Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
   2/*
   3	Written 1996-1999 by Donald Becker.
   4
   5	This software may be used and distributed according to the terms
   6	of the GNU General Public License, incorporated herein by reference.
   7
   8	This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
   9	Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
  10	and the EtherLink XL 3c900 and 3c905 cards.
  11
  12	Problem reports and questions should be directed to
  13	vortex@scyld.com
  14
  15	The author may be reached as becker@scyld.com, or C/O
  16	Scyld Computing Corporation
  17	410 Severn Ave., Suite 210
  18	Annapolis MD 21403
  19
  20*/
  21
  22/*
  23 * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
  24 * as well as other drivers
  25 *
  26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
  27 * due to dead code elimination.  There will be some performance benefits from this due to
  28 * elimination of all the tests and reduced cache footprint.
  29 */
  30
  31
  32#define DRV_NAME	"3c59x"
  33
  34
  35
  36/* A few values that may be tweaked. */
  37/* Keep the ring sizes a power of two for efficiency. */
  38#define TX_RING_SIZE	16
  39#define RX_RING_SIZE	32
  40#define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
  41
  42/* "Knobs" that adjust features and parameters. */
  43/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  44   Setting to > 1512 effectively disables this feature. */
  45#ifndef __arm__
  46static int rx_copybreak = 200;
  47#else
  48/* ARM systems perform better by disregarding the bus-master
  49   transfer capability of these cards. -- rmk */
  50static int rx_copybreak = 1513;
  51#endif
  52/* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
  53static const int mtu = 1500;
  54/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
  55static int max_interrupt_work = 32;
  56/* Tx timeout interval (millisecs) */
  57static int watchdog = 5000;
  58
  59/* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
  60 * of possible Tx stalls if the system is blocking interrupts
  61 * somewhere else.  Undefine this to disable.
  62 */
  63#define tx_interrupt_mitigation 1
  64
  65/* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
  66#define vortex_debug debug
  67#ifdef VORTEX_DEBUG
  68static int vortex_debug = VORTEX_DEBUG;
  69#else
  70static int vortex_debug = 1;
  71#endif
  72
  73#include <linux/module.h>
  74#include <linux/kernel.h>
  75#include <linux/string.h>
  76#include <linux/timer.h>
  77#include <linux/errno.h>
  78#include <linux/in.h>
  79#include <linux/ioport.h>
  80#include <linux/interrupt.h>
  81#include <linux/pci.h>
  82#include <linux/mii.h>
  83#include <linux/init.h>
  84#include <linux/netdevice.h>
  85#include <linux/etherdevice.h>
  86#include <linux/skbuff.h>
  87#include <linux/ethtool.h>
  88#include <linux/highmem.h>
  89#include <linux/eisa.h>
  90#include <linux/bitops.h>
  91#include <linux/jiffies.h>
  92#include <linux/gfp.h>
  93#include <asm/irq.h>			/* For nr_irqs only. */
  94#include <asm/io.h>
  95#include <asm/uaccess.h>
  96
  97/* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
  98   This is only in the support-all-kernels source code. */
  99
 100#define RUN_AT(x) (jiffies + (x))
 101
 102#include <linux/delay.h>
 103
 104
 105static const char version[] __devinitconst =
 106	DRV_NAME ": Donald Becker and others.\n";
 107
 108MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 109MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
 110MODULE_LICENSE("GPL");
 111
 112
 113/* Operational parameter that usually are not changed. */
 114
 115/* The Vortex size is twice that of the original EtherLinkIII series: the
 116   runtime register window, window 1, is now always mapped in.
 117   The Boomerang size is twice as large as the Vortex -- it has additional
 118   bus master control registers. */
 119#define VORTEX_TOTAL_SIZE 0x20
 120#define BOOMERANG_TOTAL_SIZE 0x40
 121
 122/* Set iff a MII transceiver on any interface requires mdio preamble.
 123   This only set with the original DP83840 on older 3c905 boards, so the extra
 124   code size of a per-interface flag is not worthwhile. */
 125static char mii_preamble_required;
 126
 127#define PFX DRV_NAME ": "
 128
 129
 130
 131/*
 132				Theory of Operation
 133
 134I. Board Compatibility
 135
 136This device driver is designed for the 3Com FastEtherLink and FastEtherLink
 137XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
 138versions of the FastEtherLink cards.  The supported product IDs are
 139  3c590, 3c592, 3c595, 3c597, 3c900, 3c905
 140
 141The related ISA 3c515 is supported with a separate driver, 3c515.c, included
 142with the kernel source or available from
 143    cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
 144
 145II. Board-specific settings
 146
 147PCI bus devices are configured by the system at boot time, so no jumpers
 148need to be set on the board.  The system BIOS should be set to assign the
 149PCI INTA signal to an otherwise unused system IRQ line.
 150
 151The EEPROM settings for media type and forced-full-duplex are observed.
 152The EEPROM media type should be left at the default "autoselect" unless using
 15310base2 or AUI connections which cannot be reliably detected.
 154
 155III. Driver operation
 156
 157The 3c59x series use an interface that's very similar to the previous 3c5x9
 158series.  The primary interface is two programmed-I/O FIFOs, with an
 159alternate single-contiguous-region bus-master transfer (see next).
 160
 161The 3c900 "Boomerang" series uses a full-bus-master interface with separate
 162lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
 163DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
 164programmed-I/O interface that has been removed in 'B' and subsequent board
 165revisions.
 166
 167One extension that is advertised in a very large font is that the adapters
 168are capable of being bus masters.  On the Vortex chip this capability was
 169only for a single contiguous region making it far less useful than the full
 170bus master capability.  There is a significant performance impact of taking
 171an extra interrupt or polling for the completion of each transfer, as well
 172as difficulty sharing the single transfer engine between the transmit and
 173receive threads.  Using DMA transfers is a win only with large blocks or
 174with the flawed versions of the Intel Orion motherboard PCI controller.
 175
 176The Boomerang chip's full-bus-master interface is useful, and has the
 177currently-unused advantages over other similar chips that queued transmit
 178packets may be reordered and receive buffer groups are associated with a
 179single frame.
 180
 181With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
 182Rather than a fixed intermediate receive buffer, this scheme allocates
 183full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
 184the copying breakpoint: it is chosen to trade-off the memory wasted by
 185passing the full-sized skbuff to the queue layer for all frames vs. the
 186copying cost of copying a frame to a correctly-sized skbuff.
 187
 188IIIC. Synchronization
 189The driver runs as two independent, single-threaded flows of control.  One
 190is the send-packet routine, which enforces single-threaded use by the
 191dev->tbusy flag.  The other thread is the interrupt handler, which is single
 192threaded by the hardware and other software.
 193
 194IV. Notes
 195
 196Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
 1973c590, 3c595, and 3c900 boards.
 198The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
 199the EISA version is called "Demon".  According to Terry these names come
 200from rides at the local amusement park.
 201
 202The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
 203This driver only supports ethernet packets because of the skbuff allocation
 204limit of 4K.
 205*/
 206
 207/* This table drives the PCI probe routines.  It's mostly boilerplate in all
 208   of the drivers, and will likely be provided by some future kernel.
 209*/
 210enum pci_flags_bit {
 211	PCI_USES_MASTER=4,
 212};
 213
 214enum {	IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
 215	EEPROM_8BIT=0x10,	/* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
 216	HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
 217	INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
 218	EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
 219	EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
 220
 221enum vortex_chips {
 222	CH_3C590 = 0,
 223	CH_3C592,
 224	CH_3C597,
 225	CH_3C595_1,
 226	CH_3C595_2,
 227
 228	CH_3C595_3,
 229	CH_3C900_1,
 230	CH_3C900_2,
 231	CH_3C900_3,
 232	CH_3C900_4,
 233
 234	CH_3C900_5,
 235	CH_3C900B_FL,
 236	CH_3C905_1,
 237	CH_3C905_2,
 238	CH_3C905B_TX,
 239	CH_3C905B_1,
 240
 241	CH_3C905B_2,
 242	CH_3C905B_FX,
 243	CH_3C905C,
 244	CH_3C9202,
 245	CH_3C980,
 246	CH_3C9805,
 247
 248	CH_3CSOHO100_TX,
 249	CH_3C555,
 250	CH_3C556,
 251	CH_3C556B,
 252	CH_3C575,
 253
 254	CH_3C575_1,
 255	CH_3CCFE575,
 256	CH_3CCFE575CT,
 257	CH_3CCFE656,
 258	CH_3CCFEM656,
 259
 260	CH_3CCFEM656_1,
 261	CH_3C450,
 262	CH_3C920,
 263	CH_3C982A,
 264	CH_3C982B,
 265
 266	CH_905BT4,
 267	CH_920B_EMB_WNM,
 268};
 269
 270
 271/* note: this array directly indexed by above enums, and MUST
 272 * be kept in sync with both the enums above, and the PCI device
 273 * table below
 274 */
 275static struct vortex_chip_info {
 276	const char *name;
 277	int flags;
 278	int drv_flags;
 279	int io_size;
 280} vortex_info_tbl[] __devinitdata = {
 281	{"3c590 Vortex 10Mbps",
 282	 PCI_USES_MASTER, IS_VORTEX, 32, },
 283	{"3c592 EISA 10Mbps Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
 284	 PCI_USES_MASTER, IS_VORTEX, 32, },
 285	{"3c597 EISA Fast Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
 286	 PCI_USES_MASTER, IS_VORTEX, 32, },
 287	{"3c595 Vortex 100baseTx",
 288	 PCI_USES_MASTER, IS_VORTEX, 32, },
 289	{"3c595 Vortex 100baseT4",
 290	 PCI_USES_MASTER, IS_VORTEX, 32, },
 291
 292	{"3c595 Vortex 100base-MII",
 293	 PCI_USES_MASTER, IS_VORTEX, 32, },
 294	{"3c900 Boomerang 10baseT",
 295	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 296	{"3c900 Boomerang 10Mbps Combo",
 297	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 298	{"3c900 Cyclone 10Mbps TPO",						/* AKPM: from Don's 0.99M */
 299	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 300	{"3c900 Cyclone 10Mbps Combo",
 301	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 302
 303	{"3c900 Cyclone 10Mbps TPC",						/* AKPM: from Don's 0.99M */
 304	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 305	{"3c900B-FL Cyclone 10base-FL",
 306	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 307	{"3c905 Boomerang 100baseTx",
 308	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 309	{"3c905 Boomerang 100baseT4",
 310	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 311	{"3C905B-TX Fast Etherlink XL PCI",
 312	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 313	{"3c905B Cyclone 100baseTx",
 314	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 315
 316	{"3c905B Cyclone 10/100/BNC",
 317	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 318	{"3c905B-FX Cyclone 100baseFx",
 319	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 320	{"3c905C Tornado",
 321	PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 322	{"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
 323	 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
 324	{"3c980 Cyclone",
 325	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 326
 327	{"3c980C Python-T",
 328	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 329	{"3cSOHO100-TX Hurricane",
 330	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 331	{"3c555 Laptop Hurricane",
 332	 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
 333	{"3c556 Laptop Tornado",
 334	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
 335									HAS_HWCKSM, 128, },
 336	{"3c556B Laptop Hurricane",
 337	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
 338	                                WNO_XCVR_PWR|HAS_HWCKSM, 128, },
 339
 340	{"3c575 [Megahertz] 10/100 LAN 	CardBus",
 341	PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 342	{"3c575 Boomerang CardBus",
 343	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 344	{"3CCFE575BT Cyclone CardBus",
 345	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
 346									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 347	{"3CCFE575CT Tornado CardBus",
 348	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 349									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 350	{"3CCFE656 Cyclone CardBus",
 351	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 352									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 353
 354	{"3CCFEM656B Cyclone+Winmodem CardBus",
 355	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 356									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 357	{"3CXFEM656C Tornado+Winmodem CardBus",			/* From pcmcia-cs-3.1.5 */
 358	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 359									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 360	{"3c450 HomePNA Tornado",						/* AKPM: from Don's 0.99Q */
 361	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 362	{"3c920 Tornado",
 363	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 364	{"3c982 Hydra Dual Port A",
 365	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 366
 367	{"3c982 Hydra Dual Port B",
 368	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 369	{"3c905B-T4",
 370	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 371	{"3c920B-EMB-WNM Tornado",
 372	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 373
 374	{NULL,}, /* NULL terminated list. */
 375};
 376
 377
 378static DEFINE_PCI_DEVICE_TABLE(vortex_pci_tbl) = {
 379	{ 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
 380	{ 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
 381	{ 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
 382	{ 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
 383	{ 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
 384
 385	{ 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
 386	{ 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
 387	{ 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
 388	{ 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
 389	{ 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
 390
 391	{ 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
 392	{ 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
 393	{ 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
 394	{ 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
 395	{ 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
 396	{ 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
 397
 398	{ 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
 399	{ 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
 400	{ 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
 401	{ 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
 402	{ 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
 403	{ 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
 404
 405	{ 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
 406	{ 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
 407	{ 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
 408	{ 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
 409	{ 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
 410
 411	{ 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
 412	{ 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
 413	{ 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
 414	{ 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
 415	{ 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
 416
 417	{ 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
 418	{ 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
 419	{ 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
 420	{ 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
 421	{ 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
 422
 423	{ 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
 424	{ 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
 425
 426	{0,}						/* 0 terminated list. */
 427};
 428MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
 429
 430
 431/* Operational definitions.
 432   These are not used by other compilation units and thus are not
 433   exported in a ".h" file.
 434
 435   First the windows.  There are eight register windows, with the command
 436   and status registers available in each.
 437   */
 438#define EL3_CMD 0x0e
 439#define EL3_STATUS 0x0e
 440
 441/* The top five bits written to EL3_CMD are a command, the lower
 442   11 bits are the parameter, if applicable.
 443   Note that 11 parameters bits was fine for ethernet, but the new chip
 444   can handle FDDI length frames (~4500 octets) and now parameters count
 445   32-bit 'Dwords' rather than octets. */
 446
 447enum vortex_cmd {
 448	TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
 449	RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
 450	UpStall = 6<<11, UpUnstall = (6<<11)+1,
 451	DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
 452	RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
 453	FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
 454	SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
 455	SetTxThreshold = 18<<11, SetTxStart = 19<<11,
 456	StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
 457	StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
 458
 459/* The SetRxFilter command accepts the following classes: */
 460enum RxFilter {
 461	RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
 462
 463/* Bits in the general status register. */
 464enum vortex_status {
 465	IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
 466	TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
 467	IntReq = 0x0040, StatsFull = 0x0080,
 468	DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
 469	DMAInProgress = 1<<11,			/* DMA controller is still busy.*/
 470	CmdInProgress = 1<<12,			/* EL3_CMD is still busy.*/
 471};
 472
 473/* Register window 1 offsets, the window used in normal operation.
 474   On the Vortex this window is always mapped at offsets 0x10-0x1f. */
 475enum Window1 {
 476	TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
 477	RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
 478	TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
 479};
 480enum Window0 {
 481	Wn0EepromCmd = 10,		/* Window 0: EEPROM command register. */
 482	Wn0EepromData = 12,		/* Window 0: EEPROM results register. */
 483	IntrStatus=0x0E,		/* Valid in all windows. */
 484};
 485enum Win0_EEPROM_bits {
 486	EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
 487	EEPROM_EWENB = 0x30,		/* Enable erasing/writing for 10 msec. */
 488	EEPROM_EWDIS = 0x00,		/* Disable EWENB before 10 msec timeout. */
 489};
 490/* EEPROM locations. */
 491enum eeprom_offset {
 492	PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
 493	EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
 494	NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
 495	DriverTune=13, Checksum=15};
 496
 497enum Window2 {			/* Window 2. */
 498	Wn2_ResetOptions=12,
 499};
 500enum Window3 {			/* Window 3: MAC/config bits. */
 501	Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
 502};
 503
 504#define BFEXT(value, offset, bitcount)  \
 505    ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
 506
 507#define BFINS(lhs, rhs, offset, bitcount)					\
 508	(((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |	\
 509	(((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
 510
 511#define RAM_SIZE(v)		BFEXT(v, 0, 3)
 512#define RAM_WIDTH(v)	BFEXT(v, 3, 1)
 513#define RAM_SPEED(v)	BFEXT(v, 4, 2)
 514#define ROM_SIZE(v)		BFEXT(v, 6, 2)
 515#define RAM_SPLIT(v)	BFEXT(v, 16, 2)
 516#define XCVR(v)			BFEXT(v, 20, 4)
 517#define AUTOSELECT(v)	BFEXT(v, 24, 1)
 518
 519enum Window4 {		/* Window 4: Xcvr/media bits. */
 520	Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
 521};
 522enum Win4_Media_bits {
 523	Media_SQE = 0x0008,		/* Enable SQE error counting for AUI. */
 524	Media_10TP = 0x00C0,	/* Enable link beat and jabber for 10baseT. */
 525	Media_Lnk = 0x0080,		/* Enable just link beat for 100TX/100FX. */
 526	Media_LnkBeat = 0x0800,
 527};
 528enum Window7 {					/* Window 7: Bus Master control. */
 529	Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
 530	Wn7_MasterStatus = 12,
 531};
 532/* Boomerang bus master control registers. */
 533enum MasterCtrl {
 534	PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
 535	TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
 536};
 537
 538/* The Rx and Tx descriptor lists.
 539   Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
 540   alignment contraint on tx_ring[] and rx_ring[]. */
 541#define LAST_FRAG 	0x80000000			/* Last Addr/Len pair in descriptor. */
 542#define DN_COMPLETE	0x00010000			/* This packet has been downloaded */
 543struct boom_rx_desc {
 544	__le32 next;					/* Last entry points to 0.   */
 545	__le32 status;
 546	__le32 addr;					/* Up to 63 addr/len pairs possible. */
 547	__le32 length;					/* Set LAST_FRAG to indicate last pair. */
 548};
 549/* Values for the Rx status entry. */
 550enum rx_desc_status {
 551	RxDComplete=0x00008000, RxDError=0x4000,
 552	/* See boomerang_rx() for actual error bits */
 553	IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
 554	IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
 555};
 556
 557#ifdef MAX_SKB_FRAGS
 558#define DO_ZEROCOPY 1
 559#else
 560#define DO_ZEROCOPY 0
 561#endif
 562
 563struct boom_tx_desc {
 564	__le32 next;					/* Last entry points to 0.   */
 565	__le32 status;					/* bits 0:12 length, others see below.  */
 566#if DO_ZEROCOPY
 567	struct {
 568		__le32 addr;
 569		__le32 length;
 570	} frag[1+MAX_SKB_FRAGS];
 571#else
 572		__le32 addr;
 573		__le32 length;
 574#endif
 575};
 576
 577/* Values for the Tx status entry. */
 578enum tx_desc_status {
 579	CRCDisable=0x2000, TxDComplete=0x8000,
 580	AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
 581	TxIntrUploaded=0x80000000,		/* IRQ when in FIFO, but maybe not sent. */
 582};
 583
 584/* Chip features we care about in vp->capabilities, read from the EEPROM. */
 585enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
 586
 587struct vortex_extra_stats {
 588	unsigned long tx_deferred;
 589	unsigned long tx_max_collisions;
 590	unsigned long tx_multiple_collisions;
 591	unsigned long tx_single_collisions;
 592	unsigned long rx_bad_ssd;
 593};
 594
 595struct vortex_private {
 596	/* The Rx and Tx rings should be quad-word-aligned. */
 597	struct boom_rx_desc* rx_ring;
 598	struct boom_tx_desc* tx_ring;
 599	dma_addr_t rx_ring_dma;
 600	dma_addr_t tx_ring_dma;
 601	/* The addresses of transmit- and receive-in-place skbuffs. */
 602	struct sk_buff* rx_skbuff[RX_RING_SIZE];
 603	struct sk_buff* tx_skbuff[TX_RING_SIZE];
 604	unsigned int cur_rx, cur_tx;		/* The next free ring entry */
 605	unsigned int dirty_rx, dirty_tx;	/* The ring entries to be free()ed. */
 606	struct vortex_extra_stats xstats;	/* NIC-specific extra stats */
 607	struct sk_buff *tx_skb;				/* Packet being eaten by bus master ctrl.  */
 608	dma_addr_t tx_skb_dma;				/* Allocated DMA address for bus master ctrl DMA.   */
 609
 610	/* PCI configuration space information. */
 611	struct device *gendev;
 612	void __iomem *ioaddr;			/* IO address space */
 613	void __iomem *cb_fn_base;		/* CardBus function status addr space. */
 614
 615	/* Some values here only for performance evaluation and path-coverage */
 616	int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
 617	int card_idx;
 618
 619	/* The remainder are related to chip state, mostly media selection. */
 620	struct timer_list timer;			/* Media selection timer. */
 621	struct timer_list rx_oom_timer;		/* Rx skb allocation retry timer */
 622	int options;						/* User-settable misc. driver options. */
 623	unsigned int media_override:4, 		/* Passed-in media type. */
 624		default_media:4,				/* Read from the EEPROM/Wn3_Config. */
 625		full_duplex:1, autoselect:1,
 626		bus_master:1,					/* Vortex can only do a fragment bus-m. */
 627		full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
 628		flow_ctrl:1,					/* Use 802.3x flow control (PAUSE only) */
 629		partner_flow_ctrl:1,			/* Partner supports flow control */
 630		has_nway:1,
 631		enable_wol:1,					/* Wake-on-LAN is enabled */
 632		pm_state_valid:1,				/* pci_dev->saved_config_space has sane contents */
 633		open:1,
 634		medialock:1,
 635		must_free_region:1,				/* Flag: if zero, Cardbus owns the I/O region */
 636		large_frames:1,			/* accept large frames */
 637		handling_irq:1;			/* private in_irq indicator */
 638	/* {get|set}_wol operations are already serialized by rtnl.
 639	 * no additional locking is required for the enable_wol and acpi_set_WOL()
 640	 */
 641	int drv_flags;
 642	u16 status_enable;
 643	u16 intr_enable;
 644	u16 available_media;				/* From Wn3_Options. */
 645	u16 capabilities, info1, info2;		/* Various, from EEPROM. */
 646	u16 advertising;					/* NWay media advertisement */
 647	unsigned char phys[2];				/* MII device addresses. */
 648	u16 deferred;						/* Resend these interrupts when we
 649										 * bale from the ISR */
 650	u16 io_size;						/* Size of PCI region (for release_region) */
 651
 652	/* Serialises access to hardware other than MII and variables below.
 653	 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
 654	spinlock_t lock;
 655
 656	spinlock_t mii_lock;		/* Serialises access to MII */
 657	struct mii_if_info mii;		/* MII lib hooks/info */
 658	spinlock_t window_lock;		/* Serialises access to windowed regs */
 659	int window;			/* Register window */
 660};
 661
 662static void window_set(struct vortex_private *vp, int window)
 663{
 664	if (window != vp->window) {
 665		iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
 666		vp->window = window;
 667	}
 668}
 669
 670#define DEFINE_WINDOW_IO(size)						\
 671static u ## size							\
 672window_read ## size(struct vortex_private *vp, int window, int addr)	\
 673{									\
 674	unsigned long flags;						\
 675	u ## size ret;							\
 676	spin_lock_irqsave(&vp->window_lock, flags);			\
 677	window_set(vp, window);						\
 678	ret = ioread ## size(vp->ioaddr + addr);			\
 679	spin_unlock_irqrestore(&vp->window_lock, flags);		\
 680	return ret;							\
 681}									\
 682static void								\
 683window_write ## size(struct vortex_private *vp, u ## size value,	\
 684		     int window, int addr)				\
 685{									\
 686	unsigned long flags;						\
 687	spin_lock_irqsave(&vp->window_lock, flags);			\
 688	window_set(vp, window);						\
 689	iowrite ## size(value, vp->ioaddr + addr);			\
 690	spin_unlock_irqrestore(&vp->window_lock, flags);		\
 691}
 692DEFINE_WINDOW_IO(8)
 693DEFINE_WINDOW_IO(16)
 694DEFINE_WINDOW_IO(32)
 695
 696#ifdef CONFIG_PCI
 697#define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
 698#else
 699#define DEVICE_PCI(dev) NULL
 700#endif
 701
 702#define VORTEX_PCI(vp)							\
 703	((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
 704
 705#ifdef CONFIG_EISA
 706#define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
 707#else
 708#define DEVICE_EISA(dev) NULL
 709#endif
 710
 711#define VORTEX_EISA(vp)							\
 712	((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
 713
 714/* The action to take with a media selection timer tick.
 715   Note that we deviate from the 3Com order by checking 10base2 before AUI.
 716 */
 717enum xcvr_types {
 718	XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
 719	XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
 720};
 721
 722static const struct media_table {
 723	char *name;
 724	unsigned int media_bits:16,		/* Bits to set in Wn4_Media register. */
 725		mask:8,						/* The transceiver-present bit in Wn3_Config.*/
 726		next:8;						/* The media type to try next. */
 727	int wait;						/* Time before we check media status. */
 728} media_tbl[] = {
 729  {	"10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
 730  { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
 731  { "undefined", 0,			0x80, XCVR_10baseT, 10000},
 732  { "10base2",   0,			0x10, XCVR_AUI,		(1*HZ)/10},
 733  { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
 734  { "100baseFX", Media_Lnk, 0x04, XCVR_MII,		(14*HZ)/10},
 735  { "MII",		 0,			0x41, XCVR_10baseT, 3*HZ },
 736  { "undefined", 0,			0x01, XCVR_10baseT, 10000},
 737  { "Autonegotiate", 0,		0x41, XCVR_10baseT, 3*HZ},
 738  { "MII-External",	 0,		0x41, XCVR_10baseT, 3*HZ },
 739  { "Default",	 0,			0xFF, XCVR_10baseT, 10000},
 740};
 741
 742static struct {
 743	const char str[ETH_GSTRING_LEN];
 744} ethtool_stats_keys[] = {
 745	{ "tx_deferred" },
 746	{ "tx_max_collisions" },
 747	{ "tx_multiple_collisions" },
 748	{ "tx_single_collisions" },
 749	{ "rx_bad_ssd" },
 750};
 751
 752/* number of ETHTOOL_GSTATS u64's */
 753#define VORTEX_NUM_STATS    5
 754
 755static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
 756				   int chip_idx, int card_idx);
 757static int vortex_up(struct net_device *dev);
 758static void vortex_down(struct net_device *dev, int final);
 759static int vortex_open(struct net_device *dev);
 760static void mdio_sync(struct vortex_private *vp, int bits);
 761static int mdio_read(struct net_device *dev, int phy_id, int location);
 762static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
 763static void vortex_timer(unsigned long arg);
 764static void rx_oom_timer(unsigned long arg);
 765static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
 766				     struct net_device *dev);
 767static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
 768					struct net_device *dev);
 769static int vortex_rx(struct net_device *dev);
 770static int boomerang_rx(struct net_device *dev);
 771static irqreturn_t vortex_interrupt(int irq, void *dev_id);
 772static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
 773static int vortex_close(struct net_device *dev);
 774static void dump_tx_ring(struct net_device *dev);
 775static void update_stats(void __iomem *ioaddr, struct net_device *dev);
 776static struct net_device_stats *vortex_get_stats(struct net_device *dev);
 777static void set_rx_mode(struct net_device *dev);
 778#ifdef CONFIG_PCI
 779static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 780#endif
 781static void vortex_tx_timeout(struct net_device *dev);
 782static void acpi_set_WOL(struct net_device *dev);
 783static const struct ethtool_ops vortex_ethtool_ops;
 784static void set_8021q_mode(struct net_device *dev, int enable);
 785
 786/* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
 787/* Option count limit only -- unlimited interfaces are supported. */
 788#define MAX_UNITS 8
 789static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
 790static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 791static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 792static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 793static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 794static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 795static int global_options = -1;
 796static int global_full_duplex = -1;
 797static int global_enable_wol = -1;
 798static int global_use_mmio = -1;
 799
 800/* Variables to work-around the Compaq PCI BIOS32 problem. */
 801static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
 802static struct net_device *compaq_net_device;
 803
 804static int vortex_cards_found;
 805
 806module_param(debug, int, 0);
 807module_param(global_options, int, 0);
 808module_param_array(options, int, NULL, 0);
 809module_param(global_full_duplex, int, 0);
 810module_param_array(full_duplex, int, NULL, 0);
 811module_param_array(hw_checksums, int, NULL, 0);
 812module_param_array(flow_ctrl, int, NULL, 0);
 813module_param(global_enable_wol, int, 0);
 814module_param_array(enable_wol, int, NULL, 0);
 815module_param(rx_copybreak, int, 0);
 816module_param(max_interrupt_work, int, 0);
 817module_param(compaq_ioaddr, int, 0);
 818module_param(compaq_irq, int, 0);
 819module_param(compaq_device_id, int, 0);
 820module_param(watchdog, int, 0);
 821module_param(global_use_mmio, int, 0);
 822module_param_array(use_mmio, int, NULL, 0);
 823MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
 824MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
 825MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
 826MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
 827MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
 828MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
 829MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
 830MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
 831MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
 832MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
 833MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
 834MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
 835MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
 836MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
 837MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
 838MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
 839MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
 840
 841#ifdef CONFIG_NET_POLL_CONTROLLER
 842static void poll_vortex(struct net_device *dev)
 843{
 844	struct vortex_private *vp = netdev_priv(dev);
 845	unsigned long flags;
 846	local_irq_save(flags);
 847	(vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
 848	local_irq_restore(flags);
 849}
 850#endif
 851
 852#ifdef CONFIG_PM
 853
 854static int vortex_suspend(struct device *dev)
 855{
 856	struct pci_dev *pdev = to_pci_dev(dev);
 857	struct net_device *ndev = pci_get_drvdata(pdev);
 858
 859	if (!ndev || !netif_running(ndev))
 860		return 0;
 861
 862	netif_device_detach(ndev);
 863	vortex_down(ndev, 1);
 864
 865	return 0;
 866}
 867
 868static int vortex_resume(struct device *dev)
 869{
 870	struct pci_dev *pdev = to_pci_dev(dev);
 871	struct net_device *ndev = pci_get_drvdata(pdev);
 872	int err;
 873
 874	if (!ndev || !netif_running(ndev))
 875		return 0;
 876
 877	err = vortex_up(ndev);
 878	if (err)
 879		return err;
 880
 881	netif_device_attach(ndev);
 882
 883	return 0;
 884}
 885
 886static const struct dev_pm_ops vortex_pm_ops = {
 887	.suspend = vortex_suspend,
 888	.resume = vortex_resume,
 889	.freeze = vortex_suspend,
 890	.thaw = vortex_resume,
 891	.poweroff = vortex_suspend,
 892	.restore = vortex_resume,
 893};
 894
 895#define VORTEX_PM_OPS (&vortex_pm_ops)
 896
 897#else /* !CONFIG_PM */
 898
 899#define VORTEX_PM_OPS NULL
 900
 901#endif /* !CONFIG_PM */
 902
 903#ifdef CONFIG_EISA
 904static struct eisa_device_id vortex_eisa_ids[] = {
 905	{ "TCM5920", CH_3C592 },
 906	{ "TCM5970", CH_3C597 },
 907	{ "" }
 908};
 909MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
 910
 911static int __init vortex_eisa_probe(struct device *device)
 912{
 913	void __iomem *ioaddr;
 914	struct eisa_device *edev;
 915
 916	edev = to_eisa_device(device);
 917
 918	if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
 919		return -EBUSY;
 920
 921	ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
 922
 923	if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
 924					  edev->id.driver_data, vortex_cards_found)) {
 925		release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 926		return -ENODEV;
 927	}
 928
 929	vortex_cards_found++;
 930
 931	return 0;
 932}
 933
 934static int __devexit vortex_eisa_remove(struct device *device)
 935{
 936	struct eisa_device *edev;
 937	struct net_device *dev;
 938	struct vortex_private *vp;
 939	void __iomem *ioaddr;
 940
 941	edev = to_eisa_device(device);
 942	dev = eisa_get_drvdata(edev);
 943
 944	if (!dev) {
 945		pr_err("vortex_eisa_remove called for Compaq device!\n");
 946		BUG();
 947	}
 948
 949	vp = netdev_priv(dev);
 950	ioaddr = vp->ioaddr;
 951
 952	unregister_netdev(dev);
 953	iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
 954	release_region(dev->base_addr, VORTEX_TOTAL_SIZE);
 955
 956	free_netdev(dev);
 957	return 0;
 958}
 959
 960static struct eisa_driver vortex_eisa_driver = {
 961	.id_table = vortex_eisa_ids,
 962	.driver   = {
 963		.name    = "3c59x",
 964		.probe   = vortex_eisa_probe,
 965		.remove  = __devexit_p(vortex_eisa_remove)
 966	}
 967};
 968
 969#endif /* CONFIG_EISA */
 970
 971/* returns count found (>= 0), or negative on error */
 972static int __init vortex_eisa_init(void)
 973{
 974	int eisa_found = 0;
 975	int orig_cards_found = vortex_cards_found;
 976
 977#ifdef CONFIG_EISA
 978	int err;
 979
 980	err = eisa_driver_register (&vortex_eisa_driver);
 981	if (!err) {
 982		/*
 983		 * Because of the way EISA bus is probed, we cannot assume
 984		 * any device have been found when we exit from
 985		 * eisa_driver_register (the bus root driver may not be
 986		 * initialized yet). So we blindly assume something was
 987		 * found, and let the sysfs magic happened...
 988		 */
 989		eisa_found = 1;
 990	}
 991#endif
 992
 993	/* Special code to work-around the Compaq PCI BIOS32 problem. */
 994	if (compaq_ioaddr) {
 995		vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
 996			      compaq_irq, compaq_device_id, vortex_cards_found++);
 997	}
 998
 999	return vortex_cards_found - orig_cards_found + eisa_found;
1000}
1001
1002/* returns count (>= 0), or negative on error */
1003static int __devinit vortex_init_one(struct pci_dev *pdev,
1004				      const struct pci_device_id *ent)
1005{
1006	int rc, unit, pci_bar;
1007	struct vortex_chip_info *vci;
1008	void __iomem *ioaddr;
1009
1010	/* wake up and enable device */
1011	rc = pci_enable_device(pdev);
1012	if (rc < 0)
1013		goto out;
1014
1015	unit = vortex_cards_found;
1016
1017	if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1018		/* Determine the default if the user didn't override us */
1019		vci = &vortex_info_tbl[ent->driver_data];
1020		pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1021	} else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1022		pci_bar = use_mmio[unit] ? 1 : 0;
1023	else
1024		pci_bar = global_use_mmio ? 1 : 0;
1025
1026	ioaddr = pci_iomap(pdev, pci_bar, 0);
1027	if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1028		ioaddr = pci_iomap(pdev, 0, 0);
1029	if (!ioaddr) {
1030		pci_disable_device(pdev);
1031		rc = -ENOMEM;
1032		goto out;
1033	}
1034
1035	rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1036			   ent->driver_data, unit);
1037	if (rc < 0) {
1038		pci_iounmap(pdev, ioaddr);
1039		pci_disable_device(pdev);
1040		goto out;
1041	}
1042
1043	vortex_cards_found++;
1044
1045out:
1046	return rc;
1047}
1048
1049static const struct net_device_ops boomrang_netdev_ops = {
1050	.ndo_open		= vortex_open,
1051	.ndo_stop		= vortex_close,
1052	.ndo_start_xmit		= boomerang_start_xmit,
1053	.ndo_tx_timeout		= vortex_tx_timeout,
1054	.ndo_get_stats		= vortex_get_stats,
1055#ifdef CONFIG_PCI
1056	.ndo_do_ioctl 		= vortex_ioctl,
1057#endif
1058	.ndo_set_multicast_list = set_rx_mode,
1059	.ndo_change_mtu		= eth_change_mtu,
1060	.ndo_set_mac_address 	= eth_mac_addr,
1061	.ndo_validate_addr	= eth_validate_addr,
1062#ifdef CONFIG_NET_POLL_CONTROLLER
1063	.ndo_poll_controller	= poll_vortex,
1064#endif
1065};
1066
1067static const struct net_device_ops vortex_netdev_ops = {
1068	.ndo_open		= vortex_open,
1069	.ndo_stop		= vortex_close,
1070	.ndo_start_xmit		= vortex_start_xmit,
1071	.ndo_tx_timeout		= vortex_tx_timeout,
1072	.ndo_get_stats		= vortex_get_stats,
1073#ifdef CONFIG_PCI
1074	.ndo_do_ioctl 		= vortex_ioctl,
1075#endif
1076	.ndo_set_multicast_list = set_rx_mode,
1077	.ndo_change_mtu		= eth_change_mtu,
1078	.ndo_set_mac_address 	= eth_mac_addr,
1079	.ndo_validate_addr	= eth_validate_addr,
1080#ifdef CONFIG_NET_POLL_CONTROLLER
1081	.ndo_poll_controller	= poll_vortex,
1082#endif
1083};
1084
1085/*
1086 * Start up the PCI/EISA device which is described by *gendev.
1087 * Return 0 on success.
1088 *
1089 * NOTE: pdev can be NULL, for the case of a Compaq device
1090 */
1091static int __devinit vortex_probe1(struct device *gendev,
1092				   void __iomem *ioaddr, int irq,
1093				   int chip_idx, int card_idx)
1094{
1095	struct vortex_private *vp;
1096	int option;
1097	unsigned int eeprom[0x40], checksum = 0;		/* EEPROM contents */
1098	int i, step;
1099	struct net_device *dev;
1100	static int printed_version;
1101	int retval, print_info;
1102	struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1103	const char *print_name = "3c59x";
1104	struct pci_dev *pdev = NULL;
1105	struct eisa_device *edev = NULL;
1106
1107	if (!printed_version) {
1108		pr_info("%s", version);
1109		printed_version = 1;
1110	}
1111
1112	if (gendev) {
1113		if ((pdev = DEVICE_PCI(gendev))) {
1114			print_name = pci_name(pdev);
1115		}
1116
1117		if ((edev = DEVICE_EISA(gendev))) {
1118			print_name = dev_name(&edev->dev);
1119		}
1120	}
1121
1122	dev = alloc_etherdev(sizeof(*vp));
1123	retval = -ENOMEM;
1124	if (!dev) {
1125		pr_err(PFX "unable to allocate etherdev, aborting\n");
1126		goto out;
1127	}
1128	SET_NETDEV_DEV(dev, gendev);
1129	vp = netdev_priv(dev);
1130
1131	option = global_options;
1132
1133	/* The lower four bits are the media type. */
1134	if (dev->mem_start) {
1135		/*
1136		 * The 'options' param is passed in as the third arg to the
1137		 * LILO 'ether=' argument for non-modular use
1138		 */
1139		option = dev->mem_start;
1140	}
1141	else if (card_idx < MAX_UNITS) {
1142		if (options[card_idx] >= 0)
1143			option = options[card_idx];
1144	}
1145
1146	if (option > 0) {
1147		if (option & 0x8000)
1148			vortex_debug = 7;
1149		if (option & 0x4000)
1150			vortex_debug = 2;
1151		if (option & 0x0400)
1152			vp->enable_wol = 1;
1153	}
1154
1155	print_info = (vortex_debug > 1);
1156	if (print_info)
1157		pr_info("See Documentation/networking/vortex.txt\n");
1158
1159	pr_info("%s: 3Com %s %s at %p.\n",
1160	       print_name,
1161	       pdev ? "PCI" : "EISA",
1162	       vci->name,
1163	       ioaddr);
1164
1165	dev->base_addr = (unsigned long)ioaddr;
1166	dev->irq = irq;
1167	dev->mtu = mtu;
1168	vp->ioaddr = ioaddr;
1169	vp->large_frames = mtu > 1500;
1170	vp->drv_flags = vci->drv_flags;
1171	vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1172	vp->io_size = vci->io_size;
1173	vp->card_idx = card_idx;
1174	vp->window = -1;
1175
1176	/* module list only for Compaq device */
1177	if (gendev == NULL) {
1178		compaq_net_device = dev;
1179	}
1180
1181	/* PCI-only startup logic */
1182	if (pdev) {
1183		/* EISA resources already marked, so only PCI needs to do this here */
1184		/* Ignore return value, because Cardbus drivers already allocate for us */
1185		if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1186			vp->must_free_region = 1;
1187
1188		/* enable bus-mastering if necessary */
1189		if (vci->flags & PCI_USES_MASTER)
1190			pci_set_master(pdev);
1191
1192		if (vci->drv_flags & IS_VORTEX) {
1193			u8 pci_latency;
1194			u8 new_latency = 248;
1195
1196			/* Check the PCI latency value.  On the 3c590 series the latency timer
1197			   must be set to the maximum value to avoid data corruption that occurs
1198			   when the timer expires during a transfer.  This bug exists the Vortex
1199			   chip only. */
1200			pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1201			if (pci_latency < new_latency) {
1202				pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1203					print_name, pci_latency, new_latency);
1204				pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1205			}
1206		}
1207	}
1208
1209	spin_lock_init(&vp->lock);
1210	spin_lock_init(&vp->mii_lock);
1211	spin_lock_init(&vp->window_lock);
1212	vp->gendev = gendev;
1213	vp->mii.dev = dev;
1214	vp->mii.mdio_read = mdio_read;
1215	vp->mii.mdio_write = mdio_write;
1216	vp->mii.phy_id_mask = 0x1f;
1217	vp->mii.reg_num_mask = 0x1f;
1218
1219	/* Makes sure rings are at least 16 byte aligned. */
1220	vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1221					   + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1222					   &vp->rx_ring_dma);
1223	retval = -ENOMEM;
1224	if (!vp->rx_ring)
1225		goto free_region;
1226
1227	vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1228	vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1229
1230	/* if we are a PCI driver, we store info in pdev->driver_data
1231	 * instead of a module list */
1232	if (pdev)
1233		pci_set_drvdata(pdev, dev);
1234	if (edev)
1235		eisa_set_drvdata(edev, dev);
1236
1237	vp->media_override = 7;
1238	if (option >= 0) {
1239		vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1240		if (vp->media_override != 7)
1241			vp->medialock = 1;
1242		vp->full_duplex = (option & 0x200) ? 1 : 0;
1243		vp->bus_master = (option & 16) ? 1 : 0;
1244	}
1245
1246	if (global_full_duplex > 0)
1247		vp->full_duplex = 1;
1248	if (global_enable_wol > 0)
1249		vp->enable_wol = 1;
1250
1251	if (card_idx < MAX_UNITS) {
1252		if (full_duplex[card_idx] > 0)
1253			vp->full_duplex = 1;
1254		if (flow_ctrl[card_idx] > 0)
1255			vp->flow_ctrl = 1;
1256		if (enable_wol[card_idx] > 0)
1257			vp->enable_wol = 1;
1258	}
1259
1260	vp->mii.force_media = vp->full_duplex;
1261	vp->options = option;
1262	/* Read the station address from the EEPROM. */
1263	{
1264		int base;
1265
1266		if (vci->drv_flags & EEPROM_8BIT)
1267			base = 0x230;
1268		else if (vci->drv_flags & EEPROM_OFFSET)
1269			base = EEPROM_Read + 0x30;
1270		else
1271			base = EEPROM_Read;
1272
1273		for (i = 0; i < 0x40; i++) {
1274			int timer;
1275			window_write16(vp, base + i, 0, Wn0EepromCmd);
1276			/* Pause for at least 162 us. for the read to take place. */
1277			for (timer = 10; timer >= 0; timer--) {
1278				udelay(162);
1279				if ((window_read16(vp, 0, Wn0EepromCmd) &
1280				     0x8000) == 0)
1281					break;
1282			}
1283			eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1284		}
1285	}
1286	for (i = 0; i < 0x18; i++)
1287		checksum ^= eeprom[i];
1288	checksum = (checksum ^ (checksum >> 8)) & 0xff;
1289	if (checksum != 0x00) {		/* Grrr, needless incompatible change 3Com. */
1290		while (i < 0x21)
1291			checksum ^= eeprom[i++];
1292		checksum = (checksum ^ (checksum >> 8)) & 0xff;
1293	}
1294	if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1295		pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1296	for (i = 0; i < 3; i++)
1297		((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1298	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1299	if (print_info)
1300		pr_cont(" %pM", dev->dev_addr);
1301	/* Unfortunately an all zero eeprom passes the checksum and this
1302	   gets found in the wild in failure cases. Crypto is hard 8) */
1303	if (!is_valid_ether_addr(dev->dev_addr)) {
1304		retval = -EINVAL;
1305		pr_err("*** EEPROM MAC address is invalid.\n");
1306		goto free_ring;	/* With every pack */
1307	}
1308	for (i = 0; i < 6; i++)
1309		window_write8(vp, dev->dev_addr[i], 2, i);
1310
1311	if (print_info)
1312		pr_cont(", IRQ %d\n", dev->irq);
1313	/* Tell them about an invalid IRQ. */
1314	if (dev->irq <= 0 || dev->irq >= nr_irqs)
1315		pr_warning(" *** Warning: IRQ %d is unlikely to work! ***\n",
1316			   dev->irq);
1317
1318	step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1319	if (print_info) {
1320		pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1321			eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1322			step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1323	}
1324
1325
1326	if (pdev && vci->drv_flags & HAS_CB_FNS) {
1327		unsigned short n;
1328
1329		vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1330		if (!vp->cb_fn_base) {
1331			retval = -ENOMEM;
1332			goto free_ring;
1333		}
1334
1335		if (print_info) {
1336			pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1337				print_name,
1338				(unsigned long long)pci_resource_start(pdev, 2),
1339				vp->cb_fn_base);
1340		}
1341
1342		n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1343		if (vp->drv_flags & INVERT_LED_PWR)
1344			n |= 0x10;
1345		if (vp->drv_flags & INVERT_MII_PWR)
1346			n |= 0x4000;
1347		window_write16(vp, n, 2, Wn2_ResetOptions);
1348		if (vp->drv_flags & WNO_XCVR_PWR) {
1349			window_write16(vp, 0x0800, 0, 0);
1350		}
1351	}
1352
1353	/* Extract our information from the EEPROM data. */
1354	vp->info1 = eeprom[13];
1355	vp->info2 = eeprom[15];
1356	vp->capabilities = eeprom[16];
1357
1358	if (vp->info1 & 0x8000) {
1359		vp->full_duplex = 1;
1360		if (print_info)
1361			pr_info("Full duplex capable\n");
1362	}
1363
1364	{
1365		static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1366		unsigned int config;
1367		vp->available_media = window_read16(vp, 3, Wn3_Options);
1368		if ((vp->available_media & 0xff) == 0)		/* Broken 3c916 */
1369			vp->available_media = 0x40;
1370		config = window_read32(vp, 3, Wn3_Config);
1371		if (print_info) {
1372			pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1373				config, window_read16(vp, 3, Wn3_Options));
1374			pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1375				   8 << RAM_SIZE(config),
1376				   RAM_WIDTH(config) ? "word" : "byte",
1377				   ram_split[RAM_SPLIT(config)],
1378				   AUTOSELECT(config) ? "autoselect/" : "",
1379				   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1380				   media_tbl[XCVR(config)].name);
1381		}
1382		vp->default_media = XCVR(config);
1383		if (vp->default_media == XCVR_NWAY)
1384			vp->has_nway = 1;
1385		vp->autoselect = AUTOSELECT(config);
1386	}
1387
1388	if (vp->media_override != 7) {
1389		pr_info("%s:  Media override to transceiver type %d (%s).\n",
1390				print_name, vp->media_override,
1391				media_tbl[vp->media_override].name);
1392		dev->if_port = vp->media_override;
1393	} else
1394		dev->if_port = vp->default_media;
1395
1396	if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1397		dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1398		int phy, phy_idx = 0;
1399		mii_preamble_required++;
1400		if (vp->drv_flags & EXTRA_PREAMBLE)
1401			mii_preamble_required++;
1402		mdio_sync(vp, 32);
1403		mdio_read(dev, 24, MII_BMSR);
1404		for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1405			int mii_status, phyx;
1406
1407			/*
1408			 * For the 3c905CX we look at index 24 first, because it bogusly
1409			 * reports an external PHY at all indices
1410			 */
1411			if (phy == 0)
1412				phyx = 24;
1413			else if (phy <= 24)
1414				phyx = phy - 1;
1415			else
1416				phyx = phy;
1417			mii_status = mdio_read(dev, phyx, MII_BMSR);
1418			if (mii_status  &&  mii_status != 0xffff) {
1419				vp->phys[phy_idx++] = phyx;
1420				if (print_info) {
1421					pr_info("  MII transceiver found at address %d, status %4x.\n",
1422						phyx, mii_status);
1423				}
1424				if ((mii_status & 0x0040) == 0)
1425					mii_preamble_required++;
1426			}
1427		}
1428		mii_preamble_required--;
1429		if (phy_idx == 0) {
1430			pr_warning("  ***WARNING*** No MII transceivers found!\n");
1431			vp->phys[0] = 24;
1432		} else {
1433			vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1434			if (vp->full_duplex) {
1435				/* Only advertise the FD media types. */
1436				vp->advertising &= ~0x02A0;
1437				mdio_write(dev, vp->phys[0], 4, vp->advertising);
1438			}
1439		}
1440		vp->mii.phy_id = vp->phys[0];
1441	}
1442
1443	if (vp->capabilities & CapBusMaster) {
1444		vp->full_bus_master_tx = 1;
1445		if (print_info) {
1446			pr_info("  Enabling bus-master transmits and %s receives.\n",
1447			(vp->info2 & 1) ? "early" : "whole-frame" );
1448		}
1449		vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1450		vp->bus_master = 0;		/* AKPM: vortex only */
1451	}
1452
1453	/* The 3c59x-specific entries in the device structure. */
1454	if (vp->full_bus_master_tx) {
1455		dev->netdev_ops = &boomrang_netdev_ops;
1456		/* Actually, it still should work with iommu. */
1457		if (card_idx < MAX_UNITS &&
1458		    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1459				hw_checksums[card_idx] == 1)) {
1460			dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1461		}
1462	} else
1463		dev->netdev_ops =  &vortex_netdev_ops;
1464
1465	if (print_info) {
1466		pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1467				print_name,
1468				(dev->features & NETIF_F_SG) ? "en":"dis",
1469				(dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1470	}
1471
1472	dev->ethtool_ops = &vortex_ethtool_ops;
1473	dev->watchdog_timeo = (watchdog * HZ) / 1000;
1474
1475	if (pdev) {
1476		vp->pm_state_valid = 1;
1477 		pci_save_state(VORTEX_PCI(vp));
1478 		acpi_set_WOL(dev);
1479	}
1480	retval = register_netdev(dev);
1481	if (retval == 0)
1482		return 0;
1483
1484free_ring:
1485	pci_free_consistent(pdev,
1486						sizeof(struct boom_rx_desc) * RX_RING_SIZE
1487							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1488						vp->rx_ring,
1489						vp->rx_ring_dma);
1490free_region:
1491	if (vp->must_free_region)
1492		release_region(dev->base_addr, vci->io_size);
1493	free_netdev(dev);
1494	pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1495out:
1496	return retval;
1497}
1498
1499static void
1500issue_and_wait(struct net_device *dev, int cmd)
1501{
1502	struct vortex_private *vp = netdev_priv(dev);
1503	void __iomem *ioaddr = vp->ioaddr;
1504	int i;
1505
1506	iowrite16(cmd, ioaddr + EL3_CMD);
1507	for (i = 0; i < 2000; i++) {
1508		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1509			return;
1510	}
1511
1512	/* OK, that didn't work.  Do it the slow way.  One second */
1513	for (i = 0; i < 100000; i++) {
1514		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1515			if (vortex_debug > 1)
1516				pr_info("%s: command 0x%04x took %d usecs\n",
1517					   dev->name, cmd, i * 10);
1518			return;
1519		}
1520		udelay(10);
1521	}
1522	pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1523			   dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1524}
1525
1526static void
1527vortex_set_duplex(struct net_device *dev)
1528{
1529	struct vortex_private *vp = netdev_priv(dev);
1530
1531	pr_info("%s:  setting %s-duplex.\n",
1532		dev->name, (vp->full_duplex) ? "full" : "half");
1533
1534	/* Set the full-duplex bit. */
1535	window_write16(vp,
1536		       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1537		       (vp->large_frames ? 0x40 : 0) |
1538		       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1539			0x100 : 0),
1540		       3, Wn3_MAC_Ctrl);
1541}
1542
1543static void vortex_check_media(struct net_device *dev, unsigned int init)
1544{
1545	struct vortex_private *vp = netdev_priv(dev);
1546	unsigned int ok_to_print = 0;
1547
1548	if (vortex_debug > 3)
1549		ok_to_print = 1;
1550
1551	if (mii_check_media(&vp->mii, ok_to_print, init)) {
1552		vp->full_duplex = vp->mii.full_duplex;
1553		vortex_set_duplex(dev);
1554	} else if (init) {
1555		vortex_set_duplex(dev);
1556	}
1557}
1558
1559static int
1560vortex_up(struct net_device *dev)
1561{
1562	struct vortex_private *vp = netdev_priv(dev);
1563	void __iomem *ioaddr = vp->ioaddr;
1564	unsigned int config;
1565	int i, mii_reg1, mii_reg5, err = 0;
1566
1567	if (VORTEX_PCI(vp)) {
1568		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
1569		if (vp->pm_state_valid)
1570			pci_restore_state(VORTEX_PCI(vp));
1571		err = pci_enable_device(VORTEX_PCI(vp));
1572		if (err) {
1573			pr_warning("%s: Could not enable device\n",
1574				dev->name);
1575			goto err_out;
1576		}
1577	}
1578
1579	/* Before initializing select the active media port. */
1580	config = window_read32(vp, 3, Wn3_Config);
1581
1582	if (vp->media_override != 7) {
1583		pr_info("%s: Media override to transceiver %d (%s).\n",
1584			   dev->name, vp->media_override,
1585			   media_tbl[vp->media_override].name);
1586		dev->if_port = vp->media_override;
1587	} else if (vp->autoselect) {
1588		if (vp->has_nway) {
1589			if (vortex_debug > 1)
1590				pr_info("%s: using NWAY device table, not %d\n",
1591								dev->name, dev->if_port);
1592			dev->if_port = XCVR_NWAY;
1593		} else {
1594			/* Find first available media type, starting with 100baseTx. */
1595			dev->if_port = XCVR_100baseTx;
1596			while (! (vp->available_media & media_tbl[dev->if_port].mask))
1597				dev->if_port = media_tbl[dev->if_port].next;
1598			if (vortex_debug > 1)
1599				pr_info("%s: first available media type: %s\n",
1600					dev->name, media_tbl[dev->if_port].name);
1601		}
1602	} else {
1603		dev->if_port = vp->default_media;
1604		if (vortex_debug > 1)
1605			pr_info("%s: using default media %s\n",
1606				dev->name, media_tbl[dev->if_port].name);
1607	}
1608
1609	init_timer(&vp->timer);
1610	vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1611	vp->timer.data = (unsigned long)dev;
1612	vp->timer.function = vortex_timer;		/* timer handler */
1613	add_timer(&vp->timer);
1614
1615	init_timer(&vp->rx_oom_timer);
1616	vp->rx_oom_timer.data = (unsigned long)dev;
1617	vp->rx_oom_timer.function = rx_oom_timer;
1618
1619	if (vortex_debug > 1)
1620		pr_debug("%s: Initial media type %s.\n",
1621			   dev->name, media_tbl[dev->if_port].name);
1622
1623	vp->full_duplex = vp->mii.force_media;
1624	config = BFINS(config, dev->if_port, 20, 4);
1625	if (vortex_debug > 6)
1626		pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1627	window_write32(vp, config, 3, Wn3_Config);
1628
1629	if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1630		mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1631		mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1632		vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1633		vp->mii.full_duplex = vp->full_duplex;
1634
1635		vortex_check_media(dev, 1);
1636	}
1637	else
1638		vortex_set_duplex(dev);
1639
1640	issue_and_wait(dev, TxReset);
1641	/*
1642	 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1643	 */
1644	issue_and_wait(dev, RxReset|0x04);
1645
1646
1647	iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1648
1649	if (vortex_debug > 1) {
1650		pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1651			   dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1652	}
1653
1654	/* Set the station address and mask in window 2 each time opened. */
1655	for (i = 0; i < 6; i++)
1656		window_write8(vp, dev->dev_addr[i], 2, i);
1657	for (; i < 12; i+=2)
1658		window_write16(vp, 0, 2, i);
1659
1660	if (vp->cb_fn_base) {
1661		unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1662		if (vp->drv_flags & INVERT_LED_PWR)
1663			n |= 0x10;
1664		if (vp->drv_flags & INVERT_MII_PWR)
1665			n |= 0x4000;
1666		window_write16(vp, n, 2, Wn2_ResetOptions);
1667	}
1668
1669	if (dev->if_port == XCVR_10base2)
1670		/* Start the thinnet transceiver. We should really wait 50ms...*/
1671		iowrite16(StartCoax, ioaddr + EL3_CMD);
1672	if (dev->if_port != XCVR_NWAY) {
1673		window_write16(vp,
1674			       (window_read16(vp, 4, Wn4_Media) &
1675				~(Media_10TP|Media_SQE)) |
1676			       media_tbl[dev->if_port].media_bits,
1677			       4, Wn4_Media);
1678	}
1679
1680	/* Switch to the stats window, and clear all stats by reading. */
1681	iowrite16(StatsDisable, ioaddr + EL3_CMD);
1682	for (i = 0; i < 10; i++)
1683		window_read8(vp, 6, i);
1684	window_read16(vp, 6, 10);
1685	window_read16(vp, 6, 12);
1686	/* New: On the Vortex we must also clear the BadSSD counter. */
1687	window_read8(vp, 4, 12);
1688	/* ..and on the Boomerang we enable the extra statistics bits. */
1689	window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1690
1691	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1692		vp->cur_rx = vp->dirty_rx = 0;
1693		/* Initialize the RxEarly register as recommended. */
1694		iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1695		iowrite32(0x0020, ioaddr + PktStatus);
1696		iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1697	}
1698	if (vp->full_bus_master_tx) { 		/* Boomerang bus master Tx. */
1699		vp->cur_tx = vp->dirty_tx = 0;
1700		if (vp->drv_flags & IS_BOOMERANG)
1701			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1702		/* Clear the Rx, Tx rings. */
1703		for (i = 0; i < RX_RING_SIZE; i++)	/* AKPM: this is done in vortex_open, too */
1704			vp->rx_ring[i].status = 0;
1705		for (i = 0; i < TX_RING_SIZE; i++)
1706			vp->tx_skbuff[i] = NULL;
1707		iowrite32(0, ioaddr + DownListPtr);
1708	}
1709	/* Set receiver mode: presumably accept b-case and phys addr only. */
1710	set_rx_mode(dev);
1711	/* enable 802.1q tagged frames */
1712	set_8021q_mode(dev, 1);
1713	iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1714
1715	iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1716	iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1717	/* Allow status bits to be seen. */
1718	vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1719		(vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1720		(vp->full_bus_master_rx ? UpComplete : RxComplete) |
1721		(vp->bus_master ? DMADone : 0);
1722	vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1723		(vp->full_bus_master_rx ? 0 : RxComplete) |
1724		StatsFull | HostError | TxComplete | IntReq
1725		| (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1726	iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1727	/* Ack all pending events, and set active indicator mask. */
1728	iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1729		 ioaddr + EL3_CMD);
1730	iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1731	if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
1732		iowrite32(0x8000, vp->cb_fn_base + 4);
1733	netif_start_queue (dev);
1734err_out:
1735	return err;
1736}
1737
1738static int
1739vortex_open(struct net_device *dev)
1740{
1741	struct vortex_private *vp = netdev_priv(dev);
1742	int i;
1743	int retval;
1744
1745	/* Use the now-standard shared IRQ implementation. */
1746	if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1747				boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1748		pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1749		goto err;
1750	}
1751
1752	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1753		if (vortex_debug > 2)
1754			pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1755		for (i = 0; i < RX_RING_SIZE; i++) {
1756			struct sk_buff *skb;
1757			vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1758			vp->rx_ring[i].status = 0;	/* Clear complete bit. */
1759			vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1760
1761			skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1762						 GFP_KERNEL);
1763			vp->rx_skbuff[i] = skb;
1764			if (skb == NULL)
1765				break;			/* Bad news!  */
1766
1767			skb_reserve(skb, NET_IP_ALIGN);	/* Align IP on 16 byte boundaries */
1768			vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1769		}
1770		if (i != RX_RING_SIZE) {
1771			int j;
1772			pr_emerg("%s: no memory for rx ring\n", dev->name);
1773			for (j = 0; j < i; j++) {
1774				if (vp->rx_skbuff[j]) {
1775					dev_kfree_skb(vp->rx_skbuff[j]);
1776					vp->rx_skbuff[j] = NULL;
1777				}
1778			}
1779			retval = -ENOMEM;
1780			goto err_free_irq;
1781		}
1782		/* Wrap the ring. */
1783		vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1784	}
1785
1786	retval = vortex_up(dev);
1787	if (!retval)
1788		goto out;
1789
1790err_free_irq:
1791	free_irq(dev->irq, dev);
1792err:
1793	if (vortex_debug > 1)
1794		pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1795out:
1796	return retval;
1797}
1798
1799static void
1800vortex_timer(unsigned long data)
1801{
1802	struct net_device *dev = (struct net_device *)data;
1803	struct vortex_private *vp = netdev_priv(dev);
1804	void __iomem *ioaddr = vp->ioaddr;
1805	int next_tick = 60*HZ;
1806	int ok = 0;
1807	int media_status;
1808
1809	if (vortex_debug > 2) {
1810		pr_debug("%s: Media selection timer tick happened, %s.\n",
1811			   dev->name, media_tbl[dev->if_port].name);
1812		pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1813	}
1814
1815	media_status = window_read16(vp, 4, Wn4_Media);
1816	switch (dev->if_port) {
1817	case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1818		if (media_status & Media_LnkBeat) {
1819			netif_carrier_on(dev);
1820			ok = 1;
1821			if (vortex_debug > 1)
1822				pr_debug("%s: Media %s has link beat, %x.\n",
1823					   dev->name, media_tbl[dev->if_port].name, media_status);
1824		} else {
1825			netif_carrier_off(dev);
1826			if (vortex_debug > 1) {
1827				pr_debug("%s: Media %s has no link beat, %x.\n",
1828					   dev->name, media_tbl[dev->if_port].name, media_status);
1829			}
1830		}
1831		break;
1832	case XCVR_MII: case XCVR_NWAY:
1833		{
1834			ok = 1;
1835			vortex_check_media(dev, 0);
1836		}
1837		break;
1838	  default:					/* Other media types handled by Tx timeouts. */
1839		if (vortex_debug > 1)
1840		  pr_debug("%s: Media %s has no indication, %x.\n",
1841				 dev->name, media_tbl[dev->if_port].name, media_status);
1842		ok = 1;
1843	}
1844
1845	if (!netif_carrier_ok(dev))
1846		next_tick = 5*HZ;
1847
1848	if (vp->medialock)
1849		goto leave_media_alone;
1850
1851	if (!ok) {
1852		unsigned int config;
1853
1854		spin_lock_irq(&vp->lock);
1855
1856		do {
1857			dev->if_port = media_tbl[dev->if_port].next;
1858		} while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1859		if (dev->if_port == XCVR_Default) { /* Go back to default. */
1860		  dev->if_port = vp->default_media;
1861		  if (vortex_debug > 1)
1862			pr_debug("%s: Media selection failing, using default %s port.\n",
1863				   dev->name, media_tbl[dev->if_port].name);
1864		} else {
1865			if (vortex_debug > 1)
1866				pr_debug("%s: Media selection failed, now trying %s port.\n",
1867					   dev->name, media_tbl[dev->if_port].name);
1868			next_tick = media_tbl[dev->if_port].wait;
1869		}
1870		window_write16(vp,
1871			       (media_status & ~(Media_10TP|Media_SQE)) |
1872			       media_tbl[dev->if_port].media_bits,
1873			       4, Wn4_Media);
1874
1875		config = window_read32(vp, 3, Wn3_Config);
1876		config = BFINS(config, dev->if_port, 20, 4);
1877		window_write32(vp, config, 3, Wn3_Config);
1878
1879		iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1880			 ioaddr + EL3_CMD);
1881		if (vortex_debug > 1)
1882			pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1883		/* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1884
1885		spin_unlock_irq(&vp->lock);
1886	}
1887
1888leave_media_alone:
1889	if (vortex_debug > 2)
1890	  pr_debug("%s: Media selection timer finished, %s.\n",
1891			 dev->name, media_tbl[dev->if_port].name);
1892
1893	mod_timer(&vp->timer, RUN_AT(next_tick));
1894	if (vp->deferred)
1895		iowrite16(FakeIntr, ioaddr + EL3_CMD);
1896}
1897
1898static void vortex_tx_timeout(struct net_device *dev)
1899{
1900	struct vortex_private *vp = netdev_priv(dev);
1901	void __iomem *ioaddr = vp->ioaddr;
1902
1903	pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1904		   dev->name, ioread8(ioaddr + TxStatus),
1905		   ioread16(ioaddr + EL3_STATUS));
1906	pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1907			window_read16(vp, 4, Wn4_NetDiag),
1908			window_read16(vp, 4, Wn4_Media),
1909			ioread32(ioaddr + PktStatus),
1910			window_read16(vp, 4, Wn4_FIFODiag));
1911	/* Slight code bloat to be user friendly. */
1912	if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1913		pr_err("%s: Transmitter encountered 16 collisions --"
1914			   " network cable problem?\n", dev->name);
1915	if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1916		pr_err("%s: Interrupt posted but not delivered --"
1917			   " IRQ blocked by another device?\n", dev->name);
1918		/* Bad idea here.. but we might as well handle a few events. */
1919		{
1920			/*
1921			 * Block interrupts because vortex_interrupt does a bare spin_lock()
1922			 */
1923			unsigned long flags;
1924			local_irq_save(flags);
1925			if (vp->full_bus_master_tx)
1926				boomerang_interrupt(dev->irq, dev);
1927			else
1928				vortex_interrupt(dev->irq, dev);
1929			local_irq_restore(flags);
1930		}
1931	}
1932
1933	if (vortex_debug > 0)
1934		dump_tx_ring(dev);
1935
1936	issue_and_wait(dev, TxReset);
1937
1938	dev->stats.tx_errors++;
1939	if (vp->full_bus_master_tx) {
1940		pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1941		if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1942			iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1943				 ioaddr + DownListPtr);
1944		if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1945			netif_wake_queue (dev);
1946		if (vp->drv_flags & IS_BOOMERANG)
1947			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1948		iowrite16(DownUnstall, ioaddr + EL3_CMD);
1949	} else {
1950		dev->stats.tx_dropped++;
1951		netif_wake_queue(dev);
1952	}
1953
1954	/* Issue Tx Enable */
1955	iowrite16(TxEnable, ioaddr + EL3_CMD);
1956	dev->trans_start = jiffies; /* prevent tx timeout */
1957}
1958
1959/*
1960 * Handle uncommon interrupt sources.  This is a separate routine to minimize
1961 * the cache impact.
1962 */
1963static void
1964vortex_error(struct net_device *dev, int status)
1965{
1966	struct vortex_private *vp = netdev_priv(dev);
1967	void __iomem *ioaddr = vp->ioaddr;
1968	int do_tx_reset = 0, reset_mask = 0;
1969	unsigned char tx_status = 0;
1970
1971	if (vortex_debug > 2) {
1972		pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1973	}
1974
1975	if (status & TxComplete) {			/* Really "TxError" for us. */
1976		tx_status = ioread8(ioaddr + TxStatus);
1977		/* Presumably a tx-timeout. We must merely re-enable. */
1978		if (vortex_debug > 2 ||
1979		    (tx_status != 0x88 && vortex_debug > 0)) {
1980			pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1981				   dev->name, tx_status);
1982			if (tx_status == 0x82) {
1983				pr_err("Probably a duplex mismatch.  See "
1984						"Documentation/networking/vortex.txt\n");
1985			}
1986			dump_tx_ring(dev);
1987		}
1988		if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1989		if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1990		if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1991		iowrite8(0, ioaddr + TxStatus);
1992		if (tx_status & 0x30) {			/* txJabber or txUnderrun */
1993			do_tx_reset = 1;
1994		} else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {	/* maxCollisions */
1995			do_tx_reset = 1;
1996			reset_mask = 0x0108;		/* Reset interface logic, but not download logic */
1997		} else {				/* Merely re-enable the transmitter. */
1998			iowrite16(TxEnable, ioaddr + EL3_CMD);
1999		}
2000	}
2001
2002	if (status & RxEarly)				/* Rx early is unused. */
2003		iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
2004
2005	if (status & StatsFull) {			/* Empty statistics. */
2006		static int DoneDidThat;
2007		if (vortex_debug > 4)
2008			pr_debug("%s: Updating stats.\n", dev->name);
2009		update_stats(ioaddr, dev);
2010		/* HACK: Disable statistics as an interrupt source. */
2011		/* This occurs when we have the wrong media type! */
2012		if (DoneDidThat == 0  &&
2013			ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2014			pr_warning("%s: Updating statistics failed, disabling "
2015				   "stats as an interrupt source.\n", dev->name);
2016			iowrite16(SetIntrEnb |
2017				  (window_read16(vp, 5, 10) & ~StatsFull),
2018				  ioaddr + EL3_CMD);
2019			vp->intr_enable &= ~StatsFull;
2020			DoneDidThat++;
2021		}
2022	}
2023	if (status & IntReq) {		/* Restore all interrupt sources.  */
2024		iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2025		iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2026	}
2027	if (status & HostError) {
2028		u16 fifo_diag;
2029		fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2030		pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2031			   dev->name, fifo_diag);
2032		/* Adapter failure requires Tx/Rx reset and reinit. */
2033		if (vp->full_bus_master_tx) {
2034			int bus_status = ioread32(ioaddr + PktStatus);
2035			/* 0x80000000 PCI master abort. */
2036			/* 0x40000000 PCI target abort. */
2037			if (vortex_debug)
2038				pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2039
2040			/* In this case, blow the card away */
2041			/* Must not enter D3 or we can't legally issue the reset! */
2042			vortex_down(dev, 0);
2043			issue_and_wait(dev, TotalReset | 0xff);
2044			vortex_up(dev);		/* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2045		} else if (fifo_diag & 0x0400)
2046			do_tx_reset = 1;
2047		if (fifo_diag & 0x3000) {
2048			/* Reset Rx fifo and upload logic */
2049			issue_and_wait(dev, RxReset|0x07);
2050			/* Set the Rx filter to the current state. */
2051			set_rx_mode(dev);
2052			/* enable 802.1q VLAN tagged frames */
2053			set_8021q_mode(dev, 1);
2054			iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2055			iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2056		}
2057	}
2058
2059	if (do_tx_reset) {
2060		issue_and_wait(dev, TxReset|reset_mask);
2061		iowrite16(TxEnable, ioaddr + EL3_CMD);
2062		if (!vp->full_bus_master_tx)
2063			netif_wake_queue(dev);
2064	}
2065}
2066
2067static netdev_tx_t
2068vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2069{
2070	struct vortex_private *vp = netdev_priv(dev);
2071	void __iomem *ioaddr = vp->ioaddr;
2072
2073	/* Put out the doubleword header... */
2074	iowrite32(skb->len, ioaddr + TX_FIFO);
2075	if (vp->bus_master) {
2076		/* Set the bus-master controller to transfer the packet. */
2077		int len = (skb->len + 3) & ~3;
2078		vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len,
2079						PCI_DMA_TODEVICE);
2080		spin_lock_irq(&vp->window_lock);
2081		window_set(vp, 7);
2082		iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2083		iowrite16(len, ioaddr + Wn7_MasterLen);
2084		spin_unlock_irq(&vp->window_lock);
2085		vp->tx_skb = skb;
2086		iowrite16(StartDMADown, ioaddr + EL3_CMD);
2087		/* netif_wake_queue() will be called at the DMADone interrupt. */
2088	} else {
2089		/* ... and the packet rounded to a doubleword. */
2090		iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2091		dev_kfree_skb (skb);
2092		if (ioread16(ioaddr + TxFree) > 1536) {
2093			netif_start_queue (dev);	/* AKPM: redundant? */
2094		} else {
2095			/* Interrupt us when the FIFO has room for max-sized packet. */
2096			netif_stop_queue(dev);
2097			iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2098		}
2099	}
2100
2101
2102	/* Clear the Tx status stack. */
2103	{
2104		int tx_status;
2105		int i = 32;
2106
2107		while (--i > 0	&&	(tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2108			if (tx_status & 0x3C) {		/* A Tx-disabling error occurred.  */
2109				if (vortex_debug > 2)
2110				  pr_debug("%s: Tx error, status %2.2x.\n",
2111						 dev->name, tx_status);
2112				if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2113				if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2114				if (tx_status & 0x30) {
2115					issue_and_wait(dev, TxReset);
2116				}
2117				iowrite16(TxEnable, ioaddr + EL3_CMD);
2118			}
2119			iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2120		}
2121	}
2122	return NETDEV_TX_OK;
2123}
2124
2125static netdev_tx_t
2126boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2127{
2128	struct vortex_private *vp = netdev_priv(dev);
2129	void __iomem *ioaddr = vp->ioaddr;
2130	/* Calculate the next Tx descriptor entry. */
2131	int entry = vp->cur_tx % TX_RING_SIZE;
2132	struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2133	unsigned long flags;
2134
2135	if (vortex_debug > 6) {
2136		pr_debug("boomerang_start_xmit()\n");
2137		pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2138			   dev->name, vp->cur_tx);
2139	}
2140
2141	/*
2142	 * We can't allow a recursion from our interrupt handler back into the
2143	 * tx routine, as they take the same spin lock, and that causes
2144	 * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2145	 * a bit
2146	 */
2147	if (vp->handling_irq)
2148		return NETDEV_TX_BUSY;
2149
2150	if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2151		if (vortex_debug > 0)
2152			pr_warning("%s: BUG! Tx Ring full, refusing to send buffer.\n",
2153				   dev->name);
2154		netif_stop_queue(dev);
2155		return NETDEV_TX_BUSY;
2156	}
2157
2158	vp->tx_skbuff[entry] = skb;
2159
2160	vp->tx_ring[entry].next = 0;
2161#if DO_ZEROCOPY
2162	if (skb->ip_summed != CHECKSUM_PARTIAL)
2163			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2164	else
2165			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2166
2167	if (!skb_shinfo(skb)->nr_frags) {
2168		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2169										skb->len, PCI_DMA_TODEVICE));
2170		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2171	} else {
2172		int i;
2173
2174		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2175										skb_headlen(skb), PCI_DMA_TODEVICE));
2176		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2177
2178		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2179			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2180
2181			vp->tx_ring[entry].frag[i+1].addr =
2182					cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2183											   (void*)page_address(frag->page) + frag->page_offset,
2184											   frag->size, PCI_DMA_TODEVICE));
2185
2186			if (i == skb_shinfo(skb)->nr_frags-1)
2187					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2188			else
2189					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2190		}
2191	}
2192#else
2193	vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2194	vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2195	vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2196#endif
2197
2198	spin_lock_irqsave(&vp->lock, flags);
2199	/* Wait for the stall to complete. */
2200	issue_and_wait(dev, DownStall);
2201	prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2202	if (ioread32(ioaddr + DownListPtr) == 0) {
2203		iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2204		vp->queued_packet++;
2205	}
2206
2207	vp->cur_tx++;
2208	if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2209		netif_stop_queue (dev);
2210	} else {					/* Clear previous interrupt enable. */
2211#if defined(tx_interrupt_mitigation)
2212		/* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2213		 * were selected, this would corrupt DN_COMPLETE. No?
2214		 */
2215		prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2216#endif
2217	}
2218	iowrite16(DownUnstall, ioaddr + EL3_CMD);
2219	spin_unlock_irqrestore(&vp->lock, flags);
2220	return NETDEV_TX_OK;
2221}
2222
2223/* The interrupt handler does all of the Rx thread work and cleans up
2224   after the Tx thread. */
2225
2226/*
2227 * This is the ISR for the vortex series chips.
2228 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2229 */
2230
2231static irqreturn_t
2232vortex_interrupt(int irq, void *dev_id)
2233{
2234	struct net_device *dev = dev_id;
2235	struct vortex_private *vp = netdev_priv(dev);
2236	void __iomem *ioaddr;
2237	int status;
2238	int work_done = max_interrupt_work;
2239	int handled = 0;
2240
2241	ioaddr = vp->ioaddr;
2242	spin_lock(&vp->lock);
2243
2244	status = ioread16(ioaddr + EL3_STATUS);
2245
2246	if (vortex_debug > 6)
2247		pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2248
2249	if ((status & IntLatch) == 0)
2250		goto handler_exit;		/* No interrupt: shared IRQs cause this */
2251	handled = 1;
2252
2253	if (status & IntReq) {
2254		status |= vp->deferred;
2255		vp->deferred = 0;
2256	}
2257
2258	if (status == 0xffff)		/* h/w no longer present (hotplug)? */
2259		goto handler_exit;
2260
2261	if (vortex_debug > 4)
2262		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2263			   dev->name, status, ioread8(ioaddr + Timer));
2264
2265	spin_lock(&vp->window_lock);
2266	window_set(vp, 7);
2267
2268	do {
2269		if (vortex_debug > 5)
2270				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2271					   dev->name, status);
2272		if (status & RxComplete)
2273			vortex_rx(dev);
2274
2275		if (status & TxAvailable) {
2276			if (vortex_debug > 5)
2277				pr_debug("	TX room bit was handled.\n");
2278			/* There's room in the FIFO for a full-sized packet. */
2279			iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2280			netif_wake_queue (dev);
2281		}
2282
2283		if (status & DMADone) {
2284			if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2285				iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2286				pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2287				dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2288				if (ioread16(ioaddr + TxFree) > 1536) {
2289					/*
2290					 * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2291					 * insufficient FIFO room, the TxAvailable test will succeed and call
2292					 * netif_wake_queue()
2293					 */
2294					netif_wake_queue(dev);
2295				} else { /* Interrupt when FIFO has room for max-sized packet. */
2296					iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2297					netif_stop_queue(dev);
2298				}
2299			}
2300		}
2301		/* Check for all uncommon interrupts at once. */
2302		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2303			if (status == 0xffff)
2304				break;
2305			if (status & RxEarly)
2306				vortex_rx(dev);
2307			spin_unlock(&vp->window_lock);
2308			vortex_error(dev, status);
2309			spin_lock(&vp->window_lock);
2310			window_set(vp, 7);
2311		}
2312
2313		if (--work_done < 0) {
2314			pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2315				dev->name, status);
2316			/* Disable all pending interrupts. */
2317			do {
2318				vp->deferred |= status;
2319				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2320					 ioaddr + EL3_CMD);
2321				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2322			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2323			/* The timer will reenable interrupts. */
2324			mod_timer(&vp->timer, jiffies + 1*HZ);
2325			break;
2326		}
2327		/* Acknowledge the IRQ. */
2328		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2329	} while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2330
2331	spin_unlock(&vp->window_lock);
2332
2333	if (vortex_debug > 4)
2334		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2335			   dev->name, status);
2336handler_exit:
2337	spin_unlock(&vp->lock);
2338	return IRQ_RETVAL(handled);
2339}
2340
2341/*
2342 * This is the ISR for the boomerang series chips.
2343 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2344 */
2345
2346static irqreturn_t
2347boomerang_interrupt(int irq, void *dev_id)
2348{
2349	struct net_device *dev = dev_id;
2350	struct vortex_private *vp = netdev_priv(dev);
2351	void __iomem *ioaddr;
2352	int status;
2353	int work_done = max_interrupt_work;
2354
2355	ioaddr = vp->ioaddr;
2356
2357
2358	/*
2359	 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2360	 * and boomerang_start_xmit
2361	 */
2362	spin_lock(&vp->lock);
2363	vp->handling_irq = 1;
2364
2365	status = ioread16(ioaddr + EL3_STATUS);
2366
2367	if (vortex_debug > 6)
2368		pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2369
2370	if ((status & IntLatch) == 0)
2371		goto handler_exit;		/* No interrupt: shared IRQs can cause this */
2372
2373	if (status == 0xffff) {		/* h/w no longer present (hotplug)? */
2374		if (vortex_debug > 1)
2375			pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2376		goto handler_exit;
2377	}
2378
2379	if (status & IntReq) {
2380		status |= vp->deferred;
2381		vp->deferred = 0;
2382	}
2383
2384	if (vortex_debug > 4)
2385		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2386			   dev->name, status, ioread8(ioaddr + Timer));
2387	do {
2388		if (vortex_debug > 5)
2389				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2390					   dev->name, status);
2391		if (status & UpComplete) {
2392			iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2393			if (vortex_debug > 5)
2394				pr_debug("boomerang_interrupt->boomerang_rx\n");
2395			boomerang_rx(dev);
2396		}
2397
2398		if (status & DownComplete) {
2399			unsigned int dirty_tx = vp->dirty_tx;
2400
2401			iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2402			while (vp->cur_tx - dirty_tx > 0) {
2403				int entry = dirty_tx % TX_RING_SIZE;
2404#if 1	/* AKPM: the latter is faster, but cyclone-only */
2405				if (ioread32(ioaddr + DownListPtr) ==
2406					vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2407					break;			/* It still hasn't been processed. */
2408#else
2409				if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2410					break;			/* It still hasn't been processed. */
2411#endif
2412
2413				if (vp->tx_skbuff[entry]) {
2414					struct sk_buff *skb = vp->tx_skbuff[entry];
2415#if DO_ZEROCOPY
2416					int i;
2417					for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2418							pci_unmap_single(VORTEX_PCI(vp),
2419											 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2420											 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2421											 PCI_DMA_TODEVICE);
2422#else
2423					pci_unmap_single(VORTEX_PCI(vp),
2424						le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2425#endif
2426					dev_kfree_skb_irq(skb);
2427					vp->tx_skbuff[entry] = NULL;
2428				} else {
2429					pr_debug("boomerang_interrupt: no skb!\n");
2430				}
2431				/* dev->stats.tx_packets++;  Counted below. */
2432				dirty_tx++;
2433			}
2434			vp->dirty_tx = dirty_tx;
2435			if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2436				if (vortex_debug > 6)
2437					pr_debug("boomerang_interrupt: wake queue\n");
2438				netif_wake_queue (dev);
2439			}
2440		}
2441
2442		/* Check for all uncommon interrupts at once. */
2443		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2444			vortex_error(dev, status);
2445
2446		if (--work_done < 0) {
2447			pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2448				dev->name, status);
2449			/* Disable all pending interrupts. */
2450			do {
2451				vp->deferred |= status;
2452				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2453					 ioaddr + EL3_CMD);
2454				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2455			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2456			/* The timer will reenable interrupts. */
2457			mod_timer(&vp->timer, jiffies + 1*HZ);
2458			break;
2459		}
2460		/* Acknowledge the IRQ. */
2461		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2462		if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
2463			iowrite32(0x8000, vp->cb_fn_base + 4);
2464
2465	} while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2466
2467	if (vortex_debug > 4)
2468		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2469			   dev->name, status);
2470handler_exit:
2471	vp->handling_irq = 0;
2472	spin_unlock(&vp->lock);
2473	return IRQ_HANDLED;
2474}
2475
2476static int vortex_rx(struct net_device *dev)
2477{
2478	struct vortex_private *vp = netdev_priv(dev);
2479	void __iomem *ioaddr = vp->ioaddr;
2480	int i;
2481	short rx_status;
2482
2483	if (vortex_debug > 5)
2484		pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2485			   ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2486	while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2487		if (rx_status & 0x4000) { /* Error, update stats. */
2488			unsigned char rx_error = ioread8(ioaddr + RxErrors);
2489			if (vortex_debug > 2)
2490				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2491			dev->stats.rx_errors++;
2492			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2493			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2494			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2495			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2496			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2497		} else {
2498			/* The packet length: up to 4.5K!. */
2499			int pkt_len = rx_status & 0x1fff;
2500			struct sk_buff *skb;
2501
2502			skb = dev_alloc_skb(pkt_len + 5);
2503			if (vortex_debug > 4)
2504				pr_debug("Receiving packet size %d status %4.4x.\n",
2505					   pkt_len, rx_status);
2506			if (skb != NULL) {
2507				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2508				/* 'skb_put()' points to the start of sk_buff data area. */
2509				if (vp->bus_master &&
2510					! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2511					dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2512									   pkt_len, PCI_DMA_FROMDEVICE);
2513					iowrite32(dma, ioaddr + Wn7_MasterAddr);
2514					iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2515					iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2516					while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2517						;
2518					pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2519				} else {
2520					ioread32_rep(ioaddr + RX_FIFO,
2521					             skb_put(skb, pkt_len),
2522						     (pkt_len + 3) >> 2);
2523				}
2524				iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2525				skb->protocol = eth_type_trans(skb, dev);
2526				netif_rx(skb);
2527				dev->stats.rx_packets++;
2528				/* Wait a limited time to go to next packet. */
2529				for (i = 200; i >= 0; i--)
2530					if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2531						break;
2532				continue;
2533			} else if (vortex_debug > 0)
2534				pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2535					dev->name, pkt_len);
2536			dev->stats.rx_dropped++;
2537		}
2538		issue_and_wait(dev, RxDiscard);
2539	}
2540
2541	return 0;
2542}
2543
2544static int
2545boomerang_rx(struct net_device *dev)
2546{
2547	struct vortex_private *vp = netdev_priv(dev);
2548	int entry = vp->cur_rx % RX_RING_SIZE;
2549	void __iomem *ioaddr = vp->ioaddr;
2550	int rx_status;
2551	int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2552
2553	if (vortex_debug > 5)
2554		pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2555
2556	while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2557		if (--rx_work_limit < 0)
2558			break;
2559		if (rx_status & RxDError) { /* Error, update stats. */
2560			unsigned char rx_error = rx_status >> 16;
2561			if (vortex_debug > 2)
2562				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2563			dev->stats.rx_errors++;
2564			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2565			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2566			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2567			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2568			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2569		} else {
2570			/* The packet length: up to 4.5K!. */
2571			int pkt_len = rx_status & 0x1fff;
2572			struct sk_buff *skb;
2573			dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2574
2575			if (vortex_debug > 4)
2576				pr_debug("Receiving packet size %d status %4.4x.\n",
2577					   pkt_len, rx_status);
2578
2579			/* Check if the packet is long enough to just accept without
2580			   copying to a properly sized skbuff. */
2581			if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
2582				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2583				pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2584				/* 'skb_put()' points to the start of sk_buff data area. */
2585				memcpy(skb_put(skb, pkt_len),
2586					   vp->rx_skbuff[entry]->data,
2587					   pkt_len);
2588				pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2589				vp->rx_copy++;
2590			} else {
2591				/* Pass up the skbuff already on the Rx ring. */
2592				skb = vp->rx_skbuff[entry];
2593				vp->rx_skbuff[entry] = NULL;
2594				skb_put(skb, pkt_len);
2595				pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2596				vp->rx_nocopy++;
2597			}
2598			skb->protocol = eth_type_trans(skb, dev);
2599			{					/* Use hardware checksum info. */
2600				int csum_bits = rx_status & 0xee000000;
2601				if (csum_bits &&
2602					(csum_bits == (IPChksumValid | TCPChksumValid) ||
2603					 csum_bits == (IPChksumValid | UDPChksumValid))) {
2604					skb->ip_summed = CHECKSUM_UNNECESSARY;
2605					vp->rx_csumhits++;
2606				}
2607			}
2608			netif_rx(skb);
2609			dev->stats.rx_packets++;
2610		}
2611		entry = (++vp->cur_rx) % RX_RING_SIZE;
2612	}
2613	/* Refill the Rx ring buffers. */
2614	for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2615		struct sk_buff *skb;
2616		entry = vp->dirty_rx % RX_RING_SIZE;
2617		if (vp->rx_skbuff[entry] == NULL) {
2618			skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2619			if (skb == NULL) {
2620				static unsigned long last_jif;
2621				if (time_after(jiffies, last_jif + 10 * HZ)) {
2622					pr_warning("%s: memory shortage\n", dev->name);
2623					last_jif = jiffies;
2624				}
2625				if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2626					mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2627				break;			/* Bad news!  */
2628			}
2629
2630			vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2631			vp->rx_skbuff[entry] = skb;
2632		}
2633		vp->rx_ring[entry].status = 0;	/* Clear complete bit. */
2634		iowrite16(UpUnstall, ioaddr + EL3_CMD);
2635	}
2636	return 0;
2637}
2638
2639/*
2640 * If we've hit a total OOM refilling the Rx ring we poll once a second
2641 * for some memory.  Otherwise there is no way to restart the rx process.
2642 */
2643static void
2644rx_oom_timer(unsigned long arg)
2645{
2646	struct net_device *dev = (struct net_device *)arg;
2647	struct vortex_private *vp = netdev_priv(dev);
2648
2649	spin_lock_irq(&vp->lock);
2650	if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)	/* This test is redundant, but makes me feel good */
2651		boomerang_rx(dev);
2652	if (vortex_debug > 1) {
2653		pr_debug("%s: rx_oom_timer %s\n", dev->name,
2654			((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2655	}
2656	spin_unlock_irq(&vp->lock);
2657}
2658
2659static void
2660vortex_down(struct net_device *dev, int final_down)
2661{
2662	struct vortex_private *vp = netdev_priv(dev);
2663	void __iomem *ioaddr = vp->ioaddr;
2664
2665	netif_stop_queue (dev);
2666
2667	del_timer_sync(&vp->rx_oom_timer);
2668	del_timer_sync(&vp->timer);
2669
2670	/* Turn off statistics ASAP.  We update dev->stats below. */
2671	iowrite16(StatsDisable, ioaddr + EL3_CMD);
2672
2673	/* Disable the receiver and transmitter. */
2674	iowrite16(RxDisable, ioaddr + EL3_CMD);
2675	iowrite16(TxDisable, ioaddr + EL3_CMD);
2676
2677	/* Disable receiving 802.1q tagged frames */
2678	set_8021q_mode(dev, 0);
2679
2680	if (dev->if_port == XCVR_10base2)
2681		/* Turn off thinnet power.  Green! */
2682		iowrite16(StopCoax, ioaddr + EL3_CMD);
2683
2684	iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2685
2686	update_stats(ioaddr, dev);
2687	if (vp->full_bus_master_rx)
2688		iowrite32(0, ioaddr + UpListPtr);
2689	if (vp->full_bus_master_tx)
2690		iowrite32(0, ioaddr + DownListPtr);
2691
2692	if (final_down && VORTEX_PCI(vp)) {
2693		vp->pm_state_valid = 1;
2694		pci_save_state(VORTEX_PCI(vp));
2695		acpi_set_WOL(dev);
2696	}
2697}
2698
2699static int
2700vortex_close(struct net_device *dev)
2701{
2702	struct vortex_private *vp = netdev_priv(dev);
2703	void __iomem *ioaddr = vp->ioaddr;
2704	int i;
2705
2706	if (netif_device_present(dev))
2707		vortex_down(dev, 1);
2708
2709	if (vortex_debug > 1) {
2710		pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2711			   dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2712		pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2713			   " tx_queued %d Rx pre-checksummed %d.\n",
2714			   dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2715	}
2716
2717#if DO_ZEROCOPY
2718	if (vp->rx_csumhits &&
2719	    (vp->drv_flags & HAS_HWCKSM) == 0 &&
2720	    (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2721		pr_warning("%s supports hardware checksums, and we're not using them!\n", dev->name);
2722	}
2723#endif
2724
2725	free_irq(dev->irq, dev);
2726
2727	if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2728		for (i = 0; i < RX_RING_SIZE; i++)
2729			if (vp->rx_skbuff[i]) {
2730				pci_unmap_single(	VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2731									PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2732				dev_kfree_skb(vp->rx_skbuff[i]);
2733				vp->rx_skbuff[i] = NULL;
2734			}
2735	}
2736	if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2737		for (i = 0; i < TX_RING_SIZE; i++) {
2738			if (vp->tx_skbuff[i]) {
2739				struct sk_buff *skb = vp->tx_skbuff[i];
2740#if DO_ZEROCOPY
2741				int k;
2742
2743				for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2744						pci_unmap_single(VORTEX_PCI(vp),
2745										 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2746										 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2747										 PCI_DMA_TODEVICE);
2748#else
2749				pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2750#endif
2751				dev_kfree_skb(skb);
2752				vp->tx_skbuff[i] = NULL;
2753			}
2754		}
2755	}
2756
2757	return 0;
2758}
2759
2760static void
2761dump_tx_ring(struct net_device *dev)
2762{
2763	if (vortex_debug > 0) {
2764	struct vortex_private *vp = netdev_priv(dev);
2765		void __iomem *ioaddr = vp->ioaddr;
2766
2767		if (vp->full_bus_master_tx) {
2768			int i;
2769			int stalled = ioread32(ioaddr + PktStatus) & 0x04;	/* Possible racy. But it's only debug stuff */
2770
2771			pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2772					vp->full_bus_master_tx,
2773					vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2774					vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2775			pr_err("  Transmit list %8.8x vs. %p.\n",
2776				   ioread32(ioaddr + DownListPtr),
2777				   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2778			issue_and_wait(dev, DownStall);
2779			for (i = 0; i < TX_RING_SIZE; i++) {
2780				unsigned int length;
2781
2782#if DO_ZEROCOPY
2783				length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2784#else
2785				length = le32_to_cpu(vp->tx_ring[i].length);
2786#endif
2787				pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2788					   i, &vp->tx_ring[i], length,
2789					   le32_to_cpu(vp->tx_ring[i].status));
2790			}
2791			if (!stalled)
2792				iowrite16(DownUnstall, ioaddr + EL3_CMD);
2793		}
2794	}
2795}
2796
2797static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2798{
2799	struct vortex_private *vp = netdev_priv(dev);
2800	void __iomem *ioaddr = vp->ioaddr;
2801	unsigned long flags;
2802
2803	if (netif_device_present(dev)) {	/* AKPM: Used to be netif_running */
2804		spin_lock_irqsave (&vp->lock, flags);
2805		update_stats(ioaddr, dev);
2806		spin_unlock_irqrestore (&vp->lock, flags);
2807	}
2808	return &dev->stats;
2809}
2810
2811/*  Update statistics.
2812	Unlike with the EL3 we need not worry about interrupts changing
2813	the window setting from underneath us, but we must still guard
2814	against a race condition with a StatsUpdate interrupt updating the
2815	table.  This is done by checking that the ASM (!) code generated uses
2816	atomic updates with '+='.
2817	*/
2818static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2819{
2820	struct vortex_private *vp = netdev_priv(dev);
2821
2822	/* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2823	/* Switch to the stats window, and read everything. */
2824	dev->stats.tx_carrier_errors		+= window_read8(vp, 6, 0);
2825	dev->stats.tx_heartbeat_errors		+= window_read8(vp, 6, 1);
2826	dev->stats.tx_window_errors		+= window_read8(vp, 6, 4);
2827	dev->stats.rx_fifo_errors		+= window_read8(vp, 6, 5);
2828	dev->stats.tx_packets			+= window_read8(vp, 6, 6);
2829	dev->stats.tx_packets			+= (window_read8(vp, 6, 9) &
2830						    0x30) << 4;
2831	/* Rx packets	*/			window_read8(vp, 6, 7);   /* Must read to clear */
2832	/* Don't bother with register 9, an extension of registers 6&7.
2833	   If we do use the 6&7 values the atomic update assumption above
2834	   is invalid. */
2835	dev->stats.rx_bytes 			+= window_read16(vp, 6, 10);
2836	dev->stats.tx_bytes 			+= window_read16(vp, 6, 12);
2837	/* Extra stats for get_ethtool_stats() */
2838	vp->xstats.tx_multiple_collisions	+= window_read8(vp, 6, 2);
2839	vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2840	vp->xstats.tx_deferred			+= window_read8(vp, 6, 8);
2841	vp->xstats.rx_bad_ssd			+= window_read8(vp, 4, 12);
2842
2843	dev->stats.collisions = vp->xstats.tx_multiple_collisions
2844		+ vp->xstats.tx_single_collisions
2845		+ vp->xstats.tx_max_collisions;
2846
2847	{
2848		u8 up = window_read8(vp, 4, 13);
2849		dev->stats.rx_bytes += (up & 0x0f) << 16;
2850		dev->stats.tx_bytes += (up & 0xf0) << 12;
2851	}
2852}
2853
2854static int vortex_nway_reset(struct net_device *dev)
2855{
2856	struct vortex_private *vp = netdev_priv(dev);
2857
2858	return mii_nway_restart(&vp->mii);
2859}
2860
2861static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2862{
2863	struct vortex_private *vp = netdev_priv(dev);
2864
2865	return mii_ethtool_gset(&vp->mii, cmd);
2866}
2867
2868static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2869{
2870	struct vortex_private *vp = netdev_priv(dev);
2871
2872	return mii_ethtool_sset(&vp->mii, cmd);
2873}
2874
2875static u32 vortex_get_msglevel(struct net_device *dev)
2876{
2877	return vortex_debug;
2878}
2879
2880static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2881{
2882	vortex_debug = dbg;
2883}
2884
2885static int vortex_get_sset_count(struct net_device *dev, int sset)
2886{
2887	switch (sset) {
2888	case ETH_SS_STATS:
2889		return VORTEX_NUM_STATS;
2890	default:
2891		return -EOPNOTSUPP;
2892	}
2893}
2894
2895static void vortex_get_ethtool_stats(struct net_device *dev,
2896	struct ethtool_stats *stats, u64 *data)
2897{
2898	struct vortex_private *vp = netdev_priv(dev);
2899	void __iomem *ioaddr = vp->ioaddr;
2900	unsigned long flags;
2901
2902	spin_lock_irqsave(&vp->lock, flags);
2903	update_stats(ioaddr, dev);
2904	spin_unlock_irqrestore(&vp->lock, flags);
2905
2906	data[0] = vp->xstats.tx_deferred;
2907	data[1] = vp->xstats.tx_max_collisions;
2908	data[2] = vp->xstats.tx_multiple_collisions;
2909	data[3] = vp->xstats.tx_single_collisions;
2910	data[4] = vp->xstats.rx_bad_ssd;
2911}
2912
2913
2914static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2915{
2916	switch (stringset) {
2917	case ETH_SS_STATS:
2918		memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2919		break;
2920	default:
2921		WARN_ON(1);
2922		break;
2923	}
2924}
2925
2926static void vortex_get_drvinfo(struct net_device *dev,
2927					struct ethtool_drvinfo *info)
2928{
2929	struct vortex_private *vp = netdev_priv(dev);
2930
2931	strcpy(info->driver, DRV_NAME);
2932	if (VORTEX_PCI(vp)) {
2933		strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
2934	} else {
2935		if (VORTEX_EISA(vp))
2936			strcpy(info->bus_info, dev_name(vp->gendev));
2937		else
2938			sprintf(info->bus_info, "EISA 0x%lx %d",
2939					dev->base_addr, dev->irq);
2940	}
2941}
2942
2943static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2944{
2945	struct vortex_private *vp = netdev_priv(dev);
2946
2947	if (!VORTEX_PCI(vp))
2948		return;
2949
2950	wol->supported = WAKE_MAGIC;
2951
2952	wol->wolopts = 0;
2953	if (vp->enable_wol)
2954		wol->wolopts |= WAKE_MAGIC;
2955}
2956
2957static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2958{
2959	struct vortex_private *vp = netdev_priv(dev);
2960
2961	if (!VORTEX_PCI(vp))
2962		return -EOPNOTSUPP;
2963
2964	if (wol->wolopts & ~WAKE_MAGIC)
2965		return -EINVAL;
2966
2967	if (wol->wolopts & WAKE_MAGIC)
2968		vp->enable_wol = 1;
2969	else
2970		vp->enable_wol = 0;
2971	acpi_set_WOL(dev);
2972
2973	return 0;
2974}
2975
2976static const struct ethtool_ops vortex_ethtool_ops = {
2977	.get_drvinfo		= vortex_get_drvinfo,
2978	.get_strings            = vortex_get_strings,
2979	.get_msglevel           = vortex_get_msglevel,
2980	.set_msglevel           = vortex_set_msglevel,
2981	.get_ethtool_stats      = vortex_get_ethtool_stats,
2982	.get_sset_count		= vortex_get_sset_count,
2983	.get_settings           = vortex_get_settings,
2984	.set_settings           = vortex_set_settings,
2985	.get_link               = ethtool_op_get_link,
2986	.nway_reset             = vortex_nway_reset,
2987	.get_wol                = vortex_get_wol,
2988	.set_wol                = vortex_set_wol,
2989};
2990
2991#ifdef CONFIG_PCI
2992/*
2993 *	Must power the device up to do MDIO operations
2994 */
2995static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2996{
2997	int err;
2998	struct vortex_private *vp = netdev_priv(dev);
2999	pci_power_t state = 0;
3000
3001	if(VORTEX_PCI(vp))
3002		state = VORTEX_PCI(vp)->current_state;
3003
3004	/* The kernel core really should have pci_get_power_state() */
3005
3006	if(state != 0)
3007		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3008	err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3009	if(state != 0)
3010		pci_set_power_state(VORTEX_PCI(vp), state);
3011
3012	return err;
3013}
3014#endif
3015
3016
3017/* Pre-Cyclone chips have no documented multicast filter, so the only
3018   multicast setting is to receive all multicast frames.  At least
3019   the chip has a very clean way to set the mode, unlike many others. */
3020static void set_rx_mode(struct net_device *dev)
3021{
3022	struct vortex_private *vp = netdev_priv(dev);
3023	void __iomem *ioaddr = vp->ioaddr;
3024	int new_mode;
3025
3026	if (dev->flags & IFF_PROMISC) {
3027		if (vortex_debug > 3)
3028			pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3029		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3030	} else	if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3031		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3032	} else
3033		new_mode = SetRxFilter | RxStation | RxBroadcast;
3034
3035	iowrite16(new_mode, ioaddr + EL3_CMD);
3036}
3037
3038#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3039/* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3040   Note that this must be done after each RxReset due to some backwards
3041   compatibility logic in the Cyclone and Tornado ASICs */
3042
3043/* The Ethernet Type used for 802.1q tagged frames */
3044#define VLAN_ETHER_TYPE 0x8100
3045
3046static void set_8021q_mode(struct net_device *dev, int enable)
3047{
3048	struct vortex_private *vp = netdev_priv(dev);
3049	int mac_ctrl;
3050
3051	if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3052		/* cyclone and tornado chipsets can recognize 802.1q
3053		 * tagged frames and treat them correctly */
3054
3055		int max_pkt_size = dev->mtu+14;	/* MTU+Ethernet header */
3056		if (enable)
3057			max_pkt_size += 4;	/* 802.1Q VLAN tag */
3058
3059		window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3060
3061		/* set VlanEtherType to let the hardware checksumming
3062		   treat tagged frames correctly */
3063		window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3064	} else {
3065		/* on older cards we have to enable large frames */
3066
3067		vp->large_frames = dev->mtu > 1500 || enable;
3068
3069		mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3070		if (vp->large_frames)
3071			mac_ctrl |= 0x40;
3072		else
3073			mac_ctrl &= ~0x40;
3074		window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3075	}
3076}
3077#else
3078
3079static void set_8021q_mode(struct net_device *dev, int enable)
3080{
3081}
3082
3083
3084#endif
3085
3086/* MII transceiver control section.
3087   Read and write the MII registers using software-generated serial
3088   MDIO protocol.  See the MII specifications or DP83840A data sheet
3089   for details. */
3090
3091/* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3092   met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3093   "overclocking" issues. */
3094static void mdio_delay(struct vortex_private *vp)
3095{
3096	window_read32(vp, 4, Wn4_PhysicalMgmt);
3097}
3098
3099#define MDIO_SHIFT_CLK	0x01
3100#define MDIO_DIR_WRITE	0x04
3101#define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3102#define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3103#define MDIO_DATA_READ	0x02
3104#define MDIO_ENB_IN		0x00
3105
3106/* Generate the preamble required for initial synchronization and
3107   a few older transceivers. */
3108static void mdio_sync(struct vortex_private *vp, int bits)
3109{
3110	/* Establish sync by sending at least 32 logic ones. */
3111	while (-- bits >= 0) {
3112		window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3113		mdio_delay(vp);
3114		window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3115			       4, Wn4_PhysicalMgmt);
3116		mdio_delay(vp);
3117	}
3118}
3119
3120static int mdio_read(struct net_device *dev, int phy_id, int location)
3121{
3122	int i;
3123	struct vortex_private *vp = netdev_priv(dev);
3124	int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3125	unsigned int retval = 0;
3126
3127	spin_lock_bh(&vp->mii_lock);
3128
3129	if (mii_preamble_required)
3130		mdio_sync(vp, 32);
3131
3132	/* Shift the read command bits out. */
3133	for (i = 14; i >= 0; i--) {
3134		int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3135		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3136		mdio_delay(vp);
3137		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3138			       4, Wn4_PhysicalMgmt);
3139		mdio_delay(vp);
3140	}
3141	/* Read the two transition, 16 data, and wire-idle bits. */
3142	for (i = 19; i > 0; i--) {
3143		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3144		mdio_delay(vp);
3145		retval = (retval << 1) |
3146			((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3147			  MDIO_DATA_READ) ? 1 : 0);
3148		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3149			       4, Wn4_PhysicalMgmt);
3150		mdio_delay(vp);
3151	}
3152
3153	spin_unlock_bh(&vp->mii_lock);
3154
3155	return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3156}
3157
3158static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3159{
3160	struct vortex_private *vp = netdev_priv(dev);
3161	int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3162	int i;
3163
3164	spin_lock_bh(&vp->mii_lock);
3165
3166	if (mii_preamble_required)
3167		mdio_sync(vp, 32);
3168
3169	/* Shift the command bits out. */
3170	for (i = 31; i >= 0; i--) {
3171		int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3172		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3173		mdio_delay(vp);
3174		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3175			       4, Wn4_PhysicalMgmt);
3176		mdio_delay(vp);
3177	}
3178	/* Leave the interface idle. */
3179	for (i = 1; i >= 0; i--) {
3180		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3181		mdio_delay(vp);
3182		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3183			       4, Wn4_PhysicalMgmt);
3184		mdio_delay(vp);
3185	}
3186
3187	spin_unlock_bh(&vp->mii_lock);
3188}
3189
3190/* ACPI: Advanced Configuration and Power Interface. */
3191/* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3192static void acpi_set_WOL(struct net_device *dev)
3193{
3194	struct vortex_private *vp = netdev_priv(dev);
3195	void __iomem *ioaddr = vp->ioaddr;
3196
3197	device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3198
3199	if (vp->enable_wol) {
3200		/* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3201		window_write16(vp, 2, 7, 0x0c);
3202		/* The RxFilter must accept the WOL frames. */
3203		iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3204		iowrite16(RxEnable, ioaddr + EL3_CMD);
3205
3206		if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3207			pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3208
3209			vp->enable_wol = 0;
3210			return;
3211		}
3212
3213		if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3214			return;
3215
3216		/* Change the power state to D3; RxEnable doesn't take effect. */
3217		pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3218	}
3219}
3220
3221
3222static void __devexit vortex_remove_one(struct pci_dev *pdev)
3223{
3224	struct net_device *dev = pci_get_drvdata(pdev);
3225	struct vortex_private *vp;
3226
3227	if (!dev) {
3228		pr_err("vortex_remove_one called for Compaq device!\n");
3229		BUG();
3230	}
3231
3232	vp = netdev_priv(dev);
3233
3234	if (vp->cb_fn_base)
3235		pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3236
3237	unregister_netdev(dev);
3238
3239	if (VORTEX_PCI(vp)) {
3240		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
3241		if (vp->pm_state_valid)
3242			pci_restore_state(VORTEX_PCI(vp));
3243		pci_disable_device(VORTEX_PCI(vp));
3244	}
3245	/* Should really use issue_and_wait() here */
3246	iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3247	     vp->ioaddr + EL3_CMD);
3248
3249	pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3250
3251	pci_free_consistent(pdev,
3252						sizeof(struct boom_rx_desc) * RX_RING_SIZE
3253							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3254						vp->rx_ring,
3255						vp->rx_ring_dma);
3256	if (vp->must_free_region)
3257		release_region(dev->base_addr, vp->io_size);
3258	free_netdev(dev);
3259}
3260
3261
3262static struct pci_driver vortex_driver = {
3263	.name		= "3c59x",
3264	.probe		= vortex_init_one,
3265	.remove		= __devexit_p(vortex_remove_one),
3266	.id_table	= vortex_pci_tbl,
3267	.driver.pm	= VORTEX_PM_OPS,
3268};
3269
3270
3271static int vortex_have_pci;
3272static int vortex_have_eisa;
3273
3274
3275static int __init vortex_init(void)
3276{
3277	int pci_rc, eisa_rc;
3278
3279	pci_rc = pci_register_driver(&vortex_driver);
3280	eisa_rc = vortex_eisa_init();
3281
3282	if (pci_rc == 0)
3283		vortex_have_pci = 1;
3284	if (eisa_rc > 0)
3285		vortex_have_eisa = 1;
3286
3287	return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3288}
3289
3290
3291static void __exit vortex_eisa_cleanup(void)
3292{
3293	struct vortex_private *vp;
3294	void __iomem *ioaddr;
3295
3296#ifdef CONFIG_EISA
3297	/* Take care of the EISA devices */
3298	eisa_driver_unregister(&vortex_eisa_driver);
3299#endif
3300
3301	if (compaq_net_device) {
3302		vp = netdev_priv(compaq_net_device);
3303		ioaddr = ioport_map(compaq_net_device->base_addr,
3304		                    VORTEX_TOTAL_SIZE);
3305
3306		unregister_netdev(compaq_net_device);
3307		iowrite16(TotalReset, ioaddr + EL3_CMD);
3308		release_region(compaq_net_device->base_addr,
3309		               VORTEX_TOTAL_SIZE);
3310
3311		free_netdev(compaq_net_device);
3312	}
3313}
3314
3315
3316static void __exit vortex_cleanup(void)
3317{
3318	if (vortex_have_pci)
3319		pci_unregister_driver(&vortex_driver);
3320	if (vortex_have_eisa)
3321		vortex_eisa_cleanup();
3322}
3323
3324
3325module_init(vortex_init);
3326module_exit(vortex_cleanup);