Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1/*
  2 * Copyright (C) ST-Ericsson SA 2010
  3 *
  4 * License Terms: GNU General Public License v2
  5 * Author: Arun R Murthy <arun.murthy@stericsson.com>
  6 * Author: Daniel Willerud <daniel.willerud@stericsson.com>
  7 * Author: Johan Palsson <johan.palsson@stericsson.com>
  8 */
  9#include <linux/init.h>
 10#include <linux/module.h>
 11#include <linux/device.h>
 12#include <linux/interrupt.h>
 13#include <linux/spinlock.h>
 14#include <linux/delay.h>
 15#include <linux/platform_device.h>
 16#include <linux/completion.h>
 17#include <linux/regulator/consumer.h>
 18#include <linux/err.h>
 19#include <linux/slab.h>
 20#include <linux/list.h>
 21#include <linux/mfd/ab8500.h>
 22#include <linux/mfd/abx500.h>
 23#include <linux/mfd/ab8500/gpadc.h>
 24
 25/*
 26 * GPADC register offsets
 27 * Bank : 0x0A
 28 */
 29#define AB8500_GPADC_CTRL1_REG		0x00
 30#define AB8500_GPADC_CTRL2_REG		0x01
 31#define AB8500_GPADC_CTRL3_REG		0x02
 32#define AB8500_GPADC_AUTO_TIMER_REG	0x03
 33#define AB8500_GPADC_STAT_REG		0x04
 34#define AB8500_GPADC_MANDATAL_REG	0x05
 35#define AB8500_GPADC_MANDATAH_REG	0x06
 36#define AB8500_GPADC_AUTODATAL_REG	0x07
 37#define AB8500_GPADC_AUTODATAH_REG	0x08
 38#define AB8500_GPADC_MUX_CTRL_REG	0x09
 39
 40/*
 41 * OTP register offsets
 42 * Bank : 0x15
 43 */
 44#define AB8500_GPADC_CAL_1		0x0F
 45#define AB8500_GPADC_CAL_2		0x10
 46#define AB8500_GPADC_CAL_3		0x11
 47#define AB8500_GPADC_CAL_4		0x12
 48#define AB8500_GPADC_CAL_5		0x13
 49#define AB8500_GPADC_CAL_6		0x14
 50#define AB8500_GPADC_CAL_7		0x15
 51
 52/* gpadc constants */
 53#define EN_VINTCORE12			0x04
 54#define EN_VTVOUT			0x02
 55#define EN_GPADC			0x01
 56#define DIS_GPADC			0x00
 57#define SW_AVG_16			0x60
 58#define ADC_SW_CONV			0x04
 59#define EN_ICHAR			0x80
 60#define BTEMP_PULL_UP			0x08
 61#define EN_BUF				0x40
 62#define DIS_ZERO			0x00
 63#define GPADC_BUSY			0x01
 64
 65/* GPADC constants from AB8500 spec, UM0836 */
 66#define ADC_RESOLUTION			1024
 67#define ADC_CH_BTEMP_MIN		0
 68#define ADC_CH_BTEMP_MAX		1350
 69#define ADC_CH_DIETEMP_MIN		0
 70#define ADC_CH_DIETEMP_MAX		1350
 71#define ADC_CH_CHG_V_MIN		0
 72#define ADC_CH_CHG_V_MAX		20030
 73#define ADC_CH_ACCDET2_MIN		0
 74#define ADC_CH_ACCDET2_MAX		2500
 75#define ADC_CH_VBAT_MIN			2300
 76#define ADC_CH_VBAT_MAX			4800
 77#define ADC_CH_CHG_I_MIN		0
 78#define ADC_CH_CHG_I_MAX		1500
 79#define ADC_CH_BKBAT_MIN		0
 80#define ADC_CH_BKBAT_MAX		3200
 81
 82/* This is used to not lose precision when dividing to get gain and offset */
 83#define CALIB_SCALE			1000
 84
 85enum cal_channels {
 86	ADC_INPUT_VMAIN = 0,
 87	ADC_INPUT_BTEMP,
 88	ADC_INPUT_VBAT,
 89	NBR_CAL_INPUTS,
 90};
 91
 92/**
 93 * struct adc_cal_data - Table for storing gain and offset for the calibrated
 94 * ADC channels
 95 * @gain:		Gain of the ADC channel
 96 * @offset:		Offset of the ADC channel
 97 */
 98struct adc_cal_data {
 99	u64 gain;
100	u64 offset;
101};
102
103/**
104 * struct ab8500_gpadc - AB8500 GPADC device information
105 * @chip_id			ABB chip id
106 * @dev:			pointer to the struct device
107 * @node:			a list of AB8500 GPADCs, hence prepared for
108				reentrance
109 * @ab8500_gpadc_complete:	pointer to the struct completion, to indicate
110 *				the completion of gpadc conversion
111 * @ab8500_gpadc_lock:		structure of type mutex
112 * @regu:			pointer to the struct regulator
113 * @irq:			interrupt number that is used by gpadc
114 * @cal_data			array of ADC calibration data structs
115 */
116struct ab8500_gpadc {
117	u8 chip_id;
118	struct device *dev;
119	struct list_head node;
120	struct completion ab8500_gpadc_complete;
121	struct mutex ab8500_gpadc_lock;
122	struct regulator *regu;
123	int irq;
124	struct adc_cal_data cal_data[NBR_CAL_INPUTS];
125};
126
127static LIST_HEAD(ab8500_gpadc_list);
128
129/**
130 * ab8500_gpadc_get() - returns a reference to the primary AB8500 GPADC
131 * (i.e. the first GPADC in the instance list)
132 */
133struct ab8500_gpadc *ab8500_gpadc_get(char *name)
134{
135	struct ab8500_gpadc *gpadc;
136
137	list_for_each_entry(gpadc, &ab8500_gpadc_list, node) {
138		if (!strcmp(name, dev_name(gpadc->dev)))
139		    return gpadc;
140	}
141
142	return ERR_PTR(-ENOENT);
143}
144EXPORT_SYMBOL(ab8500_gpadc_get);
145
146static int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc, u8 input,
147	int ad_value)
148{
149	int res;
150
151	switch (input) {
152	case MAIN_CHARGER_V:
153		/* For some reason we don't have calibrated data */
154		if (!gpadc->cal_data[ADC_INPUT_VMAIN].gain) {
155			res = ADC_CH_CHG_V_MIN + (ADC_CH_CHG_V_MAX -
156				ADC_CH_CHG_V_MIN) * ad_value /
157				ADC_RESOLUTION;
158			break;
159		}
160		/* Here we can use the calibrated data */
161		res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VMAIN].gain +
162			gpadc->cal_data[ADC_INPUT_VMAIN].offset) / CALIB_SCALE;
163		break;
164
165	case BAT_CTRL:
166	case BTEMP_BALL:
167	case ACC_DETECT1:
168	case ADC_AUX1:
169	case ADC_AUX2:
170		/* For some reason we don't have calibrated data */
171		if (!gpadc->cal_data[ADC_INPUT_BTEMP].gain) {
172			res = ADC_CH_BTEMP_MIN + (ADC_CH_BTEMP_MAX -
173				ADC_CH_BTEMP_MIN) * ad_value /
174				ADC_RESOLUTION;
175			break;
176		}
177		/* Here we can use the calibrated data */
178		res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_BTEMP].gain +
179			gpadc->cal_data[ADC_INPUT_BTEMP].offset) / CALIB_SCALE;
180		break;
181
182	case MAIN_BAT_V:
183		/* For some reason we don't have calibrated data */
184		if (!gpadc->cal_data[ADC_INPUT_VBAT].gain) {
185			res = ADC_CH_VBAT_MIN + (ADC_CH_VBAT_MAX -
186				ADC_CH_VBAT_MIN) * ad_value /
187				ADC_RESOLUTION;
188			break;
189		}
190		/* Here we can use the calibrated data */
191		res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VBAT].gain +
192			gpadc->cal_data[ADC_INPUT_VBAT].offset) / CALIB_SCALE;
193		break;
194
195	case DIE_TEMP:
196		res = ADC_CH_DIETEMP_MIN +
197			(ADC_CH_DIETEMP_MAX - ADC_CH_DIETEMP_MIN) * ad_value /
198			ADC_RESOLUTION;
199		break;
200
201	case ACC_DETECT2:
202		res = ADC_CH_ACCDET2_MIN +
203			(ADC_CH_ACCDET2_MAX - ADC_CH_ACCDET2_MIN) * ad_value /
204			ADC_RESOLUTION;
205		break;
206
207	case VBUS_V:
208		res = ADC_CH_CHG_V_MIN +
209			(ADC_CH_CHG_V_MAX - ADC_CH_CHG_V_MIN) * ad_value /
210			ADC_RESOLUTION;
211		break;
212
213	case MAIN_CHARGER_C:
214	case USB_CHARGER_C:
215		res = ADC_CH_CHG_I_MIN +
216			(ADC_CH_CHG_I_MAX - ADC_CH_CHG_I_MIN) * ad_value /
217			ADC_RESOLUTION;
218		break;
219
220	case BK_BAT_V:
221		res = ADC_CH_BKBAT_MIN +
222			(ADC_CH_BKBAT_MAX - ADC_CH_BKBAT_MIN) * ad_value /
223			ADC_RESOLUTION;
224		break;
225
226	default:
227		dev_err(gpadc->dev,
228			"unknown channel, not possible to convert\n");
229		res = -EINVAL;
230		break;
231
232	}
233	return res;
234}
235
236/**
237 * ab8500_gpadc_convert() - gpadc conversion
238 * @input:	analog input to be converted to digital data
239 *
240 * This function converts the selected analog i/p to digital
241 * data.
242 */
243int ab8500_gpadc_convert(struct ab8500_gpadc *gpadc, u8 input)
244{
245	int ret;
246	u16 data = 0;
247	int looplimit = 0;
248	u8 val, low_data, high_data;
249
250	if (!gpadc)
251		return -ENODEV;
252
253	mutex_lock(&gpadc->ab8500_gpadc_lock);
254	/* Enable VTVout LDO this is required for GPADC */
255	regulator_enable(gpadc->regu);
256
257	/* Check if ADC is not busy, lock and proceed */
258	do {
259		ret = abx500_get_register_interruptible(gpadc->dev,
260			AB8500_GPADC, AB8500_GPADC_STAT_REG, &val);
261		if (ret < 0)
262			goto out;
263		if (!(val & GPADC_BUSY))
264			break;
265		msleep(10);
266	} while (++looplimit < 10);
267	if (looplimit >= 10 && (val & GPADC_BUSY)) {
268		dev_err(gpadc->dev, "gpadc_conversion: GPADC busy");
269		ret = -EINVAL;
270		goto out;
271	}
272
273	/* Enable GPADC */
274	ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
275		AB8500_GPADC, AB8500_GPADC_CTRL1_REG, EN_GPADC, EN_GPADC);
276	if (ret < 0) {
277		dev_err(gpadc->dev, "gpadc_conversion: enable gpadc failed\n");
278		goto out;
279	}
280
281	/* Select the input source and set average samples to 16 */
282	ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
283		AB8500_GPADC_CTRL2_REG, (input | SW_AVG_16));
284	if (ret < 0) {
285		dev_err(gpadc->dev,
286			"gpadc_conversion: set avg samples failed\n");
287		goto out;
288	}
289
290	/*
291	 * Enable ADC, buffering, select rising edge and enable ADC path
292	 * charging current sense if it needed, ABB 3.0 needs some special
293	 * treatment too.
294	 */
295	switch (input) {
296	case MAIN_CHARGER_C:
297	case USB_CHARGER_C:
298		ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
299			AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
300			EN_BUF | EN_ICHAR,
301			EN_BUF | EN_ICHAR);
302		break;
303	case BTEMP_BALL:
304		if (gpadc->chip_id >= AB8500_CUT3P0) {
305			/* Turn on btemp pull-up on ABB 3.0 */
306			ret = abx500_mask_and_set_register_interruptible(
307				gpadc->dev,
308				AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
309				EN_BUF | BTEMP_PULL_UP,
310				EN_BUF | BTEMP_PULL_UP);
311
312		 /*
313		  * Delay might be needed for ABB8500 cut 3.0, if not, remove
314		  * when hardware will be availible
315		  */
316			msleep(1);
317			break;
318		}
319		/* Intentional fallthrough */
320	default:
321		ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
322			AB8500_GPADC, AB8500_GPADC_CTRL1_REG, EN_BUF, EN_BUF);
323		break;
324	}
325	if (ret < 0) {
326		dev_err(gpadc->dev,
327			"gpadc_conversion: select falling edge failed\n");
328		goto out;
329	}
330
331	ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
332		AB8500_GPADC, AB8500_GPADC_CTRL1_REG, ADC_SW_CONV, ADC_SW_CONV);
333	if (ret < 0) {
334		dev_err(gpadc->dev,
335			"gpadc_conversion: start s/w conversion failed\n");
336		goto out;
337	}
338	/* wait for completion of conversion */
339	if (!wait_for_completion_timeout(&gpadc->ab8500_gpadc_complete, 2*HZ)) {
340		dev_err(gpadc->dev,
341			"timeout: didn't receive GPADC conversion interrupt\n");
342		ret = -EINVAL;
343		goto out;
344	}
345
346	/* Read the converted RAW data */
347	ret = abx500_get_register_interruptible(gpadc->dev, AB8500_GPADC,
348		AB8500_GPADC_MANDATAL_REG, &low_data);
349	if (ret < 0) {
350		dev_err(gpadc->dev, "gpadc_conversion: read low data failed\n");
351		goto out;
352	}
353
354	ret = abx500_get_register_interruptible(gpadc->dev, AB8500_GPADC,
355		AB8500_GPADC_MANDATAH_REG, &high_data);
356	if (ret < 0) {
357		dev_err(gpadc->dev,
358			"gpadc_conversion: read high data failed\n");
359		goto out;
360	}
361
362	data = (high_data << 8) | low_data;
363	/* Disable GPADC */
364	ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
365		AB8500_GPADC_CTRL1_REG, DIS_GPADC);
366	if (ret < 0) {
367		dev_err(gpadc->dev, "gpadc_conversion: disable gpadc failed\n");
368		goto out;
369	}
370	/* Disable VTVout LDO this is required for GPADC */
371	regulator_disable(gpadc->regu);
372	mutex_unlock(&gpadc->ab8500_gpadc_lock);
373	ret = ab8500_gpadc_ad_to_voltage(gpadc, input, data);
374	return ret;
375
376out:
377	/*
378	 * It has shown to be needed to turn off the GPADC if an error occurs,
379	 * otherwise we might have problem when waiting for the busy bit in the
380	 * GPADC status register to go low. In V1.1 there wait_for_completion
381	 * seems to timeout when waiting for an interrupt.. Not seen in V2.0
382	 */
383	(void) abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
384		AB8500_GPADC_CTRL1_REG, DIS_GPADC);
385	regulator_disable(gpadc->regu);
386	mutex_unlock(&gpadc->ab8500_gpadc_lock);
387	dev_err(gpadc->dev,
388		"gpadc_conversion: Failed to AD convert channel %d\n", input);
389	return ret;
390}
391EXPORT_SYMBOL(ab8500_gpadc_convert);
392
393/**
394 * ab8500_bm_gpswadcconvend_handler() - isr for s/w gpadc conversion completion
395 * @irq:	irq number
396 * @data:	pointer to the data passed during request irq
397 *
398 * This is a interrupt service routine for s/w gpadc conversion completion.
399 * Notifies the gpadc completion is completed and the converted raw value
400 * can be read from the registers.
401 * Returns IRQ status(IRQ_HANDLED)
402 */
403static irqreturn_t ab8500_bm_gpswadcconvend_handler(int irq, void *_gpadc)
404{
405	struct ab8500_gpadc *gpadc = _gpadc;
406
407	complete(&gpadc->ab8500_gpadc_complete);
408
409	return IRQ_HANDLED;
410}
411
412static int otp_cal_regs[] = {
413	AB8500_GPADC_CAL_1,
414	AB8500_GPADC_CAL_2,
415	AB8500_GPADC_CAL_3,
416	AB8500_GPADC_CAL_4,
417	AB8500_GPADC_CAL_5,
418	AB8500_GPADC_CAL_6,
419	AB8500_GPADC_CAL_7,
420};
421
422static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc)
423{
424	int i;
425	int ret[ARRAY_SIZE(otp_cal_regs)];
426	u8 gpadc_cal[ARRAY_SIZE(otp_cal_regs)];
427
428	int vmain_high, vmain_low;
429	int btemp_high, btemp_low;
430	int vbat_high, vbat_low;
431
432	/* First we read all OTP registers and store the error code */
433	for (i = 0; i < ARRAY_SIZE(otp_cal_regs); i++) {
434		ret[i] = abx500_get_register_interruptible(gpadc->dev,
435			AB8500_OTP_EMUL, otp_cal_regs[i],  &gpadc_cal[i]);
436		if (ret[i] < 0)
437			dev_err(gpadc->dev, "%s: read otp reg 0x%02x failed\n",
438				__func__, otp_cal_regs[i]);
439	}
440
441	/*
442	 * The ADC calibration data is stored in OTP registers.
443	 * The layout of the calibration data is outlined below and a more
444	 * detailed description can be found in UM0836
445	 *
446	 * vm_h/l = vmain_high/low
447	 * bt_h/l = btemp_high/low
448	 * vb_h/l = vbat_high/low
449	 *
450	 * Data bits:
451	 * | 7	   | 6	   | 5	   | 4	   | 3	   | 2	   | 1	   | 0
452	 * |.......|.......|.......|.......|.......|.......|.......|.......
453	 * |						   | vm_h9 | vm_h8
454	 * |.......|.......|.......|.......|.......|.......|.......|.......
455	 * |		   | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2
456	 * |.......|.......|.......|.......|.......|.......|.......|.......
457	 * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9
458	 * |.......|.......|.......|.......|.......|.......|.......|.......
459	 * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1
460	 * |.......|.......|.......|.......|.......|.......|.......|.......
461	 * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8
462	 * |.......|.......|.......|.......|.......|.......|.......|.......
463	 * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0
464	 * |.......|.......|.......|.......|.......|.......|.......|.......
465	 * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
466	 * |.......|.......|.......|.......|.......|.......|.......|.......
467	 *
468	 *
469	 * Ideal output ADC codes corresponding to injected input voltages
470	 * during manufacturing is:
471	 *
472	 * vmain_high: Vin = 19500mV / ADC ideal code = 997
473	 * vmain_low:  Vin = 315mV   / ADC ideal code = 16
474	 * btemp_high: Vin = 1300mV  / ADC ideal code = 985
475	 * btemp_low:  Vin = 21mV    / ADC ideal code = 16
476	 * vbat_high:  Vin = 4700mV  / ADC ideal code = 982
477	 * vbat_low:   Vin = 2380mV  / ADC ideal code = 33
478	 */
479
480	/* Calculate gain and offset for VMAIN if all reads succeeded */
481	if (!(ret[0] < 0 || ret[1] < 0 || ret[2] < 0)) {
482		vmain_high = (((gpadc_cal[0] & 0x03) << 8) |
483			((gpadc_cal[1] & 0x3F) << 2) |
484			((gpadc_cal[2] & 0xC0) >> 6));
485
486		vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
487
488		gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE *
489			(19500 - 315) /	(vmain_high - vmain_low);
490
491		gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE * 19500 -
492			(CALIB_SCALE * (19500 - 315) /
493			 (vmain_high - vmain_low)) * vmain_high;
494	} else {
495		gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0;
496	}
497
498	/* Calculate gain and offset for BTEMP if all reads succeeded */
499	if (!(ret[2] < 0 || ret[3] < 0 || ret[4] < 0)) {
500		btemp_high = (((gpadc_cal[2] & 0x01) << 9) |
501			(gpadc_cal[3] << 1) |
502			((gpadc_cal[4] & 0x80) >> 7));
503
504		btemp_low = ((gpadc_cal[4] & 0x7C) >> 2);
505
506		gpadc->cal_data[ADC_INPUT_BTEMP].gain =
507			CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low);
508
509		gpadc->cal_data[ADC_INPUT_BTEMP].offset = CALIB_SCALE * 1300 -
510			(CALIB_SCALE * (1300 - 21) /
511			(btemp_high - btemp_low)) * btemp_high;
512	} else {
513		gpadc->cal_data[ADC_INPUT_BTEMP].gain = 0;
514	}
515
516	/* Calculate gain and offset for VBAT if all reads succeeded */
517	if (!(ret[4] < 0 || ret[5] < 0 || ret[6] < 0)) {
518		vbat_high = (((gpadc_cal[4] & 0x03) << 8) | gpadc_cal[5]);
519		vbat_low = ((gpadc_cal[6] & 0xFC) >> 2);
520
521		gpadc->cal_data[ADC_INPUT_VBAT].gain = CALIB_SCALE *
522			(4700 - 2380) /	(vbat_high - vbat_low);
523
524		gpadc->cal_data[ADC_INPUT_VBAT].offset = CALIB_SCALE * 4700 -
525			(CALIB_SCALE * (4700 - 2380) /
526			(vbat_high - vbat_low)) * vbat_high;
527	} else {
528		gpadc->cal_data[ADC_INPUT_VBAT].gain = 0;
529	}
530
531	dev_dbg(gpadc->dev, "VMAIN gain %llu offset %llu\n",
532		gpadc->cal_data[ADC_INPUT_VMAIN].gain,
533		gpadc->cal_data[ADC_INPUT_VMAIN].offset);
534
535	dev_dbg(gpadc->dev, "BTEMP gain %llu offset %llu\n",
536		gpadc->cal_data[ADC_INPUT_BTEMP].gain,
537		gpadc->cal_data[ADC_INPUT_BTEMP].offset);
538
539	dev_dbg(gpadc->dev, "VBAT gain %llu offset %llu\n",
540		gpadc->cal_data[ADC_INPUT_VBAT].gain,
541		gpadc->cal_data[ADC_INPUT_VBAT].offset);
542}
543
544static int __devinit ab8500_gpadc_probe(struct platform_device *pdev)
545{
546	int ret = 0;
547	struct ab8500_gpadc *gpadc;
548
549	gpadc = kzalloc(sizeof(struct ab8500_gpadc), GFP_KERNEL);
550	if (!gpadc) {
551		dev_err(&pdev->dev, "Error: No memory\n");
552		return -ENOMEM;
553	}
554
555	gpadc->irq = platform_get_irq_byname(pdev, "SW_CONV_END");
556	if (gpadc->irq < 0) {
557		dev_err(gpadc->dev, "failed to get platform irq-%d\n",
558			gpadc->irq);
559		ret = gpadc->irq;
560		goto fail;
561	}
562
563	gpadc->dev = &pdev->dev;
564	mutex_init(&gpadc->ab8500_gpadc_lock);
565
566	/* Initialize completion used to notify completion of conversion */
567	init_completion(&gpadc->ab8500_gpadc_complete);
568
569	/* Register interrupt  - SwAdcComplete */
570	ret = request_threaded_irq(gpadc->irq, NULL,
571		ab8500_bm_gpswadcconvend_handler,
572		IRQF_NO_SUSPEND | IRQF_SHARED, "ab8500-gpadc", gpadc);
573	if (ret < 0) {
574		dev_err(gpadc->dev, "Failed to register interrupt, irq: %d\n",
575			gpadc->irq);
576		goto fail;
577	}
578
579	/* Get Chip ID of the ABB ASIC  */
580	ret = abx500_get_chip_id(gpadc->dev);
581	if (ret < 0) {
582		dev_err(gpadc->dev, "failed to get chip ID\n");
583		goto fail_irq;
584	}
585	gpadc->chip_id = (u8) ret;
586
587	/* VTVout LDO used to power up ab8500-GPADC */
588	gpadc->regu = regulator_get(&pdev->dev, "vddadc");
589	if (IS_ERR(gpadc->regu)) {
590		ret = PTR_ERR(gpadc->regu);
591		dev_err(gpadc->dev, "failed to get vtvout LDO\n");
592		goto fail_irq;
593	}
594	ab8500_gpadc_read_calibration_data(gpadc);
595	list_add_tail(&gpadc->node, &ab8500_gpadc_list);
596	dev_dbg(gpadc->dev, "probe success\n");
597	return 0;
598fail_irq:
599	free_irq(gpadc->irq, gpadc);
600fail:
601	kfree(gpadc);
602	gpadc = NULL;
603	return ret;
604}
605
606static int __devexit ab8500_gpadc_remove(struct platform_device *pdev)
607{
608	struct ab8500_gpadc *gpadc = platform_get_drvdata(pdev);
609
610	/* remove this gpadc entry from the list */
611	list_del(&gpadc->node);
612	/* remove interrupt  - completion of Sw ADC conversion */
613	free_irq(gpadc->irq, gpadc);
614	/* disable VTVout LDO that is being used by GPADC */
615	regulator_put(gpadc->regu);
616	kfree(gpadc);
617	gpadc = NULL;
618	return 0;
619}
620
621static struct platform_driver ab8500_gpadc_driver = {
622	.probe = ab8500_gpadc_probe,
623	.remove = __devexit_p(ab8500_gpadc_remove),
624	.driver = {
625		.name = "ab8500-gpadc",
626		.owner = THIS_MODULE,
627	},
628};
629
630static int __init ab8500_gpadc_init(void)
631{
632	return platform_driver_register(&ab8500_gpadc_driver);
633}
634
635static void __exit ab8500_gpadc_exit(void)
636{
637	platform_driver_unregister(&ab8500_gpadc_driver);
638}
639
640subsys_initcall_sync(ab8500_gpadc_init);
641module_exit(ab8500_gpadc_exit);
642
643MODULE_LICENSE("GPL v2");
644MODULE_AUTHOR("Arun R Murthy, Daniel Willerud, Johan Palsson");
645MODULE_ALIAS("platform:ab8500_gpadc");
646MODULE_DESCRIPTION("AB8500 GPADC driver");