INIT_LIST_HEAD(&list);
 533	spin_lock(&cp->rx_spare_lock);
 534	list_splice_init(&cp->rx_spare_list, &list);
 535	spin_unlock(&cp->rx_spare_lock);
 536	list_for_each_safe(elem, tmp, &list) {
 537		cas_page_free(cp, list_entry(elem, cas_page_t, list));
 538	}
 539
 540	INIT_LIST_HEAD(&list);
 541#if 1
 542	/*
 543	 * Looks like Adrian had protected this with a different
 544	 * lock than used everywhere else to manipulate this list.
 545	 */
 546	spin_lock(&cp->rx_inuse_lock);
 547	list_splice_init(&cp->rx_inuse_list, &list);
 548	spin_unlock(&cp->rx_inuse_lock);
 549#else
 550	spin_lock(&cp->rx_spare_lock);
 551	list_splice_init(&cp->rx_inuse_list, &list);
 552	spin_unlock(&cp->rx_spare_lock);
 553#endif
 554	list_for_each_safe(elem, tmp, &list) {
 555		cas_page_free(cp, list_entry(elem, cas_page_t, list));
 556	}
 557}
 558
 559/* replenish spares if needed */
 560static void cas_spare_recover(struct cas *cp, const gfp_t flags)
 561{
 562	struct list_head list, *elem, *tmp;
 563	int needed, i;
 564
 565	/* check inuse list. if we don't need any more free buffers,
 566	 * just free it
 567	 */
 568
 569	/* make a local copy of the list */
 570	INIT_LIST_HEAD(&list);
 571	spin_lock(&cp->rx_inuse_lock);
 572	list_splice_init(&cp->rx_inuse_list, &list);
 573	spin_unlock(&cp->rx_inuse_lock);
 574
 575	list_for_each_safe(elem, tmp, &list) {
 576		cas_page_t *page = list_entry(elem, cas_page_t, list);
 577
 578		/*
 579		 * With the lockless pagecache, cassini buffering scheme gets
 580		 * slightly less accurate: we might find that a page has an
 581		 * elevated reference count here, due to a speculative ref,
 582		 * and skip it as in-use. Ideally we would be able to reclaim
 583		 * it. However this would be such a rare case, it doesn't
 584		 * matter too much as we should pick it up the next time round.
 585		 *
 586		 * Importantly, if we find that the page has a refcount of 1
 587		 * here (our refcount), then we know it is definitely not inuse
 588		 * so we can reuse it.
 589		 */
 590		if (page_count(page->buffer) > 1)
 591			continue;
 592
 593		list_del(elem);
 594		spin_lock(&cp->rx_spare_lock);
 595		if (cp->rx_spares_needed > 0) {
 596			list_add(elem, &cp->rx_spare_list);
 597			cp->rx_spares_needed--;
 598			spin_unlock(&cp->rx_spare_lock);
 599		} else {
 600			spin_unlock(&cp->rx_spare_lock);
 601			cas_page_free(cp, page);
 602		}
 603	}
 604
 605	/* put any inuse buffers back on the list */
 606	if (!list_empty(&list)) {
 607		spin_lock(&cp->rx_inuse_lock);
 608		list_splice(&list, &cp->rx_inuse_list);
 609		spin_unlock(&cp->rx_inuse_lock);
 610	}
 611
 612	spin_lock(&cp->rx_spare_lock);
 613	needed = cp->rx_spares_needed;
 614	spin_unlock(&cp->rx_spare_lock);
 615	if (!needed)
 616		return;
 617
 618	/* we still need spares, so try to allocate some */
 619	INIT_LIST_HEAD(&list);
 620	i = 0;
 621	while (i < needed) {
 622		cas_page_t *spare = cas_page_alloc(cp, flags);
 623		if (!spare)
 624			break;
 625		list_add(&spare->list, &list);
 626		i++;
 627	}
 628
 629	spin_lock(&cp->rx_spare_lock);
 630	list_splice(&list, &cp->rx_spare_list);
 631	cp->rx_spares_needed -= i;
 632	spin_unlock(&cp->rx_spare_lock);
 633}
 634
 635/* pull a page from the list. */
 636static cas_page_t *cas_page_dequeue(struct cas *cp)
 637{
 638	struct list_head *entry;
 639	int recover;
 640
 641	spin_lock(&cp->rx_spare_lock);
 642	if (list_empty(&cp->rx_spare_list)) {
 643		/* try to do a quick recovery */
 644		spin_unlock(&cp->rx_spare_lock);
 645		cas_spare_recover(cp, GFP_ATOMIC);
 646		spin_lock(&cp->rx_spare_lock);
 647		if (list_empty(&cp->rx_spare_list)) {
 648			netif_err(cp, rx_err, cp->dev,
 649				  "no spare buffers available\n");
 650			spin_unlock(&cp->rx_spare_lock);
 651			return NULL;
 652		}
 653	}
 654
 655	entry = cp->rx_spare_list.next;
 656	list_del(entry);
 657	recover = ++cp->rx_spares_needed;
 658	spin_unlock(&cp->rx_spare_lock);
 659
 660	/* trigger the timer to do the recovery */
 661	if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
 662#if 1
 663		atomic_inc(&cp->reset_task_pending);
 664		atomic_inc(&cp->reset_task_pending_spare);
 665		schedule_work(&cp->reset_task);
 666#else
 667		atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
 668		schedule_work(&cp->reset_task);
 669#endif
 670	}
 671	return list_entry(entry, cas_page_t, list);
 672}
 673
 674
 675static void cas_mif_poll(struct cas *cp, const int enable)
 676{
 677	u32 cfg;
 678
 679	cfg  = readl(cp->regs + REG_MIF_CFG);
 680	cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
 681
 682	if (cp->phy_type & CAS_PHY_MII_MDIO1)
 683		cfg |= MIF_CFG_PHY_SELECT;
 684
 685	/* poll and interrupt on link status change. */
 686	if (enable) {
 687		cfg |= MIF_CFG_POLL_EN;
 688		cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
 689		cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
 690	}
 691	writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
 692	       cp->regs + REG_MIF_MASK);
 693	writel(cfg, cp->regs + REG_MIF_CFG);
 694}
 695
 696/* Must be invoked under cp->lock */
 697static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
 698{
 699	u16 ctl;
 700#if 1
 701	int lcntl;
 702	int changed = 0;
 703	int oldstate = cp->lstate;
 704	int link_was_not_down = !(oldstate == link_down);
 705#endif
 706	/* Setup link parameters */
 707	if (!ep)
 708		goto start_aneg;
 709	lcntl = cp->link_cntl;
 710	if (ep->autoneg == AUTONEG_ENABLE)
 711		cp->link_cntl = BMCR_ANENABLE;
 712	else {
 713		u32 speed = ethtool_cmd_speed(ep);
 714		cp->link_cntl = 0;
 715		if (speed == SPEED_100)
 716			cp->link_cntl |= BMCR_SPEED100;
 717		else if (speed == SPEED_1000)
 718			cp->link_cntl |= CAS_BMCR_SPEED1000;
 719		if (ep->duplex == DUPLEX_FULL)
 720			cp->link_cntl |= BMCR_FULLDPLX;
 721	}
 722#if 1
 723	changed = (lcntl != cp->link_cntl);
 724#endif
 725start_aneg:
 726	if (cp->lstate == link_up) {
 727		netdev_info(cp->dev, "PCS link down\n");
 728	} else {
 729		if (changed) {
 730			netdev_info(cp->dev, "link configuration changed\n");
 731		}
 732	}
 733	cp->lstate = link_down;
 734	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
 735	if (!cp->hw_running)
 736		return;
 737#if 1
 738	/*
 739	 * WTZ: If the old state was link_up, we turn off the carrier
 740	 * to replicate everything we do elsewhere on a link-down
 741	 * event when we were already in a link-up state..
 742	 */
 743	if (oldstate == link_up)
 744		netif_carrier_off(cp->dev);
 745	if (changed  && link_was_not_down) {
 746		/*
 747		 * WTZ: This branch will simply schedule a full reset after
 748		 * we explicitly changed link modes in an ioctl. See if this
 749		 * fixes the link-problems we were having for forced mode.
 750		 */
 751		atomic_inc(&cp->reset_task_pending);
 752		atomic_inc(&cp->reset_task_pending_all);
 753		schedule_work(&cp->reset_task);
 754		cp->timer_ticks = 0;
 755		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
 756		return;
 757	}
 758#endif
 759	if (cp->phy_type & CAS_PHY_SERDES) {
 760		u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
 761
 762		if (cp->link_cntl & BMCR_ANENABLE) {
 763			val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
 764			cp->lstate = link_aneg;
 765		} else {
 766			if (cp->link_cntl & BMCR_FULLDPLX)
 767				val |= PCS_MII_CTRL_DUPLEX;
 768			val &= ~PCS_MII_AUTONEG_EN;
 769			cp->lstate = link_force_ok;
 770		}
 771		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
 772		writel(val, cp->regs + REG_PCS_MII_CTRL);
 773
 774	} else {
 775		cas_mif_poll(cp, 0);
 776		ctl = cas_phy_read(cp, MII_BMCR);
 777		ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
 778			 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
 779		ctl |= cp->link_cntl;
 780		if (ctl & BMCR_ANENABLE) {
 781			ctl |= BMCR_ANRESTART;
 782			cp->lstate = link_aneg;
 783		} else {
 784			cp->lstate = link_force_ok;
 785		}
 786		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
 787		cas_phy_write(cp, MII_BMCR, ctl);
 788		cas_mif_poll(cp, 1);
 789	}
 790
 791	cp->timer_ticks = 0;
 792	mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
 793}
 794
 795/* Must be invoked under cp->lock. */
 796static int cas_reset_mii_phy(struct cas *cp)
 797{
 798	int limit = STOP_TRIES_PHY;
 799	u16 val;
 800
 801	cas_phy_write(cp, MII_BMCR, BMCR_RESET);
 802	udelay(100);
 803	while (--limit) {
 804		val = cas_phy_read(cp, MII_BMCR);
 805		if ((val & BMCR_RESET) == 0)
 806			break;
 807		udelay(10);
 808	}
 809	return limit <= 0;
 810}
 811
 812static int cas_saturn_firmware_init(struct cas *cp)
 813{
 814	const struct firmware *fw;
 815	const char fw_name[] = "sun/cassini.bin";
 816	int err;
 817
 818	if (PHY_NS_DP83065 != cp->phy_id)
 819		return 0;
 820
 821	err = request_firmware(&fw, fw_name, &cp->pdev->dev);
 822	if (err) {
 823		pr_err("Failed to load firmware \"%s\"\n",
 824		       fw_name);
 825		return err;
 826	}
 827	if (fw->size < 2) {
 828		pr_err("bogus length %zu in \"%s\"\n",
 829		       fw->size, fw_name);
 830		err = -EINVAL;
 831		goto out;
 832	}
 833	cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
 834	cp->fw_size = fw->size - 2;
 835	cp->fw_data = vmalloc(cp->fw_size);
 836	if (!cp->fw_data) {
 837		err = -ENOMEM;
 838		pr_err("\"%s\" Failed %d\n", fw_name, err);
 839		goto out;
 840	}
 841	memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
 842out:
 843	release_firmware(fw);
 844	return err;
 845}
 846
 847static void cas_saturn_firmware_load(struct cas *cp)
 848{
 849	int i;
 850
 851	cas_phy_powerdown(cp);
 852
 853	/* expanded memory access mode */
 854	cas_phy_write(cp, DP83065_MII_MEM, 0x0);
 855
 856	/* pointer configuration for new firmware */
 857	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
 858	cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
 859	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
 860	cas_phy_write(cp, DP83065_MII_REGD, 0x82);
 861	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
 862	cas_phy_write(cp, DP83065_MII_REGD, 0x0);
 863	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
 864	cas_phy_write(cp, DP83065_MII_REGD, 0x39);
 865
 866	/* download new firmware */
 867	cas_phy_write(cp, DP83065_MII_MEM, 0x1);
 868	cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
 869	for (i = 0; i < cp->fw_size; i++)
 870		cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
 871
 872	/* enable firmware */
 873	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
 874	cas_phy_write(cp, DP83065_MII_REGD, 0x1);
 875}
 876
 877
 878/* phy initialization */
 879static void cas_phy_init(struct cas *cp)
 880{
 881	u16 val;
 882
 883	/* if we're in MII/GMII mode, set up phy */
 884	if (CAS_PHY_MII(cp->phy_type)) {
 885		writel(PCS_DATAPATH_MODE_MII,
 886		       cp->regs + REG_PCS_DATAPATH_MODE);
 887
 888		cas_mif_poll(cp, 0);
 889		cas_reset_mii_phy(cp); /* take out of isolate mode */
 890
 891		if (PHY_LUCENT_B0 == cp->phy_id) {
 892			/* workaround link up/down issue with lucent */
 893			cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
 894			cas_phy_write(cp, MII_BMCR, 0x00f1);
 895			cas_phy_write(cp, LUCENT_MII_REG, 0x0);
 896
 897		} else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
 898			/* workarounds for broadcom phy */
 899			cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
 900			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
 901			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
 902			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
 903			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
 904			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
 905			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
 906			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
 907			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
 908			cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
 909			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
 910
 911		} else if (PHY_BROADCOM_5411 == cp->phy_id) {
 912			val = cas_phy_read(cp, BROADCOM_MII_REG4);
 913			val = cas_phy_read(cp, BROADCOM_MII_REG4);
 914			if (val & 0x0080) {
 915				/* link workaround */
 916				cas_phy_write(cp, BROADCOM_MII_REG4,
 917					      val & ~0x0080);
 918			}
 919
 920		} else if (cp->cas_flags & CAS_FLAG_SATURN) {
 921			writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
 922			       SATURN_PCFG_FSI : 0x0,
 923			       cp->regs + REG_SATURN_PCFG);
 924
 925			/* load firmware to address 10Mbps auto-negotiation
 926			 * issue. NOTE: this will need to be changed if the
 927			 * default firmware gets fixed.
 928			 */
 929			if (PHY_NS_DP83065 == cp->phy_id) {
 930				cas_saturn_firmware_load(cp);
 931			}
 932			cas_phy_powerup(cp);
 933		}
 934
 935		/* advertise capabilities */
 936		val = cas_phy_read(cp, MII_BMCR);
 937		val &= ~BMCR_ANENABLE;
 938		cas_phy_write(cp, MII_BMCR, val);
 939		udelay(10);
 940
 941		cas_phy_write(cp, MII_ADVERTISE,
 942			      cas_phy_read(cp, MII_ADVERTISE) |
 943			      (ADVERTISE_10HALF | ADVERTISE_10FULL |
 944			       ADVERTISE_100HALF | ADVERTISE_100FULL |
 945			       CAS_ADVERTISE_PAUSE |
 946			       CAS_ADVERTISE_ASYM_PAUSE));
 947
 948		if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
 949			/* make sure that we don't advertise half
 950			 * duplex to avoid a chip issue
 951			 */
 952			val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
 953			val &= ~CAS_ADVERTISE_1000HALF;
 954			val |= CAS_ADVERTISE_1000FULL;
 955			cas_phy_write(cp, CAS_MII_1000_CTRL, val);
 956		}
 957
 958	} else {
 959		/* reset pcs for serdes */
 960		u32 val;
 961		int limit;
 962
 963		writel(PCS_DATAPATH_MODE_SERDES,
 964		       cp->regs + REG_PCS_DATAPATH_MODE);
 965
 966		/* enable serdes pins on saturn */
 967		if (cp->cas_flags & CAS_FLAG_SATURN)
 968			writel(0, cp->regs + REG_SATURN_PCFG);
 969
 970		/* Reset PCS unit. */
 971		val = readl(cp->regs + REG_PCS_MII_CTRL);
 972		val |= PCS_MII_RESET;
 973		writel(val, cp->regs + REG_PCS_MII_CTRL);
 974
 975		limit = STOP_TRIES;
 976		while (--limit > 0) {
 977			udelay(10);
 978			if ((readl(cp->regs + REG_PCS_MII_CTRL) &
 979			     PCS_MII_RESET) == 0)
 980				break;
 981		}
 982		if (limit <= 0)
 983			netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
 984				    readl(cp->regs + REG_PCS_STATE_MACHINE));
 985
 986		/* Make sure PCS is disabled while changing advertisement
 987		 * configuration.
 988		 */
 989		writel(0x0, cp->regs + REG_PCS_CFG);
 990
 991		/* Advertise all capabilities except half-duplex. */
 992		val  = readl(cp->regs + REG_PCS_MII_ADVERT);
 993		val &= ~PCS_MII_ADVERT_HD;
 994		val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
 995			PCS_MII_ADVERT_ASYM_PAUSE);
 996		writel(val, cp->regs + REG_PCS_MII_ADVERT);
 997
 998		/* enable PCS */
 999		writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
1000
1001		/* pcs workaround: enable sync detect */
1002		writel(PCS_SERDES_CTRL_SYNCD_EN,
1003		       cp->regs + REG_PCS_SERDES_CTRL);
1004	}
1005}
1006
1007
1008static int cas_pcs_link_check(struct cas *cp)
1009{
1010	u32 stat, state_machine;
1011	int retval = 0;
1012
1013	/* The link status bit latches on zero, so you must
1014	 * read it twice in such a case to see a transition
1015	 * to the link being up.
1016	 */
1017	stat = readl(cp->regs + REG_PCS_MII_STATUS);
1018	if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1019		stat = readl(cp->regs + REG_PCS_MII_STATUS);
1020
1021	/* The remote-fault indication is only valid
1022	 * when autoneg has completed.
1023	 */
1024	if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1025		     PCS_MII_STATUS_REMOTE_FAULT)) ==
1026	    (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1027		netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1028
1029	/* work around link detection issue by querying the PCS state
1030	 * machine directly.
1031	 */
1032	state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1033	if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1034		stat &= ~PCS_MII_STATUS_LINK_STATUS;
1035	} else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1036		stat |= PCS_MII_STATUS_LINK_STATUS;
1037	}
1038
1039	if (stat & PCS_MII_STATUS_LINK_STATUS) {
1040		if (cp->lstate != link_up) {
1041			if (cp->opened) {
1042				cp->lstate = link_up;
1043				cp->link_transition = LINK_TRANSITION_LINK_UP;
1044
1045				cas_set_link_modes(cp);
1046				netif_carrier_on(cp->dev);
1047			}
1048		}
1049	} else if (cp->lstate == link_up) {
1050		cp->lstate = link_down;
1051		if (link_transition_timeout != 0 &&
1052		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1053		    !cp->link_transition_jiffies_valid) {
1054			/*
1055			 * force a reset, as a workaround for the
1056			 * link-failure problem. May want to move this to a
1057			 * point a bit earlier in the sequence. If we had
1058			 * generated a reset a short time ago, we'll wait for
1059			 * the link timer to check the status until a
1060			 * timer expires (link_transistion_jiffies_valid is
1061			 * true when the timer is running.)  Instead of using
1062			 * a system timer, we just do a check whenever the
1063			 * link timer is running - this clears the flag after
1064			 * a suitable delay.
1065			 */
1066			retval = 1;
1067			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1068			cp->link_transition_jiffies = jiffies;
1069			cp->link_transition_jiffies_valid = 1;
1070		} else {
1071			cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1072		}
1073		netif_carrier_off(cp->dev);
1074		if (cp->opened)
1075			netif_info(cp, link, cp->dev, "PCS link down\n");
1076
1077		/* Cassini only: if you force a mode, there can be
1078		 * sync problems on link down. to fix that, the following
1079		 * things need to be checked:
1080		 * 1) read serialink state register
1081		 * 2) read pcs status register to verify link down.
1082		 * 3) if link down and serial link == 0x03, then you need
1083		 *    to global reset the chip.
1084		 */
1085		if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1086			/* should check to see if we're in a forced mode */
1087			stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1088			if (stat == 0x03)
1089				return 1;
1090		}
1091	} else if (cp->lstate == link_down) {
1092		if (link_transition_timeout != 0 &&
1093		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1094		    !cp->link_transition_jiffies_valid) {
1095			/* force a reset, as a workaround for the
1096			 * link-failure problem.  May want to move
1097			 * this to a point a bit earlier in the
1098			 * sequence.
1099			 */
1100			retval = 1;
1101			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1102			cp->link_transition_jiffies = jiffies;
1103			cp->link_transition_jiffies_valid = 1;
1104		} else {
1105			cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1106		}
1107	}
1108
1109	return retval;
1110}
1111
1112static int cas_pcs_interrupt(struct net_device *dev,
1113			     struct cas *cp, u32 status)
1114{
1115	u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1116
1117	if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1118		return 0;
1119	return cas_pcs_link_check(cp);
1120}
1121
1122static int cas_txmac_interrupt(struct net_device *dev,
1123			       struct cas *cp, u32 status)
1124{
1125	u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1126
1127	if (!txmac_stat)
1128		return 0;
1129
1130	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1131		     "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1132
1133	/* Defer timer expiration is quite normal,
1134	 * don't even log the event.
1135	 */
1136	if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1137	    !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1138		return 0;
1139
1140	spin_lock(&cp->stat_lock[0]);
1141	if (txmac_stat & MAC_TX_UNDERRUN) {
1142		netdev_err(dev, "TX MAC xmit underrun\n");
1143		cp->net_stats[0].tx_fifo_errors++;
1144	}
1145
1146	if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1147		netdev_err(dev, "TX MAC max packet size error\n");
1148		cp->net_stats[0].tx_errors++;
1149	}
1150
1151	/* The rest are all cases of one of the 16-bit TX
1152	 * counters expiring.
1153	 */
1154	if (txmac_stat & MAC_TX_COLL_NORMAL)
1155		cp->net_stats[0].collisions += 0x10000;
1156
1157	if (txmac_stat & MAC_TX_COLL_EXCESS) {
1158		cp->net_stats[0].tx_aborted_errors += 0x10000;
1159		cp->net_stats[0].collisions += 0x10000;
1160	}
1161
1162	if (txmac_stat & MAC_TX_COLL_LATE) {
1163		cp->net_stats[0].tx_aborted_errors += 0x10000;
1164		cp->net_stats[0].collisions += 0x10000;
1165	}
1166	spin_unlock(&cp->stat_lock[0]);
1167
1168	/* We do not keep track of MAC_TX_COLL_FIRST and
1169	 * MAC_TX_PEAK_ATTEMPTS events.
1170	 */
1171	return 0;
1172}
1173
1174static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1175{
1176	cas_hp_inst_t *inst;
1177	u32 val;
1178	int i;
1179
1180	i = 0;
1181	while ((inst = firmware) && inst->note) {
1182		writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1183
1184		val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1185		val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1186		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1187
1188		val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1189		val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1190		val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1191		val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1192		val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1193		val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1194		val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1195		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1196
1197		val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1198		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1199		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1200		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1201		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1202		++firmware;
1203		++i;
1204	}
1205}
1206
1207static void cas_init_rx_dma(struct cas *cp)
1208{
1209	u64 desc_dma = cp->block_dvma;
1210	u32 val;
1211	int i, size;
1212
1213	/* rx free descriptors */
1214	val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1215	val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1216	val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1217	if ((N_RX_DESC_RINGS > 1) &&
1218	    (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1219		val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1220	writel(val, cp->regs + REG_RX_CFG);
1221
1222	val = (unsigned long) cp->init_rxds[0] -
1223		(unsigned long) cp->init_block;
1224	writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1225	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1226	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1227
1228	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1229		/* rx desc 2 is for IPSEC packets. however,
1230		 * we don't it that for that purpose.
1231		 */
1232		val = (unsigned long) cp->init_rxds[1] -
1233			(unsigned long) cp->init_block;
1234		writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1235		writel((desc_dma + val) & 0xffffffff, cp->regs +
1236		       REG_PLUS_RX_DB1_LOW);
1237		writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1238		       REG_PLUS_RX_KICK1);
1239	}
1240
1241	/* rx completion registers */
1242	val = (unsigned long) cp->init_rxcs[0] -
1243		(unsigned long) cp->init_block;
1244	writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1245	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1246
1247	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1248		/* rx comp 2-4 */
1249		for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1250			val = (unsigned long) cp->init_rxcs[i] -
1251				(unsigned long) cp->init_block;
1252			writel((desc_dma + val) >> 32, cp->regs +
1253			       REG_PLUS_RX_CBN_HI(i));
1254			writel((desc_dma + val) & 0xffffffff, cp->regs +
1255			       REG_PLUS_RX_CBN_LOW(i));
1256		}
1257	}
1258
1259	/* read selective clear regs to prevent spurious interrupts
1260	 * on reset because complete == kick.
1261	 * selective clear set up to prevent interrupts on resets
1262	 */
1263	readl(cp->regs + REG_INTR_STATUS_ALIAS);
1264	writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1265	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1266		for (i = 1; i < N_RX_COMP_RINGS; i++)
1267			readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1268
1269		/* 2 is different from 3 and 4 */
1270		if (N_RX_COMP_RINGS > 1)
1271			writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1272			       cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1273
1274		for (i = 2; i < N_RX_COMP_RINGS; i++)
1275			writel(INTR_RX_DONE_ALT,
1276			       cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1277	}
1278
1279	/* set up pause thresholds */
1280	val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1281			cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1282	val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1283			cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1284	writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1285
1286	/* zero out dma reassembly buffers */
1287	for (i = 0; i < 64; i++) {
1288		writel(i, cp->regs + REG_RX_TABLE_ADDR);
1289		writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1290		writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1291		writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1292	}
1293
1294	/* make sure address register is 0 for normal operation */
1295	writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1296	writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1297
1298	/* interrupt mitigation */
1299#ifdef USE_RX_BLANK
1300	val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1301	val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1302	writel(val, cp->regs + REG_RX_BLANK);
1303#else
1304	writel(0x0, cp->regs + REG_RX_BLANK);
1305#endif
1306
1307	/* interrupt generation as a function of low water marks for
1308	 * free desc and completion entries. these are used to trigger
1309	 * housekeeping for rx descs. we don't use the free interrupt
1310	 * as it's not very useful
1311	 */
1312	/* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1313	val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1314	writel(val, cp->regs + REG_RX_AE_THRESH);
1315	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1316		val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1317		writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1318	}
1319
1320	/* Random early detect registers. useful for congestion avoidance.
1321	 * this should be tunable.
1322	 */
1323	writel(0x0, cp->regs + REG_RX_RED);
1324
1325	/* receive page sizes. default == 2K (0x800) */
1326	val = 0;
1327	if (cp->page_size == 0x1000)
1328		val = 0x1;
1329	else if (cp->page_size == 0x2000)
1330		val = 0x2;
1331	else if (cp->page_size == 0x4000)
1332		val = 0x3;
1333
1334	/* round mtu + offset. constrain to page size. */
1335	size = cp->dev->mtu + 64;
1336	if (size > cp->page_size)
1337		size = cp->page_size;
1338
1339	if (size <= 0x400)
1340		i = 0x0;
1341	else if (size <= 0x800)
1342		i = 0x1;
1343	else if (size <= 0x1000)
1344		i = 0x2;
1345	else
1346		i = 0x3;
1347
1348	cp->mtu_stride = 1 << (i + 10);
1349	val  = CAS_BASE(RX_PAGE_SIZE, val);
1350	val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1351	val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1352	val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1353	writel(val, cp->regs + REG_RX_PAGE_SIZE);
1354
1355	/* enable the header parser if desired */
1356	if (CAS_HP_FIRMWARE == cas_prog_null)
1357		return;
1358
1359	val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1360	val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1361	val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1362	writel(val, cp->regs + REG_HP_CFG);
1363}
1364
1365static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1366{
1367	memset(rxc, 0, sizeof(*rxc));
1368	rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1369}
1370
1371/* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1372 * flipping is protected by the fact that the chip will not
1373 * hand back the same page index while it's being processed.
1374 */
1375static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1376{
1377	cas_page_t *page = cp->rx_pages[1][index];
1378	cas_page_t *new;
1379
1380	if (page_count(page->buffer) == 1)
1381		return page;
1382
1383	new = cas_page_dequeue(cp);
1384	if (new) {
1385		spin_lock(&cp->rx_inuse_lock);
1386		list_add(&page->list, &cp->rx_inuse_list);
1387		spin_unlock(&cp->rx_inuse_lock);
1388	}
1389	return new;
1390}
1391
1392/* this needs to be changed if we actually use the ENC RX DESC ring */
1393static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1394				 const int index)
1395{
1396	cas_page_t **page0 = cp->rx_pages[0];
1397	cas_page_t **page1 = cp->rx_pages[1];
1398
1399	/* swap if buffer is in use */
1400	if (page_count(page0[index]->buffer) > 1) {
1401		cas_page_t *new = cas_page_spare(cp, index);
1402		if (new) {
1403			page1[index] = page0[index];
1404			page0[index] = new;
1405		}
1406	}
1407	RX_USED_SET(page0[index], 0);
1408	return page0[index];
1409}
1410
1411static void cas_clean_rxds(struct cas *cp)
1412{
1413	/* only clean ring 0 as ring 1 is used for spare buffers */
1414        struct cas_rx_desc *rxd = cp->init_rxds[0];
1415	int i, size;
1416
1417	/* release all rx flows */
1418	for (i = 0; i < N_RX_FLOWS; i++) {
1419		struct sk_buff *skb;
1420		while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1421			cas_skb_release(skb);
1422		}
1423	}
1424
1425	/* initialize descriptors */
1426	size = RX_DESC_RINGN_SIZE(0);
1427	for (i = 0; i < size; i++) {
1428		cas_page_t *page = cas_page_swap(cp, 0, i);
1429		rxd[i].buffer = cpu_to_le64(page->dma_addr);
1430		rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1431					    CAS_BASE(RX_INDEX_RING, 0));
1432	}
1433
1434	cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1435	cp->rx_last[0] = 0;
1436	cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1437}
1438
1439static void cas_clean_rxcs(struct cas *cp)
1440{
1441	int i, j;
1442
1443	/* take ownership of rx comp descriptors */
1444	memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1445	memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1446	for (i = 0; i < N_RX_COMP_RINGS; i++) {
1447		struct cas_rx_comp *rxc = cp->init_rxcs[i];
1448		for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1449			cas_rxc_init(rxc + j);
1450		}
1451	}
1452}
1453
1454#if 0
1455/* When we get a RX fifo overflow, the RX unit is probably hung
1456 * so we do the following.
1457 *
1458 * If any part of the reset goes wrong, we return 1 and that causes the
1459 * whole chip to be reset.
1460 */
1461static int cas_rxmac_reset(struct cas *cp)
1462{
1463	struct net_device *dev = cp->dev;
1464	int limit;
1465	u32 val;
1466
1467	/* First, reset MAC RX. */
1468	writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1469	for (limit = 0; limit < STOP_TRIES; limit++) {
1470		if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1471			break;
1472		udelay(10);
1473	}
1474	if (limit == STOP_TRIES) {
1475		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1476		return 1;
1477	}
1478
1479	/* Second, disable RX DMA. */
1480	writel(0, cp->regs + REG_RX_CFG);
1481	for (limit = 0; limit < STOP_TRIES; limit++) {
1482		if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1483			break;
1484		udelay(10);
1485	}
1486	if (limit == STOP_TRIES) {
1487		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1488		return 1;
1489	}
1490
1491	mdelay(5);
1492
1493	/* Execute RX reset command. */
1494	writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1495	for (limit = 0; limit < STOP_TRIES; limit++) {
1496		if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1497			break;
1498		udelay(10);
1499	}
1500	if (limit == STOP_TRIES) {
1501		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1502		return 1;
1503	}
1504
1505	/* reset driver rx state */
1506	cas_clean_rxds(cp);
1507	cas_clean_rxcs(cp);
1508
1509	/* Now, reprogram the rest of RX unit. */
1510	cas_init_rx_dma(cp);
1511
1512	/* re-enable */
1513	val = readl(cp->regs + REG_RX_CFG);
1514	writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1515	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1516	val = readl(cp->regs + REG_MAC_RX_CFG);
1517	writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1518	return 0;
1519}
1520#endif
1521
1522static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1523			       u32 status)
1524{
1525	u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1526
1527	if (!stat)
1528		return 0;
1529
1530	netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1531
1532	/* these are all rollovers */
1533	spin_lock(&cp->stat_lock[0]);
1534	if (stat & MAC_RX_ALIGN_ERR)
1535		cp->net_stats[0].rx_frame_errors += 0x10000;
1536
1537	if (stat & MAC_RX_CRC_ERR)
1538		cp->net_stats[0].rx_crc_errors += 0x10000;
1539
1540	if (stat & MAC_RX_LEN_ERR)
1541		cp->net_stats[0].rx_length_errors += 0x10000;
1542
1543	if (stat & MAC_RX_OVERFLOW) {
1544		cp->net_stats[0].rx_over_errors++;
1545		cp->net_stats[0].rx_fifo_errors++;
1546	}
1547
1548	/* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1549	 * events.
1550	 */
1551	spin_unlock(&cp->stat_lock[0]);
1552	return 0;
1553}
1554
1555static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1556			     u32 status)
1557{
1558	u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1559
1560	if (!stat)
1561		return 0;
1562
1563	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1564		     "mac interrupt, stat: 0x%x\n", stat);
1565
1566	/* This interrupt is just for pause frame and pause
1567	 * tracking.  It is useful for diagnostics and debug
1568	 * but probably by default we will mask these events.
1569	 */
1570	if (stat & MAC_CTRL_PAUSE_STATE)
1571		cp->pause_entered++;
1572
1573	if (stat & MAC_CTRL_PAUSE_RECEIVED)
1574		cp->pause_last_time_recvd = (stat >> 16);
1575
1576	return 0;
1577}
1578
1579
1580/* Must be invoked under cp->lock. */
1581static inline int cas_mdio_link_not_up(struct cas *cp)
1582{
1583	u16 val;
1584
1585	switch (cp->lstate) {
1586	case link_force_ret:
1587		netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1588		cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1589		cp->timer_ticks = 5;
1590		cp->lstate = link_force_ok;
1591		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1592		break;
1593
1594	case link_aneg:
1595		val = cas_phy_read(cp, MII_BMCR);
1596
1597		/* Try forced modes. we try things in the following order:
1598		 * 1000 full -> 100 full/half -> 10 half
1599		 */
1600		val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1601		val |= BMCR_FULLDPLX;
1602		val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1603			CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1604		cas_phy_write(cp, MII_BMCR, val);
1605		cp->timer_ticks = 5;
1606		cp->lstate = link_force_try;
1607		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1608		break;
1609
1610	case link_force_try:
1611		/* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1612		val = cas_phy_read(cp, MII_BMCR);
1613		cp->timer_ticks = 5;
1614		if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1615			val &= ~CAS_BMCR_SPEED1000;
1616			val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1617			cas_phy_write(cp, MII_BMCR, val);
1618			break;
1619		}
1620
1621		if (val & BMCR_SPEED100) {
1622			if (val & BMCR_FULLDPLX) /* fd failed */
1623				val &= ~BMCR_FULLDPLX;
1624			else { /* 100Mbps failed */
1625				val &= ~BMCR_SPEED100;
1626			}
1627			cas_phy_write(cp, MII_BMCR, val);
1628			break;
1629		}
1630	default:
1631		break;
1632	}
1633	return 0;
1634}
1635
1636
1637/* must be invoked with cp->lock held */
1638static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1639{
1640	int restart;
1641
1642	if (bmsr & BMSR_LSTATUS) {
1643		/* Ok, here we got a link. If we had it due to a forced
1644		 * fallback, and we were configured for autoneg, we
1645		 * retry a short autoneg pass. If you know your hub is
1646		 * broken, use ethtool ;)
1647		 */
1648		if ((cp->lstate == link_force_try) &&
1649		    (cp->link_cntl & BMCR_ANENABLE)) {
1650			cp->lstate = link_force_ret;
1651			cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1652			cas_mif_poll(cp, 0);
1653			cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1654			cp->timer_ticks = 5;
1655			if (cp->opened)
1656				netif_info(cp, link, cp->dev,
1657					   "Got link after fallback, retrying autoneg once...\n");
1658			cas_phy_write(cp, MII_BMCR,
1659				      cp->link_fcntl | BMCR_ANENABLE |
1660				      BMCR_ANRESTART);
1661			cas_mif_poll(cp, 1);
1662
1663		} else if (cp->lstate != link_up) {
1664			cp->lstate = link_up;
1665			cp->link_transition = LINK_TRANSITION_LINK_UP;
1666
1667			if (cp->opened) {
1668				cas_set_link_modes(cp);
1669				netif_carrier_on(cp->dev);
1670			}
1671		}
1672		return 0;
1673	}
1674
1675	/* link not up. if the link was previously up, we restart the
1676	 * whole process
1677	 */
1678	restart = 0;
1679	if (cp->lstate == link_up) {
1680		cp->lstate = link_down;
1681		cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1682
1683		netif_carrier_off(cp->dev);
1684		if (cp->opened)
1685			netif_info(cp, link, cp->dev, "Link down\n");
1686		restart = 1;
1687
1688	} else if (++cp->timer_ticks > 10)
1689		cas_mdio_link_not_up(cp);
1690
1691	return restart;
1692}
1693
1694static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1695			     u32 status)
1696{
1697	u32 stat = readl(cp->regs + REG_MIF_STATUS);
1698	u16 bmsr;
1699
1700	/* check for a link change */
1701	if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1702		return 0;
1703
1704	bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1705	return cas_mii_link_check(cp, bmsr);
1706}
1707
1708static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1709			     u32 status)
1710{
1711	u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1712
1713	if (!stat)
1714		return 0;
1715
1716	netdev_err(dev, "PCI error [%04x:%04x]",
1717		   stat, readl(cp->regs + REG_BIM_DIAG));
1718
1719	/* cassini+ has this reserved */
1720	if ((stat & PCI_ERR_BADACK) &&
1721	    ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1722		pr_cont(" <No ACK64# during ABS64 cycle>");
1723
1724	if (stat & PCI_ERR_DTRTO)
1725		pr_cont(" <Delayed transaction timeout>");
1726	if (stat & PCI_ERR_OTHER)
1727		pr_cont(" <other>");
1728	if (stat & PCI_ERR_BIM_DMA_WRITE)
1729		pr_cont(" <BIM DMA 0 write req>");
1730	if (stat & PCI_ERR_BIM_DMA_READ)
1731		pr_cont(" <BIM DMA 0 read req>");
1732	pr_cont("\n");
1733
1734	if (stat & PCI_ERR_OTHER) {
1735		u16 cfg;
1736
1737		/* Interrogate PCI config space for the
1738		 * true cause.
1739		 */
1740		pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1741		netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1742		if (cfg & PCI_STATUS_PARITY)
1743			netdev_err(dev, "PCI parity error detected\n");
1744		if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1745			netdev_err(dev, "PCI target abort\n");
1746		if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1747			netdev_err(dev, "PCI master acks target abort\n");
1748		if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1749			netdev_err(dev, "PCI master abort\n");
1750		if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1751			netdev_err(dev, "PCI system error SERR#\n");
1752		if (cfg & PCI_STATUS_DETECTED_PARITY)
1753			netdev_err(dev, "PCI parity error\n");
1754
1755		/* Write the error bits back to clear them. */
1756		cfg &= (PCI_STATUS_PARITY |
1757			PCI_STATUS_SIG_TARGET_ABORT |
1758			PCI_STATUS_REC_TARGET_ABORT |
1759			PCI_STATUS_REC_MASTER_ABORT |
1760			PCI_STATUS_SIG_SYSTEM_ERROR |
1761			PCI_STATUS_DETECTED_PARITY);
1762		pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1763	}
1764
1765	/* For all PCI errors, we should reset the chip. */
1766	return 1;
1767}
1768
1769/* All non-normal interrupt conditions get serviced here.
1770 * Returns non-zero if we should just exit the interrupt
1771 * handler right now (ie. if we reset the card which invalidates
1772 * all of the other original irq status bits).
1773 */
1774static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1775			    u32 status)
1776{
1777	if (status & INTR_RX_TAG_ERROR) {
1778		/* corrupt RX tag framing */
1779		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1780			     "corrupt rx tag framing\n");
1781		spin_lock(&cp->stat_lock[0]);
1782		cp->net_stats[0].rx_errors++;
1783		spin_unlock(&cp->stat_lock[0]);
1784		goto do_reset;
1785	}
1786
1787	if (status & INTR_RX_LEN_MISMATCH) {
1788		/* length mismatch. */
1789		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1790			     "length mismatch for rx frame\n");
1791		spin_lock(&cp->stat_lock[0]);
1792		cp->net_stats[0].rx_errors++;
1793		spin_unlock(&cp->stat_lock[0]);
1794		goto do_reset;
1795	}
1796
1797	if (status & INTR_PCS_STATUS) {
1798		if (cas_pcs_interrupt(dev, cp, status))
1799			goto do_reset;
1800	}
1801
1802	if (status & INTR_TX_MAC_STATUS) {
1803		if (cas_txmac_interrupt(dev, cp, status))
1804			goto do_reset;
1805	}
1806
1807	if (status & INTR_RX_MAC_STATUS) {
1808		if (cas_rxmac_interrupt(dev, cp, status))
1809			goto do_reset;
1810	}
1811
1812	if (status & INTR_MAC_CTRL_STATUS) {
1813		if (cas_mac_interrupt(dev, cp, status))
1814			goto do_reset;
1815	}
1816
1817	if (status & INTR_MIF_STATUS) {
1818		if (cas_mif_interrupt(dev, cp, status))
1819			goto do_reset;
1820	}
1821
1822	if (status & INTR_PCI_ERROR_STATUS) {
1823		if (cas_pci_interrupt(dev, cp, status))
1824			goto do_reset;
1825	}
1826	return 0;
1827
1828do_reset:
1829#if 1
1830	atomic_inc(&cp->reset_task_pending);
1831	atomic_inc(&cp->reset_task_pending_all);
1832	netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1833	schedule_work(&cp->reset_task);
1834#else
1835	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1836	netdev_err(dev, "reset called in cas_abnormal_irq\n");
1837	schedule_work(&cp->reset_task);
1838#endif
1839	return 1;
1840}
1841
1842/* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1843 *       determining whether to do a netif_stop/wakeup
1844 */
1845#define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1846#define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1847static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1848				  const int len)
1849{
1850	unsigned long off = addr + len;
1851
1852	if (CAS_TABORT(cp) == 1)
1853		return 0;
1854	if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1855		return 0;
1856	return TX_TARGET_ABORT_LEN;
1857}
1858
1859static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1860{
1861	struct cas_tx_desc *txds;
1862	struct sk_buff **skbs;
1863	struct net_device *dev = cp->dev;
1864	int entry, count;
1865
1866	spin_lock(&cp->tx_lock[ring]);
1867	txds = cp->init_txds[ring];
1868	skbs = cp->tx_skbs[ring];
1869	entry = cp->tx_old[ring];
1870
1871	count = TX_BUFF_COUNT(ring, entry, limit);
1872	while (entry != limit) {
1873		struct sk_buff *skb = skbs[entry];
1874		dma_addr_t daddr;
1875		u32 dlen;
1876		int frag;
1877
1878		if (!skb) {
1879			/* this should never occur */
1880			entry = TX_DESC_NEXT(ring, entry);
1881			continue;
1882		}
1883
1884		/* however, we might get only a partial skb release. */
1885		count -= skb_shinfo(skb)->nr_frags +
1886			+ cp->tx_tiny_use[ring][entry].nbufs + 1;
1887		if (count < 0)
1888			break;
1889
1890		netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1891			     "tx[%d] done, slot %d\n", ring, entry);
1892
1893		skbs[entry] = NULL;
1894		cp->tx_tiny_use[ring][entry].nbufs = 0;
1895
1896		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1897			struct cas_tx_desc *txd = txds + entry;
1898
1899			daddr = le64_to_cpu(txd->buffer);
1900			dlen = CAS_VAL(TX_DESC_BUFLEN,
1901				       le64_to_cpu(txd->control));
1902			pci_unmap_page(cp->pdev, daddr, dlen,
1903				       PCI_DMA_TODEVICE);
1904			entry = TX_DESC_NEXT(ring, entry);
1905
1906			/* tiny buffer may follow */
1907			if (cp->tx_tiny_use[ring][entry].used) {
1908				cp->tx_tiny_use[ring][entry].used = 0;
1909				entry = TX_DESC_NEXT(ring, entry);
1910			}
1911		}
1912
1913		spin_lock(&cp->stat_lock[ring]);
1914		cp->net_stats[ring].tx_packets++;
1915		cp->net_stats[ring].tx_bytes += skb->len;
1916		spin_unlock(&cp->stat_lock[ring]);
1917		dev_kfree_skb_irq(skb);
1918	}
1919	cp->tx_old[ring] = entry;
1920
1921	/* this is wrong for multiple tx rings. the net device needs
1922	 * multiple queues for this to do the right thing.  we wait
1923	 * for 2*packets to be available when using tiny buffers
1924	 */
1925	if (netif_queue_stopped(dev) &&
1926	    (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1927		netif_wake_queue(dev);
1928	spin_unlock(&cp->tx_lock[ring]);
1929}
1930
1931static void cas_tx(struct net_device *dev, struct cas *cp,
1932		   u32 status)
1933{
1934        int limit, ring;
1935#ifdef USE_TX_COMPWB
1936	u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1937#endif
1938	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1939		     "tx interrupt, status: 0x%x, %llx\n",
1940		     status, (unsigned long long)compwb);
1941	/* process all the rings */
1942	for (ring = 0; ring < N_TX_RINGS; ring++) {
1943#ifdef USE_TX_COMPWB
1944		/* use the completion writeback registers */
1945		limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1946			CAS_VAL(TX_COMPWB_LSB, compwb);
1947		compwb = TX_COMPWB_NEXT(compwb);
1948#else
1949		limit = readl(cp->regs + REG_TX_COMPN(ring));
1950#endif
1951		if (cp->tx_old[ring] != limit)
1952			cas_tx_ringN(cp, ring, limit);
1953	}
1954}
1955
1956
1957static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1958			      int entry, const u64 *words,
1959			      struct sk_buff **skbref)
1960{
1961	int dlen, hlen, len, i, alloclen;
1962	int off, swivel = RX_SWIVEL_OFF_VAL;
1963	struct cas_page *page;
1964	struct sk_buff *skb;
1965	void *addr, *crcaddr;
1966	__sum16 csum;
1967	char *p;
1968
1969	hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1970	dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1971	len  = hlen + dlen;
1972
1973	if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1974		alloclen = len;
1975	else
1976		alloclen = max(hlen, RX_COPY_MIN);
1977
1978	skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
1979	if (skb == NULL)
1980		return -1;
1981
1982	*skbref = skb;
1983	skb_reserve(skb, swivel);
1984
1985	p = skb->data;
1986	addr = crcaddr = NULL;
1987	if (hlen) { /* always copy header pages */
1988		i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1989		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1990		off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1991			swivel;
1992
1993		i = hlen;
1994		if (!dlen) /* attach FCS */
1995			i += cp->crc_size;
1996		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1997				    PCI_DMA_FROMDEVICE);
1998		addr = cas_page_map(page->buffer);
1999		memcpy(p, addr + off, i);
2000		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2001				    PCI_DMA_FROMDEVICE);
2002		cas_page_unmap(addr);
2003		RX_USED_ADD(page, 0x100);
2004		p += hlen;
2005		swivel = 0;
2006	}
2007
2008
2009	if (alloclen < (hlen + dlen)) {
2010		skb_frag_t *frag = skb_shinfo(skb)->frags;
2011
2012		/* normal or jumbo packets. we use frags */
2013		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2014		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2015		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2016
2017		hlen = min(cp->page_size - off, dlen);
2018		if (hlen < 0) {
2019			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2020				     "rx page overflow: %d\n", hlen);
2021			dev_kfree_skb_irq(skb);
2022			return -1;
2023		}
2024		i = hlen;
2025		if (i == dlen)  /* attach FCS */
2026			i += cp->crc_size;
2027		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2028				    PCI_DMA_FROMDEVICE);
2029
2030		/* make sure we always copy a header */
2031		swivel = 0;
2032		if (p == (char *) skb->data) { /* not split */
2033			addr = cas_page_map(page->buffer);
2034			memcpy(p, addr + off, RX_COPY_MIN);
2035			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2036					PCI_DMA_FROMDEVICE);
2037			cas_page_unmap(addr);
2038			off += RX_COPY_MIN;
2039			swivel = RX_COPY_MIN;
2040			RX_USED_ADD(page, cp->mtu_stride);
2041		} else {
2042			RX_USED_ADD(page, hlen);
2043		}
2044		skb_put(skb, alloclen);
2045
2046		skb_shinfo(skb)->nr_frags++;
2047		skb->data_len += hlen - swivel;
2048		skb->truesize += hlen - swivel;
2049		skb->len      += hlen - swivel;
2050
2051		get_page(page->buffer);
2052		frag->page = page->buffer;
2053		frag->page_offset = off;
2054		frag->size = hlen - swivel;
2055
2056		/* any more data? */
2057		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2058			hlen = dlen;
2059			off = 0;
2060
2061			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2062			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2063			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2064					    hlen + cp->crc_size,
2065					    PCI_DMA_FROMDEVICE);
2066			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2067					    hlen + cp->crc_size,
2068					    PCI_DMA_FROMDEVICE);
2069
2070			skb_shinfo(skb)->nr_frags++;
2071			skb->data_len += hlen;
2072			skb->len      += hlen;
2073			frag++;
2074
2075			get_page(page->buffer);
2076			frag->page = page->buffer;
2077			frag->page_offset = 0;
2078			frag->size = hlen;
2079			RX_USED_ADD(page, hlen + cp->crc_size);
2080		}
2081
2082		if (cp->crc_size) {
2083			addr = cas_page_map(page->buffer);
2084			crcaddr  = addr + off + hlen;
2085		}
2086
2087	} else {
2088		/* copying packet */
2089		if (!dlen)
2090			goto end_copy_pkt;
2091
2092		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2093		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2094		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2095		hlen = min(cp->page_size - off, dlen);
2096		if (hlen < 0) {
2097			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2098				     "rx page overflow: %d\n", hlen);
2099			dev_kfree_skb_irq(skb);
2100			return -1;
2101		}
2102		i = hlen;
2103		if (i == dlen) /* attach FCS */
2104			i += cp->crc_size;
2105		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2106				    PCI_DMA_FROMDEVICE);
2107		addr = cas_page_map(page->buffer);
2108		memcpy(p, addr + off, i);
2109		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2110				    PCI_DMA_FROMDEVICE);
2111		cas_page_unmap(addr);
2112		if (p == (char *) skb->data) /* not split */
2113			RX_USED_ADD(page, cp->mtu_stride);
2114		else
2115			RX_USED_ADD(page, i);
2116
2117		/* any more data? */
2118		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2119			p += hlen;
2120			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2121			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2122			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2123					    dlen + cp->crc_size,
2124					    PCI_DMA_FROMDEVICE);
2125			addr = cas_page_map(page->buffer);
2126			memcpy(p, addr, dlen + cp->crc_size);
2127			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2128					    dlen + cp->crc_size,
2129					    PCI_DMA_FROMDEVICE);
2130			cas_page_unmap(addr);
2131			RX_USED_ADD(page, dlen + cp->crc_size);
2132		}
2133end_copy_pkt:
2134		if (cp->crc_size) {
2135			addr    = NULL;
2136			crcaddr = skb->data + alloclen;
2137		}
2138		skb_put(skb, alloclen);
2139	}
2140
2141	csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2142	if (cp->crc_size) {
2143		/* checksum includes FCS. strip it out. */
2144		csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2145					      csum_unfold(csum)));
2146		if (addr)
2147			cas_page_unmap(addr);
2148	}
2149	skb->protocol = eth_type_trans(skb, cp->dev);
2150	if (skb->protocol == htons(ETH_P_IP)) {
2151		skb->csum = csum_unfold(~csum);
2152		skb->ip_summed = CHECKSUM_COMPLETE;
2153	} else
2154		skb_checksum_none_assert(skb);
2155	return len;
2156}
2157
2158
2159/* we can handle up to 64 rx flows at a time. we do the same thing
2160 * as nonreassm except that we batch up the buffers.
2161 * NOTE: we currently just treat each flow as a bunch of packets that
2162 *       we pass up. a better way would be to coalesce the packets
2163 *       into a jumbo packet. to do that, we need to do the following:
2164 *       1) the first packet will have a clean split between header and
2165 *          data. save both.
2166 *       2) each time the next flow packet comes in, extend the
2167 *          data length and merge the checksums.
2168 *       3) on flow release, fix up the header.
2169 *       4) make sure the higher layer doesn't care.
2170 * because packets get coalesced, we shouldn't run into fragment count
2171 * issues.
2172 */
2173static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2174				   struct sk_buff *skb)
2175{
2176	int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2177	struct sk_buff_head *flow = &cp->rx_flows[flowid];
2178
2179	/* this is protected at a higher layer, so no need to
2180	 * do any additional locking here. stick the buffer
2181	 * at the end.
2182	 */
2183	__skb_queue_tail(flow, skb);
2184	if (words[0] & RX_COMP1_RELEASE_FLOW) {
2185		while ((skb = __skb_dequeue(flow))) {
2186			cas_skb_release(skb);
2187		}
2188	}
2189}
2190
2191/* put rx descriptor back on ring. if a buffer is in use by a higher
2192 * layer, this will need to put in a replacement.
2193 */
2194static void cas_post_page(struct cas *cp, const int ring, const int index)
2195{
2196	cas_page_t *new;
2197	int entry;
2198
2199	entry = cp->rx_old[ring];
2200
2201	new = cas_page_swap(cp, ring, index);
2202	cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2203	cp->init_rxds[ring][entry].index  =
2204		cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2205			    CAS_BASE(RX_INDEX_RING, ring));
2206
2207	entry = RX_DESC_ENTRY(ring, entry + 1);
2208	cp->rx_old[ring] = entry;
2209
2210	if (entry % 4)
2211		return;
2212
2213	if (ring == 0)
2214		writel(entry, cp->regs + REG_RX_KICK);
2215	else if ((N_RX_DESC_RINGS > 1) &&
2216		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2217		writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2218}
2219
2220
2221/* only when things are bad */
2222static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2223{
2224	unsigned int entry, last, count, released;
2225	int cluster;
2226	cas_page_t **page = cp->rx_pages[ring];
2227
2228	entry = cp->rx_old[ring];
2229
2230	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2231		     "rxd[%d] interrupt, done: %d\n", ring, entry);
2232
2233	cluster = -1;
2234	count = entry & 0x3;
2235	last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2236	released = 0;
2237	while (entry != last) {
2238		/* make a new buffer if it's still in use */
2239		if (page_count(page[entry]->buffer) > 1) {
2240			cas_page_t *new = cas_page_dequeue(cp);
2241			if (!new) {
2242				/* let the timer know that we need to
2243				 * do this again
2244				 */
2245				cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2246				if (!timer_pending(&cp->link_timer))
2247					mod_timer(&cp->link_timer, jiffies +
2248						  CAS_LINK_FAST_TIMEOUT);
2249				cp->rx_old[ring]  = entry;
2250				cp->rx_last[ring] = num ? num - released : 0;
2251				return -ENOMEM;
2252			}
2253			spin_lock(&cp->rx_inuse_lock);
2254			list_add(&page[entry]->list, &cp->rx_inuse_list);
2255			spin_unlock(&cp->rx_inuse_lock);
2256			cp->init_rxds[ring][entry].buffer =
2257				cpu_to_le64(new->dma_addr);
2258			page[entry] = new;
2259
2260		}
2261
2262		if (++count == 4) {
2263			cluster = entry;
2264			count = 0;
2265		}
2266		released++;
2267		entry = RX_DESC_ENTRY(ring, entry + 1);
2268	}
2269	cp->rx_old[ring] = entry;
2270
2271	if (cluster < 0)
2272		return 0;
2273
2274	if (ring == 0)
2275		writel(cluster, cp->regs + REG_RX_KICK);
2276	else if ((N_RX_DESC_RINGS > 1) &&
2277		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2278		writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2279	return 0;
2280}
2281
2282
2283/* process a completion ring. packets are set up in three basic ways:
2284 * small packets: should be copied header + data in single buffer.
2285 * large packets: header and data in a single buffer.
2286 * split packets: header in a separate buffer from data.
2287 *                data may be in multiple pages. data may be > 256
2288 *                bytes but in a single page.
2289 *
2290 * NOTE: RX page posting is done in this routine as well. while there's
2291 *       the capability of using multiple RX completion rings, it isn't
2292 *       really worthwhile due to the fact that the page posting will
2293 *       force serialization on the single descriptor ring.
2294 */
2295static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2296{
2297	struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2298	int entry, drops;
2299	int npackets = 0;
2300
2301	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2302		     "rx[%d] interrupt, done: %d/%d\n",
2303		     ring,
2304		     readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2305
2306	entry = cp->rx_new[ring];
2307	drops = 0;
2308	while (1) {
2309		struct cas_rx_comp *rxc = rxcs + entry;
2310		struct sk_buff *uninitialized_var(skb);
2311		int type, len;
2312		u64 words[4];
2313		int i, dring;
2314
2315		words[0] = le64_to_cpu(rxc->word1);
2316		words[1] = le64_to_cpu(rxc->word2);
2317		words[2] = le64_to_cpu(rxc->word3);
2318		words[3] = le64_to_cpu(rxc->word4);
2319
2320		/* don't touch if still owned by hw */
2321		type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2322		if (type == 0)
2323			break;
2324
2325		/* hw hasn't cleared the zero bit yet */
2326		if (words[3] & RX_COMP4_ZERO) {
2327			break;
2328		}
2329
2330		/* get info on the packet */
2331		if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2332			spin_lock(&cp->stat_lock[ring]);
2333			cp->net_stats[ring].rx_errors++;
2334			if (words[3] & RX_COMP4_LEN_MISMATCH)
2335				cp->net_stats[ring].rx_length_errors++;
2336			if (words[3] & RX_COMP4_BAD)
2337				cp->net_stats[ring].rx_crc_errors++;
2338			spin_unlock(&cp->stat_lock[ring]);
2339
2340			/* We'll just return it to Cassini. */
2341		drop_it:
2342			spin_lock(&cp->stat_lock[ring]);
2343			++cp->net_stats[ring].rx_dropped;
2344			spin_unlock(&cp->stat_lock[ring]);
2345			goto next;
2346		}
2347
2348		len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2349		if (len < 0) {
2350			++drops;
2351			goto drop_it;
2352		}
2353
2354		/* see if it's a flow re-assembly or not. the driver
2355		 * itself handles release back up.
2356		 */
2357		if (RX_DONT_BATCH || (type == 0x2)) {
2358			/* non-reassm: these always get released */
2359			cas_skb_release(skb);
2360		} else {
2361			cas_rx_flow_pkt(cp, words, skb);
2362		}
2363
2364		spin_lock(&cp->stat_lock[ring]);
2365		cp->net_stats[ring].rx_packets++;
2366		cp->net_stats[ring].rx_bytes += len;
2367		spin_unlock(&cp->stat_lock[ring]);
2368
2369	next:
2370		npackets++;
2371
2372		/* should it be released? */
2373		if (words[0] & RX_COMP1_RELEASE_HDR) {
2374			i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2375			dring = CAS_VAL(RX_INDEX_RING, i);
2376			i = CAS_VAL(RX_INDEX_NUM, i);
2377			cas_post_page(cp, dring, i);
2378		}
2379
2380		if (words[0] & RX_COMP1_RELEASE_DATA) {
2381			i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2382			dring = CAS_VAL(RX_INDEX_RING, i);
2383			i = CAS_VAL(RX_INDEX_NUM, i);
2384			cas_post_page(cp, dring, i);
2385		}
2386
2387		if (words[0] & RX_COMP1_RELEASE_NEXT) {
2388			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2389			dring = CAS_VAL(RX_INDEX_RING, i);
2390			i = CAS_VAL(RX_INDEX_NUM, i);
2391			cas_post_page(cp, dring, i);
2392		}
2393
2394		/* skip to the next entry */
2395		entry = RX_COMP_ENTRY(ring, entry + 1 +
2396				      CAS_VAL(RX_COMP1_SKIP, words[0]));
2397#ifdef USE_NAPI
2398		if (budget && (npackets >= budget))
2399			break;
2400#endif
2401	}
2402	cp->rx_new[ring] = entry;
2403
2404	if (drops)
2405		netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2406	return npackets;
2407}
2408
2409
2410/* put completion entries back on the ring */
2411static void cas_post_rxcs_ringN(struct net_device *dev,
2412				struct cas *cp, int ring)
2413{
2414	struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2415	int last, entry;
2416
2417	last = cp->rx_cur[ring];
2418	entry = cp->rx_new[ring];
2419	netif_printk(cp, intr, KERN_DEBUG, dev,
2420		     "rxc[%d] interrupt, done: %d/%d\n",
2421		     ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2422
2423	/* zero and re-mark descriptors */
2424	while (last != entry) {
2425		cas_rxc_init(rxc + last);
2426		last = RX_COMP_ENTRY(ring, last + 1);
2427	}
2428	cp->rx_cur[ring] = last;
2429
2430	if (ring == 0)
2431		writel(last, cp->regs + REG_RX_COMP_TAIL);
2432	else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2433		writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2434}
2435
2436
2437
2438/* cassini can use all four PCI interrupts for the completion ring.
2439 * rings 3 and 4 are identical
2440 */
2441#if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2442static inline void cas_handle_irqN(struct net_device *dev,
2443				   struct cas *cp, const u32 status,
2444				   const int ring)
2445{
2446	if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2447		cas_post_rxcs_ringN(dev, cp, ring);
2448}
2449
2450static irqreturn_t cas_interruptN(int irq, void *dev_id)
2451{
2452	struct net_device *dev = dev_id;
2453	struct cas *cp = netdev_priv(dev);
2454	unsigned long flags;
2455	int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2456	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2457
2458	/* check for shared irq */
2459	if (status == 0)
2460		return IRQ_NONE;
2461
2462	spin_lock_irqsave(&cp->lock, flags);
2463	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2464#ifdef USE_NAPI
2465		cas_mask_intr(cp);
2466		napi_schedule(&cp->napi);
2467#else
2468		cas_rx_ringN(cp, ring, 0);
2469#endif
2470		status &= ~INTR_RX_DONE_ALT;
2471	}
2472
2473	if (status)
2474		cas_handle_irqN(dev, cp, status, ring);
2475	spin_unlock_irqrestore(&cp->lock, flags);
2476	return IRQ_HANDLED;
2477}
2478#endif
2479
2480#ifdef USE_PCI_INTB
2481/* everything but rx packets */
2482static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2483{
2484	if (status & INTR_RX_BUF_UNAVAIL_1) {
2485		/* Frame arrived, no free RX buffers available.
2486		 * NOTE: we can get this on a link transition. */
2487		cas_post_rxds_ringN(cp, 1, 0);
2488		spin_lock(&cp->stat_lock[1]);
2489		cp->net_stats[1].rx_dropped++;
2490		spin_unlock(&cp->stat_lock[1]);
2491	}
2492
2493	if (status & INTR_RX_BUF_AE_1)
2494		cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2495				    RX_AE_FREEN_VAL(1));
2496
2497	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2498		cas_post_rxcs_ringN(cp, 1);
2499}
2500
2501/* ring 2 handles a few more events than 3 and 4 */
2502static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2503{
2504	struct net_device *dev = dev_id;
2505	struct cas *cp = netdev_priv(dev);
2506	unsigned long flags;
2507	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2508
2509	/* check for shared interrupt */
2510	if (status == 0)
2511		return IRQ_NONE;
2512
2513	spin_lock_irqsave(&cp->lock, flags);
2514	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2515#ifdef USE_NAPI
2516		cas_mask_intr(cp);
2517		napi_schedule(&cp->napi);
2518#else
2519		cas_rx_ringN(cp, 1, 0);
2520#endif
2521		status &= ~INTR_RX_DONE_ALT;
2522	}
2523	if (status)
2524		cas_handle_irq1(cp, status);
2525	spin_unlock_irqrestore(&cp->lock, flags);
2526	return IRQ_HANDLED;
2527}
2528#endif
2529
2530static inline void cas_handle_irq(struct net_device *dev,
2531				  struct cas *cp, const u32 status)
2532{
2533	/* housekeeping interrupts */
2534	if (status & INTR_ERROR_MASK)
2535		cas_abnormal_irq(dev, cp, status);
2536
2537	if (status & INTR_RX_BUF_UNAVAIL) {
2538		/* Frame arrived, no free RX buffers available.
2539		 * NOTE: we can get this on a link transition.
2540		 */
2541		cas_post_rxds_ringN(cp, 0, 0);
2542		spin_lock(&cp->stat_lock[0]);
2543		cp->net_stats[0].rx_dropped++;
2544		spin_unlock(&cp->stat_lock[0]);
2545	} else if (status & INTR_RX_BUF_AE) {
2546		cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2547				    RX_AE_FREEN_VAL(0));
2548	}
2549
2550	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2551		cas_post_rxcs_ringN(dev, cp, 0);
2552}
2553
2554static irqreturn_t cas_interrupt(int irq, void *dev_id)
2555{
2556	struct net_device *dev = dev_id;
2557	struct cas *cp = netdev_priv(dev);
2558	unsigned long flags;
2559	u32 status = readl(cp->regs + REG_INTR_STATUS);
2560
2561	if (status == 0)
2562		return IRQ_NONE;
2563
2564	spin_lock_irqsave(&cp->lock, flags);
2565	if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2566		cas_tx(dev, cp, status);
2567		status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2568	}
2569
2570	if (status & INTR_RX_DONE) {
2571#ifdef USE_NAPI
2572		cas_mask_intr(cp);
2573		napi_schedule(&cp->napi);
2574#else
2575		cas_rx_ringN(cp, 0, 0);
2576#endif
2577		status &= ~INTR_RX_DONE;
2578	}
2579
2580	if (status)
2581		cas_handle_irq(dev, cp, status);
2582	spin_unlock_irqrestore(&cp->lock, flags);
2583	return IRQ_HANDLED;
2584}
2585
2586
2587#ifdef USE_NAPI
2588static int cas_poll(struct napi_struct *napi, int budget)
2589{
2590	struct cas *cp = container_of(napi, struct cas, napi);
2591	struct net_device *dev = cp->dev;
2592	int i, enable_intr, credits;
2593	u32 status = readl(cp->regs + REG_INTR_STATUS);
2594	unsigned long flags;
2595
2596	spin_lock_irqsave(&cp->lock, flags);
2597	cas_tx(dev, cp, status);
2598	spin_unlock_irqrestore(&cp->lock, flags);
2599
2600	/* NAPI rx packets. we spread the credits across all of the
2601	 * rxc rings
2602	 *
2603	 * to make sure we're fair with the work we loop through each
2604	 * ring N_RX_COMP_RING times with a request of
2605	 * budget / N_RX_COMP_RINGS
2606	 */
2607	enable_intr = 1;
2608	credits = 0;
2609	for (i = 0; i < N_RX_COMP_RINGS; i++) {
2610		int j;
2611		for (j = 0; j < N_RX_COMP_RINGS; j++) {
2612			credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2613			if (credits >= budget) {
2614				enable_intr = 0;
2615				goto rx_comp;
2616			}
2617		}
2618	}
2619
2620rx_comp:
2621	/* final rx completion */
2622	spin_lock_irqsave(&cp->lock, flags);
2623	if (status)
2624		cas_handle_irq(dev, cp, status);
2625
2626#ifdef USE_PCI_INTB
2627	if (N_RX_COMP_RINGS > 1) {
2628		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2629		if (status)
2630			cas_handle_irq1(dev, cp, status);
2631	}
2632#endif
2633
2634#ifdef USE_PCI_INTC
2635	if (N_RX_COMP_RINGS > 2) {
2636		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2637		if (status)
2638			cas_handle_irqN(dev, cp, status, 2);
2639	}
2640#endif
2641
2642#ifdef USE_PCI_INTD
2643	if (N_RX_COMP_RINGS > 3) {
2644		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2645		if (status)
2646			cas_handle_irqN(dev, cp, status, 3);
2647	}
2648#endif
2649	spin_unlock_irqrestore(&cp->lock, flags);
2650	if (enable_intr) {
2651		napi_complete(napi);
2652		cas_unmask_intr(cp);
2653	}
2654	return credits;
2655}
2656#endif
2657
2658#ifdef CONFIG_NET_POLL_CONTROLLER
2659static void cas_netpoll(struct net_device *dev)
2660{
2661	struct cas *cp = netdev_priv(dev);
2662
2663	cas_disable_irq(cp, 0);
2664	cas_interrupt(cp->pdev->irq, dev);
2665	cas_enable_irq(cp, 0);
2666
2667#ifdef USE_PCI_INTB
2668	if (N_RX_COMP_RINGS > 1) {
2669		/* cas_interrupt1(); */
2670	}
2671#endif
2672#ifdef USE_PCI_INTC
2673	if (N_RX_COMP_RINGS > 2) {
2674		/* cas_interruptN(); */
2675	}
2676#endif
2677#ifdef USE_PCI_INTD
2678	if (N_RX_COMP_RINGS > 3) {
2679		/* cas_interruptN(); */
2680	}
2681#endif
2682}
2683#endif
2684
2685static void cas_tx_timeout(struct net_device *dev)
2686{
2687	struct cas *cp = netdev_priv(dev);
2688
2689	netdev_err(dev, "transmit timed out, resetting\n");
2690	if (!cp->hw_running) {
2691		netdev_err(dev, "hrm.. hw not running!\n");
2692		return;
2693	}
2694
2695	netdev_err(dev, "MIF_STATE[%08x]\n",
2696		   readl(cp->regs + REG_MIF_STATE_MACHINE));
2697
2698	netdev_err(dev, "MAC_STATE[%08x]\n",
2699		   readl(cp->regs + REG_MAC_STATE_MACHINE));
2700
2701	netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2702		   readl(cp->regs + REG_TX_CFG),
2703		   readl(cp->regs + REG_MAC_TX_STATUS),
2704		   readl(cp->regs + REG_MAC_TX_CFG),
2705		   readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2706		   readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2707		   readl(cp->regs + REG_TX_FIFO_READ_PTR),
2708		   readl(cp->regs + REG_TX_SM_1),
2709		   readl(cp->regs + REG_TX_SM_2));
2710
2711	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2712		   readl(cp->regs + REG_RX_CFG),
2713		   readl(cp->regs + REG_MAC_RX_STATUS),
2714		   readl(cp->regs + REG_MAC_RX_CFG));
2715
2716	netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2717		   readl(cp->regs + REG_HP_STATE_MACHINE),
2718		   readl(cp->regs + REG_HP_STATUS0),
2719		   readl(cp->regs + REG_HP_STATUS1),
2720		   readl(cp->regs + REG_HP_STATUS2));
2721
2722#if 1
2723	atomic_inc(&cp->reset_task_pending);
2724	atomic_inc(&cp->reset_task_pending_all);
2725	schedule_work(&cp->reset_task);
2726#else
2727	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2728	schedule_work(&cp->reset_task);
2729#endif
2730}
2731
2732static inline int cas_intme(int ring, int entry)
2733{
2734	/* Algorithm: IRQ every 1/2 of descriptors. */
2735	if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2736		return 1;
2737	return 0;
2738}
2739
2740
2741static void cas_write_txd(struct cas *cp, int ring, int entry,
2742			  dma_addr_t mapping, int len, u64 ctrl, int last)
2743{
2744	struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2745
2746	ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2747	if (cas_intme(ring, entry))
2748		ctrl |= TX_DESC_INTME;
2749	if (last)
2750		ctrl |= TX_DESC_EOF;
2751	txd->control = cpu_to_le64(ctrl);
2752	txd->buffer = cpu_to_le64(mapping);
2753}
2754
2755static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2756				const int entry)
2757{
2758	return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2759}
2760
2761static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2762				     const int entry, const int tentry)
2763{
2764	cp->tx_tiny_use[ring][tentry].nbufs++;
2765	cp->tx_tiny_use[ring][entry].used = 1;
2766	return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2767}
2768
2769static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2770				    struct sk_buff *skb)
2771{
2772	struct net_device *dev = cp->dev;
2773	int entry, nr_frags, frag, tabort, tentry;
2774	dma_addr_t mapping;
2775	unsigned long flags;
2776	u64 ctrl;
2777	u32 len;
2778
2779	spin_lock_irqsave(&cp->tx_lock[ring], flags);
2780
2781	/* This is a hard error, log it. */
2782	if (TX_BUFFS_AVAIL(cp, ring) <=
2783	    CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2784		netif_stop_queue(dev);
2785		spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2786		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2787		return 1;
2788	}
2789
2790	ctrl = 0;
2791	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2792		const u64 csum_start_off = skb_checksum_start_offset(skb);
2793		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2794
2795		ctrl =  TX_DESC_CSUM_EN |
2796			CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2797			CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2798	}
2799
2800	entry = cp->tx_new[ring];
2801	cp->tx_skbs[ring][entry] = skb;
2802
2803	nr_frags = skb_shinfo(skb)->nr_frags;
2804	len = skb_headlen(skb);
2805	mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2806			       offset_in_page(skb->data), len,
2807			       PCI_DMA_TODEVICE);
2808
2809	tentry = entry;
2810	tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2811	if (unlikely(tabort)) {
2812		/* NOTE: len is always >  tabort */
2813		cas_write_txd(cp, ring, entry, mapping, len - tabort,
2814			      ctrl | TX_DESC_SOF, 0);
2815		entry = TX_DESC_NEXT(ring, entry);
2816
2817		skb_copy_from_linear_data_offset(skb, len - tabort,
2818			      tx_tiny_buf(cp, ring, entry), tabort);
2819		mapping = tx_tiny_map(cp, ring, entry, tentry);
2820		cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2821			      (nr_frags == 0));
2822	} else {
2823		cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2824			      TX_DESC_SOF, (nr_frags == 0));
2825	}
2826	entry = TX_DESC_NEXT(ring, entry);
2827
2828	for (frag = 0; frag < nr_frags; frag++) {
2829		skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2830
2831		len = fragp->size;
2832		mapping = pci_map_page(cp->pdev, fragp->page,
2833				       fragp->page_offset, len,
2834				       PCI_DMA_TODEVICE);
2835
2836		tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2837		if (unlikely(tabort)) {
2838			void *addr;
2839
2840			/* NOTE: len is always > tabort */
2841			cas_write_txd(cp, ring, entry, mapping, len - tabort,
2842				      ctrl, 0);
2843			entry = TX_DESC_NEXT(ring, entry);
2844
2845			addr = cas_page_map(fragp->page);
2846			memcpy(tx_tiny_buf(cp, ring, entry),
2847			       addr + fragp->page_offset + len - tabort,
2848			       tabort);
2849			cas_page_unmap(addr);
2850			mapping = tx_tiny_map(cp, ring, entry, tentry);
2851			len     = tabort;
2852		}
2853
2854		cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2855			      (frag + 1 == nr_frags));
2856		entry = TX_DESC_NEXT(ring, entry);
2857	}
2858
2859	cp->tx_new[ring] = entry;
2860	if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2861		netif_stop_queue(dev);
2862
2863	netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2864		     "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2865		     ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2866	writel(entry, cp->regs + REG_TX_KICKN(ring));
2867	spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2868	return 0;
2869}
2870
2871static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2872{
2873	struct cas *cp = netdev_priv(dev);
2874
2875	/* this is only used as a load-balancing hint, so it doesn't
2876	 * need to be SMP safe
2877	 */
2878	static int ring;
2879
2880	if (skb_padto(skb, cp->min_frame_size))
2881		return NETDEV_TX_OK;
2882
2883	/* XXX: we need some higher-level QoS hooks to steer packets to
2884	 *      individual queues.
2885	 */
2886	if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2887		return NETDEV_TX_BUSY;
2888	return NETDEV_TX_OK;
2889}
2890
2891static void cas_init_tx_dma(struct cas *cp)
2892{
2893	u64 desc_dma = cp->block_dvma;
2894	unsigned long off;
2895	u32 val;
2896	int i;
2897
2898	/* set up tx completion writeback registers. must be 8-byte aligned */
2899#ifdef USE_TX_COMPWB
2900	off = offsetof(struct cas_init_block, tx_compwb);
2901	writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2902	writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2903#endif
2904
2905	/* enable completion writebacks, enable paced mode,
2906	 * disable read pipe, and disable pre-interrupt compwbs
2907	 */
2908	val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2909		TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2910		TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2911		TX_CFG_INTR_COMPWB_DIS;
2912
2913	/* write out tx ring info and tx desc bases */
2914	for (i = 0; i < MAX_TX_RINGS; i++) {
2915		off = (unsigned long) cp->init_txds[i] -
2916			(unsigned long) cp->init_block;
2917
2918		val |= CAS_TX_RINGN_BASE(i);
2919		writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2920		writel((desc_dma + off) & 0xffffffff, cp->regs +
2921		       REG_TX_DBN_LOW(i));
2922		/* don't zero out the kick register here as the system
2923		 * will wedge
2924		 */
2925	}
2926	writel(val, cp->regs + REG_TX_CFG);
2927
2928	/* program max burst sizes. these numbers should be different
2929	 * if doing QoS.
2930	 */
2931#ifdef USE_QOS
2932	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2933	writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2934	writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2935	writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2936#else
2937	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2938	writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2939	writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2940	writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2941#endif
2942}
2943
2944/* Must be invoked under cp->lock. */
2945static inline void cas_init_dma(struct cas *cp)
2946{
2947	cas_init_tx_dma(cp);
2948	cas_init_rx_dma(cp);
2949}
2950
2951static void cas_process_mc_list(struct cas *cp)
2952{
2953	u16 hash_table[16];
2954	u32 crc;
2955	struct netdev_hw_addr *ha;
2956	int i = 1;
2957
2958	memset(hash_table, 0, sizeof(hash_table));
2959	netdev_for_each_mc_addr(ha, cp->dev) {
2960		if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2961			/* use the alternate mac address registers for the
2962			 * first 15 multicast addresses
2963			 */
2964			writel((ha->addr[4] << 8) | ha->addr[5],
2965			       cp->regs + REG_MAC_ADDRN(i*3 + 0));
2966			writel((ha->addr[2] << 8) | ha->addr[3],
2967			       cp->regs + REG_MAC_ADDRN(i*3 + 1));
2968			writel((ha->addr[0] << 8) | ha->addr[1],
2969			       cp->regs + REG_MAC_ADDRN(i*3 + 2));
2970			i++;
2971		}
2972		else {
2973			/* use hw hash table for the next series of
2974			 * multicast addresses
2975			 */
2976			crc = ether_crc_le(ETH_ALEN, ha->addr);
2977			crc >>= 24;
2978			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2979		}
2980	}
2981	for (i = 0; i < 16; i++)
2982		writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2983}
2984
2985/* Must be invoked under cp->lock. */
2986static u32 cas_setup_multicast(struct cas *cp)
2987{
2988	u32 rxcfg = 0;
2989	int i;
2990
2991	if (cp->dev->flags & IFF_PROMISC) {
2992		rxcfg |= MAC_RX_CFG_PROMISC_EN;
2993
2994	} else if (cp->dev->flags & IFF_ALLMULTI) {
2995	    	for (i=0; i < 16; i++)
2996			writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2997		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2998
2999	} else {
3000		cas_process_mc_list(cp);
3001		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3002	}
3003
3004	return rxcfg;
3005}
3006
3007/* must be invoked under cp->stat_lock[N_TX_RINGS] */
3008static void cas_clear_mac_err(struct cas *cp)
3009{
3010	writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3011	writel(0, cp->regs + REG_MAC_COLL_FIRST);
3012	writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3013	writel(0, cp->regs + REG_MAC_COLL_LATE);
3014	writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3015	writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3016	writel(0, cp->regs + REG_MAC_RECV_FRAME);
3017	writel(0, cp->regs + REG_MAC_LEN_ERR);
3018	writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3019	writel(0, cp->regs + REG_MAC_FCS_ERR);
3020	writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3021}
3022
3023
3024static void cas_mac_reset(struct cas *cp)
3025{
3026	int i;
3027
3028	/* do both TX and RX reset */
3029	writel(0x1, cp->regs + REG_MAC_TX_RESET);
3030	writel(0x1, cp->regs + REG_MAC_RX_RESET);
3031
3032	/* wait for TX */
3033	i = STOP_TRIES;
3034	while (i-- > 0) {
3035		if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3036			break;
3037		udelay(10);
3038	}
3039
3040	/* wait for RX */
3041	i = STOP_TRIES;
3042	while (i-- > 0) {
3043		if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3044			break;
3045		udelay(10);
3046	}
3047
3048	if (readl(cp->regs + REG_MAC_TX_RESET) |
3049	    readl(cp->regs + REG_MAC_RX_RESET))
3050		netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3051			   readl(cp->regs + REG_MAC_TX_RESET),
3052			   readl(cp->regs + REG_MAC_RX_RESET),
3053			   readl(cp->regs + REG_MAC_STATE_MACHINE));
3054}
3055
3056
3057/* Must be invoked under cp->lock. */
3058static void cas_init_mac(struct cas *cp)
3059{
3060	unsigned char *e = &cp->dev->dev_addr[0];
3061	int i;
3062	cas_mac_reset(cp);
3063
3064	/* setup core arbitration weight register */
3065	writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3066
3067	/* XXX Use pci_dma_burst_advice() */
3068#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3069	/* set the infinite burst register for chips that don't have
3070	 * pci issues.
3071	 */
3072	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3073		writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3074#endif
3075
3076	writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3077
3078	writel(0x00, cp->regs + REG_MAC_IPG0);
3079	writel(0x08, cp->regs + REG_MAC_IPG1);
3080	writel(0x04, cp->regs + REG_MAC_IPG2);
3081
3082	/* change later for 802.3z */
3083	writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3084
3085	/* min frame + FCS */
3086	writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3087
3088	/* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3089	 * specify the maximum frame size to prevent RX tag errors on
3090	 * oversized frames.
3091	 */
3092	writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3093	       CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3094			(CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3095	       cp->regs + REG_MAC_FRAMESIZE_MAX);
3096
3097	/* NOTE: crc_size is used as a surrogate for half-duplex.
3098	 * workaround saturn half-duplex issue by increasing preamble
3099	 * size to 65 bytes.
3100	 */
3101	if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3102		writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3103	else
3104		writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3105	writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3106	writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3107	writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3108
3109	writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3110
3111	writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3112	writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3113	writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3114	writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3115	writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3116
3117	/* setup mac address in perfect filter array */
3118	for (i = 0; i < 45; i++)
3119		writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3120
3121	writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3122	writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3123	writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3124
3125	writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3126	writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3127	writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3128
3129	cp->mac_rx_cfg = cas_setup_multicast(cp);
3130
3131	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3132	cas_clear_mac_err(cp);
3133	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3134
3135	/* Setup MAC interrupts.  We want to get all of the interesting
3136	 * counter expiration events, but we do not want to hear about
3137	 * normal rx/tx as the DMA engine tells us that.
3138	 */
3139	writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3140	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3141
3142	/* Don't enable even the PAUSE interrupts for now, we
3143	 * make no use of those events other than to record them.
3144	 */
3145	writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3146}
3147
3148/* Must be invoked under cp->lock. */
3149static void cas_init_pause_thresholds(struct cas *cp)
3150{
3151	/* Calculate pause thresholds.  Setting the OFF threshold to the
3152	 * full RX fifo size effectively disables PAUSE generation
3153	 */
3154	if (cp->rx_fifo_size <= (2 * 1024)) {
3155		cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3156	} else {
3157		int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3158		if (max_frame * 3 > cp->rx_fifo_size) {
3159			cp->rx_pause_off = 7104;
3160			cp->rx_pause_on  = 960;
3161		} else {
3162			int off = (cp->rx_fifo_size - (max_frame * 2));
3163			int on = off - max_frame;
3164			cp->rx_pause_off = off;
3165			cp->rx_pause_on = on;
3166		}
3167	}
3168}
3169
3170static int cas_vpd_match(const void __iomem *p, const char *str)
3171{
3172	int len = strlen(str) + 1;
3173	int i;
3174
3175	for (i = 0; i < len; i++) {
3176		if (readb(p + i) != str[i])
3177			return 0;
3178	}
3179	return 1;
3180}
3181
3182
3183/* get the mac address by reading the vpd information in the rom.
3184 * also get the phy type and determine if there's an entropy generator.
3185 * NOTE: this is a bit convoluted for the following reasons:
3186 *  1) vpd info has order-dependent mac addresses for multinic cards
3187 *  2) the only way to determine the nic order is to use the slot
3188 *     number.
3189 *  3) fiber cards don't have bridges, so their slot numbers don't
3190 *     mean anything.
3191 *  4) we don't actually know we have a fiber card until after
3192 *     the mac addresses are parsed.
3193 */
3194static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3195			    const int offset)
3196{
3197	void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3198	void __iomem *base, *kstart;
3199	int i, len;
3200	int found = 0;
3201#define VPD_FOUND_MAC        0x01
3202#define VPD_FOUND_PHY        0x02
3203
3204	int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3205	int mac_off  = 0;
3206
3207#if defined(CONFIG_SPARC)
3208	const unsigned char *addr;
3209#endif
3210
3211	/* give us access to the PROM */
3212	writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3213	       cp->regs + REG_BIM_LOCAL_DEV_EN);
3214
3215	/* check for an expansion rom */
3216	if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3217		goto use_random_mac_addr;
3218
3219	/* search for beginning of vpd */
3220	base = NULL;
3221	for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3222		/* check for PCIR */
3223		if ((readb(p + i + 0) == 0x50) &&
3224		    (readb(p + i + 1) == 0x43) &&
3225		    (readb(p + i + 2) == 0x49) &&
3226		    (readb(p + i + 3) == 0x52)) {
3227			base = p + (readb(p + i + 8) |
3228				    (readb(p + i + 9) << 8));
3229			break;
3230		}
3231	}
3232
3233	if (!base || (readb(base) != 0x82))
3234		goto use_random_mac_addr;
3235
3236	i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3237	while (i < EXPANSION_ROM_SIZE) {
3238		if (readb(base + i) != 0x90) /* no vpd found */
3239			goto use_random_mac_addr;
3240
3241		/* found a vpd field */
3242		len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3243
3244		/* extract keywords */
3245		kstart = base + i + 3;
3246		p = kstart;
3247		while ((p - kstart) < len) {
3248			int klen = readb(p + 2);
3249			int j;
3250			char type;
3251
3252			p += 3;
3253
3254			/* look for the following things:
3255			 * -- correct length == 29
3256			 * 3 (type) + 2 (size) +
3257			 * 18 (strlen("local-mac-address") + 1) +
3258			 * 6 (mac addr)
3259			 * -- VPD Instance 'I'
3260			 * -- VPD Type Bytes 'B'
3261			 * -- VPD data length == 6
3262			 * -- property string == local-mac-address
3263			 *
3264			 * -- correct length == 24
3265			 * 3 (type) + 2 (size) +
3266			 * 12 (strlen("entropy-dev") + 1) +
3267			 * 7 (strlen("vms110") + 1)
3268			 * -- VPD Instance 'I'
3269			 * -- VPD Type String 'B'
3270			 * -- VPD data length == 7
3271			 * -- property string == entropy-dev
3272			 *
3273			 * -- correct length == 18
3274			 * 3 (type) + 2 (size) +
3275			 * 9 (strlen("phy-type") + 1) +
3276			 * 4 (strlen("pcs") + 1)
3277			 * -- VPD Instance 'I'
3278			 * -- VPD Type String 'S'
3279			 * -- VPD data length == 4
3280			 * -- property string == phy-type
3281			 *
3282			 * -- correct length == 23
3283			 * 3 (type) + 2 (size) +
3284			 * 14 (strlen("phy-interface") + 1) +
3285			 * 4 (strlen("pcs") + 1)
3286			 * -- VPD Instance 'I'
3287			 * -- VPD Type String 'S'
3288			 * -- VPD data length == 4
3289			 * -- property string == phy-interface
3290			 */
3291			if (readb(p) != 'I')
3292				goto next;
3293
3294			/* finally, check string and length */
3295			type = readb(p + 3);
3296			if (type == 'B') {
3297				if ((klen == 29) && readb(p + 4) == 6 &&
3298				    cas_vpd_match(p + 5,
3299						  "local-mac-address")) {
3300					if (mac_off++ > offset)
3301						goto next;
3302
3303					/* set mac address */
3304					for (j = 0; j < 6; j++)
3305						dev_addr[j] =
3306							readb(p + 23 + j);
3307					goto found_mac;
3308				}
3309			}
3310
3311			if (type != 'S')
3312				goto next;
3313
3314#ifdef USE_ENTROPY_DEV
3315			if ((klen == 24) &&
3316			    cas_vpd_match(p + 5, "entropy-dev") &&
3317			    cas_vpd_match(p + 17, "vms110")) {
3318				cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3319				goto next;
3320			}
3321#endif
3322
3323			if (found & VPD_FOUND_PHY)
3324				goto next;
3325
3326			if ((klen == 18) && readb(p + 4) == 4 &&
3327			    cas_vpd_match(p + 5, "phy-type")) {
3328				if (cas_vpd_match(p + 14, "pcs")) {
3329					phy_type = CAS_PHY_SERDES;
3330					goto found_phy;
3331				}
3332			}
3333
3334			if ((klen == 23) && readb(p + 4) == 4 &&
3335			    cas_vpd_match(p + 5, "phy-interface")) {
3336				if (cas_vpd_match(p + 19, "pcs")) {
3337					phy_type = CAS_PHY_SERDES;
3338					goto found_phy;
3339				}
3340			}
3341found_mac:
3342			found |= VPD_FOUND_MAC;
3343			goto next;
3344
3345found_phy:
3346			found |= VPD_FOUND_PHY;
3347
3348next:
3349			p += klen;
3350		}
3351		i += len + 3;
3352	}
3353
3354use_random_mac_addr:
3355	if (found & VPD_FOUND_MAC)
3356		goto done;
3357
3358#if defined(CONFIG_SPARC)
3359	addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3360	if (addr != NULL) {
3361		memcpy(dev_addr, addr, 6);
3362		goto done;
3363	}
3364#endif
3365
3366	/* Sun MAC prefix then 3 random bytes. */
3367	pr_info("MAC address not found in ROM VPD\n");
3368	dev_addr[0] = 0x08;
3369	dev_addr[1] = 0x00;
3370	dev_addr[2] = 0x20;
3371	get_random_bytes(dev_addr + 3, 3);
3372
3373done:
3374	writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3375	return phy_type;
3376}
3377
3378/* check pci invariants */
3379static void cas_check_pci_invariants(struct cas *cp)
3380{
3381	struct pci_dev *pdev = cp->pdev;
3382
3383	cp->cas_flags = 0;
3384	if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3385	    (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3386		if (pdev->revision >= CAS_ID_REVPLUS)
3387			cp->cas_flags |= CAS_FLAG_REG_PLUS;
3388		if (pdev->revision < CAS_ID_REVPLUS02u)
3389			cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3390
3391		/* Original Cassini supports HW CSUM, but it's not
3392		 * enabled by default as it can trigger TX hangs.
3393		 */
3394		if (pdev->revision < CAS_ID_REV2)
3395			cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3396	} else {
3397		/* Only sun has original cassini chips.  */
3398		cp->cas_flags |= CAS_FLAG_REG_PLUS;
3399
3400		/* We use a flag because the same phy might be externally
3401		 * connected.
3402		 */
3403		if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3404		    (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3405			cp->cas_flags |= CAS_FLAG_SATURN;
3406	}
3407}
3408
3409
3410static int cas_check_invariants(struct cas *cp)
3411{
3412	struct pci_dev *pdev = cp->pdev;
3413	u32 cfg;
3414	int i;
3415
3416	/* get page size for rx buffers. */
3417	cp->page_order = 0;
3418#ifdef USE_PAGE_ORDER
3419	if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3420		/* see if we can allocate larger pages */
3421		struct page *page = alloc_pages(GFP_ATOMIC,
3422						CAS_JUMBO_PAGE_SHIFT -
3423						PAGE_SHIFT);
3424		if (page) {
3425			__free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3426			cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3427		} else {
3428			printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3429		}
3430	}
3431#endif
3432	cp->page_size = (PAGE_SIZE << cp->page_order);
3433
3434	/* Fetch the FIFO configurations. */
3435	cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3436	cp->rx_fifo_size = RX_FIFO_SIZE;
3437
3438	/* finish phy determination. MDIO1 takes precedence over MDIO0 if
3439	 * they're both connected.
3440	 */
3441	cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3442					PCI_SLOT(pdev->devfn));
3443	if (cp->phy_type & CAS_PHY_SERDES) {
3444		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3445		return 0; /* no more checking needed */
3446	}
3447
3448	/* MII */
3449	cfg = readl(cp->regs + REG_MIF_CFG);
3450	if (cfg & MIF_CFG_MDIO_1) {
3451		cp->phy_type = CAS_PHY_MII_MDIO1;
3452	} else if (cfg & MIF_CFG_MDIO_0) {
3453		cp->phy_type = CAS_PHY_MII_MDIO0;
3454	}
3455
3456	cas_mif_poll(cp, 0);
3457	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3458
3459	for (i = 0; i < 32; i++) {
3460		u32 phy_id;
3461		int j;
3462
3463		for (j = 0; j < 3; j++) {
3464			cp->phy_addr = i;
3465			phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3466			phy_id |= cas_phy_read(cp, MII_PHYSID2);
3467			if (phy_id && (phy_id != 0xFFFFFFFF)) {
3468				cp->phy_id = phy_id;
3469				goto done;
3470			}
3471		}
3472	}
3473	pr_err("MII phy did not respond [%08x]\n",
3474	       readl(cp->regs + REG_MIF_STATE_MACHINE));
3475	return -1;
3476
3477done:
3478	/* see if we can do gigabit */
3479	cfg = cas_phy_read(cp, MII_BMSR);
3480	if ((cfg & CAS_BMSR_1000_EXTEND) &&
3481	    cas_phy_read(cp, CAS_MII_1000_EXTEND))
3482		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3483	return 0;
3484}
3485
3486/* Must be invoked under cp->lock. */
3487static inline void cas_start_dma(struct cas *cp)
3488{
3489	int i;
3490	u32 val;
3491	int txfailed = 0;
3492
3493	/* enable dma */
3494	val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3495	writel(val, cp->regs + REG_TX_CFG);
3496	val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3497	writel(val, cp->regs + REG_RX_CFG);
3498
3499	/* enable the mac */
3500	val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3501	writel(val, cp->regs + REG_MAC_TX_CFG);
3502	val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3503	writel(val, cp->regs + REG_MAC_RX_CFG);
3504
3505	i = STOP_TRIES;
3506	while (i-- > 0) {
3507		val = readl(cp->regs + REG_MAC_TX_CFG);
3508		if ((val & MAC_TX_CFG_EN))
3509			break;
3510		udelay(10);
3511	}
3512	if (i < 0) txfailed = 1;
3513	i = STOP_TRIES;
3514	while (i-- > 0) {
3515		val = readl(cp->regs + REG_MAC_RX_CFG);
3516		if ((val & MAC_RX_CFG_EN)) {
3517			if (txfailed) {
3518				netdev_err(cp->dev,
3519					   "enabling mac failed [tx:%08x:%08x]\n",
3520					   readl(cp->regs + REG_MIF_STATE_MACHINE),
3521					   readl(cp->regs + REG_MAC_STATE_MACHINE));
3522			}
3523			goto enable_rx_done;
3524		}
3525		udelay(10);
3526	}
3527	netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3528		   (txfailed ? "tx,rx" : "rx"),
3529		   readl(cp->regs + REG_MIF_STATE_MACHINE),
3530		   readl(cp->regs + REG_MAC_STATE_MACHINE));
3531
3532enable_rx_done:
3533	cas_unmask_intr(cp); /* enable interrupts */
3534	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3535	writel(0, cp->regs + REG_RX_COMP_TAIL);
3536
3537	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3538		if (N_RX_DESC_RINGS > 1)
3539			writel(RX_DESC_RINGN_SIZE(1) - 4,
3540			       cp->regs + REG_PLUS_RX_KICK1);
3541
3542		for (i = 1; i < N_RX_COMP_RINGS; i++)
3543			writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3544	}
3545}
3546
3547/* Must be invoked under cp->lock. */
3548static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3549				   int *pause)
3550{
3551	u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3552	*fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3553	*pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3554	if (val & PCS_MII_LPA_ASYM_PAUSE)
3555		*pause |= 0x10;
3556	*spd = 1000;
3557}
3558
3559/* Must be invoked under cp->lock. */
3560static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3561				   int *pause)
3562{
3563	u32 val;
3564
3565	*fd = 0;
3566	*spd = 10;
3567	*pause = 0;
3568
3569	/* use GMII registers */
3570	val = cas_phy_read(cp, MII_LPA);
3571	if (val & CAS_LPA_PAUSE)
3572		*pause = 0x01;
3573
3574	if (val & CAS_LPA_ASYM_PAUSE)
3575		*pause |= 0x10;
3576
3577	if (val & LPA_DUPLEX)
3578		*fd = 1;
3579	if (val & LPA_100)
3580		*spd = 100;
3581
3582	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3583		val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3584		if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3585			*spd = 1000;
3586		if (val & CAS_LPA_1000FULL)
3587			*fd = 1;
3588	}
3589}
3590
3591/* A link-up condition has occurred, initialize and enable the
3592 * rest of the chip.
3593 *
3594 * Must be invoked under cp->lock.
3595 */
3596static void cas_set_link_modes(struct cas *cp)
3597{
3598	u32 val;
3599	int full_duplex, speed, pause;
3600
3601	full_duplex = 0;
3602	speed = 10;
3603	pause = 0;
3604
3605	if (CAS_PHY_MII(cp->phy_type)) {
3606		cas_mif_poll(cp, 0);
3607		val = cas_phy_read(cp, MII_BMCR);
3608		if (val & BMCR_ANENABLE) {
3609			cas_read_mii_link_mode(cp, &full_duplex, &speed,
3610					       &pause);
3611		} else {
3612			if (val & BMCR_FULLDPLX)
3613				full_duplex = 1;
3614
3615			if (val & BMCR_SPEED100)
3616				speed = 100;
3617			else if (val & CAS_BMCR_SPEED1000)
3618				speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3619					1000 : 100;
3620		}
3621		cas_mif_poll(cp, 1);
3622
3623	} else {
3624		val = readl(cp->regs + REG_PCS_MII_CTRL);
3625		cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3626		if ((val & PCS_MII_AUTONEG_EN) == 0) {
3627			if (val & PCS_MII_CTRL_DUPLEX)
3628				full_duplex = 1;
3629		}
3630	}
3631
3632	netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3633		   speed, full_duplex ? "full" : "half");
3634
3635	val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3636	if (CAS_PHY_MII(cp->phy_type)) {
3637		val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3638		if (!full_duplex)
3639			val |= MAC_XIF_DISABLE_ECHO;
3640	}
3641	if (full_duplex)
3642		val |= MAC_XIF_FDPLX_LED;
3643	if (speed == 1000)
3644		val |= MAC_XIF_GMII_MODE;
3645	writel(val, cp->regs + REG_MAC_XIF_CFG);
3646
3647	/* deal with carrier and collision detect. */
3648	val = MAC_TX_CFG_IPG_EN;
3649	if (full_duplex) {
3650		val |= MAC_TX_CFG_IGNORE_CARRIER;
3651		val |= MAC_TX_CFG_IGNORE_COLL;
3652	} else {
3653#ifndef USE_CSMA_CD_PROTO
3654		val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3655		val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3656#endif
3657	}
3658	/* val now set up for REG_MAC_TX_CFG */
3659
3660	/* If gigabit and half-duplex, enable carrier extension
3661	 * mode.  increase slot time to 512 bytes as well.
3662	 * else, disable it and make sure slot time is 64 bytes.
3663	 * also activate checksum bug workaround
3664	 */
3665	if ((speed == 1000) && !full_duplex) {
3666		writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3667		       cp->regs + REG_MAC_TX_CFG);
3668
3669		val = readl(cp->regs + REG_MAC_RX_CFG);
3670		val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3671		writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3672		       cp->regs + REG_MAC_RX_CFG);
3673
3674		writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3675
3676		cp->crc_size = 4;
3677		/* minimum size gigabit frame at half duplex */
3678		cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3679
3680	} else {
3681		writel(val, cp->regs + REG_MAC_TX_CFG);
3682
3683		/* checksum bug workaround. don't strip FCS when in
3684		 * half-duplex mode
3685		 */
3686		val = readl(cp->regs + REG_MAC_RX_CFG);
3687		if (full_duplex) {
3688			val |= MAC_RX_CFG_STRIP_FCS;
3689			cp->crc_size = 0;
3690			cp->min_frame_size = CAS_MIN_MTU;
3691		} else {
3692			val &= ~MAC_RX_CFG_STRIP_FCS;
3693			cp->crc_size = 4;
3694			cp->min_frame_size = CAS_MIN_FRAME;
3695		}
3696		writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3697		       cp->regs + REG_MAC_RX_CFG);
3698		writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3699	}
3700
3701	if (netif_msg_link(cp)) {
3702		if (pause & 0x01) {
3703			netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3704				    cp->rx_fifo_size,
3705				    cp->rx_pause_off,
3706				    cp->rx_pause_on);
3707		} else if (pause & 0x10) {
3708			netdev_info(cp->dev, "TX pause enabled\n");
3709		} else {
3710			netdev_info(cp->dev, "Pause is disabled\n");
3711		}
3712	}
3713
3714	val = readl(cp->regs + REG_MAC_CTRL_CFG);
3715	val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3716	if (pause) { /* symmetric or asymmetric pause */
3717		val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3718		if (pause & 0x01) { /* symmetric pause */
3719			val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3720		}
3721	}
3722	writel(val, cp->regs + REG_MAC_CTRL_CFG);
3723	cas_start_dma(cp);
3724}
3725
3726/* Must be invoked under cp->lock. */
3727static void cas_init_hw(struct cas *cp, int restart_link)
3728{
3729	if (restart_link)
3730		cas_phy_init(cp);
3731
3732	cas_init_pause_thresholds(cp);
3733	cas_init_mac(cp);
3734	cas_init_dma(cp);
3735
3736	if (restart_link) {
3737		/* Default aneg parameters */
3738		cp->timer_ticks = 0;
3739		cas_begin_auto_negotiation(cp, NULL);
3740	} else if (cp->lstate == link_up) {
3741		cas_set_link_modes(cp);
3742		netif_carrier_on(cp->dev);
3743	}
3744}
3745
3746/* Must be invoked under cp->lock. on earlier cassini boards,
3747 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3748 * let it settle out, and then restore pci state.
3749 */
3750static void cas_hard_reset(struct cas *cp)
3751{
3752	writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3753	udelay(20);
3754	pci_restore_state(cp->pdev);
3755}
3756
3757
3758static void cas_global_reset(struct cas *cp, int blkflag)
3759{
3760	int limit;
3761
3762	/* issue a global reset. don't use RSTOUT. */
3763	if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3764		/* For PCS, when the blkflag is set, we should set the
3765		 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3766		 * the last autonegotiation from being cleared.  We'll
3767		 * need some special handling if the chip is set into a
3768		 * loopback mode.
3769		 */
3770		writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3771		       cp->regs + REG_SW_RESET);
3772	} else {
3773		writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3774	}
3775
3776	/* need to wait at least 3ms before polling register */
3777	mdelay(3);
3778
3779	limit = STOP_TRIES;
3780	while (limit-- > 0) {
3781		u32 val = readl(cp->regs + REG_SW_RESET);
3782		if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3783			goto done;
3784		udelay(10);
3785	}
3786	netdev_err(cp->dev, "sw reset failed\n");
3787
3788done:
3789	/* enable various BIM interrupts */
3790	writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3791	       BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3792
3793	/* clear out pci error status mask for handled errors.
3794	 * we don't deal with DMA counter overflows as they happen
3795	 * all the time.
3796	 */
3797	writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3798			       PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3799			       PCI_ERR_BIM_DMA_READ), cp->regs +
3800	       REG_PCI_ERR_STATUS_MASK);
3801
3802	/* set up for MII by default to address mac rx reset timeout
3803	 * issue
3804	 */
3805	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3806}
3807
3808static void cas_reset(struct cas *cp, int blkflag)
3809{
3810	u32 val;
3811
3812	cas_mask_intr(cp);
3813	cas_global_reset(cp, blkflag);
3814	cas_mac_reset(cp);
3815	cas_entropy_reset(cp);
3816
3817	/* disable dma engines. */
3818	val = readl(cp->regs + REG_TX_CFG);
3819	val &= ~TX_CFG_DMA_EN;
3820	writel(val, cp->regs + REG_TX_CFG);
3821
3822	val = readl(cp->regs + REG_RX_CFG);
3823	val &= ~RX_CFG_DMA_EN;
3824	writel(val, cp->regs + REG_RX_CFG);
3825
3826	/* program header parser */
3827	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3828	    (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3829		cas_load_firmware(cp, CAS_HP_FIRMWARE);
3830	} else {
3831		cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3832	}
3833
3834	/* clear out error registers */
3835	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3836	cas_clear_mac_err(cp);
3837	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3838}
3839
3840/* Shut down the chip, must be called with pm_mutex held.  */
3841static void cas_shutdown(struct cas *cp)
3842{
3843	unsigned long flags;
3844
3845	/* Make us not-running to avoid timers respawning */
3846	cp->hw_running = 0;
3847
3848	del_timer_sync(&cp->link_timer);
3849
3850	/* Stop the reset task */
3851#if 0
3852	while (atomic_read(&cp->reset_task_pending_mtu) ||
3853	       atomic_read(&cp->reset_task_pending_spare) ||
3854	       atomic_read(&cp->reset_task_pending_all))
3855		schedule();
3856
3857#else
3858	while (atomic_read(&cp->reset_task_pending))
3859		schedule();
3860#endif
3861	/* Actually stop the chip */
3862	cas_lock_all_save(cp, flags);
3863	cas_reset(cp, 0);
3864	if (cp->cas_flags & CAS_FLAG_SATURN)
3865		cas_phy_powerdown(cp);
3866	cas_unlock_all_restore(cp, flags);
3867}
3868
3869static int cas_change_mtu(struct net_device *dev, int new_mtu)
3870{
3871	struct cas *cp = netdev_priv(dev);
3872
3873	if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3874		return -EINVAL;
3875
3876	dev->mtu = new_mtu;
3877	if (!netif_running(dev) || !netif_device_present(dev))
3878		return 0;
3879
3880	/* let the reset task handle it */
3881#if 1
3882	atomic_inc(&cp->reset_task_pending);
3883	if ((cp->phy_type & CAS_PHY_SERDES)) {
3884		atomic_inc(&cp->reset_task_pending_all);
3885	} else {
3886		atomic_inc(&cp->reset_task_pending_mtu);
3887	}
3888	schedule_work(&cp->reset_task);
3889#else
3890	atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3891		   CAS_RESET_ALL : CAS_RESET_MTU);
3892	pr_err("reset called in cas_change_mtu\n");
3893	schedule_work(&cp->reset_task);
3894#endif
3895
3896	flush_work_sync(&cp->reset_task);
3897	return 0;
3898}
3899
3900static void cas_clean_txd(struct cas *cp, int ring)
3901{
3902	struct cas_tx_desc *txd = cp->init_txds[ring];
3903	struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3904	u64 daddr, dlen;
3905	int i, size;
3906
3907	size = TX_DESC_RINGN_SIZE(ring);
3908	for (i = 0; i < size; i++) {
3909		int frag;
3910
3911		if (skbs[i] == NULL)
3912			continue;
3913
3914		skb = skbs[i];
3915		skbs[i] = NULL;
3916
3917		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3918			int ent = i & (size - 1);
3919
3920			/* first buffer is never a tiny buffer and so
3921			 * needs to be unmapped.
3922			 */
3923			daddr = le64_to_cpu(txd[ent].buffer);
3924			dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3925					 le64_to_cpu(txd[ent].control));
3926			pci_unmap_page(cp->pdev, daddr, dlen,
3927				       PCI_DMA_TODEVICE);
3928
3929			if (frag != skb_shinfo(skb)->nr_frags) {
3930				i++;
3931
3932				/* next buffer might by a tiny buffer.
3933				 * skip past it.
3934				 */
3935				ent = i & (size - 1);
3936				if (cp->tx_tiny_use[ring][ent].used)
3937					i++;
3938			}
3939		}
3940		dev_kfree_skb_any(skb);
3941	}
3942
3943	/* zero out tiny buf usage */
3944	memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3945}
3946
3947/* freed on close */
3948static inline void cas_free_rx_desc(struct cas *cp, int ring)
3949{
3950	cas_page_t **page = cp->rx_pages[ring];
3951	int i, size;
3952
3953	size = RX_DESC_RINGN_SIZE(ring);
3954	for (i = 0; i < size; i++) {
3955		if (page[i]) {
3956			cas_page_free(cp, page[i]);
3957			page[i] = NULL;
3958		}
3959	}
3960}
3961
3962static void cas_free_rxds(struct cas *cp)
3963{
3964	int i;
3965
3966	for (i = 0; i < N_RX_DESC_RINGS; i++)
3967		cas_free_rx_desc(cp, i);
3968}
3969
3970/* Must be invoked under cp->lock. */
3971static void cas_clean_rings(struct cas *cp)
3972{
3973	int i;
3974
3975	/* need to clean all tx rings */
3976	memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3977	memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3978	for (i = 0; i < N_TX_RINGS; i++)
3979		cas_clean_txd(cp, i);
3980
3981	/* zero out init block */
3982	memset(cp->init_block, 0, sizeof(struct cas_init_block));
3983	cas_clean_rxds(cp);
3984	cas_clean_rxcs(cp);
3985}
3986
3987/* allocated on open */
3988static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3989{
3990	cas_page_t **page = cp->rx_pages[ring];
3991	int size, i = 0;
3992
3993	size = RX_DESC_RINGN_SIZE(ring);
3994	for (i = 0; i < size; i++) {
3995		if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3996			return -1;
3997	}
3998	return 0;
3999}
4000
4001static int cas_alloc_rxds(struct cas *cp)
4002{
4003	int i;
4004
4005	for (i = 0; i < N_RX_DESC_RINGS; i++) {
4006		if (cas_alloc_rx_desc(cp, i) < 0) {
4007			cas_free_rxds(cp);
4008			return -1;
4009		}
4010	}
4011	return 0;
4012}
4013
4014static void cas_reset_task(struct work_struct *work)
4015{
4016	struct cas *cp = container_of(work, struct cas, reset_task);
4017#if 0
4018	int pending = atomic_read(&cp->reset_task_pending);
4019#else
4020	int pending_all = atomic_read(&cp->reset_task_pending_all);
4021	int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4022	int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4023
4024	if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4025		/* We can have more tasks scheduled than actually
4026		 * needed.
4027		 */
4028		atomic_dec(&cp->reset_task_pending);
4029		return;
4030	}
4031#endif
4032	/* The link went down, we reset the ring, but keep
4033	 * DMA stopped. Use this function for reset
4034	 * on error as well.
4035	 */
4036	if (cp->hw_running) {
4037		unsigned long flags;
4038
4039		/* Make sure we don't get interrupts or tx packets */
4040		netif_device_detach(cp->dev);
4041		cas_lock_all_save(cp, flags);
4042
4043		if (cp->opened) {
4044			/* We call cas_spare_recover when we call cas_open.
4045			 * but we do not initialize the lists cas_spare_recover
4046			 * uses until cas_open is called.
4047			 */
4048			cas_spare_recover(cp, GFP_ATOMIC);
4049		}
4050#if 1
4051		/* test => only pending_spare set */
4052		if (!pending_all && !pending_mtu)
4053			goto done;
4054#else
4055		if (pending == CAS_RESET_SPARE)
4056			goto done;
4057#endif
4058		/* when pending == CAS_RESET_ALL, the following
4059		 * call to cas_init_hw will restart auto negotiation.
4060		 * Setting the second argument of cas_reset to
4061		 * !(pending == CAS_RESET_ALL) will set this argument
4062		 * to 1 (avoiding reinitializing the PHY for the normal
4063		 * PCS case) when auto negotiation is not restarted.
4064		 */
4065#if 1
4066		cas_reset(cp, !(pending_all > 0));
4067		if (cp->opened)
4068			cas_clean_rings(cp);
4069		cas_init_hw(cp, (pending_all > 0));
4070#else
4071		cas_reset(cp, !(pending == CAS_RESET_ALL));
4072		if (cp->opened)
4073			cas_clean_rings(cp);
4074		cas_init_hw(cp, pending == CAS_RESET_ALL);
4075#endif
4076
4077done:
4078		cas_unlock_all_restore(cp, flags);
4079		netif_device_attach(cp->dev);
4080	}
4081#if 1
4082	atomic_sub(pending_all, &cp->reset_task_pending_all);
4083	atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4084	atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4085	atomic_dec(&cp->reset_task_pending);
4086#else
4087	atomic_set(&cp->reset_task_pending, 0);
4088#endif
4089}
4090
4091static void cas_link_timer(unsigned long data)
4092{
4093	struct cas *cp = (struct cas *) data;
4094	int mask, pending = 0, reset = 0;
4095	unsigned long flags;
4096
4097	if (link_transition_timeout != 0 &&
4098	    cp->link_transition_jiffies_valid &&
4099	    ((jiffies - cp->link_transition_jiffies) >
4100	      (link_transition_timeout))) {
4101		/* One-second counter so link-down workaround doesn't
4102		 * cause resets to occur so fast as to fool the switch
4103		 * into thinking the link is down.
4104		 */
4105		cp->link_transition_jiffies_valid = 0;
4106	}
4107
4108	if (!cp->hw_running)
4109		return;
4110
4111	spin_lock_irqsave(&cp->lock, flags);
4112	cas_lock_tx(cp);
4113	cas_entropy_gather(cp);
4114
4115	/* If the link task is still pending, we just
4116	 * reschedule the link timer
4117	 */
4118#if 1
4119	if (atomic_read(&cp->reset_task_pending_all) ||
4120	    atomic_read(&cp->reset_task_pending_spare) ||
4121	    atomic_read(&cp->reset_task_pending_mtu))
4122		goto done;
4123#else
4124	if (atomic_read(&cp->reset_task_pending))
4125		goto done;
4126#endif
4127
4128	/* check for rx cleaning */
4129	if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4130		int i, rmask;
4131
4132		for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4133			rmask = CAS_FLAG_RXD_POST(i);
4134			if ((mask & rmask) == 0)
4135				continue;
4136
4137			/* post_rxds will do a mod_timer */
4138			if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4139				pending = 1;
4140				continue;
4141			}
4142			cp->cas_flags &= ~rmask;
4143		}
4144	}
4145
4146	if (CAS_PHY_MII(cp->phy_type)) {
4147		u16 bmsr;
4148		cas_mif_poll(cp, 0);
4149		bmsr = cas_phy_read(cp, MII_BMSR);
4150		/* WTZ: Solaris driver reads this twice, but that
4151		 * may be due to the PCS case and the use of a
4152		 * common implementation. Read it twice here to be
4153		 * safe.
4154		 */
4155		bmsr = cas_phy_read(cp, MII_BMSR);
4156		cas_mif_poll(cp, 1);
4157		readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4158		reset = cas_mii_link_check(cp, bmsr);
4159	} else {
4160		reset = cas_pcs_link_check(cp);
4161	}
4162
4163	if (reset)
4164		goto done;
4165
4166	/* check for tx state machine confusion */
4167	if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4168		u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4169		u32 wptr, rptr;
4170		int tlm  = CAS_VAL(MAC_SM_TLM, val);
4171
4172		if (((tlm == 0x5) || (tlm == 0x3)) &&
4173		    (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4174			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4175				     "tx err: MAC_STATE[%08x]\n", val);
4176			reset = 1;
4177			goto done;
4178		}
4179
4180		val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4181		wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4182		rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4183		if ((val == 0) && (wptr != rptr)) {
4184			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4185				     "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4186				     val, wptr, rptr);
4187			reset = 1;
4188		}
4189
4190		if (reset)
4191			cas_hard_reset(cp);
4192	}
4193
4194done:
4195	if (reset) {
4196#if 1
4197		atomic_inc(&cp->reset_task_pending);
4198		atomic_inc(&cp->reset_task_pending_all);
4199		schedule_work(&cp->reset_task);
4200#else
4201		atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4202		pr_err("reset called in cas_link_timer\n");
4203		schedule_work(&cp->reset_task);
4204#endif
4205	}
4206
4207	if (!pending)
4208		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4209	cas_unlock_tx(cp);
4210	spin_unlock_irqrestore(&cp->lock, flags);
4211}
4212
4213/* tiny buffers are used to avoid target abort issues with
4214 * older cassini's
4215 */
4216static void cas_tx_tiny_free(struct cas *cp)
4217{
4218	struct pci_dev *pdev = cp->pdev;
4219	int i;
4220
4221	for (i = 0; i < N_TX_RINGS; i++) {
4222		if (!cp->tx_tiny_bufs[i])
4223			continue;
4224
4225		pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4226				    cp->tx_tiny_bufs[i],
4227				    cp->tx_tiny_dvma[i]);
4228		cp->tx_tiny_bufs[i] = NULL;
4229	}
4230}
4231
4232static int cas_tx_tiny_alloc(struct cas *cp)
4233{
4234	struct pci_dev *pdev = cp->pdev;
4235	int i;
4236
4237	for (i = 0; i < N_TX_RINGS; i++) {
4238		cp->tx_tiny_bufs[i] =
4239			pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4240					     &cp->tx_tiny_dvma[i]);
4241		if (!cp->tx_tiny_bufs[i]) {
4242			cas_tx_tiny_free(cp);
4243			return -1;
4244		}
4245	}
4246	return 0;
4247}
4248
4249
4250static int cas_open(struct net_device *dev)
4251{
4252	struct cas *cp = netdev_priv(dev);
4253	int hw_was_up, err;
4254	unsigned long flags;
4255
4256	mutex_lock(&cp->pm_mutex);
4257
4258	hw_was_up = cp->hw_running;
4259
4260	/* The power-management mutex protects the hw_running
4261	 * etc. state so it is safe to do this bit without cp->lock
4262	 */
4263	if (!cp->hw_running) {
4264		/* Reset the chip */
4265		cas_lock_all_save(cp, flags);
4266		/* We set the second arg to cas_reset to zero
4267		 * because cas_init_hw below will have its second
4268		 * argument set to non-zero, which will force
4269		 * autonegotiation to start.
4270		 */
4271		cas_reset(cp, 0);
4272		cp->hw_running = 1;
4273		cas_unlock_all_restore(cp, flags);
4274	}
4275
4276	err = -ENOMEM;
4277	if (cas_tx_tiny_alloc(cp) < 0)
4278		goto err_unlock;
4279
4280	/* alloc rx descriptors */
4281	if (cas_alloc_rxds(cp) < 0)
4282		goto err_tx_tiny;
4283
4284	/* allocate spares */
4285	cas_spare_init(cp);
4286	cas_spare_recover(cp, GFP_KERNEL);
4287
4288	/* We can now request the interrupt as we know it's masked
4289	 * on the controller. cassini+ has up to 4 interrupts
4290	 * that can be used, but you need to do explicit pci interrupt
4291	 * mapping to expose them
4292	 */
4293	if (request_irq(cp->pdev->irq, cas_interrupt,
4294			IRQF_SHARED, dev->name, (void *) dev)) {
4295		netdev_err(cp->dev, "failed to request irq !\n");
4296		err = -EAGAIN;
4297		goto err_spare;
4298	}
4299
4300#ifdef USE_NAPI
4301	napi_enable(&cp->napi);
4302#endif
4303	/* init hw */
4304	cas_lock_all_save(cp, flags);
4305	cas_clean_rings(cp);
4306	cas_init_hw(cp, !hw_was_up);
4307	cp->opened = 1;
4308	cas_unlock_all_restore(cp, flags);
4309
4310	netif_start_queue(dev);
4311	mutex_unlock(&cp->pm_mutex);
4312	return 0;
4313
4314err_spare:
4315	cas_spare_free(cp);
4316	cas_free_rxds(cp);
4317err_tx_tiny:
4318	cas_tx_tiny_free(cp);
4319err_unlock:
4320	mutex_unlock(&cp->pm_mutex);
4321	return err;
4322}
4323
4324static int cas_close(struct net_device *dev)
4325{
4326	unsigned long flags;
4327	struct cas *cp = netdev_priv(dev);
4328
4329#ifdef USE_NAPI
4330	napi_disable(&cp->napi);
4331#endif
4332	/* Make sure we don't get distracted by suspend/resume */
4333	mutex_lock(&cp->pm_mutex);
4334
4335	netif_stop_queue(dev);
4336
4337	/* Stop traffic, mark us closed */
4338	cas_lock_all_save(cp, flags);
4339	cp->opened = 0;
4340	cas_reset(cp, 0);
4341	cas_phy_init(cp);
4342	cas_begin_auto_negotiation(cp, NULL);
4343	cas_clean_rings(cp);
4344	cas_unlock_all_restore(cp, flags);
4345
4346	free_irq(cp->pdev->irq, (void *) dev);
4347	cas_spare_free(cp);
4348	cas_free_rxds(cp);
4349	cas_tx_tiny_free(cp);
4350	mutex_unlock(&cp->pm_mutex);
4351	return 0;
4352}
4353
4354static struct {
4355	const char name[ETH_GSTRING_LEN];
4356} ethtool_cassini_statnames[] = {
4357	{"collisions"},
4358	{"rx_bytes"},
4359	{"rx_crc_errors"},
4360	{"rx_dropped"},
4361	{"rx_errors"},
4362	{"rx_fifo_errors"},
4363	{"rx_frame_errors"},
4364	{"rx_length_errors"},
4365	{"rx_over_errors"},
4366	{"rx_packets"},
4367	{"tx_aborted_errors"},
4368	{"tx_bytes"},
4369	{"tx_dropped"},
4370	{"tx_errors"},
4371	{"tx_fifo_errors"},
4372	{"tx_packets"}
4373};
4374#define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4375
4376static struct {
4377	const int offsets;	/* neg. values for 2nd arg to cas_read_phy */
4378} ethtool_register_table[] = {
4379	{-MII_BMSR},
4380	{-MII_BMCR},
4381	{REG_CAWR},
4382	{REG_INF_BURST},
4383	{REG_BIM_CFG},
4384	{REG_RX_CFG},
4385	{REG_HP_CFG},
4386	{REG_MAC_TX_CFG},
4387	{REG_MAC_RX_CFG},
4388	{REG_MAC_CTRL_CFG},
4389	{REG_MAC_XIF_CFG},
4390	{REG_MIF_CFG},
4391	{REG_PCS_CFG},
4392	{REG_SATURN_PCFG},
4393	{REG_PCS_MII_STATUS},
4394	{REG_PCS_STATE_MACHINE},
4395	{REG_MAC_COLL_EXCESS},
4396	{REG_MAC_COLL_LATE}
4397};
4398#define CAS_REG_LEN 	ARRAY_SIZE(ethtool_register_table)
4399#define CAS_MAX_REGS 	(sizeof (u32)*CAS_REG_LEN)
4400
4401static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4402{
4403	u8 *p;
4404	int i;
4405	unsigned long flags;
4406
4407	spin_lock_irqsave(&cp->lock, flags);
4408	for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4409		u16 hval;
4410		u32 val;
4411		if (ethtool_register_table[i].offsets < 0) {
4412			hval = cas_phy_read(cp,
4413				    -ethtool_register_table[i].offsets);
4414			val = hval;
4415		} else {
4416			val= readl(cp->regs+ethtool_register_table[i].offsets);
4417		}
4418		memcpy(p, (u8 *)&val, sizeof(u32));
4419	}
4420	spin_unlock_irqrestore(&cp->lock, flags);
4421}
4422
4423static struct net_device_stats *cas_get_stats(struct net_device *dev)
4424{
4425	struct cas *cp = netdev_priv(dev);
4426	struct net_device_stats *stats = cp->net_stats;
4427	unsigned long flags;
4428	int i;
4429	unsigned long tmp;
4430
4431	/* we collate all of the stats into net_stats[N_TX_RING] */
4432	if (!cp->hw_running)
4433		return stats + N_TX_RINGS;
4434
4435	/* collect outstanding stats */
4436	/* WTZ: the Cassini spec gives these as 16 bit counters but
4437	 * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4438	 * in case the chip somehow puts any garbage in the other bits.
4439	 * Also, counter usage didn't seem to mach what Adrian did
4440	 * in the parts of the code that set these quantities. Made
4441	 * that consistent.
4442	 */
4443	spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4444	stats[N_TX_RINGS].rx_crc_errors +=
4445	  readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4446	stats[N_TX_RINGS].rx_frame_errors +=
4447		readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4448	stats[N_TX_RINGS].rx_length_errors +=
4449		readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4450#if 1
4451	tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4452		(readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4453	stats[N_TX_RINGS].tx_aborted_errors += tmp;
4454	stats[N_TX_RINGS].collisions +=
4455	  tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4456#else
4457	stats[N_TX_RINGS].tx_aborted_errors +=
4458		readl(cp->regs + REG_MAC_COLL_EXCESS);
4459	stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4460		readl(cp->regs + REG_MAC_COLL_LATE);
4461#endif
4462	cas_clear_mac_err(cp);
4463
4464	/* saved bits that are unique to ring 0 */
4465	spin_lock(&cp->stat_lock[0]);
4466	stats[N_TX_RINGS].collisions        += stats[0].collisions;
4467	stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4468	stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4469	stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4470	stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4471	stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4472	spin_unlock(&cp->stat_lock[0]);
4473
4474	for (i = 0; i < N_TX_RINGS; i++) {
4475		spin_lock(&cp->stat_lock[i]);
4476		stats[N_TX_RINGS].rx_length_errors +=
4477			stats[i].rx_length_errors;
4478		stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4479		stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4480		stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4481		stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4482		stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4483		stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4484		stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4485		stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4486		stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4487		memset(stats + i, 0, sizeof(struct net_device_stats));
4488		spin_unlock(&cp->stat_lock[i]);
4489	}
4490	spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4491	return stats + N_TX_RINGS;
4492}
4493
4494
4495static void cas_set_multicast(struct net_device *dev)
4496{
4497	struct cas *cp = netdev_priv(dev);
4498	u32 rxcfg, rxcfg_new;
4499	unsigned long flags;
4500	int limit = STOP_TRIES;
4501
4502	if (!cp->hw_running)
4503		return;
4504
4505	spin_lock_irqsave(&cp->lock, flags);
4506	rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4507
4508	/* disable RX MAC and wait for completion */
4509	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4510	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4511		if (!limit--)
4512			break;
4513		udelay(10);
4514	}
4515
4516	/* disable hash filter and wait for completion */
4517	limit = STOP_TRIES;
4518	rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4519	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4520	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4521		if (!limit--)
4522			break;
4523		udelay(10);
4524	}
4525
4526	/* program hash filters */
4527	cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4528	rxcfg |= rxcfg_new;
4529	writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4530	spin_unlock_irqrestore(&cp->lock, flags);
4531}
4532
4533static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4534{
4535	struct cas *cp = netdev_priv(dev);
4536	strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
4537	strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
4538	info->fw_version[0] = '\0';
4539	strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
4540	info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4541		cp->casreg_len : CAS_MAX_REGS;
4542	info->n_stats = CAS_NUM_STAT_KEYS;
4543}
4544
4545static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4546{
4547	struct cas *cp = netdev_priv(dev);
4548	u16 bmcr;
4549	int full_duplex, speed, pause;
4550	unsigned long flags;
4551	enum link_state linkstate = link_up;
4552
4553	cmd->advertising = 0;
4554	cmd->supported = SUPPORTED_Autoneg;
4555	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4556		cmd->supported |= SUPPORTED_1000baseT_Full;
4557		cmd->advertising |= ADVERTISED_1000baseT_Full;
4558	}
4559
4560	/* Record PHY settings if HW is on. */
4561	spin_lock_irqsave(&cp->lock, flags);
4562	bmcr = 0;
4563	linkstate = cp->lstate;
4564	if (CAS_PHY_MII(cp->phy_type)) {
4565		cmd->port = PORT_MII;
4566		cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4567			XCVR_INTERNAL : XCVR_EXTERNAL;
4568		cmd->phy_address = cp->phy_addr;
4569		cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4570			ADVERTISED_10baseT_Half |
4571			ADVERTISED_10baseT_Full |
4572			ADVERTISED_100baseT_Half |
4573			ADVERTISED_100baseT_Full;
4574
4575		cmd->supported |=
4576			(SUPPORTED_10baseT_Half |
4577			 SUPPORTED_10baseT_Full |
4578			 SUPPORTED_100baseT_Half |
4579			 SUPPORTED_100baseT_Full |
4580			 SUPPORTED_TP | SUPPORTED_MII);
4581
4582		if (cp->hw_running) {
4583			cas_mif_poll(cp, 0);
4584			bmcr = cas_phy_read(cp, MII_BMCR);
4585			cas_read_mii_link_mode(cp, &full_duplex,
4586					       &speed, &pause);
4587			cas_mif_poll(cp, 1);
4588		}
4589
4590	} else {
4591		cmd->port = PORT_FIBRE;
4592		cmd->transceiver = XCVR_INTERNAL;
4593		cmd->phy_address = 0;
4594		cmd->supported   |= SUPPORTED_FIBRE;
4595		cmd->advertising |= ADVERTISED_FIBRE;
4596
4597		if (cp->hw_running) {
4598			/* pcs uses the same bits as mii */
4599			bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4600			cas_read_pcs_link_mode(cp, &full_duplex,
4601					       &speed, &pause);
4602		}
4603	}
4604	spin_unlock_irqrestore(&cp->lock, flags);
4605
4606	if (bmcr & BMCR_ANENABLE) {
4607		cmd->advertising |= ADVERTISED_Autoneg;
4608		cmd->autoneg = AUTONEG_ENABLE;
4609		ethtool_cmd_speed_set(cmd, ((speed == 10) ?
4610					    SPEED_10 :
4611					    ((speed == 1000) ?
4612					     SPEED_1000 : SPEED_100)));
4613		cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4614	} else {
4615		cmd->autoneg = AUTONEG_DISABLE;
4616		ethtool_cmd_speed_set(cmd, ((bmcr & CAS_BMCR_SPEED1000) ?
4617					    SPEED_1000 :
4618					    ((bmcr & BMCR_SPEED100) ?
4619					     SPEED_100 : SPEED_10)));
4620		cmd->duplex =
4621			(bmcr & BMCR_FULLDPLX) ?
4622			DUPLEX_FULL : DUPLEX_HALF;
4623	}
4624	if (linkstate != link_up) {
4625		/* Force these to "unknown" if the link is not up and
4626		 * autonogotiation in enabled. We can set the link
4627		 * speed to 0, but not cmd->duplex,
4628		 * because its legal values are 0 and 1.  Ethtool will
4629		 * print the value reported in parentheses after the
4630		 * word "Unknown" for unrecognized values.
4631		 *
4632		 * If in forced mode, we report the speed and duplex
4633		 * settings that we configured.
4634		 */
4635		if (cp->link_cntl & BMCR_ANENABLE) {
4636			ethtool_cmd_speed_set(cmd, 0);
4637			cmd->duplex = 0xff;
4638		} else {
4639			ethtool_cmd_speed_set(cmd, SPEED_10);
4640			if (cp->link_cntl & BMCR_SPEED100) {
4641				ethtool_cmd_speed_set(cmd, SPEED_100);
4642			} else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4643				ethtool_cmd_speed_set(cmd, SPEED_1000);
4644			}
4645			cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4646				DUPLEX_FULL : DUPLEX_HALF;
4647		}
4648	}
4649	return 0;
4650}
4651
4652static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4653{
4654	struct cas *cp = netdev_priv(dev);
4655	unsigned long flags;
4656	u32 speed = ethtool_cmd_speed(cmd);
4657
4658	/* Verify the settings we care about. */
4659	if (cmd->autoneg != AUTONEG_ENABLE &&
4660	    cmd->autoneg != AUTONEG_DISABLE)
4661		return -EINVAL;
4662
4663	if (cmd->autoneg == AUTONEG_DISABLE &&
4664	    ((speed != SPEED_1000 &&
4665	      speed != SPEED_100 &&
4666	      speed != SPEED_10) ||
4667	     (cmd->duplex != DUPLEX_HALF &&
4668	      cmd->duplex != DUPLEX_FULL)))
4669		return -EINVAL;
4670
4671	/* Apply settings and restart link process. */
4672	spin_lock_irqsave(&cp->lock, flags);
4673	cas_begin_auto_negotiation(cp, cmd);
4674	spin_unlock_irqrestore(&cp->lock, flags);
4675	return 0;
4676}
4677
4678static int cas_nway_reset(struct net_device *dev)
4679{
4680	struct cas *cp = netdev_priv(dev);
4681	unsigned long flags;
4682
4683	if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4684		return -EINVAL;
4685
4686	/* Restart link process. */
4687	spin_lock_irqsave(&cp->lock, flags);
4688	cas_begin_auto_negotiation(cp, NULL);
4689	spin_unlock_irqrestore(&cp->lock, flags);
4690
4691	return 0;
4692}
4693
4694static u32 cas_get_link(struct net_device *dev)
4695{
4696	struct cas *cp = netdev_priv(dev);
4697	return cp->lstate == link_up;
4698}
4699
4700static u32 cas_get_msglevel(struct net_device *dev)
4701{
4702	struct cas *cp = netdev_priv(dev);
4703	return cp->msg_enable;
4704}
4705
4706static void cas_set_msglevel(struct net_device *dev, u32 value)
4707{
4708	struct cas *cp = netdev_priv(dev);
4709	cp->msg_enable = value;
4710}
4711
4712static int cas_get_regs_len(struct net_device *dev)
4713{
4714	struct cas *cp = netdev_priv(dev);
4715	return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4716}
4717
4718static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4719			     void *p)
4720{
4721	struct cas *cp = netdev_priv(dev);
4722	regs->version = 0;
4723	/* cas_read_regs handles locks (cp->lock).  */
4724	cas_read_regs(cp, p, regs->len / sizeof(u32));
4725}
4726
4727static int cas_get_sset_count(struct net_device *dev, int sset)
4728{
4729	switch (sset) {
4730	case ETH_SS_STATS:
4731		return CAS_NUM_STAT_KEYS;
4732	default:
4733		return -EOPNOTSUPP;
4734	}
4735}
4736
4737static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4738{
4739	 memcpy(data, &ethtool_cassini_statnames,
4740					 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4741}
4742
4743static void cas_get_ethtool_stats(struct net_device *dev,
4744				      struct ethtool_stats *estats, u64 *data)
4745{
4746	struct cas *cp = netdev_priv(dev);
4747	struct net_device_stats *stats = cas_get_stats(cp->dev);
4748	int i = 0;
4749	data[i++] = stats->collisions;
4750	data[i++] = stats->rx_bytes;
4751	data[i++] = stats->rx_crc_errors;
4752	data[i++] = stats->rx_dropped;
4753	data[i++] = stats->rx_errors;
4754	data[i++] = stats->rx_fifo_errors;
4755	data[i++] = stats->rx_frame_errors;
4756	data[i++] = stats->rx_length_errors;
4757	data[i++] = stats->rx_over_errors;
4758	data[i++] = stats->rx_packets;
4759	data[i++] = stats->tx_aborted_errors;
4760	data[i++] = stats->tx_bytes;
4761	data[i++] = stats->tx_dropped;
4762	data[i++] = stats->tx_errors;
4763	data[i++] = stats->tx_fifo_errors;
4764	data[i++] = stats->tx_packets;
4765	BUG_ON(i != CAS_NUM_STAT_KEYS);
4766}
4767
4768static const struct ethtool_ops cas_ethtool_ops = {
4769	.get_drvinfo		= cas_get_drvinfo,
4770	.get_settings		= cas_get_settings,
4771	.set_settings		= cas_set_settings,
4772	.nway_reset		= cas_nway_reset,
4773	.get_link		= cas_get_link,
4774	.get_msglevel		= cas_get_msglevel,
4775	.set_msglevel		= cas_set_msglevel,
4776	.get_regs_len		= cas_get_regs_len,
4777	.get_regs		= cas_get_regs,
4778	.get_sset_count		= cas_get_sset_count,
4779	.get_strings		= cas_get_strings,
4780	.get_ethtool_stats	= cas_get_ethtool_stats,
4781};
4782
4783static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4784{
4785	struct cas *cp = netdev_priv(dev);
4786	struct mii_ioctl_data *data = if_mii(ifr);
4787	unsigned long flags;
4788	int rc = -EOPNOTSUPP;
4789
4790	/* Hold the PM mutex while doing ioctl's or we may collide
4791	 * with open/close and power management and oops.
4792	 */
4793	mutex_lock(&cp->pm_mutex);
4794	switch (cmd) {
4795	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
4796		data->phy_id = cp->phy_addr;
4797		/* Fallthrough... */
4798
4799	case SIOCGMIIREG:		/* Read MII PHY register. */
4800		spin_lock_irqsave(&cp->lock, flags);
4801		cas_mif_poll(cp, 0);
4802		data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4803		cas_mif_poll(cp, 1);
4804		spin_unlock_irqrestore(&cp->lock, flags);
4805		rc = 0;
4806		break;
4807
4808	case SIOCSMIIREG:		/* Write MII PHY register. */
4809		spin_lock_irqsave(&cp->lock, flags);
4810		cas_mif_poll(cp, 0);
4811		rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4812		cas_mif_poll(cp, 1);
4813		spin_unlock_irqrestore(&cp->lock, flags);
4814		break;
4815	default:
4816		break;
4817	}
4818
4819	mutex_unlock(&cp->pm_mutex);
4820	return rc;
4821}
4822
4823/* When this chip sits underneath an Intel 31154 bridge, it is the
4824 * only subordinate device and we can tweak the bridge settings to
4825 * reflect that fact.
4826 */
4827static void __devinit cas_program_bridge(struct pci_dev *cas_pdev)
4828{
4829	struct pci_dev *pdev = cas_pdev->bus->self;
4830	u32 val;
4831
4832	if (!pdev)
4833		return;
4834
4835	if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4836		return;
4837
4838	/* Clear bit 10 (Bus Parking Control) in the Secondary
4839	 * Arbiter Control/Status Register which lives at offset
4840	 * 0x41.  Using a 32-bit word read/modify/write at 0x40
4841	 * is much simpler so that's how we do this.
4842	 */
4843	pci_read_config_dword(pdev, 0x40, &val);
4844	val &= ~0x00040000;
4845	pci_write_config_dword(pdev, 0x40, val);
4846
4847	/* Max out the Multi-Transaction Timer settings since
4848	 * Cassini is the only device present.
4849	 *
4850	 * The register is 16-bit and lives at 0x50.  When the
4851	 * settings are enabled, it extends the GRANT# signal
4852	 * for a requestor after a transaction is complete.  This
4853	 * allows the next request to run without first needing
4854	 * to negotiate the GRANT# signal back.
4855	 *
4856	 * Bits 12:10 define the grant duration:
4857	 *
4858	 *	1	--	16 clocks
4859	 *	2	--	32 clocks
4860	 *	3	--	64 clocks
4861	 *	4	--	128 clocks
4862	 *	5	--	256 clocks
4863	 *
4864	 * All other values are illegal.
4865	 *
4866	 * Bits 09:00 define which REQ/GNT signal pairs get the
4867	 * GRANT# signal treatment.  We set them all.
4868	 */
4869	pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4870
4871	/* The Read Prefecth Policy register is 16-bit and sits at
4872	 * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4873	 * enable it and max out all of the settings since only one
4874	 * device is sitting underneath and thus bandwidth sharing is
4875	 * not an issue.
4876	 *
4877	 * The register has several 3 bit fields, which indicates a
4878	 * multiplier applied to the base amount of prefetching the
4879	 * chip would do.  These fields are at:
4880	 *
4881	 *	15:13	---	ReRead Primary Bus
4882	 *	12:10	---	FirstRead Primary Bus
4883	 *	09:07	---	ReRead Secondary Bus
4884	 *	06:04	---	FirstRead Secondary Bus
4885	 *
4886	 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4887	 * get enabled on.  Bit 3 is a grouped enabler which controls
4888	 * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4889	 * the individual REQ/GNT pairs [2:0].
4890	 */
4891	pci_write_config_word(pdev, 0x52,
4892			      (0x7 << 13) |
4893			      (0x7 << 10) |
4894			      (0x7 <<  7) |
4895			      (0x7 <<  4) |
4896			      (0xf <<  0));
4897
4898	/* Force cacheline size to 0x8 */
4899	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4900
4901	/* Force latency timer to maximum setting so Cassini can
4902	 * sit on the bus as long as it likes.
4903	 */
4904	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4905}
4906
4907static const struct net_device_ops cas_netdev_ops = {
4908	.ndo_open		= cas_open,
4909	.ndo_stop		= cas_close,
4910	.ndo_start_xmit		= cas_start_xmit,
4911	.ndo_get_stats 		= cas_get_stats,
4912	.ndo_set_multicast_list = cas_set_multicast,
4913	.ndo_do_ioctl		= cas_ioctl,
4914	.ndo_tx_timeout		= cas_tx_timeout,
4915	.ndo_change_mtu		= cas_change_mtu,
4916	.ndo_set_mac_address	= eth_mac_addr,
4917	.ndo_validate_addr	= eth_validate_addr,
4918#ifdef CONFIG_NET_POLL_CONTROLLER
4919	.ndo_poll_controller	= cas_netpoll,
4920#endif
4921};
4922
4923static int __devinit cas_init_one(struct pci_dev *pdev,
4924				  const struct pci_device_id *ent)
4925{
4926	static int cas_version_printed = 0;
4927	unsigned long casreg_len;
4928	struct net_device *dev;
4929	struct cas *cp;
4930	int i, err, pci_using_dac;
4931	u16 pci_cmd;
4932	u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4933
4934	if (cas_version_printed++ == 0)
4935		pr_info("%s", version);
4936
4937	err = pci_enable_device(pdev);
4938	if (err) {
4939		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4940		return err;
4941	}
4942
4943	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4944		dev_err(&pdev->dev, "Cannot find proper PCI device "
4945		       "base address, aborting\n");
4946		err = -ENODEV;
4947		goto err_out_disable_pdev;
4948	}
4949
4950	dev = alloc_etherdev(sizeof(*cp));
4951	if (!dev) {
4952		dev_err(&pdev->dev, "Etherdev alloc failed, aborting\n");
4953		err = -ENOMEM;
4954		goto err_out_disable_pdev;
4955	}
4956	SET_NETDEV_DEV(dev, &pdev->dev);
4957
4958	err = pci_request_regions(pdev, dev->name);
4959	if (err) {
4960		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4961		goto err_out_free_netdev;
4962	}
4963	pci_set_master(pdev);
4964
4965	/* we must always turn on parity response or else parity
4966	 * doesn't get generated properly. disable SERR/PERR as well.
4967	 * in addition, we want to turn MWI on.
4968	 */
4969	pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4970	pci_cmd &= ~PCI_COMMAND_SERR;
4971	pci_cmd |= PCI_COMMAND_PARITY;
4972	pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4973	if (pci_try_set_mwi(pdev))
4974		pr_warning("Could not enable MWI for %s\n", pci_name(pdev));
4975
4976	cas_program_bridge(pdev);
4977
4978	/*
4979	 * On some architectures, the default cache line size set
4980	 * by pci_try_set_mwi reduces perforamnce.  We have to increase
4981	 * it for this case.  To start, we'll print some configuration
4982	 * data.
4983	 */
4984#if 1
4985	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4986			     &orig_cacheline_size);
4987	if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4988		cas_cacheline_size =
4989			(CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4990			CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4991		if (pci_write_config_byte(pdev,
4992					  PCI_CACHE_LINE_SIZE,
4993					  cas_cacheline_size)) {
4994			dev_err(&pdev->dev, "Could not set PCI cache "
4995			       "line size\n");
4996			goto err_write_cacheline;
4997		}
4998	}
4999#endif
5000
5001
5002	/* Configure DMA attributes. */
5003	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5004		pci_using_dac = 1;
5005		err = pci_set_consistent_dma_mask(pdev,
5006						  DMA_BIT_MASK(64));
5007		if (err < 0) {
5008			dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5009			       "for consistent allocations\n");
5010			goto err_out_free_res;
5011		}
5012
5013	} else {
5014		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5015		if (err) {
5016			dev_err(&pdev->dev, "No usable DMA configuration, "
5017			       "aborting\n");
5018			goto err_out_free_res;
5019		}
5020		pci_using_dac = 0;
5021	}
5022
5023	casreg_len = pci_resource_len(pdev, 0);
5024
5025	cp = netdev_priv(dev);
5026	cp->pdev = pdev;
5027#if 1
5028	/* A value of 0 indicates we never explicitly set it */
5029	cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5030#endif
5031	cp->dev = dev;
5032	cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5033	  cassini_debug;
5034
5035#if defined(CONFIG_SPARC)
5036	cp->of_node = pci_device_to_OF_node(pdev);
5037#endif
5038
5039	cp->link_transition = LINK_TRANSITION_UNKNOWN;
5040	cp->link_transition_jiffies_valid = 0;
5041
5042	spin_lock_init(&cp->lock);
5043	spin_lock_init(&cp->rx_inuse_lock);
5044	spin_lock_init(&cp->rx_spare_lock);
5045	for (i = 0; i < N_TX_RINGS; i++) {
5046		spin_lock_init(&cp->stat_lock[i]);
5047		spin_lock_init(&cp->tx_lock[i]);
5048	}
5049	spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5050	mutex_init(&cp->pm_mutex);
5051
5052	init_timer(&cp->link_timer);
5053	cp->link_timer.function = cas_link_timer;
5054	cp->link_timer.data = (unsigned long) cp;
5055
5056#if 1
5057	/* Just in case the implementation of atomic operations
5058	 * change so that an explicit initialization is necessary.
5059	 */
5060	atomic_set(&cp->reset_task_pending, 0);
5061	atomic_set(&cp->reset_task_pending_all, 0);
5062	atomic_set(&cp->reset_task_pending_spare, 0);
5063	atomic_set(&cp->reset_task_pending_mtu, 0);
5064#endif
5065	INIT_WORK(&cp->reset_task, cas_reset_task);
5066
5067	/* Default link parameters */
5068	if (link_mode >= 0 && link_mode < 6)
5069		cp->link_cntl = link_modes[link_mode];
5070	else
5071		cp->link_cntl = BMCR_ANENABLE;
5072	cp->lstate = link_down;
5073	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5074	netif_carrier_off(cp->dev);
5075	cp->timer_ticks = 0;
5076
5077	/* give us access to cassini registers */
5078	cp->regs = pci_iomap(pdev, 0, casreg_len);
5079	if (!cp->regs) {
5080		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5081		goto err_out_free_res;
5082	}
5083	cp->casreg_len = casreg_len;
5084
5085	pci_save_state(pdev);
5086	cas_check_pci_invariants(cp);
5087	cas_hard_reset(cp);
5088	cas_reset(cp, 0);
5089	if (cas_check_invariants(cp))
5090		goto err_out_iounmap;
5091	if (cp->cas_flags & CAS_FLAG_SATURN)
5092		if (cas_saturn_firmware_init(cp))
5093			goto err_out_iounmap;
5094
5095	cp->init_block = (struct cas_init_block *)
5096		pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5097				     &cp->block_dvma);
5098	if (!cp->init_block) {
5099		dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5100		goto err_out_iounmap;
5101	}
5102
5103	for (i = 0; i < N_TX_RINGS; i++)
5104		cp->init_txds[i] = cp->init_block->txds[i];
5105
5106	for (i = 0; i < N_RX_DESC_RINGS; i++)
5107		cp->init_rxds[i] = cp->init_block->rxds[i];
5108
5109	for (i = 0; i < N_RX_COMP_RINGS; i++)
5110		cp->init_rxcs[i] = cp->init_block->rxcs[i];
5111
5112	for (i = 0; i < N_RX_FLOWS; i++)
5113		skb_queue_head_init(&cp->rx_flows[i]);
5114
5115	dev->netdev_ops = &cas_netdev_ops;
5116	dev->ethtool_ops = &cas_ethtool_ops;
5117	dev->watchdog_timeo = CAS_TX_TIMEOUT;
5118
5119#ifdef USE_NAPI
5120	netif_napi_add(dev, &cp->napi, cas_poll, 64);
5121#endif
5122	dev->irq = pdev->irq;
5123	dev->dma = 0;
5124
5125	/* Cassini features. */
5126	if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5127		dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5128
5129	if (pci_using_dac)
5130		dev->features |= NETIF_F_HIGHDMA;
5131
5132	if (register_netdev(dev)) {
5133		dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5134		goto err_out_free_consistent;
5135	}
5136
5137	i = readl(cp->regs + REG_BIM_CFG);
5138	netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5139		    (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5140		    (i & BIM_CFG_32BIT) ? "32" : "64",
5141		    (i & BIM_CFG_66MHZ) ? "66" : "33",
5142		    (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5143		    dev->dev_addr);
5144
5145	pci_set_drvdata(pdev, dev);
5146	cp->hw_running = 1;
5147	cas_entropy_reset(cp);
5148	cas_phy_init(cp);
5149	cas_begin_auto_negotiation(cp, NULL);
5150	return 0;
5151
5152err_out_free_consistent:
5153	pci_free_consistent(pdev, sizeof(struct cas_init_block),
5154			    cp->init_block, cp->block_dvma);
5155
5156err_out_iounmap:
5157	mutex_lock(&cp->pm_mutex);
5158	if (cp->hw_running)
5159		cas_shutdown(cp);
5160	mutex_unlock(&cp->pm_mutex);
5161
5162	pci_iounmap(pdev, cp->regs);
5163
5164
5165err_out_free_res:
5166	pci_release_regions(pdev);
5167
5168err_write_cacheline:
5169	/* Try to restore it in case the error occurred after we
5170	 * set it.
5171	 */
5172	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5173
5174err_out_free_netdev:
5175	free_netdev(dev);
5176
5177err_out_disable_pdev:
5178	pci_disable_device(pdev);
5179	pci_set_drvdata(pdev, NULL);
5180	return -ENODEV;
5181}
5182
5183static void __devexit cas_remove_one(struct pci_dev *pdev)
5184{
5185	struct net_device *dev = pci_get_drvdata(pdev);
5186	struct cas *cp;
5187	if (!dev)
5188		return;
5189
5190	cp = netdev_priv(dev);
5191	unregister_netdev(dev);
5192
5193	if (cp->fw_data)
5194		vfree(cp->fw_data);
5195
5196	mutex_lock(&cp->pm_mutex);
5197	cancel_work_sync(&cp->reset_task);
5198	if (cp->hw_running)
5199		cas_shutdown(cp);
5200	mutex_unlock(&cp->pm_mutex);
5201
5202#if 1
5203	if (cp->orig_cacheline_size) {
5204		/* Restore the cache line size if we had modified
5205		 * it.
5206		 */
5207		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5208				      cp->orig_cacheline_size);
5209	}
5210#endif
5211	pci_free_consistent(pdev, sizeof(struct cas_init_block),
5212			    cp->init_block, cp->block_dvma);
5213	pci_iounmap(pdev, cp->regs);
5214	free_netdev(dev);
5215	pci_release_regions(pdev);
5216	pci_disable_device(pdev);
5217	pci_set_drvdata(pdev, NULL);
5218}
5219
5220#ifdef CONFIG_PM
5221static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5222{
5223	struct net_device *dev = pci_get_drvdata(pdev);
5224	struct cas *cp = netdev_priv(dev);
5225	unsigned long flags;
5226
5227	mutex_lock(&cp->pm_mutex);
5228
5229	/* If the driver is opened, we stop the DMA */
5230	if (cp->opened) {
5231		netif_device_detach(dev);
5232
5233		cas_lock_all_save(cp, flags);
5234
5235		/* We can set the second arg of cas_reset to 0
5236		 * because on resume, we'll call cas_init_hw with
5237		 * its second arg set so that autonegotiation is
5238		 * restarted.
5239		 */
5240		cas_reset(cp, 0);
5241		cas_clean_rings(cp);
5242		cas_unlock_all_restore(cp, flags);
5243	}
5244
5245	if (cp->hw_running)
5246		cas_shutdown(cp);
5247	mutex_unlock(&cp->pm_mutex);
5248
5249	return 0;
5250}
5251
5252static int cas_resume(struct pci_dev *pdev)
5253{
5254	struct net_device *dev = pci_get_drvdata(pdev);
5255	struct cas *cp = netdev_priv(dev);
5256
5257	netdev_info(dev, "resuming\n");
5258
5259	mutex_lock(&cp->pm_mutex);
5260	cas_hard_reset(cp);
5261	if (cp->opened) {
5262		unsigned long flags;
5263		cas_lock_all_save(cp, flags);
5264		cas_reset(cp, 0);
5265		cp->hw_running = 1;
5266		cas_clean_rings(cp);
5267		cas_init_hw(cp, 1);
5268		cas_unlock_all_restore(cp, flags);
5269
5270		netif_device_attach(dev);
5271	}
5272	mutex_unlock(&cp->pm_mutex);
5273	return 0;
5274}
5275#endif /* CONFIG_PM */
5276
5277static struct pci_driver cas_driver = {
5278	.name		= DRV_MODULE_NAME,
5279	.id_table	= cas_pci_tbl,
5280	.probe		= cas_init_one,
5281	.remove		= __devexit_p(cas_remove_one),
5282#ifdef CONFIG_PM
5283	.suspend	= cas_suspend,
5284	.resume		= cas_resume
5285#endif
5286};
5287
5288static int __init cas_init(void)
5289{
5290	if (linkdown_timeout > 0)
5291		link_transition_timeout = linkdown_timeout * HZ;
5292	else
5293		link_transition_timeout = 0;
5294
5295	return pci_register_driver(&cas_driver);
5296}
5297
5298static void __exit cas_cleanup(void)
5299{
5300	pci_unregister_driver(&cas_driver);
5301}
5302
5303module_init(cas_init);
5304module_exit(cas_cleanup);