Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12 * the GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17 *
  18 * Author: Artem Bityutskiy (Битюцкий Артём)
  19 */
  20
  21/*
  22 * UBI scanning sub-system.
  23 *
  24 * This sub-system is responsible for scanning the flash media, checking UBI
  25 * headers and providing complete information about the UBI flash image.
  26 *
  27 * The scanning information is represented by a &struct ubi_scan_info' object.
  28 * Information about found volumes is represented by &struct ubi_scan_volume
  29 * objects which are kept in volume RB-tree with root at the @volumes field.
  30 * The RB-tree is indexed by the volume ID.
  31 *
  32 * Scanned logical eraseblocks are represented by &struct ubi_scan_leb objects.
  33 * These objects are kept in per-volume RB-trees with the root at the
  34 * corresponding &struct ubi_scan_volume object. To put it differently, we keep
  35 * an RB-tree of per-volume objects and each of these objects is the root of
  36 * RB-tree of per-eraseblock objects.
  37 *
  38 * Corrupted physical eraseblocks are put to the @corr list, free physical
  39 * eraseblocks are put to the @free list and the physical eraseblock to be
  40 * erased are put to the @erase list.
  41 *
  42 * About corruptions
  43 * ~~~~~~~~~~~~~~~~~
  44 *
  45 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
  46 * whether the headers are corrupted or not. Sometimes UBI also protects the
  47 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
  48 * when it moves the contents of a PEB for wear-leveling purposes.
  49 *
  50 * UBI tries to distinguish between 2 types of corruptions.
  51 *
  52 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
  53 * tries to handle them gracefully, without printing too many warnings and
  54 * error messages. The idea is that we do not lose important data in these case
  55 * - we may lose only the data which was being written to the media just before
  56 * the power cut happened, and the upper layers (e.g., UBIFS) are supposed to
  57 * handle such data losses (e.g., by using the FS journal).
  58 *
  59 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
  60 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
  61 * PEBs in the @erase list are scheduled for erasure later.
  62 *
  63 * 2. Unexpected corruptions which are not caused by power cuts. During
  64 * scanning, such PEBs are put to the @corr list and UBI preserves them.
  65 * Obviously, this lessens the amount of available PEBs, and if at some  point
  66 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
  67 * about such PEBs every time the MTD device is attached.
  68 *
  69 * However, it is difficult to reliably distinguish between these types of
  70 * corruptions and UBI's strategy is as follows. UBI assumes corruption type 2
  71 * if the VID header is corrupted and the data area does not contain all 0xFFs,
  72 * and there were no bit-flips or integrity errors while reading the data area.
  73 * Otherwise UBI assumes corruption type 1. So the decision criteria are as
  74 * follows.
  75 *   o If the data area contains only 0xFFs, there is no data, and it is safe
  76 *     to just erase this PEB - this is corruption type 1.
  77 *   o If the data area has bit-flips or data integrity errors (ECC errors on
  78 *     NAND), it is probably a PEB which was being erased when power cut
  79 *     happened, so this is corruption type 1. However, this is just a guess,
  80 *     which might be wrong.
  81 *   o Otherwise this it corruption type 2.
  82 */
  83
  84#include <linux/err.h>
  85#include <linux/slab.h>
  86#include <linux/crc32.h>
  87#include <linux/math64.h>
  88#include <linux/random.h>
  89#include "ubi.h"
  90
  91#ifdef CONFIG_MTD_UBI_DEBUG
  92static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si);
  93#else
  94#define paranoid_check_si(ubi, si) 0
  95#endif
  96
  97/* Temporary variables used during scanning */
  98static struct ubi_ec_hdr *ech;
  99static struct ubi_vid_hdr *vidh;
 100
 101/**
 102 * add_to_list - add physical eraseblock to a list.
 103 * @si: scanning information
 104 * @pnum: physical eraseblock number to add
 105 * @ec: erase counter of the physical eraseblock
 106 * @to_head: if not zero, add to the head of the list
 107 * @list: the list to add to
 108 *
 109 * This function adds physical eraseblock @pnum to free, erase, or alien lists.
 110 * If @to_head is not zero, PEB will be added to the head of the list, which
 111 * basically means it will be processed first later. E.g., we add corrupted
 112 * PEBs (corrupted due to power cuts) to the head of the erase list to make
 113 * sure we erase them first and get rid of corruptions ASAP. This function
 114 * returns zero in case of success and a negative error code in case of
 115 * failure.
 116 */
 117static int add_to_list(struct ubi_scan_info *si, int pnum, int ec, int to_head,
 118		       struct list_head *list)
 119{
 120	struct ubi_scan_leb *seb;
 121
 122	if (list == &si->free) {
 123		dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
 124	} else if (list == &si->erase) {
 125		dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
 126	} else if (list == &si->alien) {
 127		dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
 128		si->alien_peb_count += 1;
 129	} else
 130		BUG();
 131
 132	seb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL);
 133	if (!seb)
 134		return -ENOMEM;
 135
 136	seb->pnum = pnum;
 137	seb->ec = ec;
 138	if (to_head)
 139		list_add(&seb->u.list, list);
 140	else
 141		list_add_tail(&seb->u.list, list);
 142	return 0;
 143}
 144
 145/**
 146 * add_corrupted - add a corrupted physical eraseblock.
 147 * @si: scanning information
 148 * @pnum: physical eraseblock number to add
 149 * @ec: erase counter of the physical eraseblock
 150 *
 151 * This function adds corrupted physical eraseblock @pnum to the 'corr' list.
 152 * The corruption was presumably not caused by a power cut. Returns zero in
 153 * case of success and a negative error code in case of failure.
 154 */
 155static int add_corrupted(struct ubi_scan_info *si, int pnum, int ec)
 156{
 157	struct ubi_scan_leb *seb;
 158
 159	dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
 160
 161	seb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL);
 162	if (!seb)
 163		return -ENOMEM;
 164
 165	si->corr_peb_count += 1;
 166	seb->pnum = pnum;
 167	seb->ec = ec;
 168	list_add(&seb->u.list, &si->corr);
 169	return 0;
 170}
 171
 172/**
 173 * validate_vid_hdr - check volume identifier header.
 174 * @vid_hdr: the volume identifier header to check
 175 * @sv: information about the volume this logical eraseblock belongs to
 176 * @pnum: physical eraseblock number the VID header came from
 177 *
 178 * This function checks that data stored in @vid_hdr is consistent. Returns
 179 * non-zero if an inconsistency was found and zero if not.
 180 *
 181 * Note, UBI does sanity check of everything it reads from the flash media.
 182 * Most of the checks are done in the I/O sub-system. Here we check that the
 183 * information in the VID header is consistent to the information in other VID
 184 * headers of the same volume.
 185 */
 186static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
 187			    const struct ubi_scan_volume *sv, int pnum)
 188{
 189	int vol_type = vid_hdr->vol_type;
 190	int vol_id = be32_to_cpu(vid_hdr->vol_id);
 191	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 192	int data_pad = be32_to_cpu(vid_hdr->data_pad);
 193
 194	if (sv->leb_count != 0) {
 195		int sv_vol_type;
 196
 197		/*
 198		 * This is not the first logical eraseblock belonging to this
 199		 * volume. Ensure that the data in its VID header is consistent
 200		 * to the data in previous logical eraseblock headers.
 201		 */
 202
 203		if (vol_id != sv->vol_id) {
 204			dbg_err("inconsistent vol_id");
 205			goto bad;
 206		}
 207
 208		if (sv->vol_type == UBI_STATIC_VOLUME)
 209			sv_vol_type = UBI_VID_STATIC;
 210		else
 211			sv_vol_type = UBI_VID_DYNAMIC;
 212
 213		if (vol_type != sv_vol_type) {
 214			dbg_err("inconsistent vol_type");
 215			goto bad;
 216		}
 217
 218		if (used_ebs != sv->used_ebs) {
 219			dbg_err("inconsistent used_ebs");
 220			goto bad;
 221		}
 222
 223		if (data_pad != sv->data_pad) {
 224			dbg_err("inconsistent data_pad");
 225			goto bad;
 226		}
 227	}
 228
 229	return 0;
 230
 231bad:
 232	ubi_err("inconsistent VID header at PEB %d", pnum);
 233	ubi_dbg_dump_vid_hdr(vid_hdr);
 234	ubi_dbg_dump_sv(sv);
 235	return -EINVAL;
 236}
 237
 238/**
 239 * add_volume - add volume to the scanning information.
 240 * @si: scanning information
 241 * @vol_id: ID of the volume to add
 242 * @pnum: physical eraseblock number
 243 * @vid_hdr: volume identifier header
 244 *
 245 * If the volume corresponding to the @vid_hdr logical eraseblock is already
 246 * present in the scanning information, this function does nothing. Otherwise
 247 * it adds corresponding volume to the scanning information. Returns a pointer
 248 * to the scanning volume object in case of success and a negative error code
 249 * in case of failure.
 250 */
 251static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
 252					  int pnum,
 253					  const struct ubi_vid_hdr *vid_hdr)
 254{
 255	struct ubi_scan_volume *sv;
 256	struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
 257
 258	ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
 259
 260	/* Walk the volume RB-tree to look if this volume is already present */
 261	while (*p) {
 262		parent = *p;
 263		sv = rb_entry(parent, struct ubi_scan_volume, rb);
 264
 265		if (vol_id == sv->vol_id)
 266			return sv;
 267
 268		if (vol_id > sv->vol_id)
 269			p = &(*p)->rb_left;
 270		else
 271			p = &(*p)->rb_right;
 272	}
 273
 274	/* The volume is absent - add it */
 275	sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
 276	if (!sv)
 277		return ERR_PTR(-ENOMEM);
 278
 279	sv->highest_lnum = sv->leb_count = 0;
 280	sv->vol_id = vol_id;
 281	sv->root = RB_ROOT;
 282	sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 283	sv->data_pad = be32_to_cpu(vid_hdr->data_pad);
 284	sv->compat = vid_hdr->compat;
 285	sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
 286							    : UBI_STATIC_VOLUME;
 287	if (vol_id > si->highest_vol_id)
 288		si->highest_vol_id = vol_id;
 289
 290	rb_link_node(&sv->rb, parent, p);
 291	rb_insert_color(&sv->rb, &si->volumes);
 292	si->vols_found += 1;
 293	dbg_bld("added volume %d", vol_id);
 294	return sv;
 295}
 296
 297/**
 298 * compare_lebs - find out which logical eraseblock is newer.
 299 * @ubi: UBI device description object
 300 * @seb: first logical eraseblock to compare
 301 * @pnum: physical eraseblock number of the second logical eraseblock to
 302 * compare
 303 * @vid_hdr: volume identifier header of the second logical eraseblock
 304 *
 305 * This function compares 2 copies of a LEB and informs which one is newer. In
 306 * case of success this function returns a positive value, in case of failure, a
 307 * negative error code is returned. The success return codes use the following
 308 * bits:
 309 *     o bit 0 is cleared: the first PEB (described by @seb) is newer than the
 310 *       second PEB (described by @pnum and @vid_hdr);
 311 *     o bit 0 is set: the second PEB is newer;
 312 *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
 313 *     o bit 1 is set: bit-flips were detected in the newer LEB;
 314 *     o bit 2 is cleared: the older LEB is not corrupted;
 315 *     o bit 2 is set: the older LEB is corrupted.
 316 */
 317static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb,
 318			int pnum, const struct ubi_vid_hdr *vid_hdr)
 319{
 320	void *buf;
 321	int len, err, second_is_newer, bitflips = 0, corrupted = 0;
 322	uint32_t data_crc, crc;
 323	struct ubi_vid_hdr *vh = NULL;
 324	unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
 325
 326	if (sqnum2 == seb->sqnum) {
 327		/*
 328		 * This must be a really ancient UBI image which has been
 329		 * created before sequence numbers support has been added. At
 330		 * that times we used 32-bit LEB versions stored in logical
 331		 * eraseblocks. That was before UBI got into mainline. We do not
 332		 * support these images anymore. Well, those images still work,
 333		 * but only if no unclean reboots happened.
 334		 */
 335		ubi_err("unsupported on-flash UBI format\n");
 336		return -EINVAL;
 337	}
 338
 339	/* Obviously the LEB with lower sequence counter is older */
 340	second_is_newer = !!(sqnum2 > seb->sqnum);
 341
 342	/*
 343	 * Now we know which copy is newer. If the copy flag of the PEB with
 344	 * newer version is not set, then we just return, otherwise we have to
 345	 * check data CRC. For the second PEB we already have the VID header,
 346	 * for the first one - we'll need to re-read it from flash.
 347	 *
 348	 * Note: this may be optimized so that we wouldn't read twice.
 349	 */
 350
 351	if (second_is_newer) {
 352		if (!vid_hdr->copy_flag) {
 353			/* It is not a copy, so it is newer */
 354			dbg_bld("second PEB %d is newer, copy_flag is unset",
 355				pnum);
 356			return 1;
 357		}
 358	} else {
 359		if (!seb->copy_flag) {
 360			/* It is not a copy, so it is newer */
 361			dbg_bld("first PEB %d is newer, copy_flag is unset",
 362				pnum);
 363			return bitflips << 1;
 364		}
 365
 366		vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
 367		if (!vh)
 368			return -ENOMEM;
 369
 370		pnum = seb->pnum;
 371		err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
 372		if (err) {
 373			if (err == UBI_IO_BITFLIPS)
 374				bitflips = 1;
 375			else {
 376				dbg_err("VID of PEB %d header is bad, but it "
 377					"was OK earlier, err %d", pnum, err);
 378				if (err > 0)
 379					err = -EIO;
 380
 381				goto out_free_vidh;
 382			}
 383		}
 384
 385		vid_hdr = vh;
 386	}
 387
 388	/* Read the data of the copy and check the CRC */
 389
 390	len = be32_to_cpu(vid_hdr->data_size);
 391	buf = vmalloc(len);
 392	if (!buf) {
 393		err = -ENOMEM;
 394		goto out_free_vidh;
 395	}
 396
 397	err = ubi_io_read_data(ubi, buf, pnum, 0, len);
 398	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
 399		goto out_free_buf;
 400
 401	data_crc = be32_to_cpu(vid_hdr->data_crc);
 402	crc = crc32(UBI_CRC32_INIT, buf, len);
 403	if (crc != data_crc) {
 404		dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
 405			pnum, crc, data_crc);
 406		corrupted = 1;
 407		bitflips = 0;
 408		second_is_newer = !second_is_newer;
 409	} else {
 410		dbg_bld("PEB %d CRC is OK", pnum);
 411		bitflips = !!err;
 412	}
 413
 414	vfree(buf);
 415	ubi_free_vid_hdr(ubi, vh);
 416
 417	if (second_is_newer)
 418		dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
 419	else
 420		dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
 421
 422	return second_is_newer | (bitflips << 1) | (corrupted << 2);
 423
 424out_free_buf:
 425	vfree(buf);
 426out_free_vidh:
 427	ubi_free_vid_hdr(ubi, vh);
 428	return err;
 429}
 430
 431/**
 432 * ubi_scan_add_used - add physical eraseblock to the scanning information.
 433 * @ubi: UBI device description object
 434 * @si: scanning information
 435 * @pnum: the physical eraseblock number
 436 * @ec: erase counter
 437 * @vid_hdr: the volume identifier header
 438 * @bitflips: if bit-flips were detected when this physical eraseblock was read
 439 *
 440 * This function adds information about a used physical eraseblock to the
 441 * 'used' tree of the corresponding volume. The function is rather complex
 442 * because it has to handle cases when this is not the first physical
 443 * eraseblock belonging to the same logical eraseblock, and the newer one has
 444 * to be picked, while the older one has to be dropped. This function returns
 445 * zero in case of success and a negative error code in case of failure.
 446 */
 447int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si,
 448		      int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
 449		      int bitflips)
 450{
 451	int err, vol_id, lnum;
 452	unsigned long long sqnum;
 453	struct ubi_scan_volume *sv;
 454	struct ubi_scan_leb *seb;
 455	struct rb_node **p, *parent = NULL;
 456
 457	vol_id = be32_to_cpu(vid_hdr->vol_id);
 458	lnum = be32_to_cpu(vid_hdr->lnum);
 459	sqnum = be64_to_cpu(vid_hdr->sqnum);
 460
 461	dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
 462		pnum, vol_id, lnum, ec, sqnum, bitflips);
 463
 464	sv = add_volume(si, vol_id, pnum, vid_hdr);
 465	if (IS_ERR(sv))
 466		return PTR_ERR(sv);
 467
 468	if (si->max_sqnum < sqnum)
 469		si->max_sqnum = sqnum;
 470
 471	/*
 472	 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
 473	 * if this is the first instance of this logical eraseblock or not.
 474	 */
 475	p = &sv->root.rb_node;
 476	while (*p) {
 477		int cmp_res;
 478
 479		parent = *p;
 480		seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
 481		if (lnum != seb->lnum) {
 482			if (lnum < seb->lnum)
 483				p = &(*p)->rb_left;
 484			else
 485				p = &(*p)->rb_right;
 486			continue;
 487		}
 488
 489		/*
 490		 * There is already a physical eraseblock describing the same
 491		 * logical eraseblock present.
 492		 */
 493
 494		dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
 495			"EC %d", seb->pnum, seb->sqnum, seb->ec);
 496
 497		/*
 498		 * Make sure that the logical eraseblocks have different
 499		 * sequence numbers. Otherwise the image is bad.
 500		 *
 501		 * However, if the sequence number is zero, we assume it must
 502		 * be an ancient UBI image from the era when UBI did not have
 503		 * sequence numbers. We still can attach these images, unless
 504		 * there is a need to distinguish between old and new
 505		 * eraseblocks, in which case we'll refuse the image in
 506		 * 'compare_lebs()'. In other words, we attach old clean
 507		 * images, but refuse attaching old images with duplicated
 508		 * logical eraseblocks because there was an unclean reboot.
 509		 */
 510		if (seb->sqnum == sqnum && sqnum != 0) {
 511			ubi_err("two LEBs with same sequence number %llu",
 512				sqnum);
 513			ubi_dbg_dump_seb(seb, 0);
 514			ubi_dbg_dump_vid_hdr(vid_hdr);
 515			return -EINVAL;
 516		}
 517
 518		/*
 519		 * Now we have to drop the older one and preserve the newer
 520		 * one.
 521		 */
 522		cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
 523		if (cmp_res < 0)
 524			return cmp_res;
 525
 526		if (cmp_res & 1) {
 527			/*
 528			 * This logical eraseblock is newer than the one
 529			 * found earlier.
 530			 */
 531			err = validate_vid_hdr(vid_hdr, sv, pnum);
 532			if (err)
 533				return err;
 534
 535			err = add_to_list(si, seb->pnum, seb->ec, cmp_res & 4,
 536					  &si->erase);
 537			if (err)
 538				return err;
 539
 540			seb->ec = ec;
 541			seb->pnum = pnum;
 542			seb->scrub = ((cmp_res & 2) || bitflips);
 543			seb->copy_flag = vid_hdr->copy_flag;
 544			seb->sqnum = sqnum;
 545
 546			if (sv->highest_lnum == lnum)
 547				sv->last_data_size =
 548					be32_to_cpu(vid_hdr->data_size);
 549
 550			return 0;
 551		} else {
 552			/*
 553			 * This logical eraseblock is older than the one found
 554			 * previously.
 555			 */
 556			return add_to_list(si, pnum, ec, cmp_res & 4,
 557					   &si->erase);
 558		}
 559	}
 560
 561	/*
 562	 * We've met this logical eraseblock for the first time, add it to the
 563	 * scanning information.
 564	 */
 565
 566	err = validate_vid_hdr(vid_hdr, sv, pnum);
 567	if (err)
 568		return err;
 569
 570	seb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL);
 571	if (!seb)
 572		return -ENOMEM;
 573
 574	seb->ec = ec;
 575	seb->pnum = pnum;
 576	seb->lnum = lnum;
 577	seb->scrub = bitflips;
 578	seb->copy_flag = vid_hdr->copy_flag;
 579	seb->sqnum = sqnum;
 580
 581	if (sv->highest_lnum <= lnum) {
 582		sv->highest_lnum = lnum;
 583		sv->last_data_size = be32_to_cpu(vid_hdr->data_size);
 584	}
 585
 586	sv->leb_count += 1;
 587	rb_link_node(&seb->u.rb, parent, p);
 588	rb_insert_color(&seb->u.rb, &sv->root);
 589	return 0;
 590}
 591
 592/**
 593 * ubi_scan_find_sv - find volume in the scanning information.
 594 * @si: scanning information
 595 * @vol_id: the requested volume ID
 596 *
 597 * This function returns a pointer to the volume description or %NULL if there
 598 * are no data about this volume in the scanning information.
 599 */
 600struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
 601					 int vol_id)
 602{
 603	struct ubi_scan_volume *sv;
 604	struct rb_node *p = si->volumes.rb_node;
 605
 606	while (p) {
 607		sv = rb_entry(p, struct ubi_scan_volume, rb);
 608
 609		if (vol_id == sv->vol_id)
 610			return sv;
 611
 612		if (vol_id > sv->vol_id)
 613			p = p->rb_left;
 614		else
 615			p = p->rb_right;
 616	}
 617
 618	return NULL;
 619}
 620
 621/**
 622 * ubi_scan_find_seb - find LEB in the volume scanning information.
 623 * @sv: a pointer to the volume scanning information
 624 * @lnum: the requested logical eraseblock
 625 *
 626 * This function returns a pointer to the scanning logical eraseblock or %NULL
 627 * if there are no data about it in the scanning volume information.
 628 */
 629struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
 630				       int lnum)
 631{
 632	struct ubi_scan_leb *seb;
 633	struct rb_node *p = sv->root.rb_node;
 634
 635	while (p) {
 636		seb = rb_entry(p, struct ubi_scan_leb, u.rb);
 637
 638		if (lnum == seb->lnum)
 639			return seb;
 640
 641		if (lnum > seb->lnum)
 642			p = p->rb_left;
 643		else
 644			p = p->rb_right;
 645	}
 646
 647	return NULL;
 648}
 649
 650/**
 651 * ubi_scan_rm_volume - delete scanning information about a volume.
 652 * @si: scanning information
 653 * @sv: the volume scanning information to delete
 654 */
 655void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
 656{
 657	struct rb_node *rb;
 658	struct ubi_scan_leb *seb;
 659
 660	dbg_bld("remove scanning information about volume %d", sv->vol_id);
 661
 662	while ((rb = rb_first(&sv->root))) {
 663		seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
 664		rb_erase(&seb->u.rb, &sv->root);
 665		list_add_tail(&seb->u.list, &si->erase);
 666	}
 667
 668	rb_erase(&sv->rb, &si->volumes);
 669	kfree(sv);
 670	si->vols_found -= 1;
 671}
 672
 673/**
 674 * ubi_scan_erase_peb - erase a physical eraseblock.
 675 * @ubi: UBI device description object
 676 * @si: scanning information
 677 * @pnum: physical eraseblock number to erase;
 678 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
 679 *
 680 * This function erases physical eraseblock 'pnum', and writes the erase
 681 * counter header to it. This function should only be used on UBI device
 682 * initialization stages, when the EBA sub-system had not been yet initialized.
 683 * This function returns zero in case of success and a negative error code in
 684 * case of failure.
 685 */
 686int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si,
 687		       int pnum, int ec)
 688{
 689	int err;
 690	struct ubi_ec_hdr *ec_hdr;
 691
 692	if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
 693		/*
 694		 * Erase counter overflow. Upgrade UBI and use 64-bit
 695		 * erase counters internally.
 696		 */
 697		ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
 698		return -EINVAL;
 699	}
 700
 701	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
 702	if (!ec_hdr)
 703		return -ENOMEM;
 704
 705	ec_hdr->ec = cpu_to_be64(ec);
 706
 707	err = ubi_io_sync_erase(ubi, pnum, 0);
 708	if (err < 0)
 709		goto out_free;
 710
 711	err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
 712
 713out_free:
 714	kfree(ec_hdr);
 715	return err;
 716}
 717
 718/**
 719 * ubi_scan_get_free_peb - get a free physical eraseblock.
 720 * @ubi: UBI device description object
 721 * @si: scanning information
 722 *
 723 * This function returns a free physical eraseblock. It is supposed to be
 724 * called on the UBI initialization stages when the wear-leveling sub-system is
 725 * not initialized yet. This function picks a physical eraseblocks from one of
 726 * the lists, writes the EC header if it is needed, and removes it from the
 727 * list.
 728 *
 729 * This function returns scanning physical eraseblock information in case of
 730 * success and an error code in case of failure.
 731 */
 732struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi,
 733					   struct ubi_scan_info *si)
 734{
 735	int err = 0;
 736	struct ubi_scan_leb *seb, *tmp_seb;
 737
 738	if (!list_empty(&si->free)) {
 739		seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
 740		list_del(&seb->u.list);
 741		dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
 742		return seb;
 743	}
 744
 745	/*
 746	 * We try to erase the first physical eraseblock from the erase list
 747	 * and pick it if we succeed, or try to erase the next one if not. And
 748	 * so forth. We don't want to take care about bad eraseblocks here -
 749	 * they'll be handled later.
 750	 */
 751	list_for_each_entry_safe(seb, tmp_seb, &si->erase, u.list) {
 752		if (seb->ec == UBI_SCAN_UNKNOWN_EC)
 753			seb->ec = si->mean_ec;
 754
 755		err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
 756		if (err)
 757			continue;
 758
 759		seb->ec += 1;
 760		list_del(&seb->u.list);
 761		dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
 762		return seb;
 763	}
 764
 765	ubi_err("no free eraseblocks");
 766	return ERR_PTR(-ENOSPC);
 767}
 768
 769/**
 770 * check_corruption - check the data area of PEB.
 771 * @ubi: UBI device description object
 772 * @vid_hrd: the (corrupted) VID header of this PEB
 773 * @pnum: the physical eraseblock number to check
 774 *
 775 * This is a helper function which is used to distinguish between VID header
 776 * corruptions caused by power cuts and other reasons. If the PEB contains only
 777 * 0xFF bytes in the data area, the VID header is most probably corrupted
 778 * because of a power cut (%0 is returned in this case). Otherwise, it was
 779 * probably corrupted for some other reasons (%1 is returned in this case). A
 780 * negative error code is returned if a read error occurred.
 781 *
 782 * If the corruption reason was a power cut, UBI can safely erase this PEB.
 783 * Otherwise, it should preserve it to avoid possibly destroying important
 784 * information.
 785 */
 786static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
 787			    int pnum)
 788{
 789	int err;
 790
 791	mutex_lock(&ubi->buf_mutex);
 792	memset(ubi->peb_buf1, 0x00, ubi->leb_size);
 793
 794	err = ubi_io_read(ubi, ubi->peb_buf1, pnum, ubi->leb_start,
 795			  ubi->leb_size);
 796	if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
 797		/*
 798		 * Bit-flips or integrity errors while reading the data area.
 799		 * It is difficult to say for sure what type of corruption is
 800		 * this, but presumably a power cut happened while this PEB was
 801		 * erased, so it became unstable and corrupted, and should be
 802		 * erased.
 803		 */
 804		err = 0;
 805		goto out_unlock;
 806	}
 807
 808	if (err)
 809		goto out_unlock;
 810
 811	if (ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->leb_size))
 812		goto out_unlock;
 813
 814	ubi_err("PEB %d contains corrupted VID header, and the data does not "
 815		"contain all 0xFF, this may be a non-UBI PEB or a severe VID "
 816		"header corruption which requires manual inspection", pnum);
 817	ubi_dbg_dump_vid_hdr(vid_hdr);
 818	dbg_msg("hexdump of PEB %d offset %d, length %d",
 819		pnum, ubi->leb_start, ubi->leb_size);
 820	ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
 821			       ubi->peb_buf1, ubi->leb_size, 1);
 822	err = 1;
 823
 824out_unlock:
 825	mutex_unlock(&ubi->buf_mutex);
 826	return err;
 827}
 828
 829/**
 830 * process_eb - read, check UBI headers, and add them to scanning information.
 831 * @ubi: UBI device description object
 832 * @si: scanning information
 833 * @pnum: the physical eraseblock number
 834 *
 835 * This function returns a zero if the physical eraseblock was successfully
 836 * handled and a negative error code in case of failure.
 837 */
 838static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si,
 839		      int pnum)
 840{
 841	long long uninitialized_var(ec);
 842	int err, bitflips = 0, vol_id, ec_err = 0;
 843
 844	dbg_bld("scan PEB %d", pnum);
 845
 846	/* Skip bad physical eraseblocks */
 847	err = ubi_io_is_bad(ubi, pnum);
 848	if (err < 0)
 849		return err;
 850	else if (err) {
 851		/*
 852		 * FIXME: this is actually duty of the I/O sub-system to
 853		 * initialize this, but MTD does not provide enough
 854		 * information.
 855		 */
 856		si->bad_peb_count += 1;
 857		return 0;
 858	}
 859
 860	err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
 861	if (err < 0)
 862		return err;
 863	switch (err) {
 864	case 0:
 865		break;
 866	case UBI_IO_BITFLIPS:
 867		bitflips = 1;
 868		break;
 869	case UBI_IO_FF:
 870		si->empty_peb_count += 1;
 871		return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, 0,
 872				   &si->erase);
 873	case UBI_IO_FF_BITFLIPS:
 874		si->empty_peb_count += 1;
 875		return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, 1,
 876				   &si->erase);
 877	case UBI_IO_BAD_HDR_EBADMSG:
 878	case UBI_IO_BAD_HDR:
 879		/*
 880		 * We have to also look at the VID header, possibly it is not
 881		 * corrupted. Set %bitflips flag in order to make this PEB be
 882		 * moved and EC be re-created.
 883		 */
 884		ec_err = err;
 885		ec = UBI_SCAN_UNKNOWN_EC;
 886		bitflips = 1;
 887		break;
 888	default:
 889		ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err);
 890		return -EINVAL;
 891	}
 892
 893	if (!ec_err) {
 894		int image_seq;
 895
 896		/* Make sure UBI version is OK */
 897		if (ech->version != UBI_VERSION) {
 898			ubi_err("this UBI version is %d, image version is %d",
 899				UBI_VERSION, (int)ech->version);
 900			return -EINVAL;
 901		}
 902
 903		ec = be64_to_cpu(ech->ec);
 904		if (ec > UBI_MAX_ERASECOUNTER) {
 905			/*
 906			 * Erase counter overflow. The EC headers have 64 bits
 907			 * reserved, but we anyway make use of only 31 bit
 908			 * values, as this seems to be enough for any existing
 909			 * flash. Upgrade UBI and use 64-bit erase counters
 910			 * internally.
 911			 */
 912			ubi_err("erase counter overflow, max is %d",
 913				UBI_MAX_ERASECOUNTER);
 914			ubi_dbg_dump_ec_hdr(ech);
 915			return -EINVAL;
 916		}
 917
 918		/*
 919		 * Make sure that all PEBs have the same image sequence number.
 920		 * This allows us to detect situations when users flash UBI
 921		 * images incorrectly, so that the flash has the new UBI image
 922		 * and leftovers from the old one. This feature was added
 923		 * relatively recently, and the sequence number was always
 924		 * zero, because old UBI implementations always set it to zero.
 925		 * For this reasons, we do not panic if some PEBs have zero
 926		 * sequence number, while other PEBs have non-zero sequence
 927		 * number.
 928		 */
 929		image_seq = be32_to_cpu(ech->image_seq);
 930		if (!ubi->image_seq && image_seq)
 931			ubi->image_seq = image_seq;
 932		if (ubi->image_seq && image_seq &&
 933		    ubi->image_seq != image_seq) {
 934			ubi_err("bad image sequence number %d in PEB %d, "
 935				"expected %d", image_seq, pnum, ubi->image_seq);
 936			ubi_dbg_dump_ec_hdr(ech);
 937			return -EINVAL;
 938		}
 939	}
 940
 941	/* OK, we've done with the EC header, let's look at the VID header */
 942
 943	err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
 944	if (err < 0)
 945		return err;
 946	switch (err) {
 947	case 0:
 948		break;
 949	case UBI_IO_BITFLIPS:
 950		bitflips = 1;
 951		break;
 952	case UBI_IO_BAD_HDR_EBADMSG:
 953		if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
 954			/*
 955			 * Both EC and VID headers are corrupted and were read
 956			 * with data integrity error, probably this is a bad
 957			 * PEB, bit it is not marked as bad yet. This may also
 958			 * be a result of power cut during erasure.
 959			 */
 960			si->maybe_bad_peb_count += 1;
 961	case UBI_IO_BAD_HDR:
 962		if (ec_err)
 963			/*
 964			 * Both headers are corrupted. There is a possibility
 965			 * that this a valid UBI PEB which has corresponding
 966			 * LEB, but the headers are corrupted. However, it is
 967			 * impossible to distinguish it from a PEB which just
 968			 * contains garbage because of a power cut during erase
 969			 * operation. So we just schedule this PEB for erasure.
 970			 *
 971			 * Besides, in case of NOR flash, we deliberately
 972			 * corrupt both headers because NOR flash erasure is
 973			 * slow and can start from the end.
 974			 */
 975			err = 0;
 976		else
 977			/*
 978			 * The EC was OK, but the VID header is corrupted. We
 979			 * have to check what is in the data area.
 980			 */
 981			err = check_corruption(ubi, vidh, pnum);
 982
 983		if (err < 0)
 984			return err;
 985		else if (!err)
 986			/* This corruption is caused by a power cut */
 987			err = add_to_list(si, pnum, ec, 1, &si->erase);
 988		else
 989			/* This is an unexpected corruption */
 990			err = add_corrupted(si, pnum, ec);
 991		if (err)
 992			return err;
 993		goto adjust_mean_ec;
 994	case UBI_IO_FF_BITFLIPS:
 995		err = add_to_list(si, pnum, ec, 1, &si->erase);
 996		if (err)
 997			return err;
 998		goto adjust_mean_ec;
 999	case UBI_IO_FF:
1000		if (ec_err)
1001			err = add_to_list(si, pnum, ec, 1, &si->erase);
1002		else
1003			err = add_to_list(si, pnum, ec, 0, &si->free);
1004		if (err)
1005			return err;
1006		goto adjust_mean_ec;
1007	default:
1008		ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d",
1009			err);
1010		return -EINVAL;
1011	}
1012
1013	vol_id = be32_to_cpu(vidh->vol_id);
1014	if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
1015		int lnum = be32_to_cpu(vidh->lnum);
1016
1017		/* Unsupported internal volume */
1018		switch (vidh->compat) {
1019		case UBI_COMPAT_DELETE:
1020			ubi_msg("\"delete\" compatible internal volume %d:%d"
1021				" found, will remove it", vol_id, lnum);
1022			err = add_to_list(si, pnum, ec, 1, &si->erase);
1023			if (err)
1024				return err;
1025			return 0;
1026
1027		case UBI_COMPAT_RO:
1028			ubi_msg("read-only compatible internal volume %d:%d"
1029				" found, switch to read-only mode",
1030				vol_id, lnum);
1031			ubi->ro_mode = 1;
1032			break;
1033
1034		case UBI_COMPAT_PRESERVE:
1035			ubi_msg("\"preserve\" compatible internal volume %d:%d"
1036				" found", vol_id, lnum);
1037			err = add_to_list(si, pnum, ec, 0, &si->alien);
1038			if (err)
1039				return err;
1040			return 0;
1041
1042		case UBI_COMPAT_REJECT:
1043			ubi_err("incompatible internal volume %d:%d found",
1044				vol_id, lnum);
1045			return -EINVAL;
1046		}
1047	}
1048
1049	if (ec_err)
1050		ubi_warn("valid VID header but corrupted EC header at PEB %d",
1051			 pnum);
1052	err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
1053	if (err)
1054		return err;
1055
1056adjust_mean_ec:
1057	if (!ec_err) {
1058		si->ec_sum += ec;
1059		si->ec_count += 1;
1060		if (ec > si->max_ec)
1061			si->max_ec = ec;
1062		if (ec < si->min_ec)
1063			si->min_ec = ec;
1064	}
1065
1066	return 0;
1067}
1068
1069/**
1070 * check_what_we_have - check what PEB were found by scanning.
1071 * @ubi: UBI device description object
1072 * @si: scanning information
1073 *
1074 * This is a helper function which takes a look what PEBs were found by
1075 * scanning, and decides whether the flash is empty and should be formatted and
1076 * whether there are too many corrupted PEBs and we should not attach this
1077 * MTD device. Returns zero if we should proceed with attaching the MTD device,
1078 * and %-EINVAL if we should not.
1079 */
1080static int check_what_we_have(struct ubi_device *ubi, struct ubi_scan_info *si)
1081{
1082	struct ubi_scan_leb *seb;
1083	int max_corr, peb_count;
1084
1085	peb_count = ubi->peb_count - si->bad_peb_count - si->alien_peb_count;
1086	max_corr = peb_count / 20 ?: 8;
1087
1088	/*
1089	 * Few corrupted PEBs is not a problem and may be just a result of
1090	 * unclean reboots. However, many of them may indicate some problems
1091	 * with the flash HW or driver.
1092	 */
1093	if (si->corr_peb_count) {
1094		ubi_err("%d PEBs are corrupted and preserved",
1095			si->corr_peb_count);
1096		printk(KERN_ERR "Corrupted PEBs are:");
1097		list_for_each_entry(seb, &si->corr, u.list)
1098			printk(KERN_CONT " %d", seb->pnum);
1099		printk(KERN_CONT "\n");
1100
1101		/*
1102		 * If too many PEBs are corrupted, we refuse attaching,
1103		 * otherwise, only print a warning.
1104		 */
1105		if (si->corr_peb_count >= max_corr) {
1106			ubi_err("too many corrupted PEBs, refusing");
1107			return -EINVAL;
1108		}
1109	}
1110
1111	if (si->empty_peb_count + si->maybe_bad_peb_count == peb_count) {
1112		/*
1113		 * All PEBs are empty, or almost all - a couple PEBs look like
1114		 * they may be bad PEBs which were not marked as bad yet.
1115		 *
1116		 * This piece of code basically tries to distinguish between
1117		 * the following situations:
1118		 *
1119		 * 1. Flash is empty, but there are few bad PEBs, which are not
1120		 *    marked as bad so far, and which were read with error. We
1121		 *    want to go ahead and format this flash. While formatting,
1122		 *    the faulty PEBs will probably be marked as bad.
1123		 *
1124		 * 2. Flash contains non-UBI data and we do not want to format
1125		 *    it and destroy possibly important information.
1126		 */
1127		if (si->maybe_bad_peb_count <= 2) {
1128			si->is_empty = 1;
1129			ubi_msg("empty MTD device detected");
1130			get_random_bytes(&ubi->image_seq,
1131					 sizeof(ubi->image_seq));
1132		} else {
1133			ubi_err("MTD device is not UBI-formatted and possibly "
1134				"contains non-UBI data - refusing it");
1135			return -EINVAL;
1136		}
1137
1138	}
1139
1140	return 0;
1141}
1142
1143/**
1144 * ubi_scan - scan an MTD device.
1145 * @ubi: UBI device description object
1146 *
1147 * This function does full scanning of an MTD device and returns complete
1148 * information about it. In case of failure, an error code is returned.
1149 */
1150struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
1151{
1152	int err, pnum;
1153	struct rb_node *rb1, *rb2;
1154	struct ubi_scan_volume *sv;
1155	struct ubi_scan_leb *seb;
1156	struct ubi_scan_info *si;
1157
1158	si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
1159	if (!si)
1160		return ERR_PTR(-ENOMEM);
1161
1162	INIT_LIST_HEAD(&si->corr);
1163	INIT_LIST_HEAD(&si->free);
1164	INIT_LIST_HEAD(&si->erase);
1165	INIT_LIST_HEAD(&si->alien);
1166	si->volumes = RB_ROOT;
1167
1168	err = -ENOMEM;
1169	si->scan_leb_slab = kmem_cache_create("ubi_scan_leb_slab",
1170					      sizeof(struct ubi_scan_leb),
1171					      0, 0, NULL);
1172	if (!si->scan_leb_slab)
1173		goto out_si;
1174
1175	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1176	if (!ech)
1177		goto out_slab;
1178
1179	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1180	if (!vidh)
1181		goto out_ech;
1182
1183	for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1184		cond_resched();
1185
1186		dbg_gen("process PEB %d", pnum);
1187		err = process_eb(ubi, si, pnum);
1188		if (err < 0)
1189			goto out_vidh;
1190	}
1191
1192	dbg_msg("scanning is finished");
1193
1194	/* Calculate mean erase counter */
1195	if (si->ec_count)
1196		si->mean_ec = div_u64(si->ec_sum, si->ec_count);
1197
1198	err = check_what_we_have(ubi, si);
1199	if (err)
1200		goto out_vidh;
1201
1202	/*
1203	 * In case of unknown erase counter we use the mean erase counter
1204	 * value.
1205	 */
1206	ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1207		ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
1208			if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1209				seb->ec = si->mean_ec;
1210	}
1211
1212	list_for_each_entry(seb, &si->free, u.list) {
1213		if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1214			seb->ec = si->mean_ec;
1215	}
1216
1217	list_for_each_entry(seb, &si->corr, u.list)
1218		if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1219			seb->ec = si->mean_ec;
1220
1221	list_for_each_entry(seb, &si->erase, u.list)
1222		if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1223			seb->ec = si->mean_ec;
1224
1225	err = paranoid_check_si(ubi, si);
1226	if (err)
1227		goto out_vidh;
1228
1229	ubi_free_vid_hdr(ubi, vidh);
1230	kfree(ech);
1231
1232	return si;
1233
1234out_vidh:
1235	ubi_free_vid_hdr(ubi, vidh);
1236out_ech:
1237	kfree(ech);
1238out_slab:
1239	kmem_cache_destroy(si->scan_leb_slab);
1240out_si:
1241	ubi_scan_destroy_si(si);
1242	return ERR_PTR(err);
1243}
1244
1245/**
1246 * destroy_sv - free the scanning volume information
1247 * @sv: scanning volume information
1248 * @si: scanning information
1249 *
1250 * This function destroys the volume RB-tree (@sv->root) and the scanning
1251 * volume information.
1252 */
1253static void destroy_sv(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
1254{
1255	struct ubi_scan_leb *seb;
1256	struct rb_node *this = sv->root.rb_node;
1257
1258	while (this) {
1259		if (this->rb_left)
1260			this = this->rb_left;
1261		else if (this->rb_right)
1262			this = this->rb_right;
1263		else {
1264			seb = rb_entry(this, struct ubi_scan_leb, u.rb);
1265			this = rb_parent(this);
1266			if (this) {
1267				if (this->rb_left == &seb->u.rb)
1268					this->rb_left = NULL;
1269				else
1270					this->rb_right = NULL;
1271			}
1272
1273			kmem_cache_free(si->scan_leb_slab, seb);
1274		}
1275	}
1276	kfree(sv);
1277}
1278
1279/**
1280 * ubi_scan_destroy_si - destroy scanning information.
1281 * @si: scanning information
1282 */
1283void ubi_scan_destroy_si(struct ubi_scan_info *si)
1284{
1285	struct ubi_scan_leb *seb, *seb_tmp;
1286	struct ubi_scan_volume *sv;
1287	struct rb_node *rb;
1288
1289	list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
1290		list_del(&seb->u.list);
1291		kmem_cache_free(si->scan_leb_slab, seb);
1292	}
1293	list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
1294		list_del(&seb->u.list);
1295		kmem_cache_free(si->scan_leb_slab, seb);
1296	}
1297	list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
1298		list_del(&seb->u.list);
1299		kmem_cache_free(si->scan_leb_slab, seb);
1300	}
1301	list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
1302		list_del(&seb->u.list);
1303		kmem_cache_free(si->scan_leb_slab, seb);
1304	}
1305
1306	/* Destroy the volume RB-tree */
1307	rb = si->volumes.rb_node;
1308	while (rb) {
1309		if (rb->rb_left)
1310			rb = rb->rb_left;
1311		else if (rb->rb_right)
1312			rb = rb->rb_right;
1313		else {
1314			sv = rb_entry(rb, struct ubi_scan_volume, rb);
1315
1316			rb = rb_parent(rb);
1317			if (rb) {
1318				if (rb->rb_left == &sv->rb)
1319					rb->rb_left = NULL;
1320				else
1321					rb->rb_right = NULL;
1322			}
1323
1324			destroy_sv(si, sv);
1325		}
1326	}
1327
1328	kmem_cache_destroy(si->scan_leb_slab);
1329	kfree(si);
1330}
1331
1332#ifdef CONFIG_MTD_UBI_DEBUG
1333
1334/**
1335 * paranoid_check_si - check the scanning information.
1336 * @ubi: UBI device description object
1337 * @si: scanning information
1338 *
1339 * This function returns zero if the scanning information is all right, and a
1340 * negative error code if not or if an error occurred.
1341 */
1342static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si)
1343{
1344	int pnum, err, vols_found = 0;
1345	struct rb_node *rb1, *rb2;
1346	struct ubi_scan_volume *sv;
1347	struct ubi_scan_leb *seb, *last_seb;
1348	uint8_t *buf;
1349
1350	if (!ubi->dbg->chk_gen)
1351		return 0;
1352
1353	/*
1354	 * At first, check that scanning information is OK.
1355	 */
1356	ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1357		int leb_count = 0;
1358
1359		cond_resched();
1360
1361		vols_found += 1;
1362
1363		if (si->is_empty) {
1364			ubi_err("bad is_empty flag");
1365			goto bad_sv;
1366		}
1367
1368		if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
1369		    sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
1370		    sv->data_pad < 0 || sv->last_data_size < 0) {
1371			ubi_err("negative values");
1372			goto bad_sv;
1373		}
1374
1375		if (sv->vol_id >= UBI_MAX_VOLUMES &&
1376		    sv->vol_id < UBI_INTERNAL_VOL_START) {
1377			ubi_err("bad vol_id");
1378			goto bad_sv;
1379		}
1380
1381		if (sv->vol_id > si->highest_vol_id) {
1382			ubi_err("highest_vol_id is %d, but vol_id %d is there",
1383				si->highest_vol_id, sv->vol_id);
1384			goto out;
1385		}
1386
1387		if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
1388		    sv->vol_type != UBI_STATIC_VOLUME) {
1389			ubi_err("bad vol_type");
1390			goto bad_sv;
1391		}
1392
1393		if (sv->data_pad > ubi->leb_size / 2) {
1394			ubi_err("bad data_pad");
1395			goto bad_sv;
1396		}
1397
1398		last_seb = NULL;
1399		ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1400			cond_resched();
1401
1402			last_seb = seb;
1403			leb_count += 1;
1404
1405			if (seb->pnum < 0 || seb->ec < 0) {
1406				ubi_err("negative values");
1407				goto bad_seb;
1408			}
1409
1410			if (seb->ec < si->min_ec) {
1411				ubi_err("bad si->min_ec (%d), %d found",
1412					si->min_ec, seb->ec);
1413				goto bad_seb;
1414			}
1415
1416			if (seb->ec > si->max_ec) {
1417				ubi_err("bad si->max_ec (%d), %d found",
1418					si->max_ec, seb->ec);
1419				goto bad_seb;
1420			}
1421
1422			if (seb->pnum >= ubi->peb_count) {
1423				ubi_err("too high PEB number %d, total PEBs %d",
1424					seb->pnum, ubi->peb_count);
1425				goto bad_seb;
1426			}
1427
1428			if (sv->vol_type == UBI_STATIC_VOLUME) {
1429				if (seb->lnum >= sv->used_ebs) {
1430					ubi_err("bad lnum or used_ebs");
1431					goto bad_seb;
1432				}
1433			} else {
1434				if (sv->used_ebs != 0) {
1435					ubi_err("non-zero used_ebs");
1436					goto bad_seb;
1437				}
1438			}
1439
1440			if (seb->lnum > sv->highest_lnum) {
1441				ubi_err("incorrect highest_lnum or lnum");
1442				goto bad_seb;
1443			}
1444		}
1445
1446		if (sv->leb_count != leb_count) {
1447			ubi_err("bad leb_count, %d objects in the tree",
1448				leb_count);
1449			goto bad_sv;
1450		}
1451
1452		if (!last_seb)
1453			continue;
1454
1455		seb = last_seb;
1456
1457		if (seb->lnum != sv->highest_lnum) {
1458			ubi_err("bad highest_lnum");
1459			goto bad_seb;
1460		}
1461	}
1462
1463	if (vols_found != si->vols_found) {
1464		ubi_err("bad si->vols_found %d, should be %d",
1465			si->vols_found, vols_found);
1466		goto out;
1467	}
1468
1469	/* Check that scanning information is correct */
1470	ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1471		last_seb = NULL;
1472		ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1473			int vol_type;
1474
1475			cond_resched();
1476
1477			last_seb = seb;
1478
1479			err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
1480			if (err && err != UBI_IO_BITFLIPS) {
1481				ubi_err("VID header is not OK (%d)", err);
1482				if (err > 0)
1483					err = -EIO;
1484				return err;
1485			}
1486
1487			vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1488				   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1489			if (sv->vol_type != vol_type) {
1490				ubi_err("bad vol_type");
1491				goto bad_vid_hdr;
1492			}
1493
1494			if (seb->sqnum != be64_to_cpu(vidh->sqnum)) {
1495				ubi_err("bad sqnum %llu", seb->sqnum);
1496				goto bad_vid_hdr;
1497			}
1498
1499			if (sv->vol_id != be32_to_cpu(vidh->vol_id)) {
1500				ubi_err("bad vol_id %d", sv->vol_id);
1501				goto bad_vid_hdr;
1502			}
1503
1504			if (sv->compat != vidh->compat) {
1505				ubi_err("bad compat %d", vidh->compat);
1506				goto bad_vid_hdr;
1507			}
1508
1509			if (seb->lnum != be32_to_cpu(vidh->lnum)) {
1510				ubi_err("bad lnum %d", seb->lnum);
1511				goto bad_vid_hdr;
1512			}
1513
1514			if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1515				ubi_err("bad used_ebs %d", sv->used_ebs);
1516				goto bad_vid_hdr;
1517			}
1518
1519			if (sv->data_pad != be32_to_cpu(vidh->data_pad)) {
1520				ubi_err("bad data_pad %d", sv->data_pad);
1521				goto bad_vid_hdr;
1522			}
1523		}
1524
1525		if (!last_seb)
1526			continue;
1527
1528		if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) {
1529			ubi_err("bad highest_lnum %d", sv->highest_lnum);
1530			goto bad_vid_hdr;
1531		}
1532
1533		if (sv->last_data_size != be32_to_cpu(vidh->data_size)) {
1534			ubi_err("bad last_data_size %d", sv->last_data_size);
1535			goto bad_vid_hdr;
1536		}
1537	}
1538
1539	/*
1540	 * Make sure that all the physical eraseblocks are in one of the lists
1541	 * or trees.
1542	 */
1543	buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1544	if (!buf)
1545		return -ENOMEM;
1546
1547	for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1548		err = ubi_io_is_bad(ubi, pnum);
1549		if (err < 0) {
1550			kfree(buf);
1551			return err;
1552		} else if (err)
1553			buf[pnum] = 1;
1554	}
1555
1556	ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
1557		ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
1558			buf[seb->pnum] = 1;
1559
1560	list_for_each_entry(seb, &si->free, u.list)
1561		buf[seb->pnum] = 1;
1562
1563	list_for_each_entry(seb, &si->corr, u.list)
1564		buf[seb->pnum] = 1;
1565
1566	list_for_each_entry(seb, &si->erase, u.list)
1567		buf[seb->pnum] = 1;
1568
1569	list_for_each_entry(seb, &si->alien, u.list)
1570		buf[seb->pnum] = 1;
1571
1572	err = 0;
1573	for (pnum = 0; pnum < ubi->peb_count; pnum++)
1574		if (!buf[pnum]) {
1575			ubi_err("PEB %d is not referred", pnum);
1576			err = 1;
1577		}
1578
1579	kfree(buf);
1580	if (err)
1581		goto out;
1582	return 0;
1583
1584bad_seb:
1585	ubi_err("bad scanning information about LEB %d", seb->lnum);
1586	ubi_dbg_dump_seb(seb, 0);
1587	ubi_dbg_dump_sv(sv);
1588	goto out;
1589
1590bad_sv:
1591	ubi_err("bad scanning information about volume %d", sv->vol_id);
1592	ubi_dbg_dump_sv(sv);
1593	goto out;
1594
1595bad_vid_hdr:
1596	ubi_err("bad scanning information about volume %d", sv->vol_id);
1597	ubi_dbg_dump_sv(sv);
1598	ubi_dbg_dump_vid_hdr(vidh);
1599
1600out:
1601	ubi_dbg_dump_stack();
1602	return -EINVAL;
1603}
1604
1605#endif /* CONFIG_MTD_UBI_DEBUG */