Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * Network device driver for the BMAC ethernet controller on
   3 * Apple Powermacs.  Assumes it's under a DBDMA controller.
   4 *
   5 * Copyright (C) 1998 Randy Gobbel.
   6 *
   7 * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to
   8 * dynamic procfs inode.
   9 */
  10#include <linux/interrupt.h>
  11#include <linux/module.h>
  12#include <linux/kernel.h>
  13#include <linux/netdevice.h>
  14#include <linux/etherdevice.h>
  15#include <linux/delay.h>
  16#include <linux/string.h>
  17#include <linux/timer.h>
  18#include <linux/proc_fs.h>
  19#include <linux/init.h>
  20#include <linux/spinlock.h>
  21#include <linux/crc32.h>
  22#include <linux/bitrev.h>
  23#include <linux/ethtool.h>
  24#include <linux/slab.h>
  25#include <asm/prom.h>
  26#include <asm/dbdma.h>
  27#include <asm/io.h>
  28#include <asm/page.h>
  29#include <asm/pgtable.h>
  30#include <asm/machdep.h>
  31#include <asm/pmac_feature.h>
  32#include <asm/macio.h>
  33#include <asm/irq.h>
  34
  35#include "bmac.h"
  36
  37#define trunc_page(x)	((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1))))
  38#define round_page(x)	trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1)))
  39
  40/*
  41 * CRC polynomial - used in working out multicast filter bits.
  42 */
  43#define ENET_CRCPOLY 0x04c11db7
  44
  45/* switch to use multicast code lifted from sunhme driver */
  46#define SUNHME_MULTICAST
  47
  48#define N_RX_RING	64
  49#define N_TX_RING	32
  50#define MAX_TX_ACTIVE	1
  51#define ETHERCRC	4
  52#define ETHERMINPACKET	64
  53#define ETHERMTU	1500
  54#define RX_BUFLEN	(ETHERMTU + 14 + ETHERCRC + 2)
  55#define TX_TIMEOUT	HZ	/* 1 second */
  56
  57/* Bits in transmit DMA status */
  58#define TX_DMA_ERR	0x80
  59
  60#define XXDEBUG(args)
  61
  62struct bmac_data {
  63	/* volatile struct bmac *bmac; */
  64	struct sk_buff_head *queue;
  65	volatile struct dbdma_regs __iomem *tx_dma;
  66	int tx_dma_intr;
  67	volatile struct dbdma_regs __iomem *rx_dma;
  68	int rx_dma_intr;
  69	volatile struct dbdma_cmd *tx_cmds;	/* xmit dma command list */
  70	volatile struct dbdma_cmd *rx_cmds;	/* recv dma command list */
  71	struct macio_dev *mdev;
  72	int is_bmac_plus;
  73	struct sk_buff *rx_bufs[N_RX_RING];
  74	int rx_fill;
  75	int rx_empty;
  76	struct sk_buff *tx_bufs[N_TX_RING];
  77	int tx_fill;
  78	int tx_empty;
  79	unsigned char tx_fullup;
  80	struct timer_list tx_timeout;
  81	int timeout_active;
  82	int sleeping;
  83	int opened;
  84	unsigned short hash_use_count[64];
  85	unsigned short hash_table_mask[4];
  86	spinlock_t lock;
  87};
  88
  89#if 0 /* Move that to ethtool */
  90
  91typedef struct bmac_reg_entry {
  92	char *name;
  93	unsigned short reg_offset;
  94} bmac_reg_entry_t;
  95
  96#define N_REG_ENTRIES 31
  97
  98static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = {
  99	{"MEMADD", MEMADD},
 100	{"MEMDATAHI", MEMDATAHI},
 101	{"MEMDATALO", MEMDATALO},
 102	{"TXPNTR", TXPNTR},
 103	{"RXPNTR", RXPNTR},
 104	{"IPG1", IPG1},
 105	{"IPG2", IPG2},
 106	{"ALIMIT", ALIMIT},
 107	{"SLOT", SLOT},
 108	{"PALEN", PALEN},
 109	{"PAPAT", PAPAT},
 110	{"TXSFD", TXSFD},
 111	{"JAM", JAM},
 112	{"TXCFG", TXCFG},
 113	{"TXMAX", TXMAX},
 114	{"TXMIN", TXMIN},
 115	{"PAREG", PAREG},
 116	{"DCNT", DCNT},
 117	{"NCCNT", NCCNT},
 118	{"NTCNT", NTCNT},
 119	{"EXCNT", EXCNT},
 120	{"LTCNT", LTCNT},
 121	{"TXSM", TXSM},
 122	{"RXCFG", RXCFG},
 123	{"RXMAX", RXMAX},
 124	{"RXMIN", RXMIN},
 125	{"FRCNT", FRCNT},
 126	{"AECNT", AECNT},
 127	{"FECNT", FECNT},
 128	{"RXSM", RXSM},
 129	{"RXCV", RXCV}
 130};
 131
 132#endif
 133
 134static unsigned char *bmac_emergency_rxbuf;
 135
 136/*
 137 * Number of bytes of private data per BMAC: allow enough for
 138 * the rx and tx dma commands plus a branch dma command each,
 139 * and another 16 bytes to allow us to align the dma command
 140 * buffers on a 16 byte boundary.
 141 */
 142#define PRIV_BYTES	(sizeof(struct bmac_data) \
 143	+ (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \
 144	+ sizeof(struct sk_buff_head))
 145
 146static int bmac_open(struct net_device *dev);
 147static int bmac_close(struct net_device *dev);
 148static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev);
 149static void bmac_set_multicast(struct net_device *dev);
 150static void bmac_reset_and_enable(struct net_device *dev);
 151static void bmac_start_chip(struct net_device *dev);
 152static void bmac_init_chip(struct net_device *dev);
 153static void bmac_init_registers(struct net_device *dev);
 154static void bmac_enable_and_reset_chip(struct net_device *dev);
 155static int bmac_set_address(struct net_device *dev, void *addr);
 156static irqreturn_t bmac_misc_intr(int irq, void *dev_id);
 157static irqreturn_t bmac_txdma_intr(int irq, void *dev_id);
 158static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id);
 159static void bmac_set_timeout(struct net_device *dev);
 160static void bmac_tx_timeout(unsigned long data);
 161static int bmac_output(struct sk_buff *skb, struct net_device *dev);
 162static void bmac_start(struct net_device *dev);
 163
 164#define	DBDMA_SET(x)	( ((x) | (x) << 16) )
 165#define	DBDMA_CLEAR(x)	( (x) << 16)
 166
 167static inline void
 168dbdma_st32(volatile __u32 __iomem *a, unsigned long x)
 169{
 170	__asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory");
 171}
 172
 173static inline unsigned long
 174dbdma_ld32(volatile __u32 __iomem *a)
 175{
 176	__u32 swap;
 177	__asm__ volatile ("lwbrx %0,0,%1" :  "=r" (swap) : "r" (a));
 178	return swap;
 179}
 180
 181static void
 182dbdma_continue(volatile struct dbdma_regs __iomem *dmap)
 183{
 184	dbdma_st32(&dmap->control,
 185		   DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD));
 186	eieio();
 187}
 188
 189static void
 190dbdma_reset(volatile struct dbdma_regs __iomem *dmap)
 191{
 192	dbdma_st32(&dmap->control,
 193		   DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN));
 194	eieio();
 195	while (dbdma_ld32(&dmap->status) & RUN)
 196		eieio();
 197}
 198
 199static void
 200dbdma_setcmd(volatile struct dbdma_cmd *cp,
 201	     unsigned short cmd, unsigned count, unsigned long addr,
 202	     unsigned long cmd_dep)
 203{
 204	out_le16(&cp->command, cmd);
 205	out_le16(&cp->req_count, count);
 206	out_le32(&cp->phy_addr, addr);
 207	out_le32(&cp->cmd_dep, cmd_dep);
 208	out_le16(&cp->xfer_status, 0);
 209	out_le16(&cp->res_count, 0);
 210}
 211
 212static inline
 213void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
 214{
 215	out_le16((void __iomem *)dev->base_addr + reg_offset, data);
 216}
 217
 218
 219static inline
 220unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
 221{
 222	return in_le16((void __iomem *)dev->base_addr + reg_offset);
 223}
 224
 225static void
 226bmac_enable_and_reset_chip(struct net_device *dev)
 227{
 228	struct bmac_data *bp = netdev_priv(dev);
 229	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
 230	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
 231
 232	if (rd)
 233		dbdma_reset(rd);
 234	if (td)
 235		dbdma_reset(td);
 236
 237	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1);
 238}
 239
 240#define MIFDELAY	udelay(10)
 241
 242static unsigned int
 243bmac_mif_readbits(struct net_device *dev, int nb)
 244{
 245	unsigned int val = 0;
 246
 247	while (--nb >= 0) {
 248		bmwrite(dev, MIFCSR, 0);
 249		MIFDELAY;
 250		if (bmread(dev, MIFCSR) & 8)
 251			val |= 1 << nb;
 252		bmwrite(dev, MIFCSR, 1);
 253		MIFDELAY;
 254	}
 255	bmwrite(dev, MIFCSR, 0);
 256	MIFDELAY;
 257	bmwrite(dev, MIFCSR, 1);
 258	MIFDELAY;
 259	return val;
 260}
 261
 262static void
 263bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb)
 264{
 265	int b;
 266
 267	while (--nb >= 0) {
 268		b = (val & (1 << nb))? 6: 4;
 269		bmwrite(dev, MIFCSR, b);
 270		MIFDELAY;
 271		bmwrite(dev, MIFCSR, b|1);
 272		MIFDELAY;
 273	}
 274}
 275
 276static unsigned int
 277bmac_mif_read(struct net_device *dev, unsigned int addr)
 278{
 279	unsigned int val;
 280
 281	bmwrite(dev, MIFCSR, 4);
 282	MIFDELAY;
 283	bmac_mif_writebits(dev, ~0U, 32);
 284	bmac_mif_writebits(dev, 6, 4);
 285	bmac_mif_writebits(dev, addr, 10);
 286	bmwrite(dev, MIFCSR, 2);
 287	MIFDELAY;
 288	bmwrite(dev, MIFCSR, 1);
 289	MIFDELAY;
 290	val = bmac_mif_readbits(dev, 17);
 291	bmwrite(dev, MIFCSR, 4);
 292	MIFDELAY;
 293	return val;
 294}
 295
 296static void
 297bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val)
 298{
 299	bmwrite(dev, MIFCSR, 4);
 300	MIFDELAY;
 301	bmac_mif_writebits(dev, ~0U, 32);
 302	bmac_mif_writebits(dev, 5, 4);
 303	bmac_mif_writebits(dev, addr, 10);
 304	bmac_mif_writebits(dev, 2, 2);
 305	bmac_mif_writebits(dev, val, 16);
 306	bmac_mif_writebits(dev, 3, 2);
 307}
 308
 309static void
 310bmac_init_registers(struct net_device *dev)
 311{
 312	struct bmac_data *bp = netdev_priv(dev);
 313	volatile unsigned short regValue;
 314	unsigned short *pWord16;
 315	int i;
 316
 317	/* XXDEBUG(("bmac: enter init_registers\n")); */
 318
 319	bmwrite(dev, RXRST, RxResetValue);
 320	bmwrite(dev, TXRST, TxResetBit);
 321
 322	i = 100;
 323	do {
 324		--i;
 325		udelay(10000);
 326		regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */
 327	} while ((regValue & TxResetBit) && i > 0);
 328
 329	if (!bp->is_bmac_plus) {
 330		regValue = bmread(dev, XCVRIF);
 331		regValue |= ClkBit | SerialMode | COLActiveLow;
 332		bmwrite(dev, XCVRIF, regValue);
 333		udelay(10000);
 334	}
 335
 336	bmwrite(dev, RSEED, (unsigned short)0x1968);
 337
 338	regValue = bmread(dev, XIFC);
 339	regValue |= TxOutputEnable;
 340	bmwrite(dev, XIFC, regValue);
 341
 342	bmread(dev, PAREG);
 343
 344	/* set collision counters to 0 */
 345	bmwrite(dev, NCCNT, 0);
 346	bmwrite(dev, NTCNT, 0);
 347	bmwrite(dev, EXCNT, 0);
 348	bmwrite(dev, LTCNT, 0);
 349
 350	/* set rx counters to 0 */
 351	bmwrite(dev, FRCNT, 0);
 352	bmwrite(dev, LECNT, 0);
 353	bmwrite(dev, AECNT, 0);
 354	bmwrite(dev, FECNT, 0);
 355	bmwrite(dev, RXCV, 0);
 356
 357	/* set tx fifo information */
 358	bmwrite(dev, TXTH, 4);	/* 4 octets before tx starts */
 359
 360	bmwrite(dev, TXFIFOCSR, 0);	/* first disable txFIFO */
 361	bmwrite(dev, TXFIFOCSR, TxFIFOEnable );
 362
 363	/* set rx fifo information */
 364	bmwrite(dev, RXFIFOCSR, 0);	/* first disable rxFIFO */
 365	bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
 366
 367	//bmwrite(dev, TXCFG, TxMACEnable);	       	/* TxNeverGiveUp maybe later */
 368	bmread(dev, STATUS);		/* read it just to clear it */
 369
 370	/* zero out the chip Hash Filter registers */
 371	for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
 372	bmwrite(dev, BHASH3, bp->hash_table_mask[0]); 	/* bits 15 - 0 */
 373	bmwrite(dev, BHASH2, bp->hash_table_mask[1]); 	/* bits 31 - 16 */
 374	bmwrite(dev, BHASH1, bp->hash_table_mask[2]); 	/* bits 47 - 32 */
 375	bmwrite(dev, BHASH0, bp->hash_table_mask[3]); 	/* bits 63 - 48 */
 376
 377	pWord16 = (unsigned short *)dev->dev_addr;
 378	bmwrite(dev, MADD0, *pWord16++);
 379	bmwrite(dev, MADD1, *pWord16++);
 380	bmwrite(dev, MADD2, *pWord16);
 381
 382	bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets);
 383
 384	bmwrite(dev, INTDISABLE, EnableNormal);
 385}
 386
 387#if 0
 388static void
 389bmac_disable_interrupts(struct net_device *dev)
 390{
 391	bmwrite(dev, INTDISABLE, DisableAll);
 392}
 393
 394static void
 395bmac_enable_interrupts(struct net_device *dev)
 396{
 397	bmwrite(dev, INTDISABLE, EnableNormal);
 398}
 399#endif
 400
 401
 402static void
 403bmac_start_chip(struct net_device *dev)
 404{
 405	struct bmac_data *bp = netdev_priv(dev);
 406	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
 407	unsigned short	oldConfig;
 408
 409	/* enable rx dma channel */
 410	dbdma_continue(rd);
 411
 412	oldConfig = bmread(dev, TXCFG);
 413	bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
 414
 415	/* turn on rx plus any other bits already on (promiscuous possibly) */
 416	oldConfig = bmread(dev, RXCFG);
 417	bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
 418	udelay(20000);
 419}
 420
 421static void
 422bmac_init_phy(struct net_device *dev)
 423{
 424	unsigned int addr;
 425	struct bmac_data *bp = netdev_priv(dev);
 426
 427	printk(KERN_DEBUG "phy registers:");
 428	for (addr = 0; addr < 32; ++addr) {
 429		if ((addr & 7) == 0)
 430			printk(KERN_DEBUG);
 431		printk(KERN_CONT " %.4x", bmac_mif_read(dev, addr));
 432	}
 433	printk(KERN_CONT "\n");
 434
 435	if (bp->is_bmac_plus) {
 436		unsigned int capable, ctrl;
 437
 438		ctrl = bmac_mif_read(dev, 0);
 439		capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1;
 440		if (bmac_mif_read(dev, 4) != capable ||
 441		    (ctrl & 0x1000) == 0) {
 442			bmac_mif_write(dev, 4, capable);
 443			bmac_mif_write(dev, 0, 0x1200);
 444		} else
 445			bmac_mif_write(dev, 0, 0x1000);
 446	}
 447}
 448
 449static void bmac_init_chip(struct net_device *dev)
 450{
 451	bmac_init_phy(dev);
 452	bmac_init_registers(dev);
 453}
 454
 455#ifdef CONFIG_PM
 456static int bmac_suspend(struct macio_dev *mdev, pm_message_t state)
 457{
 458	struct net_device* dev = macio_get_drvdata(mdev);
 459	struct bmac_data *bp = netdev_priv(dev);
 460	unsigned long flags;
 461	unsigned short config;
 462	int i;
 463
 464	netif_device_detach(dev);
 465	/* prolly should wait for dma to finish & turn off the chip */
 466	spin_lock_irqsave(&bp->lock, flags);
 467	if (bp->timeout_active) {
 468		del_timer(&bp->tx_timeout);
 469		bp->timeout_active = 0;
 470	}
 471	disable_irq(dev->irq);
 472	disable_irq(bp->tx_dma_intr);
 473	disable_irq(bp->rx_dma_intr);
 474	bp->sleeping = 1;
 475	spin_unlock_irqrestore(&bp->lock, flags);
 476	if (bp->opened) {
 477		volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
 478		volatile struct dbdma_regs __iomem *td = bp->tx_dma;
 479
 480		config = bmread(dev, RXCFG);
 481		bmwrite(dev, RXCFG, (config & ~RxMACEnable));
 482		config = bmread(dev, TXCFG);
 483       		bmwrite(dev, TXCFG, (config & ~TxMACEnable));
 484		bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
 485       		/* disable rx and tx dma */
 486       		st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
 487       		st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
 488       		/* free some skb's */
 489       		for (i=0; i<N_RX_RING; i++) {
 490       			if (bp->rx_bufs[i] != NULL) {
 491       				dev_kfree_skb(bp->rx_bufs[i]);
 492       				bp->rx_bufs[i] = NULL;
 493       			}
 494       		}
 495       		for (i = 0; i<N_TX_RING; i++) {
 496			if (bp->tx_bufs[i] != NULL) {
 497		       		dev_kfree_skb(bp->tx_bufs[i]);
 498	       			bp->tx_bufs[i] = NULL;
 499		       	}
 500		}
 501	}
 502       	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
 503	return 0;
 504}
 505
 506static int bmac_resume(struct macio_dev *mdev)
 507{
 508	struct net_device* dev = macio_get_drvdata(mdev);
 509	struct bmac_data *bp = netdev_priv(dev);
 510
 511	/* see if this is enough */
 512	if (bp->opened)
 513		bmac_reset_and_enable(dev);
 514
 515	enable_irq(dev->irq);
 516       	enable_irq(bp->tx_dma_intr);
 517       	enable_irq(bp->rx_dma_intr);
 518       	netif_device_attach(dev);
 519
 520	return 0;
 521}
 522#endif /* CONFIG_PM */
 523
 524static int bmac_set_address(struct net_device *dev, void *addr)
 525{
 526	struct bmac_data *bp = netdev_priv(dev);
 527	unsigned char *p = addr;
 528	unsigned short *pWord16;
 529	unsigned long flags;
 530	int i;
 531
 532	XXDEBUG(("bmac: enter set_address\n"));
 533	spin_lock_irqsave(&bp->lock, flags);
 534
 535	for (i = 0; i < 6; ++i) {
 536		dev->dev_addr[i] = p[i];
 537	}
 538	/* load up the hardware address */
 539	pWord16  = (unsigned short *)dev->dev_addr;
 540	bmwrite(dev, MADD0, *pWord16++);
 541	bmwrite(dev, MADD1, *pWord16++);
 542	bmwrite(dev, MADD2, *pWord16);
 543
 544	spin_unlock_irqrestore(&bp->lock, flags);
 545	XXDEBUG(("bmac: exit set_address\n"));
 546	return 0;
 547}
 548
 549static inline void bmac_set_timeout(struct net_device *dev)
 550{
 551	struct bmac_data *bp = netdev_priv(dev);
 552	unsigned long flags;
 553
 554	spin_lock_irqsave(&bp->lock, flags);
 555	if (bp->timeout_active)
 556		del_timer(&bp->tx_timeout);
 557	bp->tx_timeout.expires = jiffies + TX_TIMEOUT;
 558	bp->tx_timeout.function = bmac_tx_timeout;
 559	bp->tx_timeout.data = (unsigned long) dev;
 560	add_timer(&bp->tx_timeout);
 561	bp->timeout_active = 1;
 562	spin_unlock_irqrestore(&bp->lock, flags);
 563}
 564
 565static void
 566bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
 567{
 568	void *vaddr;
 569	unsigned long baddr;
 570	unsigned long len;
 571
 572	len = skb->len;
 573	vaddr = skb->data;
 574	baddr = virt_to_bus(vaddr);
 575
 576	dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0);
 577}
 578
 579static void
 580bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
 581{
 582	unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf;
 583
 584	dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN,
 585		     virt_to_bus(addr), 0);
 586}
 587
 588static void
 589bmac_init_tx_ring(struct bmac_data *bp)
 590{
 591	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
 592
 593	memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd));
 594
 595	bp->tx_empty = 0;
 596	bp->tx_fill = 0;
 597	bp->tx_fullup = 0;
 598
 599	/* put a branch at the end of the tx command list */
 600	dbdma_setcmd(&bp->tx_cmds[N_TX_RING],
 601		     (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds));
 602
 603	/* reset tx dma */
 604	dbdma_reset(td);
 605	out_le32(&td->wait_sel, 0x00200020);
 606	out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds));
 607}
 608
 609static int
 610bmac_init_rx_ring(struct bmac_data *bp)
 611{
 612	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
 613	int i;
 614	struct sk_buff *skb;
 615
 616	/* initialize list of sk_buffs for receiving and set up recv dma */
 617	memset((char *)bp->rx_cmds, 0,
 618	       (N_RX_RING + 1) * sizeof(struct dbdma_cmd));
 619	for (i = 0; i < N_RX_RING; i++) {
 620		if ((skb = bp->rx_bufs[i]) == NULL) {
 621			bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2);
 622			if (skb != NULL)
 623				skb_reserve(skb, 2);
 624		}
 625		bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
 626	}
 627
 628	bp->rx_empty = 0;
 629	bp->rx_fill = i;
 630
 631	/* Put a branch back to the beginning of the receive command list */
 632	dbdma_setcmd(&bp->rx_cmds[N_RX_RING],
 633		     (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds));
 634
 635	/* start rx dma */
 636	dbdma_reset(rd);
 637	out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds));
 638
 639	return 1;
 640}
 641
 642
 643static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev)
 644{
 645	struct bmac_data *bp = netdev_priv(dev);
 646	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
 647	int i;
 648
 649	/* see if there's a free slot in the tx ring */
 650	/* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */
 651	/* 	     bp->tx_empty, bp->tx_fill)); */
 652	i = bp->tx_fill + 1;
 653	if (i >= N_TX_RING)
 654		i = 0;
 655	if (i == bp->tx_empty) {
 656		netif_stop_queue(dev);
 657		bp->tx_fullup = 1;
 658		XXDEBUG(("bmac_transmit_packet: tx ring full\n"));
 659		return -1;		/* can't take it at the moment */
 660	}
 661
 662	dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0);
 663
 664	bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]);
 665
 666	bp->tx_bufs[bp->tx_fill] = skb;
 667	bp->tx_fill = i;
 668
 669	dev->stats.tx_bytes += skb->len;
 670
 671	dbdma_continue(td);
 672
 673	return 0;
 674}
 675
 676static int rxintcount;
 677
 678static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id)
 679{
 680	struct net_device *dev = (struct net_device *) dev_id;
 681	struct bmac_data *bp = netdev_priv(dev);
 682	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
 683	volatile struct dbdma_cmd *cp;
 684	int i, nb, stat;
 685	struct sk_buff *skb;
 686	unsigned int residual;
 687	int last;
 688	unsigned long flags;
 689
 690	spin_lock_irqsave(&bp->lock, flags);
 691
 692	if (++rxintcount < 10) {
 693		XXDEBUG(("bmac_rxdma_intr\n"));
 694	}
 695
 696	last = -1;
 697	i = bp->rx_empty;
 698
 699	while (1) {
 700		cp = &bp->rx_cmds[i];
 701		stat = ld_le16(&cp->xfer_status);
 702		residual = ld_le16(&cp->res_count);
 703		if ((stat & ACTIVE) == 0)
 704			break;
 705		nb = RX_BUFLEN - residual - 2;
 706		if (nb < (ETHERMINPACKET - ETHERCRC)) {
 707			skb = NULL;
 708			dev->stats.rx_length_errors++;
 709			dev->stats.rx_errors++;
 710		} else {
 711			skb = bp->rx_bufs[i];
 712			bp->rx_bufs[i] = NULL;
 713		}
 714		if (skb != NULL) {
 715			nb -= ETHERCRC;
 716			skb_put(skb, nb);
 717			skb->protocol = eth_type_trans(skb, dev);
 718			netif_rx(skb);
 719			++dev->stats.rx_packets;
 720			dev->stats.rx_bytes += nb;
 721		} else {
 722			++dev->stats.rx_dropped;
 723		}
 724		if ((skb = bp->rx_bufs[i]) == NULL) {
 725			bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2);
 726			if (skb != NULL)
 727				skb_reserve(bp->rx_bufs[i], 2);
 728		}
 729		bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
 730		st_le16(&cp->res_count, 0);
 731		st_le16(&cp->xfer_status, 0);
 732		last = i;
 733		if (++i >= N_RX_RING) i = 0;
 734	}
 735
 736	if (last != -1) {
 737		bp->rx_fill = last;
 738		bp->rx_empty = i;
 739	}
 740
 741	dbdma_continue(rd);
 742	spin_unlock_irqrestore(&bp->lock, flags);
 743
 744	if (rxintcount < 10) {
 745		XXDEBUG(("bmac_rxdma_intr done\n"));
 746	}
 747	return IRQ_HANDLED;
 748}
 749
 750static int txintcount;
 751
 752static irqreturn_t bmac_txdma_intr(int irq, void *dev_id)
 753{
 754	struct net_device *dev = (struct net_device *) dev_id;
 755	struct bmac_data *bp = netdev_priv(dev);
 756	volatile struct dbdma_cmd *cp;
 757	int stat;
 758	unsigned long flags;
 759
 760	spin_lock_irqsave(&bp->lock, flags);
 761
 762	if (txintcount++ < 10) {
 763		XXDEBUG(("bmac_txdma_intr\n"));
 764	}
 765
 766	/*     del_timer(&bp->tx_timeout); */
 767	/*     bp->timeout_active = 0; */
 768
 769	while (1) {
 770		cp = &bp->tx_cmds[bp->tx_empty];
 771		stat = ld_le16(&cp->xfer_status);
 772		if (txintcount < 10) {
 773			XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat));
 774		}
 775		if (!(stat & ACTIVE)) {
 776			/*
 777			 * status field might not have been filled by DBDMA
 778			 */
 779			if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr)))
 780				break;
 781		}
 782
 783		if (bp->tx_bufs[bp->tx_empty]) {
 784			++dev->stats.tx_packets;
 785			dev_kfree_skb_irq(bp->tx_bufs[bp->tx_empty]);
 786		}
 787		bp->tx_bufs[bp->tx_empty] = NULL;
 788		bp->tx_fullup = 0;
 789		netif_wake_queue(dev);
 790		if (++bp->tx_empty >= N_TX_RING)
 791			bp->tx_empty = 0;
 792		if (bp->tx_empty == bp->tx_fill)
 793			break;
 794	}
 795
 796	spin_unlock_irqrestore(&bp->lock, flags);
 797
 798	if (txintcount < 10) {
 799		XXDEBUG(("bmac_txdma_intr done->bmac_start\n"));
 800	}
 801
 802	bmac_start(dev);
 803	return IRQ_HANDLED;
 804}
 805
 806#ifndef SUNHME_MULTICAST
 807/* Real fast bit-reversal algorithm, 6-bit values */
 808static int reverse6[64] = {
 809	0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38,
 810	0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c,
 811	0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a,
 812	0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e,
 813	0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39,
 814	0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d,
 815	0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b,
 816	0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f
 817};
 818
 819static unsigned int
 820crc416(unsigned int curval, unsigned short nxtval)
 821{
 822	register unsigned int counter, cur = curval, next = nxtval;
 823	register int high_crc_set, low_data_set;
 824
 825	/* Swap bytes */
 826	next = ((next & 0x00FF) << 8) | (next >> 8);
 827
 828	/* Compute bit-by-bit */
 829	for (counter = 0; counter < 16; ++counter) {
 830		/* is high CRC bit set? */
 831		if ((cur & 0x80000000) == 0) high_crc_set = 0;
 832		else high_crc_set = 1;
 833
 834		cur = cur << 1;
 835
 836		if ((next & 0x0001) == 0) low_data_set = 0;
 837		else low_data_set = 1;
 838
 839		next = next >> 1;
 840
 841		/* do the XOR */
 842		if (high_crc_set ^ low_data_set) cur = cur ^ ENET_CRCPOLY;
 843	}
 844	return cur;
 845}
 846
 847static unsigned int
 848bmac_crc(unsigned short *address)
 849{
 850	unsigned int newcrc;
 851
 852	XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2]));
 853	newcrc = crc416(0xffffffff, *address);	/* address bits 47 - 32 */
 854	newcrc = crc416(newcrc, address[1]);	/* address bits 31 - 16 */
 855	newcrc = crc416(newcrc, address[2]);	/* address bits 15 - 0  */
 856
 857	return(newcrc);
 858}
 859
 860/*
 861 * Add requested mcast addr to BMac's hash table filter.
 862 *
 863 */
 864
 865static void
 866bmac_addhash(struct bmac_data *bp, unsigned char *addr)
 867{
 868	unsigned int	 crc;
 869	unsigned short	 mask;
 870
 871	if (!(*addr)) return;
 872	crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
 873	crc = reverse6[crc];	/* Hyperfast bit-reversing algorithm */
 874	if (bp->hash_use_count[crc]++) return; /* This bit is already set */
 875	mask = crc % 16;
 876	mask = (unsigned char)1 << mask;
 877	bp->hash_use_count[crc/16] |= mask;
 878}
 879
 880static void
 881bmac_removehash(struct bmac_data *bp, unsigned char *addr)
 882{
 883	unsigned int crc;
 884	unsigned char mask;
 885
 886	/* Now, delete the address from the filter copy, as indicated */
 887	crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
 888	crc = reverse6[crc];	/* Hyperfast bit-reversing algorithm */
 889	if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */
 890	if (--bp->hash_use_count[crc]) return; /* That bit is still in use */
 891	mask = crc % 16;
 892	mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */
 893	bp->hash_table_mask[crc/16] &= mask;
 894}
 895
 896/*
 897 * Sync the adapter with the software copy of the multicast mask
 898 *  (logical address filter).
 899 */
 900
 901static void
 902bmac_rx_off(struct net_device *dev)
 903{
 904	unsigned short rx_cfg;
 905
 906	rx_cfg = bmread(dev, RXCFG);
 907	rx_cfg &= ~RxMACEnable;
 908	bmwrite(dev, RXCFG, rx_cfg);
 909	do {
 910		rx_cfg = bmread(dev, RXCFG);
 911	}  while (rx_cfg & RxMACEnable);
 912}
 913
 914unsigned short
 915bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable)
 916{
 917	unsigned short rx_cfg;
 918
 919	rx_cfg = bmread(dev, RXCFG);
 920	rx_cfg |= RxMACEnable;
 921	if (hash_enable) rx_cfg |= RxHashFilterEnable;
 922	else rx_cfg &= ~RxHashFilterEnable;
 923	if (promisc_enable) rx_cfg |= RxPromiscEnable;
 924	else rx_cfg &= ~RxPromiscEnable;
 925	bmwrite(dev, RXRST, RxResetValue);
 926	bmwrite(dev, RXFIFOCSR, 0);	/* first disable rxFIFO */
 927	bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
 928	bmwrite(dev, RXCFG, rx_cfg );
 929	return rx_cfg;
 930}
 931
 932static void
 933bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp)
 934{
 935	bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
 936	bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
 937	bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
 938	bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
 939}
 940
 941#if 0
 942static void
 943bmac_add_multi(struct net_device *dev,
 944	       struct bmac_data *bp, unsigned char *addr)
 945{
 946	/* XXDEBUG(("bmac: enter bmac_add_multi\n")); */
 947	bmac_addhash(bp, addr);
 948	bmac_rx_off(dev);
 949	bmac_update_hash_table_mask(dev, bp);
 950	bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
 951	/* XXDEBUG(("bmac: exit bmac_add_multi\n")); */
 952}
 953
 954static void
 955bmac_remove_multi(struct net_device *dev,
 956		  struct bmac_data *bp, unsigned char *addr)
 957{
 958	bmac_removehash(bp, addr);
 959	bmac_rx_off(dev);
 960	bmac_update_hash_table_mask(dev, bp);
 961	bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
 962}
 963#endif
 964
 965/* Set or clear the multicast filter for this adaptor.
 966    num_addrs == -1	Promiscuous mode, receive all packets
 967    num_addrs == 0	Normal mode, clear multicast list
 968    num_addrs > 0	Multicast mode, receive normal and MC packets, and do
 969			best-effort filtering.
 970 */
 971static void bmac_set_multicast(struct net_device *dev)
 972{
 973	struct netdev_hw_addr *ha;
 974	struct bmac_data *bp = netdev_priv(dev);
 975	int num_addrs = netdev_mc_count(dev);
 976	unsigned short rx_cfg;
 977	int i;
 978
 979	if (bp->sleeping)
 980		return;
 981
 982	XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs));
 983
 984	if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
 985		for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff;
 986		bmac_update_hash_table_mask(dev, bp);
 987		rx_cfg = bmac_rx_on(dev, 1, 0);
 988		XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n"));
 989	} else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) {
 990		rx_cfg = bmread(dev, RXCFG);
 991		rx_cfg |= RxPromiscEnable;
 992		bmwrite(dev, RXCFG, rx_cfg);
 993		rx_cfg = bmac_rx_on(dev, 0, 1);
 994		XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg));
 995	} else {
 996		for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
 997		for (i=0; i<64; i++) bp->hash_use_count[i] = 0;
 998		if (num_addrs == 0) {
 999			rx_cfg = bmac_rx_on(dev, 0, 0);
1000			XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg));
1001		} else {
1002			netdev_for_each_mc_addr(ha, dev)
1003				bmac_addhash(bp, ha->addr);
1004			bmac_update_hash_table_mask(dev, bp);
1005			rx_cfg = bmac_rx_on(dev, 1, 0);
1006			XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg));
1007		}
1008	}
1009	/* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */
1010}
1011#else /* ifdef SUNHME_MULTICAST */
1012
1013/* The version of set_multicast below was lifted from sunhme.c */
1014
1015static void bmac_set_multicast(struct net_device *dev)
1016{
1017	struct netdev_hw_addr *ha;
1018	int i;
1019	unsigned short rx_cfg;
1020	u32 crc;
1021
1022	if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
1023		bmwrite(dev, BHASH0, 0xffff);
1024		bmwrite(dev, BHASH1, 0xffff);
1025		bmwrite(dev, BHASH2, 0xffff);
1026		bmwrite(dev, BHASH3, 0xffff);
1027	} else if(dev->flags & IFF_PROMISC) {
1028		rx_cfg = bmread(dev, RXCFG);
1029		rx_cfg |= RxPromiscEnable;
1030		bmwrite(dev, RXCFG, rx_cfg);
1031	} else {
1032		u16 hash_table[4];
1033
1034		rx_cfg = bmread(dev, RXCFG);
1035		rx_cfg &= ~RxPromiscEnable;
1036		bmwrite(dev, RXCFG, rx_cfg);
1037
1038		for(i = 0; i < 4; i++) hash_table[i] = 0;
1039
1040		netdev_for_each_mc_addr(ha, dev) {
1041			crc = ether_crc_le(6, ha->addr);
1042			crc >>= 26;
1043			hash_table[crc >> 4] |= 1 << (crc & 0xf);
1044		}
1045		bmwrite(dev, BHASH0, hash_table[0]);
1046		bmwrite(dev, BHASH1, hash_table[1]);
1047		bmwrite(dev, BHASH2, hash_table[2]);
1048		bmwrite(dev, BHASH3, hash_table[3]);
1049	}
1050}
1051#endif /* SUNHME_MULTICAST */
1052
1053static int miscintcount;
1054
1055static irqreturn_t bmac_misc_intr(int irq, void *dev_id)
1056{
1057	struct net_device *dev = (struct net_device *) dev_id;
1058	unsigned int status = bmread(dev, STATUS);
1059	if (miscintcount++ < 10) {
1060		XXDEBUG(("bmac_misc_intr\n"));
1061	}
1062	/* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */
1063	/*     bmac_txdma_intr_inner(irq, dev_id); */
1064	/*   if (status & FrameReceived) dev->stats.rx_dropped++; */
1065	if (status & RxErrorMask) dev->stats.rx_errors++;
1066	if (status & RxCRCCntExp) dev->stats.rx_crc_errors++;
1067	if (status & RxLenCntExp) dev->stats.rx_length_errors++;
1068	if (status & RxOverFlow) dev->stats.rx_over_errors++;
1069	if (status & RxAlignCntExp) dev->stats.rx_frame_errors++;
1070
1071	/*   if (status & FrameSent) dev->stats.tx_dropped++; */
1072	if (status & TxErrorMask) dev->stats.tx_errors++;
1073	if (status & TxUnderrun) dev->stats.tx_fifo_errors++;
1074	if (status & TxNormalCollExp) dev->stats.collisions++;
1075	return IRQ_HANDLED;
1076}
1077
1078/*
1079 * Procedure for reading EEPROM
1080 */
1081#define SROMAddressLength	5
1082#define DataInOn		0x0008
1083#define DataInOff		0x0000
1084#define Clk			0x0002
1085#define ChipSelect		0x0001
1086#define SDIShiftCount		3
1087#define SD0ShiftCount		2
1088#define	DelayValue		1000	/* number of microseconds */
1089#define SROMStartOffset		10	/* this is in words */
1090#define SROMReadCount		3	/* number of words to read from SROM */
1091#define SROMAddressBits		6
1092#define EnetAddressOffset	20
1093
1094static unsigned char
1095bmac_clock_out_bit(struct net_device *dev)
1096{
1097	unsigned short         data;
1098	unsigned short         val;
1099
1100	bmwrite(dev, SROMCSR, ChipSelect | Clk);
1101	udelay(DelayValue);
1102
1103	data = bmread(dev, SROMCSR);
1104	udelay(DelayValue);
1105	val = (data >> SD0ShiftCount) & 1;
1106
1107	bmwrite(dev, SROMCSR, ChipSelect);
1108	udelay(DelayValue);
1109
1110	return val;
1111}
1112
1113static void
1114bmac_clock_in_bit(struct net_device *dev, unsigned int val)
1115{
1116	unsigned short data;
1117
1118	if (val != 0 && val != 1) return;
1119
1120	data = (val << SDIShiftCount);
1121	bmwrite(dev, SROMCSR, data | ChipSelect  );
1122	udelay(DelayValue);
1123
1124	bmwrite(dev, SROMCSR, data | ChipSelect | Clk );
1125	udelay(DelayValue);
1126
1127	bmwrite(dev, SROMCSR, data | ChipSelect);
1128	udelay(DelayValue);
1129}
1130
1131static void
1132reset_and_select_srom(struct net_device *dev)
1133{
1134	/* first reset */
1135	bmwrite(dev, SROMCSR, 0);
1136	udelay(DelayValue);
1137
1138	/* send it the read command (110) */
1139	bmac_clock_in_bit(dev, 1);
1140	bmac_clock_in_bit(dev, 1);
1141	bmac_clock_in_bit(dev, 0);
1142}
1143
1144static unsigned short
1145read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len)
1146{
1147	unsigned short data, val;
1148	int i;
1149
1150	/* send out the address we want to read from */
1151	for (i = 0; i < addr_len; i++)	{
1152		val = addr >> (addr_len-i-1);
1153		bmac_clock_in_bit(dev, val & 1);
1154	}
1155
1156	/* Now read in the 16-bit data */
1157	data = 0;
1158	for (i = 0; i < 16; i++)	{
1159		val = bmac_clock_out_bit(dev);
1160		data <<= 1;
1161		data |= val;
1162	}
1163	bmwrite(dev, SROMCSR, 0);
1164
1165	return data;
1166}
1167
1168/*
1169 * It looks like Cogent and SMC use different methods for calculating
1170 * checksums. What a pain..
1171 */
1172
1173static int
1174bmac_verify_checksum(struct net_device *dev)
1175{
1176	unsigned short data, storedCS;
1177
1178	reset_and_select_srom(dev);
1179	data = read_srom(dev, 3, SROMAddressBits);
1180	storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00);
1181
1182	return 0;
1183}
1184
1185
1186static void
1187bmac_get_station_address(struct net_device *dev, unsigned char *ea)
1188{
1189	int i;
1190	unsigned short data;
1191
1192	for (i = 0; i < 6; i++)
1193		{
1194			reset_and_select_srom(dev);
1195			data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits);
1196			ea[2*i]   = bitrev8(data & 0x0ff);
1197			ea[2*i+1] = bitrev8((data >> 8) & 0x0ff);
1198		}
1199}
1200
1201static void bmac_reset_and_enable(struct net_device *dev)
1202{
1203	struct bmac_data *bp = netdev_priv(dev);
1204	unsigned long flags;
1205	struct sk_buff *skb;
1206	unsigned char *data;
1207
1208	spin_lock_irqsave(&bp->lock, flags);
1209	bmac_enable_and_reset_chip(dev);
1210	bmac_init_tx_ring(bp);
1211	bmac_init_rx_ring(bp);
1212	bmac_init_chip(dev);
1213	bmac_start_chip(dev);
1214	bmwrite(dev, INTDISABLE, EnableNormal);
1215	bp->sleeping = 0;
1216
1217	/*
1218	 * It seems that the bmac can't receive until it's transmitted
1219	 * a packet.  So we give it a dummy packet to transmit.
1220	 */
1221	skb = dev_alloc_skb(ETHERMINPACKET);
1222	if (skb != NULL) {
1223		data = skb_put(skb, ETHERMINPACKET);
1224		memset(data, 0, ETHERMINPACKET);
1225		memcpy(data, dev->dev_addr, 6);
1226		memcpy(data+6, dev->dev_addr, 6);
1227		bmac_transmit_packet(skb, dev);
1228	}
1229	spin_unlock_irqrestore(&bp->lock, flags);
1230}
1231
1232static const struct ethtool_ops bmac_ethtool_ops = {
1233	.get_link		= ethtool_op_get_link,
1234};
1235
1236static const struct net_device_ops bmac_netdev_ops = {
1237	.ndo_open		= bmac_open,
1238	.ndo_stop		= bmac_close,
1239	.ndo_start_xmit		= bmac_output,
1240	.ndo_set_multicast_list	= bmac_set_multicast,
1241	.ndo_set_mac_address	= bmac_set_address,
1242	.ndo_change_mtu		= eth_change_mtu,
1243	.ndo_validate_addr	= eth_validate_addr,
1244};
1245
1246static int __devinit bmac_probe(struct macio_dev *mdev, const struct of_device_id *match)
1247{
1248	int j, rev, ret;
1249	struct bmac_data *bp;
1250	const unsigned char *prop_addr;
1251	unsigned char addr[6];
1252	struct net_device *dev;
1253	int is_bmac_plus = ((int)match->data) != 0;
1254
1255	if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
1256		printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n");
1257		return -ENODEV;
1258	}
1259	prop_addr = of_get_property(macio_get_of_node(mdev),
1260			"mac-address", NULL);
1261	if (prop_addr == NULL) {
1262		prop_addr = of_get_property(macio_get_of_node(mdev),
1263				"local-mac-address", NULL);
1264		if (prop_addr == NULL) {
1265			printk(KERN_ERR "BMAC: Can't get mac-address\n");
1266			return -ENODEV;
1267		}
1268	}
1269	memcpy(addr, prop_addr, sizeof(addr));
1270
1271	dev = alloc_etherdev(PRIV_BYTES);
1272	if (!dev) {
1273		printk(KERN_ERR "BMAC: alloc_etherdev failed, out of memory\n");
1274		return -ENOMEM;
1275	}
1276
1277	bp = netdev_priv(dev);
1278	SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
1279	macio_set_drvdata(mdev, dev);
1280
1281	bp->mdev = mdev;
1282	spin_lock_init(&bp->lock);
1283
1284	if (macio_request_resources(mdev, "bmac")) {
1285		printk(KERN_ERR "BMAC: can't request IO resource !\n");
1286		goto out_free;
1287	}
1288
1289	dev->base_addr = (unsigned long)
1290		ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0));
1291	if (dev->base_addr == 0)
1292		goto out_release;
1293
1294	dev->irq = macio_irq(mdev, 0);
1295
1296	bmac_enable_and_reset_chip(dev);
1297	bmwrite(dev, INTDISABLE, DisableAll);
1298
1299	rev = addr[0] == 0 && addr[1] == 0xA0;
1300	for (j = 0; j < 6; ++j)
1301		dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
1302
1303	/* Enable chip without interrupts for now */
1304	bmac_enable_and_reset_chip(dev);
1305	bmwrite(dev, INTDISABLE, DisableAll);
1306
1307	dev->netdev_ops = &bmac_netdev_ops;
1308	dev->ethtool_ops = &bmac_ethtool_ops;
1309
1310	bmac_get_station_address(dev, addr);
1311	if (bmac_verify_checksum(dev) != 0)
1312		goto err_out_iounmap;
1313
1314	bp->is_bmac_plus = is_bmac_plus;
1315	bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1));
1316	if (!bp->tx_dma)
1317		goto err_out_iounmap;
1318	bp->tx_dma_intr = macio_irq(mdev, 1);
1319	bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2));
1320	if (!bp->rx_dma)
1321		goto err_out_iounmap_tx;
1322	bp->rx_dma_intr = macio_irq(mdev, 2);
1323
1324	bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1);
1325	bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1;
1326
1327	bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
1328	skb_queue_head_init(bp->queue);
1329
1330	init_timer(&bp->tx_timeout);
1331
1332	ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev);
1333	if (ret) {
1334		printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq);
1335		goto err_out_iounmap_rx;
1336	}
1337	ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev);
1338	if (ret) {
1339		printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr);
1340		goto err_out_irq0;
1341	}
1342	ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev);
1343	if (ret) {
1344		printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr);
1345		goto err_out_irq1;
1346	}
1347
1348	/* Mask chip interrupts and disable chip, will be
1349	 * re-enabled on open()
1350	 */
1351	disable_irq(dev->irq);
1352	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1353
1354	if (register_netdev(dev) != 0) {
1355		printk(KERN_ERR "BMAC: Ethernet registration failed\n");
1356		goto err_out_irq2;
1357	}
1358
1359	printk(KERN_INFO "%s: BMAC%s at %pM",
1360	       dev->name, (is_bmac_plus ? "+" : ""), dev->dev_addr);
1361	XXDEBUG((", base_addr=%#0lx", dev->base_addr));
1362	printk("\n");
1363
1364	return 0;
1365
1366err_out_irq2:
1367	free_irq(bp->rx_dma_intr, dev);
1368err_out_irq1:
1369	free_irq(bp->tx_dma_intr, dev);
1370err_out_irq0:
1371	free_irq(dev->irq, dev);
1372err_out_iounmap_rx:
1373	iounmap(bp->rx_dma);
1374err_out_iounmap_tx:
1375	iounmap(bp->tx_dma);
1376err_out_iounmap:
1377	iounmap((void __iomem *)dev->base_addr);
1378out_release:
1379	macio_release_resources(mdev);
1380out_free:
1381	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1382	free_netdev(dev);
1383
1384	return -ENODEV;
1385}
1386
1387static int bmac_open(struct net_device *dev)
1388{
1389	struct bmac_data *bp = netdev_priv(dev);
1390	/* XXDEBUG(("bmac: enter open\n")); */
1391	/* reset the chip */
1392	bp->opened = 1;
1393	bmac_reset_and_enable(dev);
1394	enable_irq(dev->irq);
1395	return 0;
1396}
1397
1398static int bmac_close(struct net_device *dev)
1399{
1400	struct bmac_data *bp = netdev_priv(dev);
1401	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1402	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1403	unsigned short config;
1404	int i;
1405
1406	bp->sleeping = 1;
1407
1408	/* disable rx and tx */
1409	config = bmread(dev, RXCFG);
1410	bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1411
1412	config = bmread(dev, TXCFG);
1413	bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1414
1415	bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
1416
1417	/* disable rx and tx dma */
1418	st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
1419	st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
1420
1421	/* free some skb's */
1422	XXDEBUG(("bmac: free rx bufs\n"));
1423	for (i=0; i<N_RX_RING; i++) {
1424		if (bp->rx_bufs[i] != NULL) {
1425			dev_kfree_skb(bp->rx_bufs[i]);
1426			bp->rx_bufs[i] = NULL;
1427		}
1428	}
1429	XXDEBUG(("bmac: free tx bufs\n"));
1430	for (i = 0; i<N_TX_RING; i++) {
1431		if (bp->tx_bufs[i] != NULL) {
1432			dev_kfree_skb(bp->tx_bufs[i]);
1433			bp->tx_bufs[i] = NULL;
1434		}
1435	}
1436	XXDEBUG(("bmac: all bufs freed\n"));
1437
1438	bp->opened = 0;
1439	disable_irq(dev->irq);
1440	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1441
1442	return 0;
1443}
1444
1445static void
1446bmac_start(struct net_device *dev)
1447{
1448	struct bmac_data *bp = netdev_priv(dev);
1449	int i;
1450	struct sk_buff *skb;
1451	unsigned long flags;
1452
1453	if (bp->sleeping)
1454		return;
1455
1456	spin_lock_irqsave(&bp->lock, flags);
1457	while (1) {
1458		i = bp->tx_fill + 1;
1459		if (i >= N_TX_RING)
1460			i = 0;
1461		if (i == bp->tx_empty)
1462			break;
1463		skb = skb_dequeue(bp->queue);
1464		if (skb == NULL)
1465			break;
1466		bmac_transmit_packet(skb, dev);
1467	}
1468	spin_unlock_irqrestore(&bp->lock, flags);
1469}
1470
1471static int
1472bmac_output(struct sk_buff *skb, struct net_device *dev)
1473{
1474	struct bmac_data *bp = netdev_priv(dev);
1475	skb_queue_tail(bp->queue, skb);
1476	bmac_start(dev);
1477	return NETDEV_TX_OK;
1478}
1479
1480static void bmac_tx_timeout(unsigned long data)
1481{
1482	struct net_device *dev = (struct net_device *) data;
1483	struct bmac_data *bp = netdev_priv(dev);
1484	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1485	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1486	volatile struct dbdma_cmd *cp;
1487	unsigned long flags;
1488	unsigned short config, oldConfig;
1489	int i;
1490
1491	XXDEBUG(("bmac: tx_timeout called\n"));
1492	spin_lock_irqsave(&bp->lock, flags);
1493	bp->timeout_active = 0;
1494
1495	/* update various counters */
1496/*     	bmac_handle_misc_intrs(bp, 0); */
1497
1498	cp = &bp->tx_cmds[bp->tx_empty];
1499/*	XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */
1500/* 	   ld_le32(&td->status), ld_le16(&cp->xfer_status), bp->tx_bad_runt, */
1501/* 	   mb->pr, mb->xmtfs, mb->fifofc)); */
1502
1503	/* turn off both tx and rx and reset the chip */
1504	config = bmread(dev, RXCFG);
1505	bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1506	config = bmread(dev, TXCFG);
1507	bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1508	out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1509	printk(KERN_ERR "bmac: transmit timeout - resetting\n");
1510	bmac_enable_and_reset_chip(dev);
1511
1512	/* restart rx dma */
1513	cp = bus_to_virt(ld_le32(&rd->cmdptr));
1514	out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1515	out_le16(&cp->xfer_status, 0);
1516	out_le32(&rd->cmdptr, virt_to_bus(cp));
1517	out_le32(&rd->control, DBDMA_SET(RUN|WAKE));
1518
1519	/* fix up the transmit side */
1520	XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n",
1521		 bp->tx_empty, bp->tx_fill, bp->tx_fullup));
1522	i = bp->tx_empty;
1523	++dev->stats.tx_errors;
1524	if (i != bp->tx_fill) {
1525		dev_kfree_skb(bp->tx_bufs[i]);
1526		bp->tx_bufs[i] = NULL;
1527		if (++i >= N_TX_RING) i = 0;
1528		bp->tx_empty = i;
1529	}
1530	bp->tx_fullup = 0;
1531	netif_wake_queue(dev);
1532	if (i != bp->tx_fill) {
1533		cp = &bp->tx_cmds[i];
1534		out_le16(&cp->xfer_status, 0);
1535		out_le16(&cp->command, OUTPUT_LAST);
1536		out_le32(&td->cmdptr, virt_to_bus(cp));
1537		out_le32(&td->control, DBDMA_SET(RUN));
1538		/* 	bmac_set_timeout(dev); */
1539		XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i));
1540	}
1541
1542	/* turn it back on */
1543	oldConfig = bmread(dev, RXCFG);
1544	bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
1545	oldConfig = bmread(dev, TXCFG);
1546	bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
1547
1548	spin_unlock_irqrestore(&bp->lock, flags);
1549}
1550
1551#if 0
1552static void dump_dbdma(volatile struct dbdma_cmd *cp,int count)
1553{
1554	int i,*ip;
1555
1556	for (i=0;i< count;i++) {
1557		ip = (int*)(cp+i);
1558
1559		printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n",
1560		       ld_le32(ip+0),
1561		       ld_le32(ip+1),
1562		       ld_le32(ip+2),
1563		       ld_le32(ip+3));
1564	}
1565
1566}
1567#endif
1568
1569#if 0
1570static int
1571bmac_proc_info(char *buffer, char **start, off_t offset, int length)
1572{
1573	int len = 0;
1574	off_t pos   = 0;
1575	off_t begin = 0;
1576	int i;
1577
1578	if (bmac_devs == NULL)
1579		return -ENOSYS;
1580
1581	len += sprintf(buffer, "BMAC counters & registers\n");
1582
1583	for (i = 0; i<N_REG_ENTRIES; i++) {
1584		len += sprintf(buffer + len, "%s: %#08x\n",
1585			       reg_entries[i].name,
1586			       bmread(bmac_devs, reg_entries[i].reg_offset));
1587		pos = begin + len;
1588
1589		if (pos < offset) {
1590			len = 0;
1591			begin = pos;
1592		}
1593
1594		if (pos > offset+length) break;
1595	}
1596
1597	*start = buffer + (offset - begin);
1598	len -= (offset - begin);
1599
1600	if (len > length) len = length;
1601
1602	return len;
1603}
1604#endif
1605
1606static int __devexit bmac_remove(struct macio_dev *mdev)
1607{
1608	struct net_device *dev = macio_get_drvdata(mdev);
1609	struct bmac_data *bp = netdev_priv(dev);
1610
1611	unregister_netdev(dev);
1612
1613       	free_irq(dev->irq, dev);
1614	free_irq(bp->tx_dma_intr, dev);
1615	free_irq(bp->rx_dma_intr, dev);
1616
1617	iounmap((void __iomem *)dev->base_addr);
1618	iounmap(bp->tx_dma);
1619	iounmap(bp->rx_dma);
1620
1621	macio_release_resources(mdev);
1622
1623	free_netdev(dev);
1624
1625	return 0;
1626}
1627
1628static struct of_device_id bmac_match[] =
1629{
1630	{
1631	.name 		= "bmac",
1632	.data		= (void *)0,
1633	},
1634	{
1635	.type		= "network",
1636	.compatible	= "bmac+",
1637	.data		= (void *)1,
1638	},
1639	{},
1640};
1641MODULE_DEVICE_TABLE (of, bmac_match);
1642
1643static struct macio_driver bmac_driver =
1644{
1645	.driver = {
1646		.name 		= "bmac",
1647		.owner		= THIS_MODULE,
1648		.of_match_table	= bmac_match,
1649	},
1650	.probe		= bmac_probe,
1651	.remove		= bmac_remove,
1652#ifdef CONFIG_PM
1653	.suspend	= bmac_suspend,
1654	.resume		= bmac_resume,
1655#endif
1656};
1657
1658
1659static int __init bmac_init(void)
1660{
1661	if (bmac_emergency_rxbuf == NULL) {
1662		bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL);
1663		if (bmac_emergency_rxbuf == NULL) {
1664			printk(KERN_ERR "BMAC: can't allocate emergency RX buffer\n");
1665			return -ENOMEM;
1666		}
1667	}
1668
1669	return macio_register_driver(&bmac_driver);
1670}
1671
1672static void __exit bmac_exit(void)
1673{
1674	macio_unregister_driver(&bmac_driver);
1675
1676	kfree(bmac_emergency_rxbuf);
1677	bmac_emergency_rxbuf = NULL;
1678}
1679
1680MODULE_AUTHOR("Randy Gobbel/Paul Mackerras");
1681MODULE_DESCRIPTION("PowerMac BMAC ethernet driver.");
1682MODULE_LICENSE("GPL");
1683
1684module_init(bmac_init);
1685module_exit(bmac_exit);