Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/core/core.c
   4 *
   5 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   6 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   7 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   8 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
 
 
 
 
   9 */
  10#include <linux/module.h>
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/completion.h>
  14#include <linux/device.h>
  15#include <linux/delay.h>
  16#include <linux/pagemap.h>
  17#include <linux/err.h>
  18#include <linux/leds.h>
  19#include <linux/scatterlist.h>
  20#include <linux/log2.h>
 
  21#include <linux/pm_runtime.h>
  22#include <linux/pm_wakeup.h>
  23#include <linux/suspend.h>
  24#include <linux/fault-inject.h>
  25#include <linux/random.h>
  26#include <linux/slab.h>
  27#include <linux/of.h>
  28
  29#include <linux/mmc/card.h>
  30#include <linux/mmc/host.h>
  31#include <linux/mmc/mmc.h>
  32#include <linux/mmc/sd.h>
  33#include <linux/mmc/slot-gpio.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/mmc.h>
  37
  38#include "core.h"
  39#include "card.h"
  40#include "crypto.h"
  41#include "bus.h"
  42#include "host.h"
  43#include "sdio_bus.h"
  44#include "pwrseq.h"
  45
  46#include "mmc_ops.h"
  47#include "sd_ops.h"
  48#include "sdio_ops.h"
  49
  50/* The max erase timeout, used when host->max_busy_timeout isn't specified */
  51#define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
  52#define SD_DISCARD_TIMEOUT_MS	(250)
  53
  54static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  55
  56/*
  57 * Enabling software CRCs on the data blocks can be a significant (30%)
  58 * performance cost, and for other reasons may not always be desired.
  59 * So we allow it to be disabled.
  60 */
  61bool use_spi_crc = 1;
  62module_param(use_spi_crc, bool, 0);
  63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64static int mmc_schedule_delayed_work(struct delayed_work *work,
  65				     unsigned long delay)
  66{
  67	/*
  68	 * We use the system_freezable_wq, because of two reasons.
  69	 * First, it allows several works (not the same work item) to be
  70	 * executed simultaneously. Second, the queue becomes frozen when
  71	 * userspace becomes frozen during system PM.
  72	 */
  73	return queue_delayed_work(system_freezable_wq, work, delay);
  74}
  75
  76#ifdef CONFIG_FAIL_MMC_REQUEST
  77
  78/*
  79 * Internal function. Inject random data errors.
  80 * If mmc_data is NULL no errors are injected.
  81 */
  82static void mmc_should_fail_request(struct mmc_host *host,
  83				    struct mmc_request *mrq)
  84{
  85	struct mmc_command *cmd = mrq->cmd;
  86	struct mmc_data *data = mrq->data;
  87	static const int data_errors[] = {
  88		-ETIMEDOUT,
  89		-EILSEQ,
  90		-EIO,
  91	};
  92
  93	if (!data)
  94		return;
  95
  96	if ((cmd && cmd->error) || data->error ||
  97	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
  98		return;
  99
 100	data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
 101	data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
 102}
 103
 104#else /* CONFIG_FAIL_MMC_REQUEST */
 105
 106static inline void mmc_should_fail_request(struct mmc_host *host,
 107					   struct mmc_request *mrq)
 108{
 
 109}
 110
 111#endif /* CONFIG_FAIL_MMC_REQUEST */
 112
 113static inline void mmc_complete_cmd(struct mmc_request *mrq)
 114{
 115	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
 116		complete_all(&mrq->cmd_completion);
 117}
 118
 119void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
 120{
 121	if (!mrq->cap_cmd_during_tfr)
 122		return;
 123
 124	mmc_complete_cmd(mrq);
 125
 126	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
 127		 mmc_hostname(host), mrq->cmd->opcode);
 128}
 129EXPORT_SYMBOL(mmc_command_done);
 130
 131/**
 132 *	mmc_request_done - finish processing an MMC request
 133 *	@host: MMC host which completed request
 134 *	@mrq: MMC request which request
 135 *
 136 *	MMC drivers should call this function when they have completed
 137 *	their processing of a request.
 138 */
 139void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 140{
 141	struct mmc_command *cmd = mrq->cmd;
 142	int err = cmd->error;
 143
 144	/* Flag re-tuning needed on CRC errors */
 145	if (!mmc_op_tuning(cmd->opcode) &&
 146	    !host->retune_crc_disable &&
 147	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
 148	    (mrq->data && mrq->data->error == -EILSEQ) ||
 149	    (mrq->stop && mrq->stop->error == -EILSEQ)))
 150		mmc_retune_needed(host);
 151
 152	if (err && cmd->retries && mmc_host_is_spi(host)) {
 153		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 154			cmd->retries = 0;
 155	}
 156
 157	if (host->ongoing_mrq == mrq)
 158		host->ongoing_mrq = NULL;
 159
 160	mmc_complete_cmd(mrq);
 161
 162	trace_mmc_request_done(host, mrq);
 163
 164	/*
 165	 * We list various conditions for the command to be considered
 166	 * properly done:
 167	 *
 168	 * - There was no error, OK fine then
 169	 * - We are not doing some kind of retry
 170	 * - The card was removed (...so just complete everything no matter
 171	 *   if there are errors or retries)
 172	 */
 173	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
 174		mmc_should_fail_request(host, mrq);
 175
 176		if (!host->ongoing_mrq)
 177			led_trigger_event(host->led, LED_OFF);
 178
 179		if (mrq->sbc) {
 180			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 181				mmc_hostname(host), mrq->sbc->opcode,
 182				mrq->sbc->error,
 183				mrq->sbc->resp[0], mrq->sbc->resp[1],
 184				mrq->sbc->resp[2], mrq->sbc->resp[3]);
 185		}
 186
 187		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 188			mmc_hostname(host), cmd->opcode, err,
 189			cmd->resp[0], cmd->resp[1],
 190			cmd->resp[2], cmd->resp[3]);
 191
 192		if (mrq->data) {
 193			pr_debug("%s:     %d bytes transferred: %d\n",
 194				mmc_hostname(host),
 195				mrq->data->bytes_xfered, mrq->data->error);
 196		}
 197
 198		if (mrq->stop) {
 199			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 200				mmc_hostname(host), mrq->stop->opcode,
 201				mrq->stop->error,
 202				mrq->stop->resp[0], mrq->stop->resp[1],
 203				mrq->stop->resp[2], mrq->stop->resp[3]);
 204		}
 
 
 
 
 
 205	}
 206	/*
 207	 * Request starter must handle retries - see
 208	 * mmc_wait_for_req_done().
 209	 */
 210	if (mrq->done)
 211		mrq->done(mrq);
 212}
 213
 214EXPORT_SYMBOL(mmc_request_done);
 215
 216static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 
 217{
 218	int err;
 219
 220	/* Assumes host controller has been runtime resumed by mmc_claim_host */
 221	err = mmc_retune(host);
 222	if (err) {
 223		mrq->cmd->error = err;
 224		mmc_request_done(host, mrq);
 225		return;
 226	}
 227
 228	/*
 229	 * For sdio rw commands we must wait for card busy otherwise some
 230	 * sdio devices won't work properly.
 231	 * And bypass I/O abort, reset and bus suspend operations.
 232	 */
 233	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
 234	    host->ops->card_busy) {
 235		int tries = 500; /* Wait aprox 500ms at maximum */
 236
 237		while (host->ops->card_busy(host) && --tries)
 238			mmc_delay(1);
 239
 240		if (tries == 0) {
 241			mrq->cmd->error = -EBUSY;
 242			mmc_request_done(host, mrq);
 243			return;
 244		}
 245	}
 246
 247	if (mrq->cap_cmd_during_tfr) {
 248		host->ongoing_mrq = mrq;
 249		/*
 250		 * Retry path could come through here without having waiting on
 251		 * cmd_completion, so ensure it is reinitialised.
 252		 */
 253		reinit_completion(&mrq->cmd_completion);
 254	}
 255
 256	trace_mmc_request_start(host, mrq);
 257
 258	if (host->cqe_on)
 259		host->cqe_ops->cqe_off(host);
 260
 261	host->ops->request(host, mrq);
 262}
 263
 264static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
 265			     bool cqe)
 266{
 267	if (mrq->sbc) {
 268		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 269			 mmc_hostname(host), mrq->sbc->opcode,
 270			 mrq->sbc->arg, mrq->sbc->flags);
 271	}
 272
 273	if (mrq->cmd) {
 274		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
 275			 mmc_hostname(host), cqe ? "CQE direct " : "",
 276			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
 277	} else if (cqe) {
 278		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
 279			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
 280	}
 281
 282	if (mrq->data) {
 283		pr_debug("%s:     blksz %d blocks %d flags %08x "
 284			"tsac %d ms nsac %d\n",
 285			mmc_hostname(host), mrq->data->blksz,
 286			mrq->data->blocks, mrq->data->flags,
 287			mrq->data->timeout_ns / 1000000,
 288			mrq->data->timeout_clks);
 289	}
 290
 291	if (mrq->stop) {
 292		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 293			 mmc_hostname(host), mrq->stop->opcode,
 294			 mrq->stop->arg, mrq->stop->flags);
 295	}
 296}
 297
 298static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
 299{
 300	unsigned int i, sz = 0;
 301	struct scatterlist *sg;
 302
 303	if (mrq->cmd) {
 304		mrq->cmd->error = 0;
 305		mrq->cmd->mrq = mrq;
 306		mrq->cmd->data = mrq->data;
 307	}
 308	if (mrq->sbc) {
 309		mrq->sbc->error = 0;
 310		mrq->sbc->mrq = mrq;
 311	}
 312	if (mrq->data) {
 313		if (mrq->data->blksz > host->max_blk_size ||
 314		    mrq->data->blocks > host->max_blk_count ||
 315		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
 316			return -EINVAL;
 317
 
 
 318		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 319			sz += sg->length;
 320		if (sz != mrq->data->blocks * mrq->data->blksz)
 321			return -EINVAL;
 322
 
 323		mrq->data->error = 0;
 324		mrq->data->mrq = mrq;
 325		if (mrq->stop) {
 326			mrq->data->stop = mrq->stop;
 327			mrq->stop->error = 0;
 328			mrq->stop->mrq = mrq;
 329		}
 330	}
 331
 332	return 0;
 333}
 334
 335int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 336{
 337	int err;
 338
 339	init_completion(&mrq->cmd_completion);
 340
 341	mmc_retune_hold(host);
 342
 343	if (mmc_card_removed(host->card))
 344		return -ENOMEDIUM;
 345
 346	mmc_mrq_pr_debug(host, mrq, false);
 347
 348	WARN_ON(!host->claimed);
 349
 350	err = mmc_mrq_prep(host, mrq);
 351	if (err)
 352		return err;
 353
 354	led_trigger_event(host->led, LED_FULL);
 355	__mmc_start_request(host, mrq);
 356
 357	return 0;
 358}
 359EXPORT_SYMBOL(mmc_start_request);
 360
 361static void mmc_wait_done(struct mmc_request *mrq)
 362{
 363	complete(&mrq->completion);
 364}
 365
 366static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
 367{
 368	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
 369
 370	/*
 371	 * If there is an ongoing transfer, wait for the command line to become
 372	 * available.
 373	 */
 374	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
 375		wait_for_completion(&ongoing_mrq->cmd_completion);
 376}
 377
 378static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 379{
 380	int err;
 381
 382	mmc_wait_ongoing_tfr_cmd(host);
 383
 384	init_completion(&mrq->completion);
 385	mrq->done = mmc_wait_done;
 386
 387	err = mmc_start_request(host, mrq);
 388	if (err) {
 389		mrq->cmd->error = err;
 390		mmc_complete_cmd(mrq);
 391		complete(&mrq->completion);
 392	}
 393
 394	return err;
 395}
 396
 397void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
 
 398{
 399	struct mmc_command *cmd;
 400
 401	while (1) {
 402		wait_for_completion(&mrq->completion);
 403
 404		cmd = mrq->cmd;
 405
 406		if (!cmd->error || !cmd->retries ||
 407		    mmc_card_removed(host->card))
 408			break;
 409
 410		mmc_retune_recheck(host);
 411
 412		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 413			 mmc_hostname(host), cmd->opcode, cmd->error);
 414		cmd->retries--;
 415		cmd->error = 0;
 416		__mmc_start_request(host, mrq);
 417	}
 418
 419	mmc_retune_release(host);
 420}
 421EXPORT_SYMBOL(mmc_wait_for_req_done);
 422
 423/*
 424 * mmc_cqe_start_req - Start a CQE request.
 425 * @host: MMC host to start the request
 426 * @mrq: request to start
 427 *
 428 * Start the request, re-tuning if needed and it is possible. Returns an error
 429 * code if the request fails to start or -EBUSY if CQE is busy.
 
 
 
 430 */
 431int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
 
 432{
 433	int err;
 434
 435	/*
 436	 * CQE cannot process re-tuning commands. Caller must hold retuning
 437	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
 438	 * active requests i.e. this is the first.  Note, re-tuning will call
 439	 * ->cqe_off().
 440	 */
 441	err = mmc_retune(host);
 442	if (err)
 443		goto out_err;
 444
 445	mrq->host = host;
 446
 447	mmc_mrq_pr_debug(host, mrq, true);
 448
 449	err = mmc_mrq_prep(host, mrq);
 450	if (err)
 451		goto out_err;
 452
 453	err = host->cqe_ops->cqe_request(host, mrq);
 454	if (err)
 455		goto out_err;
 456
 457	trace_mmc_request_start(host, mrq);
 458
 459	return 0;
 460
 461out_err:
 462	if (mrq->cmd) {
 463		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
 464			 mmc_hostname(host), mrq->cmd->opcode, err);
 465	} else {
 466		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
 467			 mmc_hostname(host), mrq->tag, err);
 468	}
 469	return err;
 470}
 471EXPORT_SYMBOL(mmc_cqe_start_req);
 472
 473/**
 474 *	mmc_cqe_request_done - CQE has finished processing an MMC request
 475 *	@host: MMC host which completed request
 476 *	@mrq: MMC request which completed
 
 477 *
 478 *	CQE drivers should call this function when they have completed
 479 *	their processing of a request.
 480 */
 481void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
 
 482{
 483	mmc_should_fail_request(host, mrq);
 484
 485	/* Flag re-tuning needed on CRC errors */
 486	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
 487	    (mrq->data && mrq->data->error == -EILSEQ))
 488		mmc_retune_needed(host);
 489
 490	trace_mmc_request_done(host, mrq);
 491
 492	if (mrq->cmd) {
 493		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
 494			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
 495	} else {
 496		pr_debug("%s: CQE transfer done tag %d\n",
 497			 mmc_hostname(host), mrq->tag);
 498	}
 499
 500	if (mrq->data) {
 501		pr_debug("%s:     %d bytes transferred: %d\n",
 502			 mmc_hostname(host),
 503			 mrq->data->bytes_xfered, mrq->data->error);
 504	}
 505
 506	mrq->done(mrq);
 507}
 508EXPORT_SYMBOL(mmc_cqe_request_done);
 509
 510/**
 511 *	mmc_cqe_post_req - CQE post process of a completed MMC request
 512 *	@host: MMC host
 513 *	@mrq: MMC request to be processed
 514 */
 515void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
 516{
 517	if (host->cqe_ops->cqe_post_req)
 518		host->cqe_ops->cqe_post_req(host, mrq);
 519}
 520EXPORT_SYMBOL(mmc_cqe_post_req);
 521
 522/* Arbitrary 1 second timeout */
 523#define MMC_CQE_RECOVERY_TIMEOUT	1000
 524
 525/*
 526 * mmc_cqe_recovery - Recover from CQE errors.
 527 * @host: MMC host to recover
 528 *
 529 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
 530 * in eMMC, and discarding the queue in CQE. CQE must call
 531 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
 532 * fails to discard its queue.
 
 
 
 
 
 533 */
 534int mmc_cqe_recovery(struct mmc_host *host)
 
 535{
 536	struct mmc_command cmd;
 537	int err;
 538
 539	mmc_retune_hold_now(host);
 540
 541	/*
 542	 * Recovery is expected seldom, if at all, but it reduces performance,
 543	 * so make sure it is not completely silent.
 544	 */
 545	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
 546
 547	host->cqe_ops->cqe_recovery_start(host);
 548
 549	memset(&cmd, 0, sizeof(cmd));
 550	cmd.opcode       = MMC_STOP_TRANSMISSION;
 551	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 552	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 553	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
 554	mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
 555
 556	mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO);
 557
 558	memset(&cmd, 0, sizeof(cmd));
 559	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
 560	cmd.arg          = 1; /* Discard entire queue */
 561	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 562	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 563	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
 564	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
 565
 566	host->cqe_ops->cqe_recovery_finish(host);
 
 
 
 
 
 
 
 
 
 
 567
 568	if (err)
 569		err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
 
 
 570
 571	mmc_retune_release(host);
 
 572
 573	return err;
 574}
 575EXPORT_SYMBOL(mmc_cqe_recovery);
 576
 577/**
 578 *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
 579 *	@host: MMC host
 580 *	@mrq: MMC request
 581 *
 582 *	mmc_is_req_done() is used with requests that have
 583 *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
 584 *	starting a request and before waiting for it to complete. That is,
 585 *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
 586 *	and before mmc_wait_for_req_done(). If it is called at other times the
 587 *	result is not meaningful.
 588 */
 589bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
 590{
 591	return completion_done(&mrq->completion);
 592}
 593EXPORT_SYMBOL(mmc_is_req_done);
 594
 595/**
 596 *	mmc_wait_for_req - start a request and wait for completion
 597 *	@host: MMC host to start command
 598 *	@mrq: MMC request to start
 599 *
 600 *	Start a new MMC custom command request for a host, and wait
 601 *	for the command to complete. In the case of 'cap_cmd_during_tfr'
 602 *	requests, the transfer is ongoing and the caller can issue further
 603 *	commands that do not use the data lines, and then wait by calling
 604 *	mmc_wait_for_req_done().
 605 *	Does not attempt to parse the response.
 606 */
 607void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 608{
 609	__mmc_start_req(host, mrq);
 610
 611	if (!mrq->cap_cmd_during_tfr)
 612		mmc_wait_for_req_done(host, mrq);
 613}
 614EXPORT_SYMBOL(mmc_wait_for_req);
 615
 616/**
 617 *	mmc_wait_for_cmd - start a command and wait for completion
 618 *	@host: MMC host to start command
 619 *	@cmd: MMC command to start
 620 *	@retries: maximum number of retries
 621 *
 622 *	Start a new MMC command for a host, and wait for the command
 623 *	to complete.  Return any error that occurred while the command
 624 *	was executing.  Do not attempt to parse the response.
 625 */
 626int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 627{
 628	struct mmc_request mrq = {};
 629
 630	WARN_ON(!host->claimed);
 631
 632	memset(cmd->resp, 0, sizeof(cmd->resp));
 633	cmd->retries = retries;
 634
 635	mrq.cmd = cmd;
 636	cmd->data = NULL;
 637
 638	mmc_wait_for_req(host, &mrq);
 639
 640	return cmd->error;
 641}
 642
 643EXPORT_SYMBOL(mmc_wait_for_cmd);
 644
 645/**
 646 *	mmc_set_data_timeout - set the timeout for a data command
 647 *	@data: data phase for command
 648 *	@card: the MMC card associated with the data transfer
 649 *
 650 *	Computes the data timeout parameters according to the
 651 *	correct algorithm given the card type.
 652 */
 653void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 654{
 655	unsigned int mult;
 656
 657	/*
 658	 * SDIO cards only define an upper 1 s limit on access.
 659	 */
 660	if (mmc_card_sdio(card)) {
 661		data->timeout_ns = 1000000000;
 662		data->timeout_clks = 0;
 663		return;
 664	}
 665
 666	/*
 667	 * SD cards use a 100 multiplier rather than 10
 668	 */
 669	mult = mmc_card_sd(card) ? 100 : 10;
 670
 671	/*
 672	 * Scale up the multiplier (and therefore the timeout) by
 673	 * the r2w factor for writes.
 674	 */
 675	if (data->flags & MMC_DATA_WRITE)
 676		mult <<= card->csd.r2w_factor;
 677
 678	data->timeout_ns = card->csd.taac_ns * mult;
 679	data->timeout_clks = card->csd.taac_clks * mult;
 680
 681	/*
 682	 * SD cards also have an upper limit on the timeout.
 683	 */
 684	if (mmc_card_sd(card)) {
 685		unsigned int timeout_us, limit_us;
 686
 687		timeout_us = data->timeout_ns / 1000;
 688		if (card->host->ios.clock)
 689			timeout_us += data->timeout_clks * 1000 /
 690				(card->host->ios.clock / 1000);
 691
 692		if (data->flags & MMC_DATA_WRITE)
 693			/*
 694			 * The MMC spec "It is strongly recommended
 695			 * for hosts to implement more than 500ms
 696			 * timeout value even if the card indicates
 697			 * the 250ms maximum busy length."  Even the
 698			 * previous value of 300ms is known to be
 699			 * insufficient for some cards.
 700			 */
 701			limit_us = 3000000;
 702		else
 703			limit_us = 100000;
 704
 705		/*
 706		 * SDHC cards always use these fixed values.
 707		 */
 708		if (timeout_us > limit_us) {
 709			data->timeout_ns = limit_us * 1000;
 710			data->timeout_clks = 0;
 711		}
 712
 713		/* assign limit value if invalid */
 714		if (timeout_us == 0)
 715			data->timeout_ns = limit_us * 1000;
 716	}
 717
 718	/*
 719	 * Some cards require longer data read timeout than indicated in CSD.
 720	 * Address this by setting the read timeout to a "reasonably high"
 721	 * value. For the cards tested, 600ms has proven enough. If necessary,
 722	 * this value can be increased if other problematic cards require this.
 723	 */
 724	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 725		data->timeout_ns = 600000000;
 726		data->timeout_clks = 0;
 727	}
 728
 729	/*
 730	 * Some cards need very high timeouts if driven in SPI mode.
 731	 * The worst observed timeout was 900ms after writing a
 732	 * continuous stream of data until the internal logic
 733	 * overflowed.
 734	 */
 735	if (mmc_host_is_spi(card->host)) {
 736		if (data->flags & MMC_DATA_WRITE) {
 737			if (data->timeout_ns < 1000000000)
 738				data->timeout_ns = 1000000000;	/* 1s */
 739		} else {
 740			if (data->timeout_ns < 100000000)
 741				data->timeout_ns =  100000000;	/* 100ms */
 742		}
 743	}
 744}
 745EXPORT_SYMBOL(mmc_set_data_timeout);
 746
 747/*
 748 * Allow claiming an already claimed host if the context is the same or there is
 749 * no context but the task is the same.
 
 
 
 
 
 
 
 
 
 
 750 */
 751static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
 752				   struct task_struct *task)
 753{
 754	return host->claimer == ctx ||
 755	       (!ctx && task && host->claimer->task == task);
 
 
 
 
 
 
 756}
 
 757
 758static inline void mmc_ctx_set_claimer(struct mmc_host *host,
 759				       struct mmc_ctx *ctx,
 760				       struct task_struct *task)
 
 
 
 
 
 
 761{
 762	if (!host->claimer) {
 763		if (ctx)
 764			host->claimer = ctx;
 765		else
 766			host->claimer = &host->default_ctx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 767	}
 768	if (task)
 769		host->claimer->task = task;
 770}
 771
 772/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 773 *	__mmc_claim_host - exclusively claim a host
 774 *	@host: mmc host to claim
 775 *	@ctx: context that claims the host or NULL in which case the default
 776 *	context will be used
 777 *	@abort: whether or not the operation should be aborted
 778 *
 779 *	Claim a host for a set of operations.  If @abort is non null and
 780 *	dereference a non-zero value then this will return prematurely with
 781 *	that non-zero value without acquiring the lock.  Returns zero
 782 *	with the lock held otherwise.
 783 */
 784int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
 785		     atomic_t *abort)
 786{
 787	struct task_struct *task = ctx ? NULL : current;
 788	DECLARE_WAITQUEUE(wait, current);
 789	unsigned long flags;
 790	int stop;
 791	bool pm = false;
 792
 793	might_sleep();
 794
 795	add_wait_queue(&host->wq, &wait);
 796	spin_lock_irqsave(&host->lock, flags);
 797	while (1) {
 798		set_current_state(TASK_UNINTERRUPTIBLE);
 799		stop = abort ? atomic_read(abort) : 0;
 800		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
 801			break;
 802		spin_unlock_irqrestore(&host->lock, flags);
 803		schedule();
 804		spin_lock_irqsave(&host->lock, flags);
 805	}
 806	set_current_state(TASK_RUNNING);
 807	if (!stop) {
 808		host->claimed = 1;
 809		mmc_ctx_set_claimer(host, ctx, task);
 810		host->claim_cnt += 1;
 811		if (host->claim_cnt == 1)
 812			pm = true;
 813	} else
 814		wake_up(&host->wq);
 815	spin_unlock_irqrestore(&host->lock, flags);
 816	remove_wait_queue(&host->wq, &wait);
 817
 818	if (pm)
 819		pm_runtime_get_sync(mmc_dev(host));
 820
 821	return stop;
 822}
 
 823EXPORT_SYMBOL(__mmc_claim_host);
 824
 825/**
 826 *	mmc_release_host - release a host
 827 *	@host: mmc host to release
 828 *
 829 *	Release a MMC host, allowing others to claim the host
 830 *	for their operations.
 831 */
 832void mmc_release_host(struct mmc_host *host)
 833{
 
 834	unsigned long flags;
 835
 836	WARN_ON(!host->claimed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 837
 838	spin_lock_irqsave(&host->lock, flags);
 839	if (--host->claim_cnt) {
 840		/* Release for nested claim */
 841		spin_unlock_irqrestore(&host->lock, flags);
 842	} else {
 843		host->claimed = 0;
 844		host->claimer->task = NULL;
 845		host->claimer = NULL;
 846		spin_unlock_irqrestore(&host->lock, flags);
 847		wake_up(&host->wq);
 848		pm_runtime_mark_last_busy(mmc_dev(host));
 849		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
 850			pm_runtime_put_sync_suspend(mmc_dev(host));
 851		else
 852			pm_runtime_put_autosuspend(mmc_dev(host));
 853	}
 854}
 855EXPORT_SYMBOL(mmc_release_host);
 856
 857/*
 858 * This is a helper function, which fetches a runtime pm reference for the
 859 * card device and also claims the host.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 860 */
 861void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
 862{
 863	pm_runtime_get_sync(&card->dev);
 864	__mmc_claim_host(card->host, ctx, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865}
 866EXPORT_SYMBOL(mmc_get_card);
 867
 868/*
 869 * This is a helper function, which releases the host and drops the runtime
 870 * pm reference for the card device.
 
 
 
 871 */
 872void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
 873{
 874	struct mmc_host *host = card->host;
 875
 876	WARN_ON(ctx && host->claimer != ctx);
 877
 878	mmc_release_host(host);
 879	pm_runtime_mark_last_busy(&card->dev);
 880	pm_runtime_put_autosuspend(&card->dev);
 881}
 882EXPORT_SYMBOL(mmc_put_card);
 
 883
 884/*
 885 * Internal function that does the actual ios call to the host driver,
 886 * optionally printing some debug output.
 887 */
 888static inline void mmc_set_ios(struct mmc_host *host)
 889{
 890	struct mmc_ios *ios = &host->ios;
 891
 892	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 893		"width %u timing %u\n",
 894		 mmc_hostname(host), ios->clock, ios->bus_mode,
 895		 ios->power_mode, ios->chip_select, ios->vdd,
 896		 1 << ios->bus_width, ios->timing);
 897
 
 
 898	host->ops->set_ios(host, ios);
 899}
 900
 901/*
 902 * Control chip select pin on a host.
 903 */
 904void mmc_set_chip_select(struct mmc_host *host, int mode)
 905{
 
 906	host->ios.chip_select = mode;
 907	mmc_set_ios(host);
 
 908}
 909
 910/*
 911 * Sets the host clock to the highest possible frequency that
 912 * is below "hz".
 913 */
 914void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 915{
 916	WARN_ON(hz && hz < host->f_min);
 917
 918	if (hz > host->f_max)
 919		hz = host->f_max;
 920
 921	host->ios.clock = hz;
 922	mmc_set_ios(host);
 923}
 924
 925int mmc_execute_tuning(struct mmc_card *card)
 926{
 927	struct mmc_host *host = card->host;
 928	u32 opcode;
 929	int err;
 930
 931	if (!host->ops->execute_tuning)
 932		return 0;
 933
 934	if (host->cqe_on)
 935		host->cqe_ops->cqe_off(host);
 
 
 
 
 
 936
 937	if (mmc_card_mmc(card))
 938		opcode = MMC_SEND_TUNING_BLOCK_HS200;
 939	else
 940		opcode = MMC_SEND_TUNING_BLOCK;
 
 
 
 941
 942	err = host->ops->execute_tuning(host, opcode);
 943	if (!err) {
 944		mmc_retune_clear(host);
 945		mmc_retune_enable(host);
 946		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 947	}
 
 948
 949	/* Only print error when we don't check for card removal */
 950	if (!host->detect_change) {
 951		pr_err("%s: tuning execution failed: %d\n",
 952			mmc_hostname(host), err);
 953		mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
 954	}
 955
 956	return err;
 
 
 
 
 
 
 
 
 
 
 
 957}
 
 958
 959/*
 960 * Change the bus mode (open drain/push-pull) of a host.
 961 */
 962void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 963{
 
 964	host->ios.bus_mode = mode;
 965	mmc_set_ios(host);
 
 966}
 967
 968/*
 969 * Change data bus width of a host.
 970 */
 971void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
 972{
 
 973	host->ios.bus_width = width;
 974	mmc_set_ios(host);
 975}
 976
 977/*
 978 * Set initial state after a power cycle or a hw_reset.
 979 */
 980void mmc_set_initial_state(struct mmc_host *host)
 981{
 982	if (host->cqe_on)
 983		host->cqe_ops->cqe_off(host);
 984
 985	mmc_retune_disable(host);
 986
 987	if (mmc_host_is_spi(host))
 988		host->ios.chip_select = MMC_CS_HIGH;
 989	else
 990		host->ios.chip_select = MMC_CS_DONTCARE;
 991	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
 992	host->ios.bus_width = MMC_BUS_WIDTH_1;
 993	host->ios.timing = MMC_TIMING_LEGACY;
 994	host->ios.drv_type = 0;
 995	host->ios.enhanced_strobe = false;
 996
 997	/*
 998	 * Make sure we are in non-enhanced strobe mode before we
 999	 * actually enable it in ext_csd.
1000	 */
1001	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1002	     host->ops->hs400_enhanced_strobe)
1003		host->ops->hs400_enhanced_strobe(host, &host->ios);
1004
1005	mmc_set_ios(host);
1006
1007	mmc_crypto_set_initial_state(host);
1008}
1009
1010/**
1011 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1012 * @vdd:	voltage (mV)
1013 * @low_bits:	prefer low bits in boundary cases
1014 *
1015 * This function returns the OCR bit number according to the provided @vdd
1016 * value. If conversion is not possible a negative errno value returned.
1017 *
1018 * Depending on the @low_bits flag the function prefers low or high OCR bits
1019 * on boundary voltages. For example,
1020 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1021 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1022 *
1023 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1024 */
1025static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1026{
1027	const int max_bit = ilog2(MMC_VDD_35_36);
1028	int bit;
1029
1030	if (vdd < 1650 || vdd > 3600)
1031		return -EINVAL;
1032
1033	if (vdd >= 1650 && vdd <= 1950)
1034		return ilog2(MMC_VDD_165_195);
1035
1036	if (low_bits)
1037		vdd -= 1;
1038
1039	/* Base 2000 mV, step 100 mV, bit's base 8. */
1040	bit = (vdd - 2000) / 100 + 8;
1041	if (bit > max_bit)
1042		return max_bit;
1043	return bit;
1044}
1045
1046/**
1047 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1048 * @vdd_min:	minimum voltage value (mV)
1049 * @vdd_max:	maximum voltage value (mV)
1050 *
1051 * This function returns the OCR mask bits according to the provided @vdd_min
1052 * and @vdd_max values. If conversion is not possible the function returns 0.
1053 *
1054 * Notes wrt boundary cases:
1055 * This function sets the OCR bits for all boundary voltages, for example
1056 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1057 * MMC_VDD_34_35 mask.
1058 */
1059u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1060{
1061	u32 mask = 0;
1062
1063	if (vdd_max < vdd_min)
1064		return 0;
1065
1066	/* Prefer high bits for the boundary vdd_max values. */
1067	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1068	if (vdd_max < 0)
1069		return 0;
1070
1071	/* Prefer low bits for the boundary vdd_min values. */
1072	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1073	if (vdd_min < 0)
1074		return 0;
1075
1076	/* Fill the mask, from max bit to min bit. */
1077	while (vdd_max >= vdd_min)
1078		mask |= 1 << vdd_max--;
1079
1080	return mask;
1081}
 
 
 
1082
1083static int mmc_of_get_func_num(struct device_node *node)
 
 
 
 
 
 
 
 
 
1084{
1085	u32 reg;
1086	int ret;
 
1087
1088	ret = of_property_read_u32(node, "reg", &reg);
1089	if (ret < 0)
1090		return ret;
1091
1092	return reg;
 
 
 
 
 
 
 
 
 
 
 
 
1093}
 
1094
1095struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1096		unsigned func_num)
1097{
1098	struct device_node *node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1099
1100	if (!host->parent || !host->parent->of_node)
1101		return NULL;
 
 
 
 
 
 
 
 
1102
1103	for_each_child_of_node(host->parent->of_node, node) {
1104		if (mmc_of_get_func_num(node) == func_num)
1105			return node;
 
 
 
 
 
 
1106	}
1107
1108	return NULL;
 
 
 
1109}
 
 
 
1110
1111/*
1112 * Mask off any voltages we don't support and select
1113 * the lowest voltage
1114 */
1115u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1116{
1117	int bit;
1118
1119	/*
1120	 * Sanity check the voltages that the card claims to
1121	 * support.
1122	 */
1123	if (ocr & 0x7F) {
1124		dev_warn(mmc_dev(host),
1125		"card claims to support voltages below defined range\n");
1126		ocr &= ~0x7F;
1127	}
1128
1129	ocr &= host->ocr_avail;
1130	if (!ocr) {
1131		dev_warn(mmc_dev(host), "no support for card's volts\n");
1132		return 0;
1133	}
1134
1135	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1136		bit = ffs(ocr) - 1;
 
 
1137		ocr &= 3 << bit;
1138		mmc_power_cycle(host, ocr);
 
 
 
 
1139	} else {
1140		bit = fls(ocr) - 1;
1141		/*
1142		 * The bit variable represents the highest voltage bit set in
1143		 * the OCR register.
1144		 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1145		 * we must shift the mask '3' with (bit - 1).
1146		 */
1147		ocr &= 3 << (bit - 1);
1148		if (bit != host->ios.vdd)
1149			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1150	}
1151
1152	return ocr;
1153}
1154
1155int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1156{
 
1157	int err = 0;
1158	int old_signal_voltage = host->ios.signal_voltage;
1159
1160	host->ios.signal_voltage = signal_voltage;
1161	if (host->ops->start_signal_voltage_switch)
1162		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1163
1164	if (err)
1165		host->ios.signal_voltage = old_signal_voltage;
1166
1167	return err;
1168
1169}
1170
1171void mmc_set_initial_signal_voltage(struct mmc_host *host)
1172{
1173	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1174	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1175		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1176	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1177		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1178	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1179		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1180}
1181
1182int mmc_host_set_uhs_voltage(struct mmc_host *host)
1183{
1184	u32 clock;
1185
1186	/*
1187	 * During a signal voltage level switch, the clock must be gated
1188	 * for 5 ms according to the SD spec
1189	 */
1190	clock = host->ios.clock;
1191	host->ios.clock = 0;
1192	mmc_set_ios(host);
 
1193
1194	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1195		return -EAGAIN;
1196
1197	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1198	mmc_delay(10);
1199	host->ios.clock = clock;
1200	mmc_set_ios(host);
1201
1202	return 0;
1203}
1204
1205int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1206{
1207	struct mmc_command cmd = {};
1208	int err = 0;
1209
1210	/*
1211	 * If we cannot switch voltages, return failure so the caller
1212	 * can continue without UHS mode
1213	 */
1214	if (!host->ops->start_signal_voltage_switch)
1215		return -EPERM;
1216	if (!host->ops->card_busy)
1217		pr_warn("%s: cannot verify signal voltage switch\n",
1218			mmc_hostname(host));
1219
1220	cmd.opcode = SD_SWITCH_VOLTAGE;
1221	cmd.arg = 0;
1222	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1223
1224	err = mmc_wait_for_cmd(host, &cmd, 0);
1225	if (err)
1226		goto power_cycle;
1227
1228	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1229		return -EIO;
1230
1231	/*
1232	 * The card should drive cmd and dat[0:3] low immediately
1233	 * after the response of cmd11, but wait 1 ms to be sure
1234	 */
1235	mmc_delay(1);
1236	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1237		err = -EAGAIN;
1238		goto power_cycle;
1239	}
1240
1241	if (mmc_host_set_uhs_voltage(host)) {
1242		/*
1243		 * Voltages may not have been switched, but we've already
1244		 * sent CMD11, so a power cycle is required anyway
1245		 */
1246		err = -EAGAIN;
1247		goto power_cycle;
1248	}
1249
1250	/* Wait for at least 1 ms according to spec */
1251	mmc_delay(1);
1252
1253	/*
1254	 * Failure to switch is indicated by the card holding
1255	 * dat[0:3] low
1256	 */
1257	if (host->ops->card_busy && host->ops->card_busy(host))
1258		err = -EAGAIN;
1259
1260power_cycle:
1261	if (err) {
1262		pr_debug("%s: Signal voltage switch failed, "
1263			"power cycling card\n", mmc_hostname(host));
1264		mmc_power_cycle(host, ocr);
1265	}
1266
1267	return err;
1268}
1269
1270/*
1271 * Select timing parameters for host.
1272 */
1273void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1274{
 
1275	host->ios.timing = timing;
1276	mmc_set_ios(host);
 
1277}
1278
1279/*
1280 * Select appropriate driver type for host.
1281 */
1282void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1283{
 
1284	host->ios.drv_type = drv_type;
1285	mmc_set_ios(host);
1286}
1287
1288int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1289			      int card_drv_type, int *drv_type)
1290{
1291	struct mmc_host *host = card->host;
1292	int host_drv_type = SD_DRIVER_TYPE_B;
1293
1294	*drv_type = 0;
1295
1296	if (!host->ops->select_drive_strength)
1297		return 0;
1298
1299	/* Use SD definition of driver strength for hosts */
1300	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1301		host_drv_type |= SD_DRIVER_TYPE_A;
1302
1303	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1304		host_drv_type |= SD_DRIVER_TYPE_C;
1305
1306	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1307		host_drv_type |= SD_DRIVER_TYPE_D;
1308
1309	/*
1310	 * The drive strength that the hardware can support
1311	 * depends on the board design.  Pass the appropriate
1312	 * information and let the hardware specific code
1313	 * return what is possible given the options
1314	 */
1315	return host->ops->select_drive_strength(card, max_dtr,
1316						host_drv_type,
1317						card_drv_type,
1318						drv_type);
1319}
1320
1321/*
1322 * Apply power to the MMC stack.  This is a two-stage process.
1323 * First, we enable power to the card without the clock running.
1324 * We then wait a bit for the power to stabilise.  Finally,
1325 * enable the bus drivers and clock to the card.
1326 *
1327 * We must _NOT_ enable the clock prior to power stablising.
1328 *
1329 * If a host does all the power sequencing itself, ignore the
1330 * initial MMC_POWER_UP stage.
1331 */
1332void mmc_power_up(struct mmc_host *host, u32 ocr)
1333{
1334	if (host->ios.power_mode == MMC_POWER_ON)
1335		return;
1336
1337	mmc_pwrseq_pre_power_on(host);
1338
1339	host->ios.vdd = fls(ocr) - 1;
1340	host->ios.power_mode = MMC_POWER_UP;
1341	/* Set initial state and call mmc_set_ios */
1342	mmc_set_initial_state(host);
 
1343
1344	mmc_set_initial_signal_voltage(host);
 
 
 
 
 
 
 
 
 
 
 
1345
1346	/*
1347	 * This delay should be sufficient to allow the power supply
1348	 * to reach the minimum voltage.
1349	 */
1350	mmc_delay(host->ios.power_delay_ms);
1351
1352	mmc_pwrseq_post_power_on(host);
1353
1354	host->ios.clock = host->f_init;
1355
1356	host->ios.power_mode = MMC_POWER_ON;
1357	mmc_set_ios(host);
1358
1359	/*
1360	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1361	 * time required to reach a stable voltage.
1362	 */
1363	mmc_delay(host->ios.power_delay_ms);
 
 
1364}
1365
1366void mmc_power_off(struct mmc_host *host)
1367{
1368	if (host->ios.power_mode == MMC_POWER_OFF)
1369		return;
1370
1371	mmc_pwrseq_power_off(host);
1372
1373	host->ios.clock = 0;
1374	host->ios.vdd = 0;
1375
1376	host->ios.power_mode = MMC_POWER_OFF;
1377	/* Set initial state and call mmc_set_ios */
1378	mmc_set_initial_state(host);
1379
1380	/*
1381	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1382	 * XO-1.5, require a short delay after poweroff before the card
1383	 * can be successfully turned on again.
1384	 */
1385	mmc_delay(1);
 
 
 
 
 
 
 
 
 
 
 
1386}
1387
1388void mmc_power_cycle(struct mmc_host *host, u32 ocr)
 
 
 
1389{
1390	mmc_power_off(host);
1391	/* Wait at least 1 ms according to SD spec */
1392	mmc_delay(1);
1393	mmc_power_up(host, ocr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1394}
1395
1396/*
1397 * Assign a mmc bus handler to a host. Only one bus handler may control a
1398 * host at any given time.
1399 */
1400void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1401{
 
 
 
 
 
 
 
 
 
 
 
 
1402	host->bus_ops = ops;
 
 
 
 
1403}
1404
1405/*
1406 * Remove the current bus handler from a host.
 
1407 */
1408void mmc_detach_bus(struct mmc_host *host)
1409{
1410	host->bus_ops = NULL;
1411}
1412
1413void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1414{
1415	/*
1416	 * Prevent system sleep for 5s to allow user space to consume the
1417	 * corresponding uevent. This is especially useful, when CD irq is used
1418	 * as a system wakeup, but doesn't hurt in other cases.
1419	 */
1420	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1421		__pm_wakeup_event(host->ws, 5000);
1422
1423	host->detect_change = 1;
1424	mmc_schedule_delayed_work(&host->detect, delay);
 
 
 
 
 
 
 
 
 
 
1425}
1426
1427/**
1428 *	mmc_detect_change - process change of state on a MMC socket
1429 *	@host: host which changed state.
1430 *	@delay: optional delay to wait before detection (jiffies)
1431 *
1432 *	MMC drivers should call this when they detect a card has been
1433 *	inserted or removed. The MMC layer will confirm that any
1434 *	present card is still functional, and initialize any newly
1435 *	inserted.
1436 */
1437void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1438{
1439	_mmc_detect_change(host, delay, true);
 
 
 
 
 
 
 
1440}
 
1441EXPORT_SYMBOL(mmc_detect_change);
1442
1443void mmc_init_erase(struct mmc_card *card)
1444{
1445	unsigned int sz;
1446
1447	if (is_power_of_2(card->erase_size))
1448		card->erase_shift = ffs(card->erase_size) - 1;
1449	else
1450		card->erase_shift = 0;
1451
1452	/*
1453	 * It is possible to erase an arbitrarily large area of an SD or MMC
1454	 * card.  That is not desirable because it can take a long time
1455	 * (minutes) potentially delaying more important I/O, and also the
1456	 * timeout calculations become increasingly hugely over-estimated.
1457	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1458	 * to that size and alignment.
1459	 *
1460	 * For SD cards that define Allocation Unit size, limit erases to one
1461	 * Allocation Unit at a time.
1462	 * For MMC, have a stab at ai good value and for modern cards it will
1463	 * end up being 4MiB. Note that if the value is too small, it can end
1464	 * up taking longer to erase. Also note, erase_size is already set to
1465	 * High Capacity Erase Size if available when this function is called.
1466	 */
1467	if (mmc_card_sd(card) && card->ssr.au) {
1468		card->pref_erase = card->ssr.au;
1469		card->erase_shift = ffs(card->ssr.au) - 1;
1470	} else if (card->erase_size) {
 
 
1471		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1472		if (sz < 128)
1473			card->pref_erase = 512 * 1024 / 512;
1474		else if (sz < 512)
1475			card->pref_erase = 1024 * 1024 / 512;
1476		else if (sz < 1024)
1477			card->pref_erase = 2 * 1024 * 1024 / 512;
1478		else
1479			card->pref_erase = 4 * 1024 * 1024 / 512;
1480		if (card->pref_erase < card->erase_size)
1481			card->pref_erase = card->erase_size;
1482		else {
1483			sz = card->pref_erase % card->erase_size;
1484			if (sz)
1485				card->pref_erase += card->erase_size - sz;
1486		}
1487	} else
1488		card->pref_erase = 0;
1489}
1490
1491static bool is_trim_arg(unsigned int arg)
1492{
1493	return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1494}
1495
1496static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1497				          unsigned int arg, unsigned int qty)
1498{
1499	unsigned int erase_timeout;
1500
1501	if (arg == MMC_DISCARD_ARG ||
1502	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1503		erase_timeout = card->ext_csd.trim_timeout;
1504	} else if (card->ext_csd.erase_group_def & 1) {
1505		/* High Capacity Erase Group Size uses HC timeouts */
1506		if (arg == MMC_TRIM_ARG)
1507			erase_timeout = card->ext_csd.trim_timeout;
1508		else
1509			erase_timeout = card->ext_csd.hc_erase_timeout;
1510	} else {
1511		/* CSD Erase Group Size uses write timeout */
1512		unsigned int mult = (10 << card->csd.r2w_factor);
1513		unsigned int timeout_clks = card->csd.taac_clks * mult;
1514		unsigned int timeout_us;
1515
1516		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1517		if (card->csd.taac_ns < 1000000)
1518			timeout_us = (card->csd.taac_ns * mult) / 1000;
1519		else
1520			timeout_us = (card->csd.taac_ns / 1000) * mult;
1521
1522		/*
1523		 * ios.clock is only a target.  The real clock rate might be
1524		 * less but not that much less, so fudge it by multiplying by 2.
1525		 */
1526		timeout_clks <<= 1;
1527		timeout_us += (timeout_clks * 1000) /
1528			      (card->host->ios.clock / 1000);
1529
1530		erase_timeout = timeout_us / 1000;
1531
1532		/*
1533		 * Theoretically, the calculation could underflow so round up
1534		 * to 1ms in that case.
1535		 */
1536		if (!erase_timeout)
1537			erase_timeout = 1;
1538	}
1539
1540	/* Multiplier for secure operations */
1541	if (arg & MMC_SECURE_ARGS) {
1542		if (arg == MMC_SECURE_ERASE_ARG)
1543			erase_timeout *= card->ext_csd.sec_erase_mult;
1544		else
1545			erase_timeout *= card->ext_csd.sec_trim_mult;
1546	}
1547
1548	erase_timeout *= qty;
1549
1550	/*
1551	 * Ensure at least a 1 second timeout for SPI as per
1552	 * 'mmc_set_data_timeout()'
1553	 */
1554	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1555		erase_timeout = 1000;
1556
1557	return erase_timeout;
1558}
1559
1560static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1561					 unsigned int arg,
1562					 unsigned int qty)
1563{
1564	unsigned int erase_timeout;
1565
1566	/* for DISCARD none of the below calculation applies.
1567	 * the busy timeout is 250msec per discard command.
1568	 */
1569	if (arg == SD_DISCARD_ARG)
1570		return SD_DISCARD_TIMEOUT_MS;
1571
1572	if (card->ssr.erase_timeout) {
1573		/* Erase timeout specified in SD Status Register (SSR) */
1574		erase_timeout = card->ssr.erase_timeout * qty +
1575				card->ssr.erase_offset;
1576	} else {
1577		/*
1578		 * Erase timeout not specified in SD Status Register (SSR) so
1579		 * use 250ms per write block.
1580		 */
1581		erase_timeout = 250 * qty;
1582	}
1583
1584	/* Must not be less than 1 second */
1585	if (erase_timeout < 1000)
1586		erase_timeout = 1000;
1587
1588	return erase_timeout;
1589}
1590
1591static unsigned int mmc_erase_timeout(struct mmc_card *card,
1592				      unsigned int arg,
1593				      unsigned int qty)
1594{
1595	if (mmc_card_sd(card))
1596		return mmc_sd_erase_timeout(card, arg, qty);
1597	else
1598		return mmc_mmc_erase_timeout(card, arg, qty);
1599}
1600
1601static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1602			unsigned int to, unsigned int arg)
1603{
1604	struct mmc_command cmd = {};
1605	unsigned int qty = 0, busy_timeout = 0;
1606	bool use_r1b_resp;
1607	int err;
1608
1609	mmc_retune_hold(card->host);
1610
1611	/*
1612	 * qty is used to calculate the erase timeout which depends on how many
1613	 * erase groups (or allocation units in SD terminology) are affected.
1614	 * We count erasing part of an erase group as one erase group.
1615	 * For SD, the allocation units are always a power of 2.  For MMC, the
1616	 * erase group size is almost certainly also power of 2, but it does not
1617	 * seem to insist on that in the JEDEC standard, so we fall back to
1618	 * division in that case.  SD may not specify an allocation unit size,
1619	 * in which case the timeout is based on the number of write blocks.
1620	 *
1621	 * Note that the timeout for secure trim 2 will only be correct if the
1622	 * number of erase groups specified is the same as the total of all
1623	 * preceding secure trim 1 commands.  Since the power may have been
1624	 * lost since the secure trim 1 commands occurred, it is generally
1625	 * impossible to calculate the secure trim 2 timeout correctly.
1626	 */
1627	if (card->erase_shift)
1628		qty += ((to >> card->erase_shift) -
1629			(from >> card->erase_shift)) + 1;
1630	else if (mmc_card_sd(card))
1631		qty += to - from + 1;
1632	else
1633		qty += ((to / card->erase_size) -
1634			(from / card->erase_size)) + 1;
1635
1636	if (!mmc_card_blockaddr(card)) {
1637		from <<= 9;
1638		to <<= 9;
1639	}
1640
1641	if (mmc_card_sd(card))
1642		cmd.opcode = SD_ERASE_WR_BLK_START;
1643	else
1644		cmd.opcode = MMC_ERASE_GROUP_START;
1645	cmd.arg = from;
1646	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1647	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1648	if (err) {
1649		pr_err("mmc_erase: group start error %d, "
1650		       "status %#x\n", err, cmd.resp[0]);
1651		err = -EIO;
1652		goto out;
1653	}
1654
1655	memset(&cmd, 0, sizeof(struct mmc_command));
1656	if (mmc_card_sd(card))
1657		cmd.opcode = SD_ERASE_WR_BLK_END;
1658	else
1659		cmd.opcode = MMC_ERASE_GROUP_END;
1660	cmd.arg = to;
1661	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1662	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1663	if (err) {
1664		pr_err("mmc_erase: group end error %d, status %#x\n",
1665		       err, cmd.resp[0]);
1666		err = -EIO;
1667		goto out;
1668	}
1669
1670	memset(&cmd, 0, sizeof(struct mmc_command));
1671	cmd.opcode = MMC_ERASE;
1672	cmd.arg = arg;
1673	busy_timeout = mmc_erase_timeout(card, arg, qty);
1674	use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1675
1676	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1677	if (err) {
1678		pr_err("mmc_erase: erase error %d, status %#x\n",
1679		       err, cmd.resp[0]);
1680		err = -EIO;
1681		goto out;
1682	}
1683
1684	if (mmc_host_is_spi(card->host))
1685		goto out;
1686
1687	/*
1688	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1689	 * shall be avoided.
1690	 */
1691	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1692		goto out;
1693
1694	/* Let's poll to find out when the erase operation completes. */
1695	err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1696
 
 
 
 
 
1697out:
1698	mmc_retune_release(card->host);
1699	return err;
1700}
1701
1702static unsigned int mmc_align_erase_size(struct mmc_card *card,
1703					 unsigned int *from,
1704					 unsigned int *to,
1705					 unsigned int nr)
1706{
1707	unsigned int from_new = *from, nr_new = nr, rem;
1708
1709	/*
1710	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1711	 * to align the erase size efficiently.
1712	 */
1713	if (is_power_of_2(card->erase_size)) {
1714		unsigned int temp = from_new;
1715
1716		from_new = round_up(temp, card->erase_size);
1717		rem = from_new - temp;
1718
1719		if (nr_new > rem)
1720			nr_new -= rem;
1721		else
1722			return 0;
1723
1724		nr_new = round_down(nr_new, card->erase_size);
1725	} else {
1726		rem = from_new % card->erase_size;
1727		if (rem) {
1728			rem = card->erase_size - rem;
1729			from_new += rem;
1730			if (nr_new > rem)
1731				nr_new -= rem;
1732			else
1733				return 0;
1734		}
1735
1736		rem = nr_new % card->erase_size;
1737		if (rem)
1738			nr_new -= rem;
1739	}
1740
1741	if (nr_new == 0)
1742		return 0;
1743
1744	*to = from_new + nr_new;
1745	*from = from_new;
1746
1747	return nr_new;
1748}
1749
1750/**
1751 * mmc_erase - erase sectors.
1752 * @card: card to erase
1753 * @from: first sector to erase
1754 * @nr: number of sectors to erase
1755 * @arg: erase command argument
1756 *
1757 * Caller must claim host before calling this function.
1758 */
1759int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1760	      unsigned int arg)
1761{
1762	unsigned int rem, to = from + nr;
1763	int err;
1764
1765	if (!(card->csd.cmdclass & CCC_ERASE))
 
1766		return -EOPNOTSUPP;
1767
1768	if (!card->erase_size)
1769		return -EOPNOTSUPP;
1770
1771	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1772		return -EOPNOTSUPP;
1773
1774	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1775	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1776		return -EOPNOTSUPP;
1777
1778	if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1779	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1780		return -EOPNOTSUPP;
1781
1782	if (arg == MMC_SECURE_ERASE_ARG) {
1783		if (from % card->erase_size || nr % card->erase_size)
1784			return -EINVAL;
1785	}
1786
1787	if (arg == MMC_ERASE_ARG)
1788		nr = mmc_align_erase_size(card, &from, &to, nr);
 
 
 
 
 
 
 
 
 
 
 
 
1789
1790	if (nr == 0)
1791		return 0;
1792
 
 
1793	if (to <= from)
1794		return -EINVAL;
1795
1796	/* 'from' and 'to' are inclusive */
1797	to -= 1;
1798
1799	/*
1800	 * Special case where only one erase-group fits in the timeout budget:
1801	 * If the region crosses an erase-group boundary on this particular
1802	 * case, we will be trimming more than one erase-group which, does not
1803	 * fit in the timeout budget of the controller, so we need to split it
1804	 * and call mmc_do_erase() twice if necessary. This special case is
1805	 * identified by the card->eg_boundary flag.
1806	 */
1807	rem = card->erase_size - (from % card->erase_size);
1808	if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1809		err = mmc_do_erase(card, from, from + rem - 1, arg);
1810		from += rem;
1811		if ((err) || (to <= from))
1812			return err;
1813	}
1814
1815	return mmc_do_erase(card, from, to, arg);
1816}
1817EXPORT_SYMBOL(mmc_erase);
1818
1819int mmc_can_erase(struct mmc_card *card)
1820{
1821	if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
 
1822		return 1;
1823	return 0;
1824}
1825EXPORT_SYMBOL(mmc_can_erase);
1826
1827int mmc_can_trim(struct mmc_card *card)
1828{
1829	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1830	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1831		return 1;
1832	return 0;
1833}
1834EXPORT_SYMBOL(mmc_can_trim);
1835
1836int mmc_can_discard(struct mmc_card *card)
1837{
1838	/*
1839	 * As there's no way to detect the discard support bit at v4.5
1840	 * use the s/w feature support filed.
1841	 */
1842	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1843		return 1;
1844	return 0;
1845}
1846EXPORT_SYMBOL(mmc_can_discard);
1847
1848int mmc_can_sanitize(struct mmc_card *card)
1849{
1850	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1851		return 0;
1852	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1853		return 1;
1854	return 0;
1855}
1856
1857int mmc_can_secure_erase_trim(struct mmc_card *card)
1858{
1859	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1860	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1861		return 1;
1862	return 0;
1863}
1864EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1865
1866int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1867			    unsigned int nr)
1868{
1869	if (!card->erase_size)
1870		return 0;
1871	if (from % card->erase_size || nr % card->erase_size)
1872		return 0;
1873	return 1;
1874}
1875EXPORT_SYMBOL(mmc_erase_group_aligned);
1876
1877static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1878					    unsigned int arg)
1879{
1880	struct mmc_host *host = card->host;
1881	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1882	unsigned int last_timeout = 0;
1883	unsigned int max_busy_timeout = host->max_busy_timeout ?
1884			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1885
1886	if (card->erase_shift) {
1887		max_qty = UINT_MAX >> card->erase_shift;
1888		min_qty = card->pref_erase >> card->erase_shift;
1889	} else if (mmc_card_sd(card)) {
1890		max_qty = UINT_MAX;
1891		min_qty = card->pref_erase;
1892	} else {
1893		max_qty = UINT_MAX / card->erase_size;
1894		min_qty = card->pref_erase / card->erase_size;
1895	}
1896
1897	/*
1898	 * We should not only use 'host->max_busy_timeout' as the limitation
1899	 * when deciding the max discard sectors. We should set a balance value
1900	 * to improve the erase speed, and it can not get too long timeout at
1901	 * the same time.
1902	 *
1903	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1904	 * matter what size of 'host->max_busy_timeout', but if the
1905	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1906	 * then we can continue to increase the max discard sectors until we
1907	 * get a balance value. In cases when the 'host->max_busy_timeout'
1908	 * isn't specified, use the default max erase timeout.
1909	 */
1910	do {
1911		y = 0;
1912		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1913			timeout = mmc_erase_timeout(card, arg, qty + x);
1914
1915			if (qty + x > min_qty && timeout > max_busy_timeout)
1916				break;
1917
1918			if (timeout < last_timeout)
1919				break;
1920			last_timeout = timeout;
1921			y = x;
1922		}
1923		qty += y;
1924	} while (y);
1925
1926	if (!qty)
1927		return 0;
1928
1929	/*
1930	 * When specifying a sector range to trim, chances are we might cross
1931	 * an erase-group boundary even if the amount of sectors is less than
1932	 * one erase-group.
1933	 * If we can only fit one erase-group in the controller timeout budget,
1934	 * we have to care that erase-group boundaries are not crossed by a
1935	 * single trim operation. We flag that special case with "eg_boundary".
1936	 * In all other cases we can just decrement qty and pretend that we
1937	 * always touch (qty + 1) erase-groups as a simple optimization.
1938	 */
1939	if (qty == 1)
1940		card->eg_boundary = 1;
1941	else
1942		qty--;
1943
1944	/* Convert qty to sectors */
1945	if (card->erase_shift)
1946		max_discard = qty << card->erase_shift;
1947	else if (mmc_card_sd(card))
1948		max_discard = qty + 1;
1949	else
1950		max_discard = qty * card->erase_size;
1951
1952	return max_discard;
1953}
1954
1955unsigned int mmc_calc_max_discard(struct mmc_card *card)
1956{
1957	struct mmc_host *host = card->host;
1958	unsigned int max_discard, max_trim;
1959
 
 
 
1960	/*
1961	 * Without erase_group_def set, MMC erase timeout depends on clock
1962	 * frequence which can change.  In that case, the best choice is
1963	 * just the preferred erase size.
1964	 */
1965	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1966		return card->pref_erase;
1967
1968	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1969	if (mmc_can_trim(card)) {
1970		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1971		if (max_trim < max_discard || max_discard == 0)
1972			max_discard = max_trim;
1973	} else if (max_discard < card->erase_size) {
1974		max_discard = 0;
1975	}
1976	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1977		mmc_hostname(host), max_discard, host->max_busy_timeout ?
1978		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1979	return max_discard;
1980}
1981EXPORT_SYMBOL(mmc_calc_max_discard);
1982
1983bool mmc_card_is_blockaddr(struct mmc_card *card)
1984{
1985	return card ? mmc_card_blockaddr(card) : false;
1986}
1987EXPORT_SYMBOL(mmc_card_is_blockaddr);
1988
1989int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1990{
1991	struct mmc_command cmd = {};
1992
1993	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1994	    mmc_card_hs400(card) || mmc_card_hs400es(card))
1995		return 0;
1996
1997	cmd.opcode = MMC_SET_BLOCKLEN;
1998	cmd.arg = blocklen;
1999	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2000	return mmc_wait_for_cmd(card->host, &cmd, 5);
2001}
2002EXPORT_SYMBOL(mmc_set_blocklen);
2003
2004static void mmc_hw_reset_for_init(struct mmc_host *host)
2005{
2006	mmc_pwrseq_reset(host);
2007
2008	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2009		return;
2010	host->ops->card_hw_reset(host);
2011}
2012
2013/**
2014 * mmc_hw_reset - reset the card in hardware
2015 * @card: card to be reset
2016 *
2017 * Hard reset the card. This function is only for upper layers, like the
2018 * block layer or card drivers. You cannot use it in host drivers (struct
2019 * mmc_card might be gone then).
2020 *
2021 * Return: 0 on success, -errno on failure
2022 */
2023int mmc_hw_reset(struct mmc_card *card)
2024{
2025	struct mmc_host *host = card->host;
2026	int ret;
2027
2028	ret = host->bus_ops->hw_reset(host);
2029	if (ret < 0)
2030		pr_warn("%s: tried to HW reset card, got error %d\n",
2031			mmc_hostname(host), ret);
2032
2033	return ret;
2034}
2035EXPORT_SYMBOL(mmc_hw_reset);
 
 
2036
2037int mmc_sw_reset(struct mmc_card *card)
2038{
2039	struct mmc_host *host = card->host;
2040	int ret;
 
 
 
2041
2042	if (!host->bus_ops->sw_reset)
2043		return -EOPNOTSUPP;
2044
2045	ret = host->bus_ops->sw_reset(host);
2046	if (ret)
2047		pr_warn("%s: tried to SW reset card, got error %d\n",
2048			mmc_hostname(host), ret);
 
 
 
2049
2050	return ret;
 
2051}
2052EXPORT_SYMBOL(mmc_sw_reset);
2053
2054static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2055{
2056	host->f_init = freq;
 
 
 
2057
2058	pr_debug("%s: %s: trying to init card at %u Hz\n",
2059		mmc_hostname(host), __func__, host->f_init);
2060
2061	mmc_power_up(host, host->ocr_avail);
2062
2063	/*
2064	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2065	 * do a hardware reset if possible.
2066	 */
2067	mmc_hw_reset_for_init(host);
 
 
2068
2069	/*
2070	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2071	 * if the card is being re-initialized, just send it.  CMD52
2072	 * should be ignored by SD/eMMC cards.
2073	 * Skip it if we already know that we do not support SDIO commands
2074	 */
2075	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2076		sdio_reset(host);
2077
2078	mmc_go_idle(host);
 
 
 
 
2079
2080	if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2081		if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2082			goto out;
2083		if (mmc_card_sd_express(host))
2084			return 0;
 
 
 
 
 
 
 
 
 
 
2085	}
 
2086
2087	/* Order's important: probe SDIO, then SD, then MMC */
2088	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2089		if (!mmc_attach_sdio(host))
2090			return 0;
2091
2092	if (!(host->caps2 & MMC_CAP2_NO_SD))
2093		if (!mmc_attach_sd(host))
2094			return 0;
2095
2096	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2097		if (!mmc_attach_mmc(host))
2098			return 0;
2099
2100out:
 
2101	mmc_power_off(host);
2102	return -EIO;
2103}
2104
2105int _mmc_detect_card_removed(struct mmc_host *host)
2106{
2107	int ret;
 
 
 
 
 
2108
2109	if (!host->card || mmc_card_removed(host->card))
2110		return 1;
 
 
 
 
 
2111
2112	ret = host->bus_ops->alive(host);
 
 
 
2113
2114	/*
2115	 * Card detect status and alive check may be out of sync if card is
2116	 * removed slowly, when card detect switch changes while card/slot
2117	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2118	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2119	 * detect work 200ms later for this case.
2120	 */
2121	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2122		mmc_detect_change(host, msecs_to_jiffies(200));
2123		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2124	}
 
 
 
 
 
 
 
 
 
 
2125
2126	if (ret) {
2127		mmc_card_set_removed(host->card);
2128		pr_debug("%s: card remove detected\n", mmc_hostname(host));
 
 
 
 
 
 
2129	}
2130
 
 
 
 
 
 
 
2131	return ret;
2132}
 
2133
2134int mmc_detect_card_removed(struct mmc_host *host)
2135{
2136	struct mmc_card *card = host->card;
2137	int ret;
2138
2139	WARN_ON(!host->claimed);
 
 
2140
2141	if (!card)
2142		return 1;
2143
2144	if (!mmc_card_is_removable(host))
2145		return 0;
 
 
2146
2147	ret = mmc_card_removed(card);
2148	/*
2149	 * The card will be considered unchanged unless we have been asked to
2150	 * detect a change or host requires polling to provide card detection.
2151	 */
2152	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2153		return ret;
2154
2155	host->detect_change = 0;
2156	if (!ret) {
2157		ret = _mmc_detect_card_removed(host);
2158		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2159			/*
2160			 * Schedule a detect work as soon as possible to let a
2161			 * rescan handle the card removal.
2162			 */
2163			cancel_delayed_work(&host->detect);
2164			_mmc_detect_change(host, 0, false);
2165		}
2166	}
2167
2168	return ret;
2169}
2170EXPORT_SYMBOL(mmc_detect_card_removed);
2171
2172int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2173{
2174	unsigned int boot_sectors_num;
2175
2176	if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2177		return -EOPNOTSUPP;
2178
2179	/* filter out unrelated cards */
2180	if (card->ext_csd.rev < 3 ||
2181	    !mmc_card_mmc(card) ||
2182	    !mmc_card_is_blockaddr(card) ||
2183	     mmc_card_is_removable(card->host))
2184		return -ENOENT;
2185
2186	/*
2187	 * eMMC storage has two special boot partitions in addition to the
2188	 * main one.  NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2189	 * accesses, this means that the partition table addresses are shifted
2190	 * by the size of boot partitions.  In accordance with the eMMC
2191	 * specification, the boot partition size is calculated as follows:
2192	 *
2193	 *	boot partition size = 128K byte x BOOT_SIZE_MULT
2194	 *
2195	 * Calculate number of sectors occupied by the both boot partitions.
2196	 */
2197	boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2198			   SZ_512 * MMC_NUM_BOOT_PARTITION;
2199
2200	/* Defined by NVIDIA and used by Android devices. */
2201	*gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2202
2203	return 0;
2204}
2205EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2206
2207void mmc_rescan(struct work_struct *work)
2208{
2209	struct mmc_host *host =
2210		container_of(work, struct mmc_host, detect.work);
2211	int i;
2212
2213	if (host->rescan_disable)
2214		return;
2215
2216	/* If there is a non-removable card registered, only scan once */
2217	if (!mmc_card_is_removable(host) && host->rescan_entered)
2218		return;
2219	host->rescan_entered = 1;
2220
2221	if (host->trigger_card_event && host->ops->card_event) {
2222		mmc_claim_host(host);
2223		host->ops->card_event(host);
2224		mmc_release_host(host);
2225		host->trigger_card_event = false;
2226	}
2227
2228	/* Verify a registered card to be functional, else remove it. */
2229	if (host->bus_ops)
2230		host->bus_ops->detect(host);
2231
2232	host->detect_change = 0;
 
 
2233
2234	/* if there still is a card present, stop here */
2235	if (host->bus_ops != NULL)
2236		goto out;
 
 
2237
2238	mmc_claim_host(host);
2239	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2240			host->ops->get_cd(host) == 0) {
2241		mmc_power_off(host);
2242		mmc_release_host(host);
2243		goto out;
2244	}
2245
2246	/* If an SD express card is present, then leave it as is. */
2247	if (mmc_card_sd_express(host)) {
2248		mmc_release_host(host);
2249		goto out;
2250	}
 
 
2251
2252	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2253		unsigned int freq = freqs[i];
2254		if (freq > host->f_max) {
2255			if (i + 1 < ARRAY_SIZE(freqs))
2256				continue;
2257			freq = host->f_max;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2258		}
2259		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2260			break;
2261		if (freqs[i] <= host->f_min)
2262			break;
2263	}
 
2264
2265	/* A non-removable card should have been detected by now. */
2266	if (!mmc_card_is_removable(host) && !host->bus_ops)
2267		pr_info("%s: Failed to initialize a non-removable card",
2268			mmc_hostname(host));
2269
2270	/*
2271	 * Ignore the command timeout errors observed during
2272	 * the card init as those are excepted.
2273	 */
2274	host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2275	mmc_release_host(host);
2276
2277 out:
2278	if (host->caps & MMC_CAP_NEEDS_POLL)
2279		mmc_schedule_delayed_work(&host->detect, HZ);
2280}
2281
2282void mmc_start_host(struct mmc_host *host)
 
 
 
 
 
 
2283{
2284	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2285	host->rescan_disable = 0;
2286
2287	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2288		mmc_claim_host(host);
2289		mmc_power_up(host, host->ocr_avail);
2290		mmc_release_host(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2291	}
 
 
2292
2293	mmc_gpiod_request_cd_irq(host);
2294	_mmc_detect_change(host, 0, false);
2295}
 
2296
2297void __mmc_stop_host(struct mmc_host *host)
 
 
 
 
 
2298{
2299	if (host->slot.cd_irq >= 0) {
2300		mmc_gpio_set_cd_wake(host, false);
2301		disable_irq(host->slot.cd_irq);
2302	}
2303
2304	host->rescan_disable = 1;
2305	cancel_delayed_work_sync(&host->detect);
2306}
2307
2308void mmc_stop_host(struct mmc_host *host)
2309{
2310	__mmc_stop_host(host);
2311
2312	/* clear pm flags now and let card drivers set them as needed */
2313	host->pm_flags = 0;
 
 
 
 
 
2314
2315	if (host->bus_ops) {
2316		/* Calling bus_ops->remove() with a claimed host can deadlock */
2317		host->bus_ops->remove(host);
2318		mmc_claim_host(host);
 
 
 
 
2319		mmc_detach_bus(host);
2320		mmc_power_off(host);
2321		mmc_release_host(host);
2322		return;
 
 
 
 
 
 
 
 
 
 
 
2323	}
2324
2325	mmc_claim_host(host);
2326	mmc_power_off(host);
2327	mmc_release_host(host);
2328}
 
2329
2330static int __init mmc_init(void)
2331{
2332	int ret;
2333
 
 
 
 
2334	ret = mmc_register_bus();
2335	if (ret)
2336		return ret;
2337
2338	ret = mmc_register_host_class();
2339	if (ret)
2340		goto unregister_bus;
2341
2342	ret = sdio_register_bus();
2343	if (ret)
2344		goto unregister_host_class;
2345
2346	return 0;
2347
2348unregister_host_class:
2349	mmc_unregister_host_class();
2350unregister_bus:
2351	mmc_unregister_bus();
 
 
 
2352	return ret;
2353}
2354
2355static void __exit mmc_exit(void)
2356{
2357	sdio_unregister_bus();
2358	mmc_unregister_host_class();
2359	mmc_unregister_bus();
 
2360}
2361
2362subsys_initcall(mmc_init);
2363module_exit(mmc_exit);
2364
2365MODULE_LICENSE("GPL");
v3.1
 
   1/*
   2 *  linux/drivers/mmc/core/core.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/completion.h>
  17#include <linux/device.h>
  18#include <linux/delay.h>
  19#include <linux/pagemap.h>
  20#include <linux/err.h>
  21#include <linux/leds.h>
  22#include <linux/scatterlist.h>
  23#include <linux/log2.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/pm_runtime.h>
 
  26#include <linux/suspend.h>
 
 
 
 
  27
  28#include <linux/mmc/card.h>
  29#include <linux/mmc/host.h>
  30#include <linux/mmc/mmc.h>
  31#include <linux/mmc/sd.h>
 
 
 
 
  32
  33#include "core.h"
 
 
  34#include "bus.h"
  35#include "host.h"
  36#include "sdio_bus.h"
 
  37
  38#include "mmc_ops.h"
  39#include "sd_ops.h"
  40#include "sdio_ops.h"
  41
  42static struct workqueue_struct *workqueue;
 
 
 
 
  43
  44/*
  45 * Enabling software CRCs on the data blocks can be a significant (30%)
  46 * performance cost, and for other reasons may not always be desired.
  47 * So we allow it it to be disabled.
  48 */
  49int use_spi_crc = 1;
  50module_param(use_spi_crc, bool, 0);
  51
  52/*
  53 * We normally treat cards as removed during suspend if they are not
  54 * known to be on a non-removable bus, to avoid the risk of writing
  55 * back data to a different card after resume.  Allow this to be
  56 * overridden if necessary.
  57 */
  58#ifdef CONFIG_MMC_UNSAFE_RESUME
  59int mmc_assume_removable;
  60#else
  61int mmc_assume_removable = 1;
  62#endif
  63EXPORT_SYMBOL(mmc_assume_removable);
  64module_param_named(removable, mmc_assume_removable, bool, 0644);
  65MODULE_PARM_DESC(
  66	removable,
  67	"MMC/SD cards are removable and may be removed during suspend");
  68
  69/*
  70 * Internal function. Schedule delayed work in the MMC work queue.
  71 */
  72static int mmc_schedule_delayed_work(struct delayed_work *work,
  73				     unsigned long delay)
  74{
  75	return queue_delayed_work(workqueue, work, delay);
 
 
 
 
 
 
  76}
  77
 
 
  78/*
  79 * Internal function. Flush all scheduled work from the MMC work queue.
 
  80 */
  81static void mmc_flush_scheduled_work(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  82{
  83	flush_workqueue(workqueue);
  84}
  85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  86/**
  87 *	mmc_request_done - finish processing an MMC request
  88 *	@host: MMC host which completed request
  89 *	@mrq: MMC request which request
  90 *
  91 *	MMC drivers should call this function when they have completed
  92 *	their processing of a request.
  93 */
  94void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
  95{
  96	struct mmc_command *cmd = mrq->cmd;
  97	int err = cmd->error;
  98
 
 
 
 
 
 
 
 
  99	if (err && cmd->retries && mmc_host_is_spi(host)) {
 100		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 101			cmd->retries = 0;
 102	}
 103
 104	if (err && cmd->retries) {
 105		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 106			mmc_hostname(host), cmd->opcode, err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 107
 108		cmd->retries--;
 109		cmd->error = 0;
 110		host->ops->request(host, mrq);
 111	} else {
 112		led_trigger_event(host->led, LED_OFF);
 
 
 113
 114		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 115			mmc_hostname(host), cmd->opcode, err,
 116			cmd->resp[0], cmd->resp[1],
 117			cmd->resp[2], cmd->resp[3]);
 118
 119		if (mrq->data) {
 120			pr_debug("%s:     %d bytes transferred: %d\n",
 121				mmc_hostname(host),
 122				mrq->data->bytes_xfered, mrq->data->error);
 123		}
 124
 125		if (mrq->stop) {
 126			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 127				mmc_hostname(host), mrq->stop->opcode,
 128				mrq->stop->error,
 129				mrq->stop->resp[0], mrq->stop->resp[1],
 130				mrq->stop->resp[2], mrq->stop->resp[3]);
 131		}
 132
 133		if (mrq->done)
 134			mrq->done(mrq);
 135
 136		mmc_host_clk_release(host);
 137	}
 
 
 
 
 
 
 138}
 139
 140EXPORT_SYMBOL(mmc_request_done);
 141
 142static void
 143mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 144{
 145#ifdef CONFIG_MMC_DEBUG
 146	unsigned int i, sz;
 147	struct scatterlist *sg;
 148#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 149
 150	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
 151		 mmc_hostname(host), mrq->cmd->opcode,
 152		 mrq->cmd->arg, mrq->cmd->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 153
 154	if (mrq->data) {
 155		pr_debug("%s:     blksz %d blocks %d flags %08x "
 156			"tsac %d ms nsac %d\n",
 157			mmc_hostname(host), mrq->data->blksz,
 158			mrq->data->blocks, mrq->data->flags,
 159			mrq->data->timeout_ns / 1000000,
 160			mrq->data->timeout_clks);
 161	}
 162
 163	if (mrq->stop) {
 164		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 165			 mmc_hostname(host), mrq->stop->opcode,
 166			 mrq->stop->arg, mrq->stop->flags);
 167	}
 
 168
 169	WARN_ON(!host->claimed);
 
 
 
 170
 171	mrq->cmd->error = 0;
 172	mrq->cmd->mrq = mrq;
 
 
 
 
 
 
 
 173	if (mrq->data) {
 174		BUG_ON(mrq->data->blksz > host->max_blk_size);
 175		BUG_ON(mrq->data->blocks > host->max_blk_count);
 176		BUG_ON(mrq->data->blocks * mrq->data->blksz >
 177			host->max_req_size);
 178
 179#ifdef CONFIG_MMC_DEBUG
 180		sz = 0;
 181		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 182			sz += sg->length;
 183		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
 184#endif
 185
 186		mrq->cmd->data = mrq->data;
 187		mrq->data->error = 0;
 188		mrq->data->mrq = mrq;
 189		if (mrq->stop) {
 190			mrq->data->stop = mrq->stop;
 191			mrq->stop->error = 0;
 192			mrq->stop->mrq = mrq;
 193		}
 194	}
 195	mmc_host_clk_hold(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 196	led_trigger_event(host->led, LED_FULL);
 197	host->ops->request(host, mrq);
 
 
 198}
 
 199
 200static void mmc_wait_done(struct mmc_request *mrq)
 201{
 202	complete(&mrq->completion);
 203}
 204
 205static void __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 
 
 
 
 
 
 
 
 
 
 
 
 206{
 
 
 
 
 207	init_completion(&mrq->completion);
 208	mrq->done = mmc_wait_done;
 209	mmc_start_request(host, mrq);
 
 
 
 
 
 
 
 
 210}
 211
 212static void mmc_wait_for_req_done(struct mmc_host *host,
 213				  struct mmc_request *mrq)
 214{
 215	wait_for_completion(&mrq->completion);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 216}
 
 217
 218/**
 219 *	mmc_pre_req - Prepare for a new request
 220 *	@host: MMC host to prepare command
 221 *	@mrq: MMC request to prepare for
 222 *	@is_first_req: true if there is no previous started request
 223 *                     that may run in parellel to this call, otherwise false
 224 *
 225 *	mmc_pre_req() is called in prior to mmc_start_req() to let
 226 *	host prepare for the new request. Preparation of a request may be
 227 *	performed while another request is running on the host.
 228 */
 229static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
 230		 bool is_first_req)
 231{
 232	if (host->ops->pre_req)
 233		host->ops->pre_req(host, mrq, is_first_req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 234}
 
 235
 236/**
 237 *	mmc_post_req - Post process a completed request
 238 *	@host: MMC host to post process command
 239 *	@mrq: MMC request to post process for
 240 *	@err: Error, if non zero, clean up any resources made in pre_req
 241 *
 242 *	Let the host post process a completed request. Post processing of
 243 *	a request may be performed while another reuqest is running.
 244 */
 245static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
 246			 int err)
 247{
 248	if (host->ops->post_req)
 249		host->ops->post_req(host, mrq, err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 250}
 
 251
 252/**
 253 *	mmc_start_req - start a non-blocking request
 254 *	@host: MMC host to start command
 255 *	@areq: async request to start
 256 *	@error: out parameter returns 0 for success, otherwise non zero
 
 
 
 
 
 
 
 
 
 
 
 
 
 257 *
 258 *	Start a new MMC custom command request for a host.
 259 *	If there is on ongoing async request wait for completion
 260 *	of that request and start the new one and return.
 261 *	Does not wait for the new request to complete.
 262 *
 263 *      Returns the completed request, NULL in case of none completed.
 264 *	Wait for the an ongoing request (previoulsy started) to complete and
 265 *	return the completed request. If there is no ongoing request, NULL
 266 *	is returned without waiting. NULL is not an error condition.
 267 */
 268struct mmc_async_req *mmc_start_req(struct mmc_host *host,
 269				    struct mmc_async_req *areq, int *error)
 270{
 271	int err = 0;
 272	struct mmc_async_req *data = host->areq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 273
 274	/* Prepare a new request */
 275	if (areq)
 276		mmc_pre_req(host, areq->mrq, !host->areq);
 277
 278	if (host->areq) {
 279		mmc_wait_for_req_done(host, host->areq->mrq);
 280		err = host->areq->err_check(host->card, host->areq);
 281		if (err) {
 282			mmc_post_req(host, host->areq->mrq, 0);
 283			if (areq)
 284				mmc_post_req(host, areq->mrq, -EINVAL);
 285
 286			host->areq = NULL;
 287			goto out;
 288		}
 289	}
 290
 291	if (areq)
 292		__mmc_start_req(host, areq->mrq);
 293
 294	if (host->areq)
 295		mmc_post_req(host, host->areq->mrq, 0);
 
 296
 297	host->areq = areq;
 298 out:
 299	if (error)
 300		*error = err;
 301	return data;
 
 
 
 
 
 
 
 
 
 
 302}
 303EXPORT_SYMBOL(mmc_start_req);
 304
 305/**
 306 *	mmc_wait_for_req - start a request and wait for completion
 307 *	@host: MMC host to start command
 308 *	@mrq: MMC request to start
 309 *
 310 *	Start a new MMC custom command request for a host, and wait
 311 *	for the command to complete. Does not attempt to parse the
 312 *	response.
 
 
 
 313 */
 314void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 315{
 316	__mmc_start_req(host, mrq);
 317	mmc_wait_for_req_done(host, mrq);
 
 
 318}
 319EXPORT_SYMBOL(mmc_wait_for_req);
 320
 321/**
 322 *	mmc_wait_for_cmd - start a command and wait for completion
 323 *	@host: MMC host to start command
 324 *	@cmd: MMC command to start
 325 *	@retries: maximum number of retries
 326 *
 327 *	Start a new MMC command for a host, and wait for the command
 328 *	to complete.  Return any error that occurred while the command
 329 *	was executing.  Do not attempt to parse the response.
 330 */
 331int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 332{
 333	struct mmc_request mrq = {0};
 334
 335	WARN_ON(!host->claimed);
 336
 337	memset(cmd->resp, 0, sizeof(cmd->resp));
 338	cmd->retries = retries;
 339
 340	mrq.cmd = cmd;
 341	cmd->data = NULL;
 342
 343	mmc_wait_for_req(host, &mrq);
 344
 345	return cmd->error;
 346}
 347
 348EXPORT_SYMBOL(mmc_wait_for_cmd);
 349
 350/**
 351 *	mmc_set_data_timeout - set the timeout for a data command
 352 *	@data: data phase for command
 353 *	@card: the MMC card associated with the data transfer
 354 *
 355 *	Computes the data timeout parameters according to the
 356 *	correct algorithm given the card type.
 357 */
 358void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 359{
 360	unsigned int mult;
 361
 362	/*
 363	 * SDIO cards only define an upper 1 s limit on access.
 364	 */
 365	if (mmc_card_sdio(card)) {
 366		data->timeout_ns = 1000000000;
 367		data->timeout_clks = 0;
 368		return;
 369	}
 370
 371	/*
 372	 * SD cards use a 100 multiplier rather than 10
 373	 */
 374	mult = mmc_card_sd(card) ? 100 : 10;
 375
 376	/*
 377	 * Scale up the multiplier (and therefore the timeout) by
 378	 * the r2w factor for writes.
 379	 */
 380	if (data->flags & MMC_DATA_WRITE)
 381		mult <<= card->csd.r2w_factor;
 382
 383	data->timeout_ns = card->csd.tacc_ns * mult;
 384	data->timeout_clks = card->csd.tacc_clks * mult;
 385
 386	/*
 387	 * SD cards also have an upper limit on the timeout.
 388	 */
 389	if (mmc_card_sd(card)) {
 390		unsigned int timeout_us, limit_us;
 391
 392		timeout_us = data->timeout_ns / 1000;
 393		if (mmc_host_clk_rate(card->host))
 394			timeout_us += data->timeout_clks * 1000 /
 395				(mmc_host_clk_rate(card->host) / 1000);
 396
 397		if (data->flags & MMC_DATA_WRITE)
 398			/*
 399			 * The limit is really 250 ms, but that is
 400			 * insufficient for some crappy cards.
 
 
 
 
 401			 */
 402			limit_us = 300000;
 403		else
 404			limit_us = 100000;
 405
 406		/*
 407		 * SDHC cards always use these fixed values.
 408		 */
 409		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
 410			data->timeout_ns = limit_us * 1000;
 411			data->timeout_clks = 0;
 412		}
 
 
 
 
 413	}
 
 
 
 
 
 
 
 
 
 
 
 
 414	/*
 415	 * Some cards need very high timeouts if driven in SPI mode.
 416	 * The worst observed timeout was 900ms after writing a
 417	 * continuous stream of data until the internal logic
 418	 * overflowed.
 419	 */
 420	if (mmc_host_is_spi(card->host)) {
 421		if (data->flags & MMC_DATA_WRITE) {
 422			if (data->timeout_ns < 1000000000)
 423				data->timeout_ns = 1000000000;	/* 1s */
 424		} else {
 425			if (data->timeout_ns < 100000000)
 426				data->timeout_ns =  100000000;	/* 100ms */
 427		}
 428	}
 429}
 430EXPORT_SYMBOL(mmc_set_data_timeout);
 431
 432/**
 433 *	mmc_align_data_size - pads a transfer size to a more optimal value
 434 *	@card: the MMC card associated with the data transfer
 435 *	@sz: original transfer size
 436 *
 437 *	Pads the original data size with a number of extra bytes in
 438 *	order to avoid controller bugs and/or performance hits
 439 *	(e.g. some controllers revert to PIO for certain sizes).
 440 *
 441 *	Returns the improved size, which might be unmodified.
 442 *
 443 *	Note that this function is only relevant when issuing a
 444 *	single scatter gather entry.
 445 */
 446unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
 
 447{
 448	/*
 449	 * FIXME: We don't have a system for the controller to tell
 450	 * the core about its problems yet, so for now we just 32-bit
 451	 * align the size.
 452	 */
 453	sz = ((sz + 3) / 4) * 4;
 454
 455	return sz;
 456}
 457EXPORT_SYMBOL(mmc_align_data_size);
 458
 459/**
 460 *	mmc_host_enable - enable a host.
 461 *	@host: mmc host to enable
 462 *
 463 *	Hosts that support power saving can use the 'enable' and 'disable'
 464 *	methods to exit and enter power saving states. For more information
 465 *	see comments for struct mmc_host_ops.
 466 */
 467int mmc_host_enable(struct mmc_host *host)
 468{
 469	if (!(host->caps & MMC_CAP_DISABLE))
 470		return 0;
 471
 472	if (host->en_dis_recurs)
 473		return 0;
 474
 475	if (host->nesting_cnt++)
 476		return 0;
 477
 478	cancel_delayed_work_sync(&host->disable);
 479
 480	if (host->enabled)
 481		return 0;
 482
 483	if (host->ops->enable) {
 484		int err;
 485
 486		host->en_dis_recurs = 1;
 487		err = host->ops->enable(host);
 488		host->en_dis_recurs = 0;
 489
 490		if (err) {
 491			pr_debug("%s: enable error %d\n",
 492				 mmc_hostname(host), err);
 493			return err;
 494		}
 495	}
 496	host->enabled = 1;
 497	return 0;
 498}
 499EXPORT_SYMBOL(mmc_host_enable);
 500
 501static int mmc_host_do_disable(struct mmc_host *host, int lazy)
 502{
 503	if (host->ops->disable) {
 504		int err;
 505
 506		host->en_dis_recurs = 1;
 507		err = host->ops->disable(host, lazy);
 508		host->en_dis_recurs = 0;
 509
 510		if (err < 0) {
 511			pr_debug("%s: disable error %d\n",
 512				 mmc_hostname(host), err);
 513			return err;
 514		}
 515		if (err > 0) {
 516			unsigned long delay = msecs_to_jiffies(err);
 517
 518			mmc_schedule_delayed_work(&host->disable, delay);
 519		}
 520	}
 521	host->enabled = 0;
 522	return 0;
 523}
 524
 525/**
 526 *	mmc_host_disable - disable a host.
 527 *	@host: mmc host to disable
 528 *
 529 *	Hosts that support power saving can use the 'enable' and 'disable'
 530 *	methods to exit and enter power saving states. For more information
 531 *	see comments for struct mmc_host_ops.
 532 */
 533int mmc_host_disable(struct mmc_host *host)
 534{
 535	int err;
 536
 537	if (!(host->caps & MMC_CAP_DISABLE))
 538		return 0;
 539
 540	if (host->en_dis_recurs)
 541		return 0;
 542
 543	if (--host->nesting_cnt)
 544		return 0;
 545
 546	if (!host->enabled)
 547		return 0;
 548
 549	err = mmc_host_do_disable(host, 0);
 550	return err;
 551}
 552EXPORT_SYMBOL(mmc_host_disable);
 553
 554/**
 555 *	__mmc_claim_host - exclusively claim a host
 556 *	@host: mmc host to claim
 
 
 557 *	@abort: whether or not the operation should be aborted
 558 *
 559 *	Claim a host for a set of operations.  If @abort is non null and
 560 *	dereference a non-zero value then this will return prematurely with
 561 *	that non-zero value without acquiring the lock.  Returns zero
 562 *	with the lock held otherwise.
 563 */
 564int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
 
 565{
 
 566	DECLARE_WAITQUEUE(wait, current);
 567	unsigned long flags;
 568	int stop;
 
 569
 570	might_sleep();
 571
 572	add_wait_queue(&host->wq, &wait);
 573	spin_lock_irqsave(&host->lock, flags);
 574	while (1) {
 575		set_current_state(TASK_UNINTERRUPTIBLE);
 576		stop = abort ? atomic_read(abort) : 0;
 577		if (stop || !host->claimed || host->claimer == current)
 578			break;
 579		spin_unlock_irqrestore(&host->lock, flags);
 580		schedule();
 581		spin_lock_irqsave(&host->lock, flags);
 582	}
 583	set_current_state(TASK_RUNNING);
 584	if (!stop) {
 585		host->claimed = 1;
 586		host->claimer = current;
 587		host->claim_cnt += 1;
 
 
 588	} else
 589		wake_up(&host->wq);
 590	spin_unlock_irqrestore(&host->lock, flags);
 591	remove_wait_queue(&host->wq, &wait);
 592	if (!stop)
 593		mmc_host_enable(host);
 
 
 594	return stop;
 595}
 596
 597EXPORT_SYMBOL(__mmc_claim_host);
 598
 599/**
 600 *	mmc_try_claim_host - try exclusively to claim a host
 601 *	@host: mmc host to claim
 602 *
 603 *	Returns %1 if the host is claimed, %0 otherwise.
 
 604 */
 605int mmc_try_claim_host(struct mmc_host *host)
 606{
 607	int claimed_host = 0;
 608	unsigned long flags;
 609
 610	spin_lock_irqsave(&host->lock, flags);
 611	if (!host->claimed || host->claimer == current) {
 612		host->claimed = 1;
 613		host->claimer = current;
 614		host->claim_cnt += 1;
 615		claimed_host = 1;
 616	}
 617	spin_unlock_irqrestore(&host->lock, flags);
 618	return claimed_host;
 619}
 620EXPORT_SYMBOL(mmc_try_claim_host);
 621
 622/**
 623 *	mmc_do_release_host - release a claimed host
 624 *	@host: mmc host to release
 625 *
 626 *	If you successfully claimed a host, this function will
 627 *	release it again.
 628 */
 629void mmc_do_release_host(struct mmc_host *host)
 630{
 631	unsigned long flags;
 632
 633	spin_lock_irqsave(&host->lock, flags);
 634	if (--host->claim_cnt) {
 635		/* Release for nested claim */
 636		spin_unlock_irqrestore(&host->lock, flags);
 637	} else {
 638		host->claimed = 0;
 
 639		host->claimer = NULL;
 640		spin_unlock_irqrestore(&host->lock, flags);
 641		wake_up(&host->wq);
 
 
 
 
 
 642	}
 643}
 644EXPORT_SYMBOL(mmc_do_release_host);
 645
 646void mmc_host_deeper_disable(struct work_struct *work)
 647{
 648	struct mmc_host *host =
 649		container_of(work, struct mmc_host, disable.work);
 650
 651	/* If the host is claimed then we do not want to disable it anymore */
 652	if (!mmc_try_claim_host(host))
 653		return;
 654	mmc_host_do_disable(host, 1);
 655	mmc_do_release_host(host);
 656}
 657
 658/**
 659 *	mmc_host_lazy_disable - lazily disable a host.
 660 *	@host: mmc host to disable
 661 *
 662 *	Hosts that support power saving can use the 'enable' and 'disable'
 663 *	methods to exit and enter power saving states. For more information
 664 *	see comments for struct mmc_host_ops.
 665 */
 666int mmc_host_lazy_disable(struct mmc_host *host)
 667{
 668	if (!(host->caps & MMC_CAP_DISABLE))
 669		return 0;
 670
 671	if (host->en_dis_recurs)
 672		return 0;
 673
 674	if (--host->nesting_cnt)
 675		return 0;
 676
 677	if (!host->enabled)
 678		return 0;
 679
 680	if (host->disable_delay) {
 681		mmc_schedule_delayed_work(&host->disable,
 682				msecs_to_jiffies(host->disable_delay));
 683		return 0;
 684	} else
 685		return mmc_host_do_disable(host, 1);
 686}
 687EXPORT_SYMBOL(mmc_host_lazy_disable);
 688
 689/**
 690 *	mmc_release_host - release a host
 691 *	@host: mmc host to release
 692 *
 693 *	Release a MMC host, allowing others to claim the host
 694 *	for their operations.
 695 */
 696void mmc_release_host(struct mmc_host *host)
 697{
 698	WARN_ON(!host->claimed);
 699
 700	mmc_host_lazy_disable(host);
 701
 702	mmc_do_release_host(host);
 
 
 703}
 704
 705EXPORT_SYMBOL(mmc_release_host);
 706
 707/*
 708 * Internal function that does the actual ios call to the host driver,
 709 * optionally printing some debug output.
 710 */
 711static inline void mmc_set_ios(struct mmc_host *host)
 712{
 713	struct mmc_ios *ios = &host->ios;
 714
 715	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 716		"width %u timing %u\n",
 717		 mmc_hostname(host), ios->clock, ios->bus_mode,
 718		 ios->power_mode, ios->chip_select, ios->vdd,
 719		 ios->bus_width, ios->timing);
 720
 721	if (ios->clock > 0)
 722		mmc_set_ungated(host);
 723	host->ops->set_ios(host, ios);
 724}
 725
 726/*
 727 * Control chip select pin on a host.
 728 */
 729void mmc_set_chip_select(struct mmc_host *host, int mode)
 730{
 731	mmc_host_clk_hold(host);
 732	host->ios.chip_select = mode;
 733	mmc_set_ios(host);
 734	mmc_host_clk_release(host);
 735}
 736
 737/*
 738 * Sets the host clock to the highest possible frequency that
 739 * is below "hz".
 740 */
 741static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
 742{
 743	WARN_ON(hz < host->f_min);
 744
 745	if (hz > host->f_max)
 746		hz = host->f_max;
 747
 748	host->ios.clock = hz;
 749	mmc_set_ios(host);
 750}
 751
 752void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 753{
 754	mmc_host_clk_hold(host);
 755	__mmc_set_clock(host, hz);
 756	mmc_host_clk_release(host);
 757}
 
 
 758
 759#ifdef CONFIG_MMC_CLKGATE
 760/*
 761 * This gates the clock by setting it to 0 Hz.
 762 */
 763void mmc_gate_clock(struct mmc_host *host)
 764{
 765	unsigned long flags;
 766
 767	spin_lock_irqsave(&host->clk_lock, flags);
 768	host->clk_old = host->ios.clock;
 769	host->ios.clock = 0;
 770	host->clk_gated = true;
 771	spin_unlock_irqrestore(&host->clk_lock, flags);
 772	mmc_set_ios(host);
 773}
 774
 775/*
 776 * This restores the clock from gating by using the cached
 777 * clock value.
 778 */
 779void mmc_ungate_clock(struct mmc_host *host)
 780{
 781	/*
 782	 * We should previously have gated the clock, so the clock shall
 783	 * be 0 here! The clock may however be 0 during initialization,
 784	 * when some request operations are performed before setting
 785	 * the frequency. When ungate is requested in that situation
 786	 * we just ignore the call.
 787	 */
 788	if (host->clk_old) {
 789		BUG_ON(host->ios.clock);
 790		/* This call will also set host->clk_gated to false */
 791		__mmc_set_clock(host, host->clk_old);
 792	}
 793}
 794
 795void mmc_set_ungated(struct mmc_host *host)
 796{
 797	unsigned long flags;
 
 
 
 798
 799	/*
 800	 * We've been given a new frequency while the clock is gated,
 801	 * so make sure we regard this as ungating it.
 802	 */
 803	spin_lock_irqsave(&host->clk_lock, flags);
 804	host->clk_gated = false;
 805	spin_unlock_irqrestore(&host->clk_lock, flags);
 806}
 807
 808#else
 809void mmc_set_ungated(struct mmc_host *host)
 810{
 811}
 812#endif
 813
 814/*
 815 * Change the bus mode (open drain/push-pull) of a host.
 816 */
 817void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 818{
 819	mmc_host_clk_hold(host);
 820	host->ios.bus_mode = mode;
 821	mmc_set_ios(host);
 822	mmc_host_clk_release(host);
 823}
 824
 825/*
 826 * Change data bus width of a host.
 827 */
 828void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
 829{
 830	mmc_host_clk_hold(host);
 831	host->ios.bus_width = width;
 832	mmc_set_ios(host);
 833	mmc_host_clk_release(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834}
 835
 836/**
 837 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
 838 * @vdd:	voltage (mV)
 839 * @low_bits:	prefer low bits in boundary cases
 840 *
 841 * This function returns the OCR bit number according to the provided @vdd
 842 * value. If conversion is not possible a negative errno value returned.
 843 *
 844 * Depending on the @low_bits flag the function prefers low or high OCR bits
 845 * on boundary voltages. For example,
 846 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
 847 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
 848 *
 849 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
 850 */
 851static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
 852{
 853	const int max_bit = ilog2(MMC_VDD_35_36);
 854	int bit;
 855
 856	if (vdd < 1650 || vdd > 3600)
 857		return -EINVAL;
 858
 859	if (vdd >= 1650 && vdd <= 1950)
 860		return ilog2(MMC_VDD_165_195);
 861
 862	if (low_bits)
 863		vdd -= 1;
 864
 865	/* Base 2000 mV, step 100 mV, bit's base 8. */
 866	bit = (vdd - 2000) / 100 + 8;
 867	if (bit > max_bit)
 868		return max_bit;
 869	return bit;
 870}
 871
 872/**
 873 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
 874 * @vdd_min:	minimum voltage value (mV)
 875 * @vdd_max:	maximum voltage value (mV)
 876 *
 877 * This function returns the OCR mask bits according to the provided @vdd_min
 878 * and @vdd_max values. If conversion is not possible the function returns 0.
 879 *
 880 * Notes wrt boundary cases:
 881 * This function sets the OCR bits for all boundary voltages, for example
 882 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
 883 * MMC_VDD_34_35 mask.
 884 */
 885u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
 886{
 887	u32 mask = 0;
 888
 889	if (vdd_max < vdd_min)
 890		return 0;
 891
 892	/* Prefer high bits for the boundary vdd_max values. */
 893	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
 894	if (vdd_max < 0)
 895		return 0;
 896
 897	/* Prefer low bits for the boundary vdd_min values. */
 898	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
 899	if (vdd_min < 0)
 900		return 0;
 901
 902	/* Fill the mask, from max bit to min bit. */
 903	while (vdd_max >= vdd_min)
 904		mask |= 1 << vdd_max--;
 905
 906	return mask;
 907}
 908EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
 909
 910#ifdef CONFIG_REGULATOR
 911
 912/**
 913 * mmc_regulator_get_ocrmask - return mask of supported voltages
 914 * @supply: regulator to use
 915 *
 916 * This returns either a negative errno, or a mask of voltages that
 917 * can be provided to MMC/SD/SDIO devices using the specified voltage
 918 * regulator.  This would normally be called before registering the
 919 * MMC host adapter.
 920 */
 921int mmc_regulator_get_ocrmask(struct regulator *supply)
 922{
 923	int			result = 0;
 924	int			count;
 925	int			i;
 926
 927	count = regulator_count_voltages(supply);
 928	if (count < 0)
 929		return count;
 930
 931	for (i = 0; i < count; i++) {
 932		int		vdd_uV;
 933		int		vdd_mV;
 934
 935		vdd_uV = regulator_list_voltage(supply, i);
 936		if (vdd_uV <= 0)
 937			continue;
 938
 939		vdd_mV = vdd_uV / 1000;
 940		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
 941	}
 942
 943	return result;
 944}
 945EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
 946
 947/**
 948 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
 949 * @mmc: the host to regulate
 950 * @supply: regulator to use
 951 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
 952 *
 953 * Returns zero on success, else negative errno.
 954 *
 955 * MMC host drivers may use this to enable or disable a regulator using
 956 * a particular supply voltage.  This would normally be called from the
 957 * set_ios() method.
 958 */
 959int mmc_regulator_set_ocr(struct mmc_host *mmc,
 960			struct regulator *supply,
 961			unsigned short vdd_bit)
 962{
 963	int			result = 0;
 964	int			min_uV, max_uV;
 965
 966	if (vdd_bit) {
 967		int		tmp;
 968		int		voltage;
 969
 970		/* REVISIT mmc_vddrange_to_ocrmask() may have set some
 971		 * bits this regulator doesn't quite support ... don't
 972		 * be too picky, most cards and regulators are OK with
 973		 * a 0.1V range goof (it's a small error percentage).
 974		 */
 975		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
 976		if (tmp == 0) {
 977			min_uV = 1650 * 1000;
 978			max_uV = 1950 * 1000;
 979		} else {
 980			min_uV = 1900 * 1000 + tmp * 100 * 1000;
 981			max_uV = min_uV + 100 * 1000;
 982		}
 983
 984		/* avoid needless changes to this voltage; the regulator
 985		 * might not allow this operation
 986		 */
 987		voltage = regulator_get_voltage(supply);
 988		if (voltage < 0)
 989			result = voltage;
 990		else if (voltage < min_uV || voltage > max_uV)
 991			result = regulator_set_voltage(supply, min_uV, max_uV);
 992		else
 993			result = 0;
 994
 995		if (result == 0 && !mmc->regulator_enabled) {
 996			result = regulator_enable(supply);
 997			if (!result)
 998				mmc->regulator_enabled = true;
 999		}
1000	} else if (mmc->regulator_enabled) {
1001		result = regulator_disable(supply);
1002		if (result == 0)
1003			mmc->regulator_enabled = false;
1004	}
1005
1006	if (result)
1007		dev_err(mmc_dev(mmc),
1008			"could not set regulator OCR (%d)\n", result);
1009	return result;
1010}
1011EXPORT_SYMBOL(mmc_regulator_set_ocr);
1012
1013#endif /* CONFIG_REGULATOR */
1014
1015/*
1016 * Mask off any voltages we don't support and select
1017 * the lowest voltage
1018 */
1019u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1020{
1021	int bit;
1022
 
 
 
 
 
 
 
 
 
 
1023	ocr &= host->ocr_avail;
 
 
 
 
1024
1025	bit = ffs(ocr);
1026	if (bit) {
1027		bit -= 1;
1028
1029		ocr &= 3 << bit;
1030
1031		mmc_host_clk_hold(host);
1032		host->ios.vdd = bit;
1033		mmc_set_ios(host);
1034		mmc_host_clk_release(host);
1035	} else {
1036		pr_warning("%s: host doesn't support card's voltages\n",
1037				mmc_hostname(host));
1038		ocr = 0;
 
 
 
 
 
 
 
1039	}
1040
1041	return ocr;
1042}
1043
1044int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1045{
1046	struct mmc_command cmd = {0};
1047	int err = 0;
 
 
 
 
 
 
 
 
1048
1049	BUG_ON(!host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1050
1051	/*
1052	 * Send CMD11 only if the request is to switch the card to
1053	 * 1.8V signalling.
1054	 */
1055	if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1056		cmd.opcode = SD_SWITCH_VOLTAGE;
1057		cmd.arg = 0;
1058		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1059
1060		err = mmc_wait_for_cmd(host, &cmd, 0);
1061		if (err)
1062			return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063
1064		if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1065			return -EIO;
 
 
 
 
 
1066	}
1067
1068	host->ios.signal_voltage = signal_voltage;
 
 
 
 
 
 
 
 
1069
1070	if (host->ops->start_signal_voltage_switch)
1071		err = host->ops->start_signal_voltage_switch(host, &host->ios);
 
 
 
 
1072
1073	return err;
1074}
1075
1076/*
1077 * Select timing parameters for host.
1078 */
1079void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1080{
1081	mmc_host_clk_hold(host);
1082	host->ios.timing = timing;
1083	mmc_set_ios(host);
1084	mmc_host_clk_release(host);
1085}
1086
1087/*
1088 * Select appropriate driver type for host.
1089 */
1090void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1091{
1092	mmc_host_clk_hold(host);
1093	host->ios.drv_type = drv_type;
1094	mmc_set_ios(host);
1095	mmc_host_clk_release(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1096}
1097
1098/*
1099 * Apply power to the MMC stack.  This is a two-stage process.
1100 * First, we enable power to the card without the clock running.
1101 * We then wait a bit for the power to stabilise.  Finally,
1102 * enable the bus drivers and clock to the card.
1103 *
1104 * We must _NOT_ enable the clock prior to power stablising.
1105 *
1106 * If a host does all the power sequencing itself, ignore the
1107 * initial MMC_POWER_UP stage.
1108 */
1109static void mmc_power_up(struct mmc_host *host)
1110{
1111	int bit;
 
1112
1113	mmc_host_clk_hold(host);
1114
1115	/* If ocr is set, we use it */
1116	if (host->ocr)
1117		bit = ffs(host->ocr) - 1;
1118	else
1119		bit = fls(host->ocr_avail) - 1;
1120
1121	host->ios.vdd = bit;
1122	if (mmc_host_is_spi(host)) {
1123		host->ios.chip_select = MMC_CS_HIGH;
1124		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1125	} else {
1126		host->ios.chip_select = MMC_CS_DONTCARE;
1127		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1128	}
1129	host->ios.power_mode = MMC_POWER_UP;
1130	host->ios.bus_width = MMC_BUS_WIDTH_1;
1131	host->ios.timing = MMC_TIMING_LEGACY;
1132	mmc_set_ios(host);
1133
1134	/*
1135	 * This delay should be sufficient to allow the power supply
1136	 * to reach the minimum voltage.
1137	 */
1138	mmc_delay(10);
 
 
1139
1140	host->ios.clock = host->f_init;
1141
1142	host->ios.power_mode = MMC_POWER_ON;
1143	mmc_set_ios(host);
1144
1145	/*
1146	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1147	 * time required to reach a stable voltage.
1148	 */
1149	mmc_delay(10);
1150
1151	mmc_host_clk_release(host);
1152}
1153
1154static void mmc_power_off(struct mmc_host *host)
1155{
1156	mmc_host_clk_hold(host);
 
 
 
1157
1158	host->ios.clock = 0;
1159	host->ios.vdd = 0;
1160
 
 
 
 
1161	/*
1162	 * Reset ocr mask to be the highest possible voltage supported for
1163	 * this mmc host. This value will be used at next power up.
 
1164	 */
1165	host->ocr = 1 << (fls(host->ocr_avail) - 1);
1166
1167	if (!mmc_host_is_spi(host)) {
1168		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1169		host->ios.chip_select = MMC_CS_DONTCARE;
1170	}
1171	host->ios.power_mode = MMC_POWER_OFF;
1172	host->ios.bus_width = MMC_BUS_WIDTH_1;
1173	host->ios.timing = MMC_TIMING_LEGACY;
1174	mmc_set_ios(host);
1175
1176	mmc_host_clk_release(host);
1177}
1178
1179/*
1180 * Cleanup when the last reference to the bus operator is dropped.
1181 */
1182static void __mmc_release_bus(struct mmc_host *host)
1183{
1184	BUG_ON(!host);
1185	BUG_ON(host->bus_refs);
1186	BUG_ON(!host->bus_dead);
1187
1188	host->bus_ops = NULL;
1189}
1190
1191/*
1192 * Increase reference count of bus operator
1193 */
1194static inline void mmc_bus_get(struct mmc_host *host)
1195{
1196	unsigned long flags;
1197
1198	spin_lock_irqsave(&host->lock, flags);
1199	host->bus_refs++;
1200	spin_unlock_irqrestore(&host->lock, flags);
1201}
1202
1203/*
1204 * Decrease reference count of bus operator and free it if
1205 * it is the last reference.
1206 */
1207static inline void mmc_bus_put(struct mmc_host *host)
1208{
1209	unsigned long flags;
1210
1211	spin_lock_irqsave(&host->lock, flags);
1212	host->bus_refs--;
1213	if ((host->bus_refs == 0) && host->bus_ops)
1214		__mmc_release_bus(host);
1215	spin_unlock_irqrestore(&host->lock, flags);
1216}
1217
1218/*
1219 * Assign a mmc bus handler to a host. Only one bus handler may control a
1220 * host at any given time.
1221 */
1222void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1223{
1224	unsigned long flags;
1225
1226	BUG_ON(!host);
1227	BUG_ON(!ops);
1228
1229	WARN_ON(!host->claimed);
1230
1231	spin_lock_irqsave(&host->lock, flags);
1232
1233	BUG_ON(host->bus_ops);
1234	BUG_ON(host->bus_refs);
1235
1236	host->bus_ops = ops;
1237	host->bus_refs = 1;
1238	host->bus_dead = 0;
1239
1240	spin_unlock_irqrestore(&host->lock, flags);
1241}
1242
1243/*
1244 * Remove the current bus handler from a host. Assumes that there are
1245 * no interesting cards left, so the bus is powered down.
1246 */
1247void mmc_detach_bus(struct mmc_host *host)
1248{
1249	unsigned long flags;
 
1250
1251	BUG_ON(!host);
 
 
 
 
 
 
 
 
1252
1253	WARN_ON(!host->claimed);
1254	WARN_ON(!host->bus_ops);
1255
1256	spin_lock_irqsave(&host->lock, flags);
1257
1258	host->bus_dead = 1;
1259
1260	spin_unlock_irqrestore(&host->lock, flags);
1261
1262	mmc_power_off(host);
1263
1264	mmc_bus_put(host);
1265}
1266
1267/**
1268 *	mmc_detect_change - process change of state on a MMC socket
1269 *	@host: host which changed state.
1270 *	@delay: optional delay to wait before detection (jiffies)
1271 *
1272 *	MMC drivers should call this when they detect a card has been
1273 *	inserted or removed. The MMC layer will confirm that any
1274 *	present card is still functional, and initialize any newly
1275 *	inserted.
1276 */
1277void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1278{
1279#ifdef CONFIG_MMC_DEBUG
1280	unsigned long flags;
1281	spin_lock_irqsave(&host->lock, flags);
1282	WARN_ON(host->removed);
1283	spin_unlock_irqrestore(&host->lock, flags);
1284#endif
1285
1286	mmc_schedule_delayed_work(&host->detect, delay);
1287}
1288
1289EXPORT_SYMBOL(mmc_detect_change);
1290
1291void mmc_init_erase(struct mmc_card *card)
1292{
1293	unsigned int sz;
1294
1295	if (is_power_of_2(card->erase_size))
1296		card->erase_shift = ffs(card->erase_size) - 1;
1297	else
1298		card->erase_shift = 0;
1299
1300	/*
1301	 * It is possible to erase an arbitrarily large area of an SD or MMC
1302	 * card.  That is not desirable because it can take a long time
1303	 * (minutes) potentially delaying more important I/O, and also the
1304	 * timeout calculations become increasingly hugely over-estimated.
1305	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1306	 * to that size and alignment.
1307	 *
1308	 * For SD cards that define Allocation Unit size, limit erases to one
1309	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1310	 * Erase Size, whether it is switched on or not, limit to that size.
1311	 * Otherwise just have a stab at a good value.  For modern cards it
1312	 * will end up being 4MiB.  Note that if the value is too small, it
1313	 * can end up taking longer to erase.
1314	 */
1315	if (mmc_card_sd(card) && card->ssr.au) {
1316		card->pref_erase = card->ssr.au;
1317		card->erase_shift = ffs(card->ssr.au) - 1;
1318	} else if (card->ext_csd.hc_erase_size) {
1319		card->pref_erase = card->ext_csd.hc_erase_size;
1320	} else {
1321		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1322		if (sz < 128)
1323			card->pref_erase = 512 * 1024 / 512;
1324		else if (sz < 512)
1325			card->pref_erase = 1024 * 1024 / 512;
1326		else if (sz < 1024)
1327			card->pref_erase = 2 * 1024 * 1024 / 512;
1328		else
1329			card->pref_erase = 4 * 1024 * 1024 / 512;
1330		if (card->pref_erase < card->erase_size)
1331			card->pref_erase = card->erase_size;
1332		else {
1333			sz = card->pref_erase % card->erase_size;
1334			if (sz)
1335				card->pref_erase += card->erase_size - sz;
1336		}
1337	}
 
 
 
 
 
 
1338}
1339
1340static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1341				          unsigned int arg, unsigned int qty)
1342{
1343	unsigned int erase_timeout;
1344
1345	if (card->ext_csd.erase_group_def & 1) {
 
 
 
1346		/* High Capacity Erase Group Size uses HC timeouts */
1347		if (arg == MMC_TRIM_ARG)
1348			erase_timeout = card->ext_csd.trim_timeout;
1349		else
1350			erase_timeout = card->ext_csd.hc_erase_timeout;
1351	} else {
1352		/* CSD Erase Group Size uses write timeout */
1353		unsigned int mult = (10 << card->csd.r2w_factor);
1354		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1355		unsigned int timeout_us;
1356
1357		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1358		if (card->csd.tacc_ns < 1000000)
1359			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1360		else
1361			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1362
1363		/*
1364		 * ios.clock is only a target.  The real clock rate might be
1365		 * less but not that much less, so fudge it by multiplying by 2.
1366		 */
1367		timeout_clks <<= 1;
1368		timeout_us += (timeout_clks * 1000) /
1369			      (mmc_host_clk_rate(card->host) / 1000);
1370
1371		erase_timeout = timeout_us / 1000;
1372
1373		/*
1374		 * Theoretically, the calculation could underflow so round up
1375		 * to 1ms in that case.
1376		 */
1377		if (!erase_timeout)
1378			erase_timeout = 1;
1379	}
1380
1381	/* Multiplier for secure operations */
1382	if (arg & MMC_SECURE_ARGS) {
1383		if (arg == MMC_SECURE_ERASE_ARG)
1384			erase_timeout *= card->ext_csd.sec_erase_mult;
1385		else
1386			erase_timeout *= card->ext_csd.sec_trim_mult;
1387	}
1388
1389	erase_timeout *= qty;
1390
1391	/*
1392	 * Ensure at least a 1 second timeout for SPI as per
1393	 * 'mmc_set_data_timeout()'
1394	 */
1395	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1396		erase_timeout = 1000;
1397
1398	return erase_timeout;
1399}
1400
1401static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1402					 unsigned int arg,
1403					 unsigned int qty)
1404{
1405	unsigned int erase_timeout;
1406
 
 
 
 
 
 
1407	if (card->ssr.erase_timeout) {
1408		/* Erase timeout specified in SD Status Register (SSR) */
1409		erase_timeout = card->ssr.erase_timeout * qty +
1410				card->ssr.erase_offset;
1411	} else {
1412		/*
1413		 * Erase timeout not specified in SD Status Register (SSR) so
1414		 * use 250ms per write block.
1415		 */
1416		erase_timeout = 250 * qty;
1417	}
1418
1419	/* Must not be less than 1 second */
1420	if (erase_timeout < 1000)
1421		erase_timeout = 1000;
1422
1423	return erase_timeout;
1424}
1425
1426static unsigned int mmc_erase_timeout(struct mmc_card *card,
1427				      unsigned int arg,
1428				      unsigned int qty)
1429{
1430	if (mmc_card_sd(card))
1431		return mmc_sd_erase_timeout(card, arg, qty);
1432	else
1433		return mmc_mmc_erase_timeout(card, arg, qty);
1434}
1435
1436static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1437			unsigned int to, unsigned int arg)
1438{
1439	struct mmc_command cmd = {0};
1440	unsigned int qty = 0;
 
1441	int err;
1442
 
 
1443	/*
1444	 * qty is used to calculate the erase timeout which depends on how many
1445	 * erase groups (or allocation units in SD terminology) are affected.
1446	 * We count erasing part of an erase group as one erase group.
1447	 * For SD, the allocation units are always a power of 2.  For MMC, the
1448	 * erase group size is almost certainly also power of 2, but it does not
1449	 * seem to insist on that in the JEDEC standard, so we fall back to
1450	 * division in that case.  SD may not specify an allocation unit size,
1451	 * in which case the timeout is based on the number of write blocks.
1452	 *
1453	 * Note that the timeout for secure trim 2 will only be correct if the
1454	 * number of erase groups specified is the same as the total of all
1455	 * preceding secure trim 1 commands.  Since the power may have been
1456	 * lost since the secure trim 1 commands occurred, it is generally
1457	 * impossible to calculate the secure trim 2 timeout correctly.
1458	 */
1459	if (card->erase_shift)
1460		qty += ((to >> card->erase_shift) -
1461			(from >> card->erase_shift)) + 1;
1462	else if (mmc_card_sd(card))
1463		qty += to - from + 1;
1464	else
1465		qty += ((to / card->erase_size) -
1466			(from / card->erase_size)) + 1;
1467
1468	if (!mmc_card_blockaddr(card)) {
1469		from <<= 9;
1470		to <<= 9;
1471	}
1472
1473	if (mmc_card_sd(card))
1474		cmd.opcode = SD_ERASE_WR_BLK_START;
1475	else
1476		cmd.opcode = MMC_ERASE_GROUP_START;
1477	cmd.arg = from;
1478	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1479	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1480	if (err) {
1481		printk(KERN_ERR "mmc_erase: group start error %d, "
1482		       "status %#x\n", err, cmd.resp[0]);
1483		err = -EINVAL;
1484		goto out;
1485	}
1486
1487	memset(&cmd, 0, sizeof(struct mmc_command));
1488	if (mmc_card_sd(card))
1489		cmd.opcode = SD_ERASE_WR_BLK_END;
1490	else
1491		cmd.opcode = MMC_ERASE_GROUP_END;
1492	cmd.arg = to;
1493	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1494	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1495	if (err) {
1496		printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n",
1497		       err, cmd.resp[0]);
1498		err = -EINVAL;
1499		goto out;
1500	}
1501
1502	memset(&cmd, 0, sizeof(struct mmc_command));
1503	cmd.opcode = MMC_ERASE;
1504	cmd.arg = arg;
1505	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1506	cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
 
1507	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1508	if (err) {
1509		printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n",
1510		       err, cmd.resp[0]);
1511		err = -EIO;
1512		goto out;
1513	}
1514
1515	if (mmc_host_is_spi(card->host))
1516		goto out;
1517
1518	do {
1519		memset(&cmd, 0, sizeof(struct mmc_command));
1520		cmd.opcode = MMC_SEND_STATUS;
1521		cmd.arg = card->rca << 16;
1522		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1523		/* Do not retry else we can't see errors */
1524		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1525		if (err || (cmd.resp[0] & 0xFDF92000)) {
1526			printk(KERN_ERR "error %d requesting status %#x\n",
1527				err, cmd.resp[0]);
1528			err = -EIO;
1529			goto out;
1530		}
1531	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1532		 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1533out:
 
1534	return err;
1535}
1536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537/**
1538 * mmc_erase - erase sectors.
1539 * @card: card to erase
1540 * @from: first sector to erase
1541 * @nr: number of sectors to erase
1542 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1543 *
1544 * Caller must claim host before calling this function.
1545 */
1546int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1547	      unsigned int arg)
1548{
1549	unsigned int rem, to = from + nr;
 
1550
1551	if (!(card->host->caps & MMC_CAP_ERASE) ||
1552	    !(card->csd.cmdclass & CCC_ERASE))
1553		return -EOPNOTSUPP;
1554
1555	if (!card->erase_size)
1556		return -EOPNOTSUPP;
1557
1558	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1559		return -EOPNOTSUPP;
1560
1561	if ((arg & MMC_SECURE_ARGS) &&
1562	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1563		return -EOPNOTSUPP;
1564
1565	if ((arg & MMC_TRIM_ARGS) &&
1566	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1567		return -EOPNOTSUPP;
1568
1569	if (arg == MMC_SECURE_ERASE_ARG) {
1570		if (from % card->erase_size || nr % card->erase_size)
1571			return -EINVAL;
1572	}
1573
1574	if (arg == MMC_ERASE_ARG) {
1575		rem = from % card->erase_size;
1576		if (rem) {
1577			rem = card->erase_size - rem;
1578			from += rem;
1579			if (nr > rem)
1580				nr -= rem;
1581			else
1582				return 0;
1583		}
1584		rem = nr % card->erase_size;
1585		if (rem)
1586			nr -= rem;
1587	}
1588
1589	if (nr == 0)
1590		return 0;
1591
1592	to = from + nr;
1593
1594	if (to <= from)
1595		return -EINVAL;
1596
1597	/* 'from' and 'to' are inclusive */
1598	to -= 1;
1599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1600	return mmc_do_erase(card, from, to, arg);
1601}
1602EXPORT_SYMBOL(mmc_erase);
1603
1604int mmc_can_erase(struct mmc_card *card)
1605{
1606	if ((card->host->caps & MMC_CAP_ERASE) &&
1607	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1608		return 1;
1609	return 0;
1610}
1611EXPORT_SYMBOL(mmc_can_erase);
1612
1613int mmc_can_trim(struct mmc_card *card)
1614{
1615	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
 
1616		return 1;
1617	return 0;
1618}
1619EXPORT_SYMBOL(mmc_can_trim);
1620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1621int mmc_can_secure_erase_trim(struct mmc_card *card)
1622{
1623	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
 
1624		return 1;
1625	return 0;
1626}
1627EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1628
1629int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1630			    unsigned int nr)
1631{
1632	if (!card->erase_size)
1633		return 0;
1634	if (from % card->erase_size || nr % card->erase_size)
1635		return 0;
1636	return 1;
1637}
1638EXPORT_SYMBOL(mmc_erase_group_aligned);
1639
1640static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1641					    unsigned int arg)
1642{
1643	struct mmc_host *host = card->host;
1644	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1645	unsigned int last_timeout = 0;
 
 
1646
1647	if (card->erase_shift)
1648		max_qty = UINT_MAX >> card->erase_shift;
1649	else if (mmc_card_sd(card))
 
1650		max_qty = UINT_MAX;
1651	else
 
1652		max_qty = UINT_MAX / card->erase_size;
 
 
1653
1654	/* Find the largest qty with an OK timeout */
 
 
 
 
 
 
 
 
 
 
 
 
1655	do {
1656		y = 0;
1657		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1658			timeout = mmc_erase_timeout(card, arg, qty + x);
1659			if (timeout > host->max_discard_to)
 
1660				break;
 
1661			if (timeout < last_timeout)
1662				break;
1663			last_timeout = timeout;
1664			y = x;
1665		}
1666		qty += y;
1667	} while (y);
1668
1669	if (!qty)
1670		return 0;
1671
 
 
 
 
 
 
 
 
 
 
1672	if (qty == 1)
1673		return 1;
 
 
1674
1675	/* Convert qty to sectors */
1676	if (card->erase_shift)
1677		max_discard = --qty << card->erase_shift;
1678	else if (mmc_card_sd(card))
1679		max_discard = qty;
1680	else
1681		max_discard = --qty * card->erase_size;
1682
1683	return max_discard;
1684}
1685
1686unsigned int mmc_calc_max_discard(struct mmc_card *card)
1687{
1688	struct mmc_host *host = card->host;
1689	unsigned int max_discard, max_trim;
1690
1691	if (!host->max_discard_to)
1692		return UINT_MAX;
1693
1694	/*
1695	 * Without erase_group_def set, MMC erase timeout depends on clock
1696	 * frequence which can change.  In that case, the best choice is
1697	 * just the preferred erase size.
1698	 */
1699	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1700		return card->pref_erase;
1701
1702	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1703	if (mmc_can_trim(card)) {
1704		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1705		if (max_trim < max_discard)
1706			max_discard = max_trim;
1707	} else if (max_discard < card->erase_size) {
1708		max_discard = 0;
1709	}
1710	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1711		 mmc_hostname(host), max_discard, host->max_discard_to);
 
1712	return max_discard;
1713}
1714EXPORT_SYMBOL(mmc_calc_max_discard);
1715
 
 
 
 
 
 
1716int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1717{
1718	struct mmc_command cmd = {0};
1719
1720	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
 
1721		return 0;
1722
1723	cmd.opcode = MMC_SET_BLOCKLEN;
1724	cmd.arg = blocklen;
1725	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1726	return mmc_wait_for_cmd(card->host, &cmd, 5);
1727}
1728EXPORT_SYMBOL(mmc_set_blocklen);
1729
1730static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1731{
1732	host->f_init = freq;
 
 
 
 
 
 
1733
1734#ifdef CONFIG_MMC_DEBUG
1735	pr_info("%s: %s: trying to init card at %u Hz\n",
1736		mmc_hostname(host), __func__, host->f_init);
1737#endif
1738	mmc_power_up(host);
1739
1740	/*
1741	 * sdio_reset sends CMD52 to reset card.  Since we do not know
1742	 * if the card is being re-initialized, just send it.  CMD52
1743	 * should be ignored by SD/eMMC cards.
1744	 */
1745	sdio_reset(host);
1746	mmc_go_idle(host);
1747
1748	mmc_send_if_cond(host, host->ocr_avail);
 
1749
1750	/* Order's important: probe SDIO, then SD, then MMC */
1751	if (!mmc_attach_sdio(host))
1752		return 0;
1753	if (!mmc_attach_sd(host))
1754		return 0;
1755	if (!mmc_attach_mmc(host))
1756		return 0;
1757
1758	mmc_power_off(host);
1759	return -EIO;
1760}
 
1761
1762void mmc_rescan(struct work_struct *work)
1763{
1764	static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
1765	struct mmc_host *host =
1766		container_of(work, struct mmc_host, detect.work);
1767	int i;
1768
1769	if (host->rescan_disable)
1770		return;
1771
1772	mmc_bus_get(host);
1773
1774	/*
1775	 * if there is a _removable_ card registered, check whether it is
1776	 * still present
1777	 */
1778	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
1779	    && !(host->caps & MMC_CAP_NONREMOVABLE))
1780		host->bus_ops->detect(host);
1781
1782	/*
1783	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
1784	 * the card is no longer present.
 
 
1785	 */
1786	mmc_bus_put(host);
1787	mmc_bus_get(host);
1788
1789	/* if there still is a card present, stop here */
1790	if (host->bus_ops != NULL) {
1791		mmc_bus_put(host);
1792		goto out;
1793	}
1794
1795	/*
1796	 * Only we can add a new handler, so it's safe to
1797	 * release the lock here.
1798	 */
1799	mmc_bus_put(host);
1800
1801	if (host->ops->get_cd && host->ops->get_cd(host) == 0)
1802		goto out;
1803
1804	mmc_claim_host(host);
1805	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
1806		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
1807			break;
1808		if (freqs[i] <= host->f_min)
1809			break;
1810	}
1811	mmc_release_host(host);
1812
1813 out:
1814	if (host->caps & MMC_CAP_NEEDS_POLL)
1815		mmc_schedule_delayed_work(&host->detect, HZ);
1816}
 
 
 
 
 
 
 
 
1817
1818void mmc_start_host(struct mmc_host *host)
1819{
1820	mmc_power_off(host);
1821	mmc_detect_change(host, 0);
1822}
1823
1824void mmc_stop_host(struct mmc_host *host)
1825{
1826#ifdef CONFIG_MMC_DEBUG
1827	unsigned long flags;
1828	spin_lock_irqsave(&host->lock, flags);
1829	host->removed = 1;
1830	spin_unlock_irqrestore(&host->lock, flags);
1831#endif
1832
1833	if (host->caps & MMC_CAP_DISABLE)
1834		cancel_delayed_work(&host->disable);
1835	cancel_delayed_work_sync(&host->detect);
1836	mmc_flush_scheduled_work();
1837
1838	/* clear pm flags now and let card drivers set them as needed */
1839	host->pm_flags = 0;
1840
1841	mmc_bus_get(host);
1842	if (host->bus_ops && !host->bus_dead) {
1843		if (host->bus_ops->remove)
1844			host->bus_ops->remove(host);
1845
1846		mmc_claim_host(host);
1847		mmc_detach_bus(host);
1848		mmc_release_host(host);
1849		mmc_bus_put(host);
1850		return;
 
 
 
 
 
1851	}
1852	mmc_bus_put(host);
1853
1854	BUG_ON(host->card);
1855
1856	mmc_power_off(host);
1857}
1858
1859int mmc_power_save_host(struct mmc_host *host)
1860{
1861	int ret = 0;
1862
1863#ifdef CONFIG_MMC_DEBUG
1864	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
1865#endif
1866
1867	mmc_bus_get(host);
1868
1869	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1870		mmc_bus_put(host);
1871		return -EINVAL;
1872	}
1873
1874	if (host->bus_ops->power_save)
1875		ret = host->bus_ops->power_save(host);
1876
1877	mmc_bus_put(host);
1878
1879	mmc_power_off(host);
1880
1881	return ret;
1882}
1883EXPORT_SYMBOL(mmc_power_save_host);
1884
1885int mmc_power_restore_host(struct mmc_host *host)
1886{
 
1887	int ret;
1888
1889#ifdef CONFIG_MMC_DEBUG
1890	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
1891#endif
1892
1893	mmc_bus_get(host);
 
1894
1895	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1896		mmc_bus_put(host);
1897		return -EINVAL;
1898	}
1899
1900	mmc_power_up(host);
1901	ret = host->bus_ops->power_restore(host);
 
 
 
 
 
1902
1903	mmc_bus_put(host);
 
 
 
 
 
 
 
 
 
 
 
1904
1905	return ret;
1906}
1907EXPORT_SYMBOL(mmc_power_restore_host);
1908
1909int mmc_card_awake(struct mmc_host *host)
1910{
1911	int err = -ENOSYS;
1912
1913	mmc_bus_get(host);
 
 
 
 
 
 
 
 
1914
1915	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1916		err = host->bus_ops->awake(host);
 
 
 
 
 
 
 
 
 
 
 
1917
1918	mmc_bus_put(host);
 
1919
1920	return err;
1921}
1922EXPORT_SYMBOL(mmc_card_awake);
1923
1924int mmc_card_sleep(struct mmc_host *host)
1925{
1926	int err = -ENOSYS;
 
 
1927
1928	mmc_bus_get(host);
 
1929
1930	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1931		err = host->bus_ops->sleep(host);
 
 
1932
1933	mmc_bus_put(host);
 
 
 
 
 
1934
1935	return err;
1936}
1937EXPORT_SYMBOL(mmc_card_sleep);
1938
1939int mmc_card_can_sleep(struct mmc_host *host)
1940{
1941	struct mmc_card *card = host->card;
1942
1943	if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
1944		return 1;
1945	return 0;
1946}
1947EXPORT_SYMBOL(mmc_card_can_sleep);
1948
1949#ifdef CONFIG_PM
 
 
 
 
 
 
1950
1951/**
1952 *	mmc_suspend_host - suspend a host
1953 *	@host: mmc host
1954 */
1955int mmc_suspend_host(struct mmc_host *host)
1956{
1957	int err = 0;
1958
1959	if (host->caps & MMC_CAP_DISABLE)
1960		cancel_delayed_work(&host->disable);
1961	cancel_delayed_work(&host->detect);
1962	mmc_flush_scheduled_work();
1963
1964	mmc_bus_get(host);
1965	if (host->bus_ops && !host->bus_dead) {
1966		if (host->bus_ops->suspend)
1967			err = host->bus_ops->suspend(host);
1968		if (err == -ENOSYS || !host->bus_ops->resume) {
1969			/*
1970			 * We simply "remove" the card in this case.
1971			 * It will be redetected on resume.
1972			 */
1973			if (host->bus_ops->remove)
1974				host->bus_ops->remove(host);
1975			mmc_claim_host(host);
1976			mmc_detach_bus(host);
1977			mmc_release_host(host);
1978			host->pm_flags = 0;
1979			err = 0;
1980		}
 
 
 
 
1981	}
1982	mmc_bus_put(host);
1983
1984	if (!err && !mmc_card_keep_power(host))
1985		mmc_power_off(host);
 
 
 
 
 
 
 
 
 
1986
1987	return err;
 
 
1988}
1989
1990EXPORT_SYMBOL(mmc_suspend_host);
1991
1992/**
1993 *	mmc_resume_host - resume a previously suspended host
1994 *	@host: mmc host
1995 */
1996int mmc_resume_host(struct mmc_host *host)
1997{
1998	int err = 0;
 
1999
2000	mmc_bus_get(host);
2001	if (host->bus_ops && !host->bus_dead) {
2002		if (!mmc_card_keep_power(host)) {
2003			mmc_power_up(host);
2004			mmc_select_voltage(host, host->ocr);
2005			/*
2006			 * Tell runtime PM core we just powered up the card,
2007			 * since it still believes the card is powered off.
2008			 * Note that currently runtime PM is only enabled
2009			 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2010			 */
2011			if (mmc_card_sdio(host->card) &&
2012			    (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2013				pm_runtime_disable(&host->card->dev);
2014				pm_runtime_set_active(&host->card->dev);
2015				pm_runtime_enable(&host->card->dev);
2016			}
2017		}
2018		BUG_ON(!host->bus_ops->resume);
2019		err = host->bus_ops->resume(host);
2020		if (err) {
2021			printk(KERN_WARNING "%s: error %d during resume "
2022					    "(card was removed?)\n",
2023					    mmc_hostname(host), err);
2024			err = 0;
2025		}
2026	}
2027	host->pm_flags &= ~MMC_PM_KEEP_POWER;
2028	mmc_bus_put(host);
2029
2030	return err;
 
2031}
2032EXPORT_SYMBOL(mmc_resume_host);
2033
2034/* Do the card removal on suspend if card is assumed removeable
2035 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2036   to sync the card.
2037*/
2038int mmc_pm_notify(struct notifier_block *notify_block,
2039					unsigned long mode, void *unused)
2040{
2041	struct mmc_host *host = container_of(
2042		notify_block, struct mmc_host, pm_notify);
2043	unsigned long flags;
 
2044
 
 
 
2045
2046	switch (mode) {
2047	case PM_HIBERNATION_PREPARE:
2048	case PM_SUSPEND_PREPARE:
2049
2050		spin_lock_irqsave(&host->lock, flags);
2051		host->rescan_disable = 1;
2052		spin_unlock_irqrestore(&host->lock, flags);
2053		cancel_delayed_work_sync(&host->detect);
2054
2055		if (!host->bus_ops || host->bus_ops->suspend)
2056			break;
2057
 
 
 
2058		mmc_claim_host(host);
2059
2060		if (host->bus_ops->remove)
2061			host->bus_ops->remove(host);
2062
2063		mmc_detach_bus(host);
 
2064		mmc_release_host(host);
2065		host->pm_flags = 0;
2066		break;
2067
2068	case PM_POST_SUSPEND:
2069	case PM_POST_HIBERNATION:
2070	case PM_POST_RESTORE:
2071
2072		spin_lock_irqsave(&host->lock, flags);
2073		host->rescan_disable = 0;
2074		spin_unlock_irqrestore(&host->lock, flags);
2075		mmc_detect_change(host, 0);
2076
2077	}
2078
2079	return 0;
 
 
2080}
2081#endif
2082
2083static int __init mmc_init(void)
2084{
2085	int ret;
2086
2087	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2088	if (!workqueue)
2089		return -ENOMEM;
2090
2091	ret = mmc_register_bus();
2092	if (ret)
2093		goto destroy_workqueue;
2094
2095	ret = mmc_register_host_class();
2096	if (ret)
2097		goto unregister_bus;
2098
2099	ret = sdio_register_bus();
2100	if (ret)
2101		goto unregister_host_class;
2102
2103	return 0;
2104
2105unregister_host_class:
2106	mmc_unregister_host_class();
2107unregister_bus:
2108	mmc_unregister_bus();
2109destroy_workqueue:
2110	destroy_workqueue(workqueue);
2111
2112	return ret;
2113}
2114
2115static void __exit mmc_exit(void)
2116{
2117	sdio_unregister_bus();
2118	mmc_unregister_host_class();
2119	mmc_unregister_bus();
2120	destroy_workqueue(workqueue);
2121}
2122
2123subsys_initcall(mmc_init);
2124module_exit(mmc_exit);
2125
2126MODULE_LICENSE("GPL");